memcontrol.c 170.3 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/sched/mm.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
41
#include <linux/pagemap.h>
42
#include <linux/vm_event_item.h>
43
#include <linux/smp.h>
44
#include <linux/page-flags.h>
45
#include <linux/backing-dev.h>
46 47
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
48
#include <linux/limits.h>
49
#include <linux/export.h>
50
#include <linux/mutex.h>
51
#include <linux/rbtree.h>
52
#include <linux/slab.h>
53
#include <linux/swap.h>
54
#include <linux/swapops.h>
55
#include <linux/spinlock.h>
56
#include <linux/eventfd.h>
57
#include <linux/poll.h>
58
#include <linux/sort.h>
59
#include <linux/fs.h>
60
#include <linux/seq_file.h>
61
#include <linux/vmpressure.h>
62
#include <linux/mm_inline.h>
63
#include <linux/swap_cgroup.h>
64
#include <linux/cpu.h>
65
#include <linux/oom.h>
66
#include <linux/lockdep.h>
67
#include <linux/file.h>
68
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
69
#include "internal.h"
G
Glauber Costa 已提交
70
#include <net/sock.h>
M
Michal Hocko 已提交
71
#include <net/ip.h>
72
#include "slab.h"
B
Balbir Singh 已提交
73

74
#include <linux/uaccess.h>
75

76 77
#include <trace/events/vmscan.h>

78 79
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
80

81 82
struct mem_cgroup *root_mem_cgroup __read_mostly;

83
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
84

85 86 87
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

88 89 90
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

91
/* Whether the swap controller is active */
A
Andrew Morton 已提交
92
#ifdef CONFIG_MEMCG_SWAP
93 94
int do_swap_account __read_mostly;
#else
95
#define do_swap_account		0
96 97
#endif

98 99 100 101 102 103
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

104
static const char *const mem_cgroup_lru_names[] = {
105 106 107 108 109 110 111
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

112 113 114
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
115

116 117 118 119 120
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

121
struct mem_cgroup_tree_per_node {
122
	struct rb_root rb_root;
123
	struct rb_node *rb_rightmost;
124 125 126 127 128 129 130 131 132
	spinlock_t lock;
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
133 134 135 136 137
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
138

139 140 141
/*
 * cgroup_event represents events which userspace want to receive.
 */
142
struct mem_cgroup_event {
143
	/*
144
	 * memcg which the event belongs to.
145
	 */
146
	struct mem_cgroup *memcg;
147 148 149 150 151 152 153 154
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
155 156 157 158 159
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
160
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
161
			      struct eventfd_ctx *eventfd, const char *args);
162 163 164 165 166
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
167
	void (*unregister_event)(struct mem_cgroup *memcg,
168
				 struct eventfd_ctx *eventfd);
169 170 171 172 173 174
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
175
	wait_queue_entry_t wait;
176 177 178
	struct work_struct remove;
};

179 180
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181

182 183
/* Stuffs for move charges at task migration. */
/*
184
 * Types of charges to be moved.
185
 */
186 187 188
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
189

190 191
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
192
	spinlock_t	  lock; /* for from, to */
193
	struct mm_struct  *mm;
194 195
	struct mem_cgroup *from;
	struct mem_cgroup *to;
196
	unsigned long flags;
197
	unsigned long precharge;
198
	unsigned long moved_charge;
199
	unsigned long moved_swap;
200 201 202
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
203
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
204 205
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
206

207 208 209 210
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
211
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
212
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
213

214 215
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
216
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
217
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
218
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
219 220 221
	NR_CHARGE_TYPE,
};

222
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
223 224 225 226
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
227
	_KMEM,
V
Vladimir Davydov 已提交
228
	_TCP,
G
Glauber Costa 已提交
229 230
};

231 232
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
233
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
234 235
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(root, iter, NULL))

#define for_each_mem_cgroup(iter)			\
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
	     iter != NULL;				\
	     iter = mem_cgroup_iter(NULL, iter, NULL))

252 253 254 255 256 257
static inline bool should_force_charge(void)
{
	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
		(current->flags & PF_EXITING);
}

258 259 260 261 262 263 264 265 266 267 268 269 270
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

271
#ifdef CONFIG_MEMCG_KMEM
272
/*
273
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
274 275 276 277 278
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
279
 *
280 281
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
282
 */
283 284
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
285

286 287 288 289 290 291 292 293 294 295 296 297 298
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

299 300 301 302 303 304
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
305
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
306 307
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
308
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
309 310 311
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
312
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
313

314 315 316 317 318 319
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
320
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
321
EXPORT_SYMBOL(memcg_kmem_enabled_key);
322

323 324
struct workqueue_struct *memcg_kmem_cache_wq;

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
static int memcg_shrinker_map_size;
static DEFINE_MUTEX(memcg_shrinker_map_mutex);

static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
{
	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
}

static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
					 int size, int old_size)
{
	struct memcg_shrinker_map *new, *old;
	int nid;

	lockdep_assert_held(&memcg_shrinker_map_mutex);

	for_each_node(nid) {
		old = rcu_dereference_protected(
			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
		/* Not yet online memcg */
		if (!old)
			return 0;

		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
		if (!new)
			return -ENOMEM;

		/* Set all old bits, clear all new bits */
		memset(new->map, (int)0xff, old_size);
		memset((void *)new->map + old_size, 0, size - old_size);

		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
	}

	return 0;
}

static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_node *pn;
	struct memcg_shrinker_map *map;
	int nid;

	if (mem_cgroup_is_root(memcg))
		return;

	for_each_node(nid) {
		pn = mem_cgroup_nodeinfo(memcg, nid);
		map = rcu_dereference_protected(pn->shrinker_map, true);
		if (map)
			kvfree(map);
		rcu_assign_pointer(pn->shrinker_map, NULL);
	}
}

static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	struct memcg_shrinker_map *map;
	int nid, size, ret = 0;

	if (mem_cgroup_is_root(memcg))
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	size = memcg_shrinker_map_size;
	for_each_node(nid) {
		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
		if (!map) {
			memcg_free_shrinker_maps(memcg);
			ret = -ENOMEM;
			break;
		}
		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
	}
	mutex_unlock(&memcg_shrinker_map_mutex);

	return ret;
}

int memcg_expand_shrinker_maps(int new_id)
{
	int size, old_size, ret = 0;
	struct mem_cgroup *memcg;

	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
	old_size = memcg_shrinker_map_size;
	if (size <= old_size)
		return 0;

	mutex_lock(&memcg_shrinker_map_mutex);
	if (!root_mem_cgroup)
		goto unlock;

	for_each_mem_cgroup(memcg) {
		if (mem_cgroup_is_root(memcg))
			continue;
		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
		if (ret)
			goto unlock;
	}
unlock:
	if (!ret)
		memcg_shrinker_map_size = size;
	mutex_unlock(&memcg_shrinker_map_mutex);
	return ret;
}
432 433 434 435 436 437 438 439

void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
{
	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
		struct memcg_shrinker_map *map;

		rcu_read_lock();
		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
440 441
		/* Pairs with smp mb in shrink_slab() */
		smp_mb__before_atomic();
442 443 444 445 446
		set_bit(shrinker_id, map->map);
		rcu_read_unlock();
	}
}

447 448 449 450 451 452
#else /* CONFIG_MEMCG_KMEM */
static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
{
	return 0;
}
static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
453
#endif /* CONFIG_MEMCG_KMEM */
454

455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

472
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
473 474 475 476 477
		memcg = root_mem_cgroup;

	return &memcg->css;
}

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

506 507
static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508
{
509
	int nid = page_to_nid(page);
510

511
	return memcg->nodeinfo[nid];
512 513
}

514 515
static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)
516
{
517
	return soft_limit_tree.rb_tree_per_node[nid];
518 519
}

520
static struct mem_cgroup_tree_per_node *
521 522 523 524
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);

525
	return soft_limit_tree.rb_tree_per_node[nid];
526 527
}

528 529
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz,
530
					 unsigned long new_usage_in_excess)
531 532 533
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
534
	struct mem_cgroup_per_node *mz_node;
535
	bool rightmost = true;
536 537 538 539 540 541 542 543 544

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
545
		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546
					tree_node);
547
		if (mz->usage_in_excess < mz_node->usage_in_excess) {
548
			p = &(*p)->rb_left;
549 550 551
			rightmost = false;
		}

552 553 554 555 556 557 558
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
559 560 561 562

	if (rightmost)
		mctz->rb_rightmost = &mz->tree_node;

563 564 565 566 567
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

568 569
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
					 struct mem_cgroup_tree_per_node *mctz)
570 571 572
{
	if (!mz->on_tree)
		return;
573 574 575 576

	if (&mz->tree_node == mctz->rb_rightmost)
		mctz->rb_rightmost = rb_prev(&mz->tree_node);

577 578 579 580
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

581 582
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
				       struct mem_cgroup_tree_per_node *mctz)
583
{
584 585 586
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
587
	__mem_cgroup_remove_exceeded(mz, mctz);
588
	spin_unlock_irqrestore(&mctz->lock, flags);
589 590
}

591 592 593
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
594
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
595 596 597 598 599 600 601
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
602 603 604

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
605
	unsigned long excess;
606 607
	struct mem_cgroup_per_node *mz;
	struct mem_cgroup_tree_per_node *mctz;
608

609
	mctz = soft_limit_tree_from_page(page);
610 611
	if (!mctz)
		return;
612 613 614 615 616
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
617
		mz = mem_cgroup_page_nodeinfo(memcg, page);
618
		excess = soft_limit_excess(memcg);
619 620 621 622 623
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
624 625 626
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
627 628
			/* if on-tree, remove it */
			if (mz->on_tree)
629
				__mem_cgroup_remove_exceeded(mz, mctz);
630 631 632 633
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
634
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
635
			spin_unlock_irqrestore(&mctz->lock, flags);
636 637 638 639 640 641
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
642 643 644
	struct mem_cgroup_tree_per_node *mctz;
	struct mem_cgroup_per_node *mz;
	int nid;
645

646
	for_each_node(nid) {
647 648
		mz = mem_cgroup_nodeinfo(memcg, nid);
		mctz = soft_limit_tree_node(nid);
649 650
		if (mctz)
			mem_cgroup_remove_exceeded(mz, mctz);
651 652 653
	}
}

654 655
static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656
{
657
	struct mem_cgroup_per_node *mz;
658 659 660

retry:
	mz = NULL;
661
	if (!mctz->rb_rightmost)
662 663
		goto done;		/* Nothing to reclaim from */

664 665
	mz = rb_entry(mctz->rb_rightmost,
		      struct mem_cgroup_per_node, tree_node);
666 667 668 669 670
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
671
	__mem_cgroup_remove_exceeded(mz, mctz);
672
	if (!soft_limit_excess(mz->memcg) ||
673
	    !css_tryget_online(&mz->memcg->css))
674 675 676 677 678
		goto retry;
done:
	return mz;
}

679 680
static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681
{
682
	struct mem_cgroup_per_node *mz;
683

684
	spin_lock_irq(&mctz->lock);
685
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
686
	spin_unlock_irq(&mctz->lock);
687 688 689
	return mz;
}

690
static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
691
				      int event)
692
{
693
	return atomic_long_read(&memcg->events[event]);
694 695
}

696
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697
					 struct page *page,
698
					 bool compound, int nr_pages)
699
{
700 701 702 703
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
704
	if (PageAnon(page))
705
		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
706
	else {
707
		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
708
		if (PageSwapBacked(page))
709
			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
710
	}
711

712 713
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
714
		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
715
	}
716

717 718
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
719
		__count_memcg_events(memcg, PGPGIN, 1);
720
	else {
721
		__count_memcg_events(memcg, PGPGOUT, 1);
722 723
		nr_pages = -nr_pages; /* for event */
	}
724

725
	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
726 727
}

728 729
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
730
{
731
	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
732
	unsigned long nr = 0;
733
	enum lru_list lru;
734

735
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
736

737 738 739
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
740
		nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
741 742
	}
	return nr;
743
}
744

745
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
746
			unsigned int lru_mask)
747
{
748
	unsigned long nr = 0;
749
	enum lru_list lru;
750

751 752 753 754 755
	for_each_lru(lru) {
		if (!(BIT(lru) & lru_mask))
			continue;
		nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
	}
756
	return nr;
757 758
}

759 760
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
761 762 763
{
	unsigned long val, next;

764 765
	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
766
	/* from time_after() in jiffies.h */
767
	if ((long)(next - val) < 0) {
768 769 770 771
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
772 773 774
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
775 776 777 778 779 780
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
781
		__this_cpu_write(memcg->stat_cpu->targets[target], next);
782
		return true;
783
	}
784
	return false;
785 786 787 788 789 790
}

/*
 * Check events in order.
 *
 */
791
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
792 793
{
	/* threshold event is triggered in finer grain than soft limit */
794 795
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
796
		bool do_softlimit;
797
		bool do_numainfo __maybe_unused;
798

799 800
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
801 802 803 804
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
805
		mem_cgroup_threshold(memcg);
806 807
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
808
#if MAX_NUMNODES > 1
809
		if (unlikely(do_numainfo))
810
			atomic_inc(&memcg->numainfo_events);
811
#endif
812
	}
813 814
}

815
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
816
{
817 818 819 820 821 822 823 824
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

825
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
826
}
M
Michal Hocko 已提交
827
EXPORT_SYMBOL(mem_cgroup_from_task);
828

829 830 831 832 833 834 835 836 837
/**
 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 * @mm: mm from which memcg should be extracted. It can be NULL.
 *
 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 * returned.
 */
struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
838
{
839 840 841 842
	struct mem_cgroup *memcg;

	if (mem_cgroup_disabled())
		return NULL;
843

844 845
	rcu_read_lock();
	do {
846 847 848 849 850 851
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
852
			memcg = root_mem_cgroup;
853 854 855 856 857
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
858
	} while (!css_tryget_online(&memcg->css));
859
	rcu_read_unlock();
860
	return memcg;
861
}
862 863
EXPORT_SYMBOL(get_mem_cgroup_from_mm);

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 * @page: page from which memcg should be extracted.
 *
 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 * root_mem_cgroup is returned.
 */
struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
{
	struct mem_cgroup *memcg = page->mem_cgroup;

	if (mem_cgroup_disabled())
		return NULL;

	rcu_read_lock();
	if (!memcg || !css_tryget_online(&memcg->css))
		memcg = root_mem_cgroup;
	rcu_read_unlock();
	return memcg;
}
EXPORT_SYMBOL(get_mem_cgroup_from_page);

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 */
static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
{
	if (unlikely(current->active_memcg)) {
		struct mem_cgroup *memcg = root_mem_cgroup;

		rcu_read_lock();
		if (css_tryget_online(&current->active_memcg->css))
			memcg = current->active_memcg;
		rcu_read_unlock();
		return memcg;
	}
	return get_mem_cgroup_from_mm(current->mm);
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
916
 * Reclaimers can specify a node and a priority level in @reclaim to
917
 * divide up the memcgs in the hierarchy among all concurrent
918
 * reclaimers operating on the same node and priority.
919
 */
920
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
921
				   struct mem_cgroup *prev,
922
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
923
{
M
Michal Hocko 已提交
924
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
925
	struct cgroup_subsys_state *css = NULL;
926
	struct mem_cgroup *memcg = NULL;
927
	struct mem_cgroup *pos = NULL;
928

929 930
	if (mem_cgroup_disabled())
		return NULL;
931

932 933
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
934

935
	if (prev && !reclaim)
936
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
937

938 939
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
940
			goto out;
941
		return root;
942
	}
K
KAMEZAWA Hiroyuki 已提交
943

944
	rcu_read_lock();
M
Michal Hocko 已提交
945

946
	if (reclaim) {
947
		struct mem_cgroup_per_node *mz;
948

949
		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
950 951 952 953 954
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

955
		while (1) {
956
			pos = READ_ONCE(iter->position);
957 958
			if (!pos || css_tryget(&pos->css))
				break;
959
			/*
960 961 962 963 964 965
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
966
			 */
967 968
			(void)cmpxchg(&iter->position, pos, NULL);
		}
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
986
		}
K
KAMEZAWA Hiroyuki 已提交
987

988 989 990 991 992 993
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
994

995 996
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
997

998 999
		if (css_tryget(css))
			break;
1000

1001
		memcg = NULL;
1002
	}
1003 1004 1005

	if (reclaim) {
		/*
1006 1007 1008
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
1009
		 */
1010 1011
		(void)cmpxchg(&iter->position, pos, memcg);

1012 1013 1014 1015 1016 1017 1018
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
1019
	}
1020

1021 1022
out_unlock:
	rcu_read_unlock();
1023
out:
1024 1025 1026
	if (prev && prev != root)
		css_put(&prev->css);

1027
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1028
}
K
KAMEZAWA Hiroyuki 已提交
1029

1030 1031 1032 1033 1034 1035 1036
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1037 1038 1039 1040 1041 1042
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1043

1044 1045 1046 1047
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
1048 1049
	struct mem_cgroup_per_node *mz;
	int nid;
1050 1051
	int i;

1052
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1053
		for_each_node(nid) {
1054 1055 1056 1057 1058
			mz = mem_cgroup_nodeinfo(memcg, nid);
			for (i = 0; i <= DEF_PRIORITY; i++) {
				iter = &mz->iter[i];
				cmpxchg(&iter->position,
					dead_memcg, NULL);
1059 1060 1061 1062 1063
			}
		}
	}
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
/**
 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
 * @memcg: hierarchy root
 * @fn: function to call for each task
 * @arg: argument passed to @fn
 *
 * This function iterates over tasks attached to @memcg or to any of its
 * descendants and calls @fn for each task. If @fn returns a non-zero
 * value, the function breaks the iteration loop and returns the value.
 * Otherwise, it will iterate over all tasks and return 0.
 *
 * This function must not be called for the root memory cgroup.
 */
int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
			  int (*fn)(struct task_struct *, void *), void *arg)
{
	struct mem_cgroup *iter;
	int ret = 0;

	BUG_ON(memcg == root_mem_cgroup);

	for_each_mem_cgroup_tree(iter, memcg) {
		struct css_task_iter it;
		struct task_struct *task;

1089
		css_task_iter_start(&iter->css, 0, &it);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		while (!ret && (task = css_task_iter_next(&it)))
			ret = fn(task, arg);
		css_task_iter_end(&it);
		if (ret) {
			mem_cgroup_iter_break(memcg, iter);
			break;
		}
	}
	return ret;
}

1101
/**
1102
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1103
 * @page: the page
1104
 * @pgdat: pgdat of the page
1105 1106 1107 1108
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
1109
 */
M
Mel Gorman 已提交
1110
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
K
KAMEZAWA Hiroyuki 已提交
1111
{
1112
	struct mem_cgroup_per_node *mz;
1113
	struct mem_cgroup *memcg;
1114
	struct lruvec *lruvec;
1115

1116
	if (mem_cgroup_disabled()) {
M
Mel Gorman 已提交
1117
		lruvec = &pgdat->lruvec;
1118 1119
		goto out;
	}
1120

1121
	memcg = page->mem_cgroup;
1122
	/*
1123
	 * Swapcache readahead pages are added to the LRU - and
1124
	 * possibly migrated - before they are charged.
1125
	 */
1126 1127
	if (!memcg)
		memcg = root_mem_cgroup;
1128

1129
	mz = mem_cgroup_page_nodeinfo(memcg, page);
1130 1131 1132 1133 1134 1135 1136
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
M
Mel Gorman 已提交
1137 1138
	if (unlikely(lruvec->pgdat != pgdat))
		lruvec->pgdat = pgdat;
1139
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1140
}
1141

1142
/**
1143 1144 1145
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
1146
 * @zid: zone id of the accounted pages
1147
 * @nr_pages: positive when adding or negative when removing
1148
 *
1149 1150 1151
 * This function must be called under lru_lock, just before a page is added
 * to or just after a page is removed from an lru list (that ordering being
 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1152
 */
1153
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1154
				int zid, int nr_pages)
1155
{
1156
	struct mem_cgroup_per_node *mz;
1157
	unsigned long *lru_size;
1158
	long size;
1159 1160 1161 1162

	if (mem_cgroup_disabled())
		return;

1163
	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1164
	lru_size = &mz->lru_zone_size[zid][lru];
1165 1166 1167 1168 1169

	if (nr_pages < 0)
		*lru_size += nr_pages;

	size = *lru_size;
1170 1171 1172
	if (WARN_ONCE(size < 0,
		"%s(%p, %d, %d): lru_size %ld\n",
		__func__, lruvec, lru, nr_pages, size)) {
1173 1174 1175 1176 1177 1178
		VM_BUG_ON(1);
		*lru_size = 0;
	}

	if (nr_pages > 0)
		*lru_size += nr_pages;
K
KAMEZAWA Hiroyuki 已提交
1179
}
1180

1181
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1182
{
1183
	struct mem_cgroup *task_memcg;
1184
	struct task_struct *p;
1185
	bool ret;
1186

1187
	p = find_lock_task_mm(task);
1188
	if (p) {
1189
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1190 1191 1192 1193 1194 1195 1196
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1197
		rcu_read_lock();
1198 1199
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1200
		rcu_read_unlock();
1201
	}
1202 1203
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1204 1205 1206
	return ret;
}

1207
/**
1208
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1209
 * @memcg: the memory cgroup
1210
 *
1211
 * Returns the maximum amount of memory @mem can be charged with, in
1212
 * pages.
1213
 */
1214
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1215
{
1216 1217 1218
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1219

1220
	count = page_counter_read(&memcg->memory);
1221
	limit = READ_ONCE(memcg->memory.max);
1222 1223 1224
	if (count < limit)
		margin = limit - count;

1225
	if (do_memsw_account()) {
1226
		count = page_counter_read(&memcg->memsw);
1227
		limit = READ_ONCE(memcg->memsw.max);
1228 1229
		if (count <= limit)
			margin = min(margin, limit - count);
1230 1231
		else
			margin = 0;
1232 1233 1234
	}

	return margin;
1235 1236
}

1237
/*
Q
Qiang Huang 已提交
1238
 * A routine for checking "mem" is under move_account() or not.
1239
 *
Q
Qiang Huang 已提交
1240 1241 1242
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1243
 */
1244
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1245
{
1246 1247
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1248
	bool ret = false;
1249 1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1258

1259 1260
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1261 1262
unlock:
	spin_unlock(&mc.lock);
1263 1264 1265
	return ret;
}

1266
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1267 1268
{
	if (mc.moving_task && current != mc.moving_task) {
1269
		if (mem_cgroup_under_move(memcg)) {
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1282
static const unsigned int memcg1_stats[] = {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
	MEMCG_CACHE,
	MEMCG_RSS,
	MEMCG_RSS_HUGE,
	NR_SHMEM,
	NR_FILE_MAPPED,
	NR_FILE_DIRTY,
	NR_WRITEBACK,
	MEMCG_SWAP,
};

static const char *const memcg1_stat_names[] = {
	"cache",
	"rss",
	"rss_huge",
	"shmem",
	"mapped_file",
	"dirty",
	"writeback",
	"swap",
};

1304
#define K(x) ((x) << (PAGE_SHIFT-10))
1305
/**
1306 1307
 * mem_cgroup_print_oom_context: Print OOM information relevant to
 * memory controller.
1308 1309 1310 1311 1312 1313
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
1314
void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1315 1316 1317
{
	rcu_read_lock();

1318 1319 1320 1321 1322
	if (memcg) {
		pr_cont(",oom_memcg=");
		pr_cont_cgroup_path(memcg->css.cgroup);
	} else
		pr_cont(",global_oom");
1323
	if (p) {
1324
		pr_cont(",task_memcg=");
1325 1326
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
	}
1327
	rcu_read_unlock();
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**
 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
 * memory controller.
 * @memcg: The memory cgroup that went over limit
 */
void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
{
	struct mem_cgroup *iter;
	unsigned int i;
1339

1340 1341
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
1342
		K((u64)memcg->memory.max), memcg->memory.failcnt);
1343 1344
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
1345
		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1346 1347
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
1348
		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1349 1350

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1351 1352
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1353 1354
		pr_cont(":");

1355 1356
		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1357
				continue;
1358
			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1359
				K(memcg_page_state(iter, memcg1_stats[i])));
1360 1361 1362 1363 1364 1365 1366 1367
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1368 1369
}

D
David Rientjes 已提交
1370 1371 1372
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1373
unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1374
{
1375
	unsigned long max;
1376

1377
	max = memcg->memory.max;
1378
	if (mem_cgroup_swappiness(memcg)) {
1379 1380
		unsigned long memsw_max;
		unsigned long swap_max;
1381

1382 1383 1384 1385
		memsw_max = memcg->memsw.max;
		swap_max = memcg->swap.max;
		swap_max = min(swap_max, (unsigned long)total_swap_pages);
		max = min(max + swap_max, memsw_max);
1386
	}
1387
	return max;
D
David Rientjes 已提交
1388 1389
}

1390
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1391
				     int order)
1392
{
1393 1394 1395
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
1396
		.memcg = memcg,
1397 1398 1399
		.gfp_mask = gfp_mask,
		.order = order,
	};
1400
	bool ret;
1401

1402 1403 1404 1405 1406 1407 1408
	if (mutex_lock_killable(&oom_lock))
		return true;
	/*
	 * A few threads which were not waiting at mutex_lock_killable() can
	 * fail to bail out. Therefore, check again after holding oom_lock.
	 */
	ret = should_force_charge() || out_of_memory(&oc);
1409
	mutex_unlock(&oom_lock);
1410
	return ret;
1411 1412
}

1413 1414
#if MAX_NUMNODES > 1

1415 1416
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1417
 * @memcg: the target memcg
1418 1419 1420 1421 1422 1423 1424
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1425
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1426 1427
		int nid, bool noswap)
{
1428
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1429 1430 1431
		return true;
	if (noswap || !total_swap_pages)
		return false;
1432
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1433 1434 1435 1436
		return true;
	return false;

}
1437 1438 1439 1440 1441 1442 1443

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1444
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1445 1446
{
	int nid;
1447 1448 1449 1450
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1451
	if (!atomic_read(&memcg->numainfo_events))
1452
		return;
1453
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1454 1455 1456
		return;

	/* make a nodemask where this memcg uses memory from */
1457
	memcg->scan_nodes = node_states[N_MEMORY];
1458

1459
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1460

1461 1462
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1463
	}
1464

1465 1466
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1481
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1482 1483 1484
{
	int node;

1485 1486
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1487

1488
	node = next_node_in(node, memcg->scan_nodes);
1489
	/*
1490 1491 1492
	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
	 * last time it really checked all the LRUs due to rate limiting.
	 * Fallback to the current node in that case for simplicity.
1493 1494 1495 1496
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1497
	memcg->last_scanned_node = node;
1498 1499 1500
	return node;
}
#else
1501
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1502 1503 1504 1505 1506
{
	return 0;
}
#endif

1507
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1508
				   pg_data_t *pgdat,
1509 1510 1511 1512 1513 1514 1515 1516 1517
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
1518
		.pgdat = pgdat,
1519 1520 1521
		.priority = 0,
	};

1522
	excess = soft_limit_excess(root_memcg);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
1548
		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1549
					pgdat, &nr_scanned);
1550
		*total_scanned += nr_scanned;
1551
		if (!soft_limit_excess(root_memcg))
1552
			break;
1553
	}
1554 1555
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1556 1557
}

1558 1559 1560 1561 1562 1563
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1564 1565
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1566 1567 1568 1569
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1570
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1571
{
1572
	struct mem_cgroup *iter, *failed = NULL;
1573

1574 1575
	spin_lock(&memcg_oom_lock);

1576
	for_each_mem_cgroup_tree(iter, memcg) {
1577
		if (iter->oom_lock) {
1578 1579 1580 1581 1582
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1583 1584
			mem_cgroup_iter_break(memcg, iter);
			break;
1585 1586
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1587
	}
K
KAMEZAWA Hiroyuki 已提交
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1600
		}
1601 1602
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1603 1604 1605 1606

	spin_unlock(&memcg_oom_lock);

	return !failed;
1607
}
1608

1609
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1610
{
K
KAMEZAWA Hiroyuki 已提交
1611 1612
	struct mem_cgroup *iter;

1613
	spin_lock(&memcg_oom_lock);
1614
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1615
	for_each_mem_cgroup_tree(iter, memcg)
1616
		iter->oom_lock = false;
1617
	spin_unlock(&memcg_oom_lock);
1618 1619
}

1620
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1621 1622 1623
{
	struct mem_cgroup *iter;

1624
	spin_lock(&memcg_oom_lock);
1625
	for_each_mem_cgroup_tree(iter, memcg)
1626 1627
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1628 1629
}

1630
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1631 1632 1633
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1634 1635
	/*
	 * When a new child is created while the hierarchy is under oom,
1636
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1637
	 */
1638
	spin_lock(&memcg_oom_lock);
1639
	for_each_mem_cgroup_tree(iter, memcg)
1640 1641 1642
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1643 1644
}

K
KAMEZAWA Hiroyuki 已提交
1645 1646
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1647
struct oom_wait_info {
1648
	struct mem_cgroup *memcg;
1649
	wait_queue_entry_t	wait;
K
KAMEZAWA Hiroyuki 已提交
1650 1651
};

1652
static int memcg_oom_wake_function(wait_queue_entry_t *wait,
K
KAMEZAWA Hiroyuki 已提交
1653 1654
	unsigned mode, int sync, void *arg)
{
1655 1656
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1657 1658 1659
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1660
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1661

1662 1663
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1664 1665 1666 1667
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1668
static void memcg_oom_recover(struct mem_cgroup *memcg)
1669
{
1670 1671 1672 1673 1674 1675 1676 1677 1678
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1679
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689
enum oom_status {
	OOM_SUCCESS,
	OOM_FAILED,
	OOM_ASYNC,
	OOM_SKIPPED
};

static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1690
{
1691 1692 1693
	enum oom_status ret;
	bool locked;

1694 1695 1696
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		return OOM_SKIPPED;

1697 1698
	memcg_memory_event(memcg, MEMCG_OOM);

K
KAMEZAWA Hiroyuki 已提交
1699
	/*
1700 1701 1702 1703
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
1704 1705 1706 1707
	 * cgroup1 allows disabling the OOM killer and waiting for outside
	 * handling until the charge can succeed; remember the context and put
	 * the task to sleep at the end of the page fault when all locks are
	 * released.
1708
	 *
1709 1710 1711 1712 1713 1714 1715
	 * On the other hand, in-kernel OOM killer allows for an async victim
	 * memory reclaim (oom_reaper) and that means that we are not solely
	 * relying on the oom victim to make a forward progress and we can
	 * invoke the oom killer here.
	 *
	 * Please note that mem_cgroup_out_of_memory might fail to find a
	 * victim and then we have to bail out from the charge path.
K
KAMEZAWA Hiroyuki 已提交
1716
	 */
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	if (memcg->oom_kill_disable) {
		if (!current->in_user_fault)
			return OOM_SKIPPED;
		css_get(&memcg->css);
		current->memcg_in_oom = memcg;
		current->memcg_oom_gfp_mask = mask;
		current->memcg_oom_order = order;

		return OOM_ASYNC;
	}

1728 1729 1730 1731 1732 1733 1734 1735
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	mem_cgroup_unmark_under_oom(memcg);
1736
	if (mem_cgroup_out_of_memory(memcg, mask, order))
1737 1738 1739 1740 1741 1742
		ret = OOM_SUCCESS;
	else
		ret = OOM_FAILED;

	if (locked)
		mem_cgroup_oom_unlock(memcg);
1743

1744
	return ret;
1745 1746 1747 1748
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1749
 * @handle: actually kill/wait or just clean up the OOM state
1750
 *
1751 1752
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1753
 *
1754
 * Memcg supports userspace OOM handling where failed allocations must
1755 1756 1757 1758
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1759
 * the end of the page fault to complete the OOM handling.
1760 1761
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1762
 * completed, %false otherwise.
1763
 */
1764
bool mem_cgroup_oom_synchronize(bool handle)
1765
{
T
Tejun Heo 已提交
1766
	struct mem_cgroup *memcg = current->memcg_in_oom;
1767
	struct oom_wait_info owait;
1768
	bool locked;
1769 1770 1771

	/* OOM is global, do not handle */
	if (!memcg)
1772
		return false;
1773

1774
	if (!handle)
1775
		goto cleanup;
1776 1777 1778 1779 1780

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
1781
	INIT_LIST_HEAD(&owait.wait.entry);
K
KAMEZAWA Hiroyuki 已提交
1782

1783
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1794 1795
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1796
	} else {
1797
		schedule();
1798 1799 1800 1801 1802
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1803 1804 1805 1806 1807 1808 1809 1810
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1811
cleanup:
T
Tejun Heo 已提交
1812
	current->memcg_in_oom = NULL;
1813
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1814
	return true;
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
/**
 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
 * @victim: task to be killed by the OOM killer
 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
 *
 * Returns a pointer to a memory cgroup, which has to be cleaned up
 * by killing all belonging OOM-killable tasks.
 *
 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
 */
struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
					    struct mem_cgroup *oom_domain)
{
	struct mem_cgroup *oom_group = NULL;
	struct mem_cgroup *memcg;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return NULL;

	if (!oom_domain)
		oom_domain = root_mem_cgroup;

	rcu_read_lock();

	memcg = mem_cgroup_from_task(victim);
	if (memcg == root_mem_cgroup)
		goto out;

	/*
	 * Traverse the memory cgroup hierarchy from the victim task's
	 * cgroup up to the OOMing cgroup (or root) to find the
	 * highest-level memory cgroup with oom.group set.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		if (memcg->oom_group)
			oom_group = memcg;

		if (memcg == oom_domain)
			break;
	}

	if (oom_group)
		css_get(&oom_group->css);
out:
	rcu_read_unlock();

	return oom_group;
}

void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
{
	pr_info("Tasks in ");
	pr_cont_cgroup_path(memcg->css.cgroup);
	pr_cont(" are going to be killed due to memory.oom.group set\n");
}

1873
/**
1874 1875
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1876
 *
1877
 * This function protects unlocked LRU pages from being moved to
1878 1879 1880 1881 1882
 * another cgroup.
 *
 * It ensures lifetime of the returned memcg. Caller is responsible
 * for the lifetime of the page; __unlock_page_memcg() is available
 * when @page might get freed inside the locked section.
1883
 */
1884
struct mem_cgroup *lock_page_memcg(struct page *page)
1885 1886
{
	struct mem_cgroup *memcg;
1887
	unsigned long flags;
1888

1889 1890 1891 1892
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
1893 1894 1895 1896 1897 1898 1899
	 *
	 * The RCU lock also protects the memcg from being freed when
	 * the page state that is going to change is the only thing
	 * preventing the page itself from being freed. E.g. writeback
	 * doesn't hold a page reference and relies on PG_writeback to
	 * keep off truncation, migration and so forth.
         */
1900 1901 1902
	rcu_read_lock();

	if (mem_cgroup_disabled())
1903
		return NULL;
1904
again:
1905
	memcg = page->mem_cgroup;
1906
	if (unlikely(!memcg))
1907
		return NULL;
1908

Q
Qiang Huang 已提交
1909
	if (atomic_read(&memcg->moving_account) <= 0)
1910
		return memcg;
1911

1912
	spin_lock_irqsave(&memcg->move_lock, flags);
1913
	if (memcg != page->mem_cgroup) {
1914
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1915 1916
		goto again;
	}
1917 1918 1919 1920

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1921
	 * the task who has the lock for unlock_page_memcg().
1922 1923 1924
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1925

1926
	return memcg;
1927
}
1928
EXPORT_SYMBOL(lock_page_memcg);
1929

1930
/**
1931 1932 1933 1934
 * __unlock_page_memcg - unlock and unpin a memcg
 * @memcg: the memcg
 *
 * Unlock and unpin a memcg returned by lock_page_memcg().
1935
 */
1936
void __unlock_page_memcg(struct mem_cgroup *memcg)
1937
{
1938 1939 1940 1941 1942 1943 1944 1945
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1946

1947
	rcu_read_unlock();
1948
}
1949 1950 1951 1952 1953 1954 1955 1956 1957

/**
 * unlock_page_memcg - unlock a page->mem_cgroup binding
 * @page: the page
 */
void unlock_page_memcg(struct page *page)
{
	__unlock_page_memcg(page->mem_cgroup);
}
1958
EXPORT_SYMBOL(unlock_page_memcg);
1959

1960 1961
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1962
	unsigned int nr_pages;
1963
	struct work_struct work;
1964
	unsigned long flags;
1965
#define FLUSHING_CACHED_CHARGE	0
1966 1967
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1968
static DEFINE_MUTEX(percpu_charge_mutex);
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1980
 */
1981
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1982 1983
{
	struct memcg_stock_pcp *stock;
1984
	unsigned long flags;
1985
	bool ret = false;
1986

1987
	if (nr_pages > MEMCG_CHARGE_BATCH)
1988
		return ret;
1989

1990 1991 1992
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
1993
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1994
		stock->nr_pages -= nr_pages;
1995 1996
		ret = true;
	}
1997 1998 1999

	local_irq_restore(flags);

2000 2001 2002 2003
	return ret;
}

/*
2004
 * Returns stocks cached in percpu and reset cached information.
2005 2006 2007 2008 2009
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2010
	if (stock->nr_pages) {
2011
		page_counter_uncharge(&old->memory, stock->nr_pages);
2012
		if (do_memsw_account())
2013
			page_counter_uncharge(&old->memsw, stock->nr_pages);
2014
		css_put_many(&old->css, stock->nr_pages);
2015
		stock->nr_pages = 0;
2016 2017 2018 2019 2020 2021
	}
	stock->cached = NULL;
}

static void drain_local_stock(struct work_struct *dummy)
{
2022 2023 2024
	struct memcg_stock_pcp *stock;
	unsigned long flags;

2025 2026 2027 2028
	/*
	 * The only protection from memory hotplug vs. drain_stock races is
	 * that we always operate on local CPU stock here with IRQ disabled
	 */
2029 2030 2031
	local_irq_save(flags);

	stock = this_cpu_ptr(&memcg_stock);
2032
	drain_stock(stock);
2033
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2034 2035

	local_irq_restore(flags);
2036 2037 2038
}

/*
2039
 * Cache charges(val) to local per_cpu area.
2040
 * This will be consumed by consume_stock() function, later.
2041
 */
2042
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2043
{
2044 2045 2046 2047
	struct memcg_stock_pcp *stock;
	unsigned long flags;

	local_irq_save(flags);
2048

2049
	stock = this_cpu_ptr(&memcg_stock);
2050
	if (stock->cached != memcg) { /* reset if necessary */
2051
		drain_stock(stock);
2052
		stock->cached = memcg;
2053
	}
2054
	stock->nr_pages += nr_pages;
2055

2056
	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2057 2058
		drain_stock(stock);

2059
	local_irq_restore(flags);
2060 2061 2062
}

/*
2063
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2064
 * of the hierarchy under it.
2065
 */
2066
static void drain_all_stock(struct mem_cgroup *root_memcg)
2067
{
2068
	int cpu, curcpu;
2069

2070 2071 2072
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2073 2074 2075 2076 2077 2078
	/*
	 * Notify other cpus that system-wide "drain" is running
	 * We do not care about races with the cpu hotplug because cpu down
	 * as well as workers from this path always operate on the local
	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
	 */
2079
	curcpu = get_cpu();
2080 2081
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2082
		struct mem_cgroup *memcg;
2083

2084
		memcg = stock->cached;
2085
		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2086
			continue;
2087 2088
		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
			css_put(&memcg->css);
2089
			continue;
2090
		}
2091 2092 2093 2094 2095 2096
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2097
		css_put(&memcg->css);
2098
	}
2099
	put_cpu();
2100
	mutex_unlock(&percpu_charge_mutex);
2101 2102
}

2103
static int memcg_hotplug_cpu_dead(unsigned int cpu)
2104 2105
{
	struct memcg_stock_pcp *stock;
2106
	struct mem_cgroup *memcg;
2107 2108 2109

	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

	for_each_mem_cgroup(memcg) {
		int i;

		for (i = 0; i < MEMCG_NR_STAT; i++) {
			int nid;
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
			if (x)
				atomic_long_add(x, &memcg->stat[i]);

			if (i >= NR_VM_NODE_STAT_ITEMS)
				continue;

			for_each_node(nid) {
				struct mem_cgroup_per_node *pn;

				pn = mem_cgroup_nodeinfo(memcg, nid);
				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
				if (x)
					atomic_long_add(x, &pn->lruvec_stat[i]);
			}
		}

2135
		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2136 2137 2138 2139 2140 2141 2142 2143
			long x;

			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
			if (x)
				atomic_long_add(x, &memcg->events[i]);
		}
	}

2144
	return 0;
2145 2146
}

2147 2148 2149 2150 2151 2152 2153
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
2154
		memcg_memory_event(memcg, MEMCG_HIGH);
2155 2156 2157 2158 2159 2160 2161 2162 2163
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
2164
	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2165 2166
}

2167 2168 2169 2170 2171 2172 2173
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2174
	struct mem_cgroup *memcg;
2175 2176 2177 2178

	if (likely(!nr_pages))
		return;

2179 2180
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2181 2182 2183 2184
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

2185 2186
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
2187
{
2188
	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2189
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2190
	struct mem_cgroup *mem_over_limit;
2191
	struct page_counter *counter;
2192
	unsigned long nr_reclaimed;
2193 2194
	bool may_swap = true;
	bool drained = false;
2195 2196
	bool oomed = false;
	enum oom_status oom_status;
2197

2198
	if (mem_cgroup_is_root(memcg))
2199
		return 0;
2200
retry:
2201
	if (consume_stock(memcg, nr_pages))
2202
		return 0;
2203

2204
	if (!do_memsw_account() ||
2205 2206
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2207
			goto done_restock;
2208
		if (do_memsw_account())
2209 2210
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2211
	} else {
2212
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2213
		may_swap = false;
2214
	}
2215

2216 2217 2218 2219
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
2220

2221 2222 2223 2224 2225 2226
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
2227
	if (unlikely(should_force_charge()))
2228
		goto force;
2229

2230 2231 2232 2233 2234 2235 2236 2237 2238
	/*
	 * Prevent unbounded recursion when reclaim operations need to
	 * allocate memory. This might exceed the limits temporarily,
	 * but we prefer facilitating memory reclaim and getting back
	 * under the limit over triggering OOM kills in these cases.
	 */
	if (unlikely(current->flags & PF_MEMALLOC))
		goto force;

2239 2240 2241
	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

2242
	if (!gfpflags_allow_blocking(gfp_mask))
2243
		goto nomem;
2244

2245
	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2246

2247 2248
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
2249

2250
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2251
		goto retry;
2252

2253
	if (!drained) {
2254
		drain_all_stock(mem_over_limit);
2255 2256 2257 2258
		drained = true;
		goto retry;
	}

2259 2260
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
2261 2262 2263 2264 2265 2266 2267 2268 2269
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2270
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2271 2272 2273 2274 2275 2276 2277 2278
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2279 2280 2281
	if (nr_retries--)
		goto retry;

2282 2283 2284
	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
		goto nomem;

2285
	if (gfp_mask & __GFP_NOFAIL)
2286
		goto force;
2287

2288
	if (fatal_signal_pending(current))
2289
		goto force;
2290

2291 2292 2293 2294 2295 2296
	/*
	 * keep retrying as long as the memcg oom killer is able to make
	 * a forward progress or bypass the charge if the oom killer
	 * couldn't make any progress.
	 */
	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2297
		       get_order(nr_pages * PAGE_SIZE));
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	switch (oom_status) {
	case OOM_SUCCESS:
		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
		oomed = true;
		goto retry;
	case OOM_FAILED:
		goto force;
	default:
		goto nomem;
	}
2308
nomem:
2309
	if (!(gfp_mask & __GFP_NOFAIL))
2310
		return -ENOMEM;
2311 2312 2313 2314 2315 2316 2317
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2318
	if (do_memsw_account())
2319 2320 2321 2322
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2323 2324

done_restock:
2325
	css_get_many(&memcg->css, batch);
2326 2327
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2328

2329
	/*
2330 2331
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2332
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2333 2334 2335 2336
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2337 2338
	 */
	do {
2339
		if (page_counter_read(&memcg->memory) > memcg->high) {
2340 2341 2342 2343 2344
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2345
			current->memcg_nr_pages_over_high += batch;
2346 2347 2348
			set_notify_resume(current);
			break;
		}
2349
	} while ((memcg = parent_mem_cgroup(memcg)));
2350 2351

	return 0;
2352
}
2353

2354
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2355
{
2356 2357 2358
	if (mem_cgroup_is_root(memcg))
		return;

2359
	page_counter_uncharge(&memcg->memory, nr_pages);
2360
	if (do_memsw_account())
2361
		page_counter_uncharge(&memcg->memsw, nr_pages);
2362

2363
	css_put_many(&memcg->css, nr_pages);
2364 2365
}

2366 2367
static void lock_page_lru(struct page *page, int *isolated)
{
2368
	pg_data_t *pgdat = page_pgdat(page);
2369

2370
	spin_lock_irq(&pgdat->lru_lock);
2371 2372 2373
	if (PageLRU(page)) {
		struct lruvec *lruvec;

2374
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2375 2376 2377 2378 2379 2380 2381 2382 2383
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
2384
	pg_data_t *pgdat = page_pgdat(page);
2385 2386 2387 2388

	if (isolated) {
		struct lruvec *lruvec;

2389
		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2390 2391 2392 2393
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
2394
	spin_unlock_irq(&pgdat->lru_lock);
2395 2396
}

2397
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2398
			  bool lrucare)
2399
{
2400
	int isolated;
2401

2402
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2403 2404 2405 2406 2407

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2408 2409
	if (lrucare)
		lock_page_lru(page, &isolated);
2410

2411 2412
	/*
	 * Nobody should be changing or seriously looking at
2413
	 * page->mem_cgroup at this point:
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2425
	page->mem_cgroup = memcg;
2426

2427 2428
	if (lrucare)
		unlock_page_lru(page, isolated);
2429
}
2430

2431
#ifdef CONFIG_MEMCG_KMEM
2432
static int memcg_alloc_cache_id(void)
2433
{
2434 2435 2436
	int id, size;
	int err;

2437
	id = ida_simple_get(&memcg_cache_ida,
2438 2439 2440
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2441

2442
	if (id < memcg_nr_cache_ids)
2443 2444 2445 2446 2447 2448
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2449
	down_write(&memcg_cache_ids_sem);
2450 2451

	size = 2 * (id + 1);
2452 2453 2454 2455 2456
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2457
	err = memcg_update_all_caches(size);
2458 2459
	if (!err)
		err = memcg_update_all_list_lrus(size);
2460 2461 2462 2463 2464
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2465
	if (err) {
2466
		ida_simple_remove(&memcg_cache_ida, id);
2467 2468 2469 2470 2471 2472 2473
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2474
	ida_simple_remove(&memcg_cache_ida, id);
2475 2476
}

2477
struct memcg_kmem_cache_create_work {
2478 2479 2480 2481 2482
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2483
static void memcg_kmem_cache_create_func(struct work_struct *w)
2484
{
2485 2486
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2487 2488
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2489

2490
	memcg_create_kmem_cache(memcg, cachep);
2491

2492
	css_put(&memcg->css);
2493 2494 2495 2496 2497 2498
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2499
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2500
					       struct kmem_cache *cachep)
2501
{
2502
	struct memcg_kmem_cache_create_work *cw;
2503

2504
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2505
	if (!cw)
2506
		return;
2507 2508

	css_get(&memcg->css);
2509 2510 2511

	cw->memcg = memcg;
	cw->cachep = cachep;
2512
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2513

2514
	queue_work(memcg_kmem_cache_wq, &cw->work);
2515 2516
}

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
static inline bool memcg_kmem_bypass(void)
{
	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
		return true;
	return false;
}

/**
 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
 * @cachep: the original global kmem cache
 *
2528 2529 2530
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
2531 2532 2533
 * If the cache does not exist yet, if we are the first user of it, we
 * create it asynchronously in a workqueue and let the current allocation
 * go through with the original cache.
2534
 *
2535 2536 2537 2538
 * This function takes a reference to the cache it returns to assure it
 * won't get destroyed while we are working with it. Once the caller is
 * done with it, memcg_kmem_put_cache() must be called to release the
 * reference.
2539
 */
2540
struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2541 2542
{
	struct mem_cgroup *memcg;
2543
	struct kmem_cache *memcg_cachep;
2544
	int kmemcg_id;
2545

2546
	VM_BUG_ON(!is_root_cache(cachep));
2547

2548
	if (memcg_kmem_bypass())
V
Vladimir Davydov 已提交
2549 2550
		return cachep;

2551
	memcg = get_mem_cgroup_from_current();
2552
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2553
	if (kmemcg_id < 0)
2554
		goto out;
2555

2556
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2557 2558
	if (likely(memcg_cachep))
		return memcg_cachep;
2559 2560 2561 2562 2563 2564 2565 2566 2567

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2568 2569 2570
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2571
	 */
2572
	memcg_schedule_kmem_cache_create(memcg, cachep);
2573
out:
2574
	css_put(&memcg->css);
2575
	return cachep;
2576 2577
}

2578 2579 2580 2581 2582
/**
 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
 * @cachep: the cache returned by memcg_kmem_get_cache
 */
void memcg_kmem_put_cache(struct kmem_cache *cachep)
2583 2584
{
	if (!is_root_cache(cachep))
2585
		css_put(&cachep->memcg_params.memcg->css);
2586 2587
}

2588
/**
2589
 * __memcg_kmem_charge_memcg: charge a kmem page
2590 2591 2592 2593 2594 2595 2596
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 * @memcg: memory cgroup to charge
 *
 * Returns 0 on success, an error code on failure.
 */
2597
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2598
			    struct mem_cgroup *memcg)
2599
{
2600 2601
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2602 2603
	int ret;

2604
	ret = try_charge(memcg, gfp, nr_pages);
2605
	if (ret)
2606
		return ret;
2607 2608 2609 2610 2611

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2612 2613
	}

2614
	page->mem_cgroup = memcg;
2615

2616
	return 0;
2617 2618
}

2619
/**
2620
 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2621 2622 2623 2624 2625 2626
 * @page: page to charge
 * @gfp: reclaim mode
 * @order: allocation order
 *
 * Returns 0 on success, an error code on failure.
 */
2627
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2628
{
2629
	struct mem_cgroup *memcg;
2630
	int ret = 0;
2631

2632
	if (memcg_kmem_bypass())
2633 2634
		return 0;

2635
	memcg = get_mem_cgroup_from_current();
2636
	if (!mem_cgroup_is_root(memcg)) {
2637
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2638 2639 2640
		if (!ret)
			__SetPageKmemcg(page);
	}
2641
	css_put(&memcg->css);
2642
	return ret;
2643
}
2644
/**
2645
 * __memcg_kmem_uncharge: uncharge a kmem page
2646 2647 2648
 * @page: page to uncharge
 * @order: allocation order
 */
2649
void __memcg_kmem_uncharge(struct page *page, int order)
2650
{
2651
	struct mem_cgroup *memcg = page->mem_cgroup;
2652
	unsigned int nr_pages = 1 << order;
2653 2654 2655 2656

	if (!memcg)
		return;

2657
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2658

2659 2660 2661
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2662
	page_counter_uncharge(&memcg->memory, nr_pages);
2663
	if (do_memsw_account())
2664
		page_counter_uncharge(&memcg->memsw, nr_pages);
2665

2666
	page->mem_cgroup = NULL;
2667 2668 2669 2670 2671

	/* slab pages do not have PageKmemcg flag set */
	if (PageKmemcg(page))
		__ClearPageKmemcg(page);

2672
	css_put_many(&memcg->css, nr_pages);
2673
}
2674
#endif /* CONFIG_MEMCG_KMEM */
2675

2676 2677 2678 2679
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2680
 * pgdat->lru_lock and migration entries setup in all page mappings.
2681
 */
2682
void mem_cgroup_split_huge_fixup(struct page *head)
2683
{
2684
	int i;
2685

2686 2687
	if (mem_cgroup_disabled())
		return;
2688

2689
	for (i = 1; i < HPAGE_PMD_NR; i++)
2690
		head[i].mem_cgroup = head->mem_cgroup;
2691

2692
	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2693
}
2694
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2695

A
Andrew Morton 已提交
2696
#ifdef CONFIG_MEMCG_SWAP
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2708
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2709 2710 2711
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2712
				struct mem_cgroup *from, struct mem_cgroup *to)
2713 2714 2715
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2716 2717
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2718 2719

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2720 2721
		mod_memcg_state(from, MEMCG_SWAP, -1);
		mod_memcg_state(to, MEMCG_SWAP, 1);
2722 2723 2724 2725 2726 2727
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2728
				struct mem_cgroup *from, struct mem_cgroup *to)
2729 2730 2731
{
	return -EINVAL;
}
2732
#endif
K
KAMEZAWA Hiroyuki 已提交
2733

2734
static DEFINE_MUTEX(memcg_max_mutex);
2735

2736 2737
static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
				 unsigned long max, bool memsw)
2738
{
2739
	bool enlarge = false;
2740
	bool drained = false;
2741
	int ret;
2742 2743
	bool limits_invariant;
	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2744

2745
	do {
2746 2747 2748 2749
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2750

2751
		mutex_lock(&memcg_max_mutex);
2752 2753
		/*
		 * Make sure that the new limit (memsw or memory limit) doesn't
2754
		 * break our basic invariant rule memory.max <= memsw.max.
2755
		 */
2756 2757
		limits_invariant = memsw ? max >= memcg->memory.max :
					   max <= memcg->memsw.max;
2758
		if (!limits_invariant) {
2759
			mutex_unlock(&memcg_max_mutex);
2760 2761 2762
			ret = -EINVAL;
			break;
		}
2763
		if (max > counter->max)
2764
			enlarge = true;
2765 2766
		ret = page_counter_set_max(counter, max);
		mutex_unlock(&memcg_max_mutex);
2767 2768 2769 2770

		if (!ret)
			break;

2771 2772 2773 2774 2775 2776
		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

2777 2778 2779 2780 2781 2782
		if (!try_to_free_mem_cgroup_pages(memcg, 1,
					GFP_KERNEL, !memsw)) {
			ret = -EBUSY;
			break;
		}
	} while (true);
2783

2784 2785
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2786

2787 2788 2789
	return ret;
}

2790
unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2791 2792 2793 2794
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
2795
	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2796 2797
	unsigned long reclaimed;
	int loop = 0;
2798
	struct mem_cgroup_tree_per_node *mctz;
2799
	unsigned long excess;
2800 2801 2802 2803 2804
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

2805
	mctz = soft_limit_tree_node(pgdat->node_id);
2806 2807 2808 2809 2810 2811

	/*
	 * Do not even bother to check the largest node if the root
	 * is empty. Do it lockless to prevent lock bouncing. Races
	 * are acceptable as soft limit is best effort anyway.
	 */
2812
	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2813 2814
		return 0;

2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
2829
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2830 2831 2832
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2833
		spin_lock_irq(&mctz->lock);
2834
		__mem_cgroup_remove_exceeded(mz, mctz);
2835 2836 2837 2838 2839 2840

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2841 2842 2843
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2844
		excess = soft_limit_excess(mz->memcg);
2845 2846 2847 2848 2849 2850 2851 2852 2853
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2854
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2855
		spin_unlock_irq(&mctz->lock);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2873 2874 2875 2876 2877 2878
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2879 2880
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2881 2882 2883 2884 2885 2886
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2887 2888
}

2889
/*
2890
 * Reclaims as many pages from the given memcg as possible.
2891 2892 2893 2894 2895 2896 2897
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2898 2899
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2900 2901 2902

	drain_all_stock(memcg);

2903
	/* try to free all pages in this cgroup */
2904
	while (nr_retries && page_counter_read(&memcg->memory)) {
2905
		int progress;
2906

2907 2908 2909
		if (signal_pending(current))
			return -EINTR;

2910 2911
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2912
		if (!progress) {
2913
			nr_retries--;
2914
			/* maybe some writeback is necessary */
2915
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2916
		}
2917 2918

	}
2919 2920

	return 0;
2921 2922
}

2923 2924 2925
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2926
{
2927
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928

2929 2930
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2931
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2932 2933
}

2934 2935
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2936
{
2937
	return mem_cgroup_from_css(css)->use_hierarchy;
2938 2939
}

2940 2941
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2942 2943
{
	int retval = 0;
2944
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2945
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2946

2947
	if (memcg->use_hierarchy == val)
2948
		return 0;
2949

2950
	/*
2951
	 * If parent's use_hierarchy is set, we can't make any modifications
2952 2953 2954 2955 2956 2957
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2958
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2959
				(val == 1 || val == 0)) {
2960
		if (!memcg_has_children(memcg))
2961
			memcg->use_hierarchy = val;
2962 2963 2964 2965
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2966

2967 2968 2969
	return retval;
}

2970 2971 2972 2973 2974 2975 2976 2977 2978
struct accumulated_stats {
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[NR_VM_EVENT_ITEMS];
	unsigned long lru_pages[NR_LRU_LISTS];
	const unsigned int *stats_array;
	const unsigned int *events_array;
	int stats_size;
	int events_size;
};
2979

2980 2981
static void accumulate_memcg_tree(struct mem_cgroup *memcg,
				  struct accumulated_stats *acc)
2982
{
2983
	struct mem_cgroup *mi;
2984
	int i;
2985

2986 2987 2988 2989
	for_each_mem_cgroup_tree(mi, memcg) {
		for (i = 0; i < acc->stats_size; i++)
			acc->stat[i] += memcg_page_state(mi,
				acc->stats_array ? acc->stats_array[i] : i);
2990

2991 2992 2993 2994 2995 2996 2997
		for (i = 0; i < acc->events_size; i++)
			acc->events[i] += memcg_sum_events(mi,
				acc->events_array ? acc->events_array[i] : i);

		for (i = 0; i < NR_LRU_LISTS; i++)
			acc->lru_pages[i] +=
				mem_cgroup_nr_lru_pages(mi, BIT(i));
2998
	}
2999 3000
}

3001
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3002
{
3003
	unsigned long val = 0;
3004

3005
	if (mem_cgroup_is_root(memcg)) {
3006 3007 3008
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
3009 3010
			val += memcg_page_state(iter, MEMCG_CACHE);
			val += memcg_page_state(iter, MEMCG_RSS);
3011
			if (swap)
3012
				val += memcg_page_state(iter, MEMCG_SWAP);
3013
		}
3014
	} else {
3015
		if (!swap)
3016
			val = page_counter_read(&memcg->memory);
3017
		else
3018
			val = page_counter_read(&memcg->memsw);
3019
	}
3020
	return val;
3021 3022
}

3023 3024 3025 3026 3027 3028 3029
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
3030

3031
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3032
			       struct cftype *cft)
B
Balbir Singh 已提交
3033
{
3034
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3035
	struct page_counter *counter;
3036

3037
	switch (MEMFILE_TYPE(cft->private)) {
3038
	case _MEM:
3039 3040
		counter = &memcg->memory;
		break;
3041
	case _MEMSWAP:
3042 3043
		counter = &memcg->memsw;
		break;
3044
	case _KMEM:
3045
		counter = &memcg->kmem;
3046
		break;
V
Vladimir Davydov 已提交
3047
	case _TCP:
3048
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3049
		break;
3050 3051 3052
	default:
		BUG();
	}
3053 3054 3055 3056

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
3057
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3058
		if (counter == &memcg->memsw)
3059
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3060 3061
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
3062
		return (u64)counter->max * PAGE_SIZE;
3063 3064 3065 3066 3067 3068 3069 3070 3071
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
3072
}
3073

3074
#ifdef CONFIG_MEMCG_KMEM
3075
static int memcg_online_kmem(struct mem_cgroup *memcg)
3076 3077 3078
{
	int memcg_id;

3079 3080 3081
	if (cgroup_memory_nokmem)
		return 0;

3082
	BUG_ON(memcg->kmemcg_id >= 0);
3083
	BUG_ON(memcg->kmem_state);
3084

3085
	memcg_id = memcg_alloc_cache_id();
3086 3087
	if (memcg_id < 0)
		return memcg_id;
3088

3089
	static_branch_inc(&memcg_kmem_enabled_key);
3090
	/*
3091
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
3092
	 * kmemcg_id. Setting the id after enabling static branching will
3093 3094 3095
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
3096
	memcg->kmemcg_id = memcg_id;
3097
	memcg->kmem_state = KMEM_ONLINE;
3098
	INIT_LIST_HEAD(&memcg->kmem_caches);
3099 3100

	return 0;
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
3136
	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3137 3138 3139 3140 3141 3142 3143
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
3144 3145
	rcu_read_unlock();

3146
	memcg_drain_all_list_lrus(kmemcg_id, parent);
3147 3148 3149 3150 3151 3152

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
3153 3154 3155 3156
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

3157 3158 3159 3160 3161 3162
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
3163
#else
3164
static int memcg_online_kmem(struct mem_cgroup *memcg)
3165 3166 3167 3168 3169 3170 3171 3172 3173
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
3174
#endif /* CONFIG_MEMCG_KMEM */
3175

3176 3177
static int memcg_update_kmem_max(struct mem_cgroup *memcg,
				 unsigned long max)
3178
{
3179
	int ret;
3180

3181 3182 3183
	mutex_lock(&memcg_max_mutex);
	ret = page_counter_set_max(&memcg->kmem, max);
	mutex_unlock(&memcg_max_mutex);
3184
	return ret;
3185
}
3186

3187
static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
V
Vladimir Davydov 已提交
3188 3189 3190
{
	int ret;

3191
	mutex_lock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3192

3193
	ret = page_counter_set_max(&memcg->tcpmem, max);
V
Vladimir Davydov 已提交
3194 3195 3196
	if (ret)
		goto out;

3197
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
3198 3199 3200
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
3201 3202 3203
		 * function is the last one to run. See mem_cgroup_sk_alloc()
		 * for details, and note that we don't mark any socket as
		 * belonging to this memcg until that flag is up.
V
Vladimir Davydov 已提交
3204 3205 3206 3207 3208 3209
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
3210
		 * We never race with the readers in mem_cgroup_sk_alloc(),
V
Vladimir Davydov 已提交
3211 3212 3213 3214
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
3215
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
3216 3217
	}
out:
3218
	mutex_unlock(&memcg_max_mutex);
V
Vladimir Davydov 已提交
3219 3220 3221
	return ret;
}

3222 3223 3224 3225
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3226 3227
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
3228
{
3229
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3230
	unsigned long nr_pages;
3231 3232
	int ret;

3233
	buf = strstrip(buf);
3234
	ret = page_counter_memparse(buf, "-1", &nr_pages);
3235 3236
	if (ret)
		return ret;
3237

3238
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3239
	case RES_LIMIT:
3240 3241 3242 3243
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3244 3245
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
3246
			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3247
			break;
3248
		case _MEMSWAP:
3249
			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3250
			break;
3251
		case _KMEM:
3252
			ret = memcg_update_kmem_max(memcg, nr_pages);
3253
			break;
V
Vladimir Davydov 已提交
3254
		case _TCP:
3255
			ret = memcg_update_tcp_max(memcg, nr_pages);
V
Vladimir Davydov 已提交
3256
			break;
3257
		}
3258
		break;
3259 3260 3261
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3262 3263
		break;
	}
3264
	return ret ?: nbytes;
B
Balbir Singh 已提交
3265 3266
}

3267 3268
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3269
{
3270
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3271
	struct page_counter *counter;
3272

3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3283
	case _TCP:
3284
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3285
		break;
3286 3287 3288
	default:
		BUG();
	}
3289

3290
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3291
	case RES_MAX_USAGE:
3292
		page_counter_reset_watermark(counter);
3293 3294
		break;
	case RES_FAILCNT:
3295
		counter->failcnt = 0;
3296
		break;
3297 3298
	default:
		BUG();
3299
	}
3300

3301
	return nbytes;
3302 3303
}

3304
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3305 3306
					struct cftype *cft)
{
3307
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3308 3309
}

3310
#ifdef CONFIG_MMU
3311
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3312 3313
					struct cftype *cft, u64 val)
{
3314
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3315

3316
	if (val & ~MOVE_MASK)
3317
		return -EINVAL;
3318

3319
	/*
3320 3321 3322 3323
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3324
	 */
3325
	memcg->move_charge_at_immigrate = val;
3326 3327
	return 0;
}
3328
#else
3329
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3330 3331 3332 3333 3334
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3335

3336
#ifdef CONFIG_NUMA
3337
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3338
{
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3351
	int nid;
3352
	unsigned long nr;
3353
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3354

3355 3356 3357 3358 3359 3360 3361 3362 3363
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3364 3365
	}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3381 3382 3383 3384 3385 3386
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3387
/* Universal VM events cgroup1 shows, original sort order */
3388
static const unsigned int memcg1_events[] = {
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
	PGPGIN,
	PGPGOUT,
	PGFAULT,
	PGMAJFAULT,
};

static const char *const memcg1_event_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

3402
static int memcg_stat_show(struct seq_file *m, void *v)
3403
{
3404
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3405
	unsigned long memory, memsw;
3406 3407
	struct mem_cgroup *mi;
	unsigned int i;
3408
	struct accumulated_stats acc;
3409

3410
	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3411 3412
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3413 3414
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3415
			continue;
3416
		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3417
			   memcg_page_state(memcg, memcg1_stats[i]) *
3418
			   PAGE_SIZE);
3419
	}
L
Lee Schermerhorn 已提交
3420

3421 3422
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3423
			   memcg_sum_events(memcg, memcg1_events[i]));
3424 3425 3426 3427 3428

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3429
	/* Hierarchical information */
3430 3431
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3432 3433
		memory = min(memory, mi->memory.max);
		memsw = min(memsw, mi->memsw.max);
3434
	}
3435 3436
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3437
	if (do_memsw_account())
3438 3439
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3440

3441 3442 3443 3444 3445 3446
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = ARRAY_SIZE(memcg1_stats);
	acc.stats_array = memcg1_stats;
	acc.events_size = ARRAY_SIZE(memcg1_events);
	acc.events_array = memcg1_events;
	accumulate_memcg_tree(memcg, &acc);
3447

3448
	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3449
		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3450
			continue;
3451 3452
		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
			   (u64)acc.stat[i] * PAGE_SIZE);
3453 3454
	}

3455 3456 3457
	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
			   (u64)acc.events[i]);
3458

3459 3460 3461
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
K
KAMEZAWA Hiroyuki 已提交
3462

K
KOSAKI Motohiro 已提交
3463 3464
#ifdef CONFIG_DEBUG_VM
	{
3465 3466
		pg_data_t *pgdat;
		struct mem_cgroup_per_node *mz;
3467
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3468 3469 3470
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

3471 3472 3473
		for_each_online_pgdat(pgdat) {
			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
			rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3474

3475 3476 3477 3478 3479
			recent_rotated[0] += rstat->recent_rotated[0];
			recent_rotated[1] += rstat->recent_rotated[1];
			recent_scanned[0] += rstat->recent_scanned[0];
			recent_scanned[1] += rstat->recent_scanned[1];
		}
3480 3481 3482 3483
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3484 3485 3486
	}
#endif

3487 3488 3489
	return 0;
}

3490 3491
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3492
{
3493
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3494

3495
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3496 3497
}

3498 3499
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3500
{
3501
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3502

3503
	if (val > 100)
K
KOSAKI Motohiro 已提交
3504 3505
		return -EINVAL;

3506
	if (css->parent)
3507 3508 3509
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3510

K
KOSAKI Motohiro 已提交
3511 3512 3513
	return 0;
}

3514 3515 3516
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3517
	unsigned long usage;
3518 3519 3520 3521
	int i;

	rcu_read_lock();
	if (!swap)
3522
		t = rcu_dereference(memcg->thresholds.primary);
3523
	else
3524
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3525 3526 3527 3528

	if (!t)
		goto unlock;

3529
	usage = mem_cgroup_usage(memcg, swap);
3530 3531

	/*
3532
	 * current_threshold points to threshold just below or equal to usage.
3533 3534 3535
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3536
	i = t->current_threshold;
3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3560
	t->current_threshold = i - 1;
3561 3562 3563 3564 3565 3566
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3567 3568
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3569
		if (do_memsw_account())
3570 3571 3572 3573
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3574 3575 3576 3577 3578 3579 3580
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3581 3582 3583 3584 3585 3586 3587
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3588 3589
}

3590
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3591 3592 3593
{
	struct mem_cgroup_eventfd_list *ev;

3594 3595
	spin_lock(&memcg_oom_lock);

3596
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3597
		eventfd_signal(ev->eventfd, 1);
3598 3599

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3600 3601 3602
	return 0;
}

3603
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3604
{
K
KAMEZAWA Hiroyuki 已提交
3605 3606
	struct mem_cgroup *iter;

3607
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3608
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3609 3610
}

3611
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3612
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3613
{
3614 3615
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3616 3617
	unsigned long threshold;
	unsigned long usage;
3618
	int i, size, ret;
3619

3620
	ret = page_counter_memparse(args, "-1", &threshold);
3621 3622 3623 3624
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3625

3626
	if (type == _MEM) {
3627
		thresholds = &memcg->thresholds;
3628
		usage = mem_cgroup_usage(memcg, false);
3629
	} else if (type == _MEMSWAP) {
3630
		thresholds = &memcg->memsw_thresholds;
3631
		usage = mem_cgroup_usage(memcg, true);
3632
	} else
3633 3634 3635
		BUG();

	/* Check if a threshold crossed before adding a new one */
3636
	if (thresholds->primary)
3637 3638
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3639
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3640 3641

	/* Allocate memory for new array of thresholds */
3642
	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3643
	if (!new) {
3644 3645 3646
		ret = -ENOMEM;
		goto unlock;
	}
3647
	new->size = size;
3648 3649

	/* Copy thresholds (if any) to new array */
3650 3651
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3652
				sizeof(struct mem_cgroup_threshold));
3653 3654
	}

3655
	/* Add new threshold */
3656 3657
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3658 3659

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3660
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3661 3662 3663
			compare_thresholds, NULL);

	/* Find current threshold */
3664
	new->current_threshold = -1;
3665
	for (i = 0; i < size; i++) {
3666
		if (new->entries[i].threshold <= usage) {
3667
			/*
3668 3669
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3670 3671
			 * it here.
			 */
3672
			++new->current_threshold;
3673 3674
		} else
			break;
3675 3676
	}

3677 3678 3679 3680 3681
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3682

3683
	/* To be sure that nobody uses thresholds */
3684 3685 3686 3687 3688 3689 3690 3691
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3692
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3693 3694
	struct eventfd_ctx *eventfd, const char *args)
{
3695
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3696 3697
}

3698
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3699 3700
	struct eventfd_ctx *eventfd, const char *args)
{
3701
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3702 3703
}

3704
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3705
	struct eventfd_ctx *eventfd, enum res_type type)
3706
{
3707 3708
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3709
	unsigned long usage;
3710
	int i, j, size;
3711 3712

	mutex_lock(&memcg->thresholds_lock);
3713 3714

	if (type == _MEM) {
3715
		thresholds = &memcg->thresholds;
3716
		usage = mem_cgroup_usage(memcg, false);
3717
	} else if (type == _MEMSWAP) {
3718
		thresholds = &memcg->memsw_thresholds;
3719
		usage = mem_cgroup_usage(memcg, true);
3720
	} else
3721 3722
		BUG();

3723 3724 3725
	if (!thresholds->primary)
		goto unlock;

3726 3727 3728 3729
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3730 3731 3732
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3733 3734 3735
			size++;
	}

3736
	new = thresholds->spare;
3737

3738 3739
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3740 3741
		kfree(new);
		new = NULL;
3742
		goto swap_buffers;
3743 3744
	}

3745
	new->size = size;
3746 3747

	/* Copy thresholds and find current threshold */
3748 3749 3750
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3751 3752
			continue;

3753
		new->entries[j] = thresholds->primary->entries[i];
3754
		if (new->entries[j].threshold <= usage) {
3755
			/*
3756
			 * new->current_threshold will not be used
3757 3758 3759
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3760
			++new->current_threshold;
3761 3762 3763 3764
		}
		j++;
	}

3765
swap_buffers:
3766 3767
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3768

3769
	rcu_assign_pointer(thresholds->primary, new);
3770

3771
	/* To be sure that nobody uses thresholds */
3772
	synchronize_rcu();
3773 3774 3775 3776 3777 3778

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3779
unlock:
3780 3781
	mutex_unlock(&memcg->thresholds_lock);
}
3782

3783
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3784 3785
	struct eventfd_ctx *eventfd)
{
3786
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3787 3788
}

3789
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3790 3791
	struct eventfd_ctx *eventfd)
{
3792
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3793 3794
}

3795
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3796
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3797 3798 3799 3800 3801 3802 3803
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3804
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3805 3806 3807 3808 3809

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3810
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3811
		eventfd_signal(eventfd, 1);
3812
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3813 3814 3815 3816

	return 0;
}

3817
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3818
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3819 3820 3821
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3822
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3823

3824
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3825 3826 3827 3828 3829 3830
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3831
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3832 3833
}

3834
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3835
{
3836
	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3837

3838
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3839
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
R
Roman Gushchin 已提交
3840 3841
	seq_printf(sf, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3842 3843 3844
	return 0;
}

3845
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3846 3847
	struct cftype *cft, u64 val)
{
3848
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3849 3850

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3851
	if (!css->parent || !((val == 0) || (val == 1)))
3852 3853
		return -EINVAL;

3854
	memcg->oom_kill_disable = val;
3855
	if (!val)
3856
		memcg_oom_recover(memcg);
3857

3858 3859 3860
	return 0;
}

3861 3862
#ifdef CONFIG_CGROUP_WRITEBACK

T
Tejun Heo 已提交
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3873 3874 3875 3876 3877
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
/*
 * idx can be of type enum memcg_stat_item or node_stat_item.
 * Keep in sync with memcg_exact_page().
 */
static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
{
	long x = atomic_long_read(&memcg->stat[idx]);
	int cpu;

	for_each_online_cpu(cpu)
		x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx];
	if (x < 0)
		x = 0;
	return x;
}

3904 3905 3906
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3907 3908
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3909 3910 3911
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3912 3913 3914
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3915
 *
3916 3917 3918 3919 3920
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3921
 */
3922 3923 3924
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3925 3926 3927 3928
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

3929
	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
3930 3931

	/* this should eventually include NR_UNSTABLE_NFS */
3932
	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
3933 3934 3935
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3936 3937

	while ((parent = parent_mem_cgroup(memcg))) {
3938
		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3939 3940
		unsigned long used = page_counter_read(&memcg->memory);

3941
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3942 3943 3944 3945
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3957 3958 3959 3960
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3961 3962
#endif	/* CONFIG_CGROUP_WRITEBACK */

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3976 3977 3978 3979 3980
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3981
static void memcg_event_remove(struct work_struct *work)
3982
{
3983 3984
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3985
	struct mem_cgroup *memcg = event->memcg;
3986 3987 3988

	remove_wait_queue(event->wqh, &event->wait);

3989
	event->unregister_event(memcg, event->eventfd);
3990 3991 3992 3993 3994 3995

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3996
	css_put(&memcg->css);
3997 3998 3999
}

/*
4000
 * Gets called on EPOLLHUP on eventfd when user closes it.
4001 4002 4003
 *
 * Called with wqh->lock held and interrupts disabled.
 */
4004
static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4005
			    int sync, void *key)
4006
{
4007 4008
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
4009
	struct mem_cgroup *memcg = event->memcg;
A
Al Viro 已提交
4010
	__poll_t flags = key_to_poll(key);
4011

4012
	if (flags & EPOLLHUP) {
4013 4014 4015 4016 4017 4018 4019 4020 4021
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
4022
		spin_lock(&memcg->event_list_lock);
4023 4024 4025 4026 4027 4028 4029 4030
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
4031
		spin_unlock(&memcg->event_list_lock);
4032 4033 4034 4035 4036
	}

	return 0;
}

4037
static void memcg_event_ptable_queue_proc(struct file *file,
4038 4039
		wait_queue_head_t *wqh, poll_table *pt)
{
4040 4041
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
4042 4043 4044 4045 4046 4047

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
4048 4049
 * DO NOT USE IN NEW FILES.
 *
4050 4051 4052 4053 4054
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
4055 4056
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
4057
{
4058
	struct cgroup_subsys_state *css = of_css(of);
4059
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4060
	struct mem_cgroup_event *event;
4061 4062 4063 4064
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
4065
	const char *name;
4066 4067 4068
	char *endp;
	int ret;

4069 4070 4071
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
4072 4073
	if (*endp != ' ')
		return -EINVAL;
4074
	buf = endp + 1;
4075

4076
	cfd = simple_strtoul(buf, &endp, 10);
4077 4078
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
4079
	buf = endp + 1;
4080 4081 4082 4083 4084

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

4085
	event->memcg = memcg;
4086
	INIT_LIST_HEAD(&event->list);
4087 4088 4089
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

4115 4116 4117 4118 4119
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
4120 4121
	 *
	 * DO NOT ADD NEW FILES.
4122
	 */
A
Al Viro 已提交
4123
	name = cfile.file->f_path.dentry->d_name.name;
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
4135 4136
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
4137 4138 4139 4140 4141
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

4142
	/*
4143 4144 4145
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
4146
	 */
A
Al Viro 已提交
4147
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4148
					       &memory_cgrp_subsys);
4149
	ret = -EINVAL;
4150
	if (IS_ERR(cfile_css))
4151
		goto out_put_cfile;
4152 4153
	if (cfile_css != css) {
		css_put(cfile_css);
4154
		goto out_put_cfile;
4155
	}
4156

4157
	ret = event->register_event(memcg, event->eventfd, buf);
4158 4159 4160
	if (ret)
		goto out_put_css;

4161
	vfs_poll(efile.file, &event->pt);
4162

4163 4164 4165
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
4166 4167 4168 4169

	fdput(cfile);
	fdput(efile);

4170
	return nbytes;
4171 4172

out_put_css:
4173
	css_put(css);
4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

4186
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
4187
	{
4188
		.name = "usage_in_bytes",
4189
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4190
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4191
	},
4192 4193
	{
		.name = "max_usage_in_bytes",
4194
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4195
		.write = mem_cgroup_reset,
4196
		.read_u64 = mem_cgroup_read_u64,
4197
	},
B
Balbir Singh 已提交
4198
	{
4199
		.name = "limit_in_bytes",
4200
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4201
		.write = mem_cgroup_write,
4202
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4203
	},
4204 4205 4206
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4207
		.write = mem_cgroup_write,
4208
		.read_u64 = mem_cgroup_read_u64,
4209
	},
B
Balbir Singh 已提交
4210 4211
	{
		.name = "failcnt",
4212
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4213
		.write = mem_cgroup_reset,
4214
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
4215
	},
4216 4217
	{
		.name = "stat",
4218
		.seq_show = memcg_stat_show,
4219
	},
4220 4221
	{
		.name = "force_empty",
4222
		.write = mem_cgroup_force_empty_write,
4223
	},
4224 4225 4226 4227 4228
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
4229
	{
4230
		.name = "cgroup.event_control",		/* XXX: for compat */
4231
		.write = memcg_write_event_control,
4232
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4233
	},
K
KOSAKI Motohiro 已提交
4234 4235 4236 4237 4238
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4239 4240 4241 4242 4243
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4244 4245
	{
		.name = "oom_control",
4246
		.seq_show = mem_cgroup_oom_control_read,
4247
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4248 4249
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4250 4251 4252
	{
		.name = "pressure_level",
	},
4253 4254 4255
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
4256
		.seq_show = memcg_numa_stat_show,
4257 4258
	},
#endif
4259 4260 4261
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4262
		.write = mem_cgroup_write,
4263
		.read_u64 = mem_cgroup_read_u64,
4264 4265 4266 4267
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4268
		.read_u64 = mem_cgroup_read_u64,
4269 4270 4271 4272
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4273
		.write = mem_cgroup_reset,
4274
		.read_u64 = mem_cgroup_read_u64,
4275 4276 4277 4278
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4279
		.write = mem_cgroup_reset,
4280
		.read_u64 = mem_cgroup_read_u64,
4281
	},
Y
Yang Shi 已提交
4282
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4283 4284
	{
		.name = "kmem.slabinfo",
4285 4286 4287
		.seq_start = memcg_slab_start,
		.seq_next = memcg_slab_next,
		.seq_stop = memcg_slab_stop,
4288
		.seq_show = memcg_slab_show,
4289 4290
	},
#endif
V
Vladimir Davydov 已提交
4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4314
	{ },	/* terminate */
4315
};
4316

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
/*
 * Private memory cgroup IDR
 *
 * Swap-out records and page cache shadow entries need to store memcg
 * references in constrained space, so we maintain an ID space that is
 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
 * memory-controlled cgroups to 64k.
 *
 * However, there usually are many references to the oflline CSS after
 * the cgroup has been destroyed, such as page cache or reclaimable
 * slab objects, that don't need to hang on to the ID. We want to keep
 * those dead CSS from occupying IDs, or we might quickly exhaust the
 * relatively small ID space and prevent the creation of new cgroups
 * even when there are much fewer than 64k cgroups - possibly none.
 *
 * Maintain a private 16-bit ID space for memcg, and allow the ID to
 * be freed and recycled when it's no longer needed, which is usually
 * when the CSS is offlined.
 *
 * The only exception to that are records of swapped out tmpfs/shmem
 * pages that need to be attributed to live ancestors on swapin. But
 * those references are manageable from userspace.
 */

static DEFINE_IDR(mem_cgroup_idr);

4343 4344 4345 4346 4347 4348 4349 4350
static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
{
	if (memcg->id.id > 0) {
		idr_remove(&mem_cgroup_idr, memcg->id.id);
		memcg->id.id = 0;
	}
}

4351
static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4352
{
4353
	refcount_add(n, &memcg->id.ref);
4354 4355
}

4356
static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4357
{
4358
	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4359
		mem_cgroup_id_remove(memcg);
4360 4361 4362 4363 4364 4365

		/* Memcg ID pins CSS */
		css_put(&memcg->css);
	}
}

4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
{
	mem_cgroup_id_get_many(memcg, 1);
}

static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
{
	mem_cgroup_id_put_many(memcg, 1);
}

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
/**
 * mem_cgroup_from_id - look up a memcg from a memcg id
 * @id: the memcg id to look up
 *
 * Caller must hold rcu_read_lock().
 */
struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
{
	WARN_ON_ONCE(!rcu_read_lock_held());
	return idr_find(&mem_cgroup_idr, id);
}

4388
static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4389 4390
{
	struct mem_cgroup_per_node *pn;
4391
	int tmp = node;
4392 4393 4394 4395 4396 4397 4398 4399
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4400 4401
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4402
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4403 4404
	if (!pn)
		return 1;
4405

4406 4407
	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
	if (!pn->lruvec_stat_cpu) {
4408 4409 4410 4411
		kfree(pn);
		return 1;
	}

4412 4413 4414 4415 4416
	lruvec_init(&pn->lruvec);
	pn->usage_in_excess = 0;
	pn->on_tree = false;
	pn->memcg = memcg;

4417
	memcg->nodeinfo[node] = pn;
4418 4419 4420
	return 0;
}

4421
static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4422
{
4423 4424
	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];

M
Michal Hocko 已提交
4425 4426 4427
	if (!pn)
		return;

4428
	free_percpu(pn->lruvec_stat_cpu);
4429
	kfree(pn);
4430 4431
}

4432
static void __mem_cgroup_free(struct mem_cgroup *memcg)
4433
{
4434
	int node;
4435

4436
	for_each_node(node)
4437
		free_mem_cgroup_per_node_info(memcg, node);
4438
	free_percpu(memcg->stat_cpu);
4439
	kfree(memcg);
4440
}
4441

4442 4443 4444 4445 4446 4447
static void mem_cgroup_free(struct mem_cgroup *memcg)
{
	memcg_wb_domain_exit(memcg);
	__mem_cgroup_free(memcg);
}

4448
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4449
{
4450
	struct mem_cgroup *memcg;
4451
	unsigned int size;
4452
	int node;
B
Balbir Singh 已提交
4453

4454 4455 4456 4457
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4458
	if (!memcg)
4459 4460
		return NULL;

4461 4462 4463 4464 4465 4466
	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
				 1, MEM_CGROUP_ID_MAX,
				 GFP_KERNEL);
	if (memcg->id.id < 0)
		goto fail;

4467 4468
	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat_cpu)
4469
		goto fail;
4470

B
Bob Liu 已提交
4471
	for_each_node(node)
4472
		if (alloc_mem_cgroup_per_node_info(memcg, node))
4473
			goto fail;
4474

4475 4476
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4477

4478
	INIT_WORK(&memcg->high_work, high_work_func);
4479 4480 4481 4482
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4483
	vmpressure_init(&memcg->vmpressure);
4484 4485
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4486
	memcg->socket_pressure = jiffies;
4487
#ifdef CONFIG_MEMCG_KMEM
V
Vladimir Davydov 已提交
4488 4489
	memcg->kmemcg_id = -1;
#endif
4490 4491 4492
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4493
	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4494 4495
	return memcg;
fail:
4496
	mem_cgroup_id_remove(memcg);
4497
	__mem_cgroup_free(memcg);
4498
	return NULL;
4499 4500
}

4501 4502
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4503
{
4504 4505 4506
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4507

4508 4509 4510
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4511

4512 4513 4514 4515 4516 4517 4518 4519
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4520
		page_counter_init(&memcg->memory, &parent->memory);
4521
		page_counter_init(&memcg->swap, &parent->swap);
4522 4523
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4524
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4525
	} else {
4526
		page_counter_init(&memcg->memory, NULL);
4527
		page_counter_init(&memcg->swap, NULL);
4528 4529
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4530
		page_counter_init(&memcg->tcpmem, NULL);
4531 4532 4533 4534 4535
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4536
		if (parent != root_mem_cgroup)
4537
			memory_cgrp_subsys.broken_hierarchy = true;
4538
	}
4539

4540 4541 4542 4543 4544 4545
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4546
	error = memcg_online_kmem(memcg);
4547 4548
	if (error)
		goto fail;
4549

4550
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4551
		static_branch_inc(&memcg_sockets_enabled_key);
4552

4553 4554
	return &memcg->css;
fail:
4555
	mem_cgroup_id_remove(memcg);
4556
	mem_cgroup_free(memcg);
4557
	return ERR_PTR(-ENOMEM);
4558 4559
}

4560
static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4561
{
4562 4563
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	/*
	 * A memcg must be visible for memcg_expand_shrinker_maps()
	 * by the time the maps are allocated. So, we allocate maps
	 * here, when for_each_mem_cgroup() can't skip it.
	 */
	if (memcg_alloc_shrinker_maps(memcg)) {
		mem_cgroup_id_remove(memcg);
		return -ENOMEM;
	}

4574
	/* Online state pins memcg ID, memcg ID pins CSS */
4575
	refcount_set(&memcg->id.ref, 1);
4576
	css_get(css);
4577
	return 0;
B
Balbir Singh 已提交
4578 4579
}

4580
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4581
{
4582
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4583
	struct mem_cgroup_event *event, *tmp;
4584 4585 4586 4587 4588 4589

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4590 4591
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4592 4593 4594
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4595
	spin_unlock(&memcg->event_list_lock);
4596

R
Roman Gushchin 已提交
4597
	page_counter_set_min(&memcg->memory, 0);
4598
	page_counter_set_low(&memcg->memory, 0);
4599

4600
	memcg_offline_kmem(memcg);
4601
	wb_memcg_offline(memcg);
4602

4603 4604
	drain_all_stock(memcg);

4605
	mem_cgroup_id_put(memcg);
4606 4607
}

4608 4609 4610 4611 4612 4613 4614
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4615
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4616
{
4617
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4618

4619
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4620
		static_branch_dec(&memcg_sockets_enabled_key);
4621

4622
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4623
		static_branch_dec(&memcg_sockets_enabled_key);
4624

4625 4626 4627
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4628
	memcg_free_shrinker_maps(memcg);
4629
	memcg_free_kmem(memcg);
4630
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4631 4632
}

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4650 4651 4652 4653 4654
	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
R
Roman Gushchin 已提交
4655
	page_counter_set_min(&memcg->memory, 0);
4656
	page_counter_set_low(&memcg->memory, 0);
4657
	memcg->high = PAGE_COUNTER_MAX;
4658
	memcg->soft_limit = PAGE_COUNTER_MAX;
4659
	memcg_wb_domain_size_changed(memcg);
4660 4661
}

4662
#ifdef CONFIG_MMU
4663
/* Handlers for move charge at task migration. */
4664
static int mem_cgroup_do_precharge(unsigned long count)
4665
{
4666
	int ret;
4667

4668 4669
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4670
	if (!ret) {
4671 4672 4673
		mc.precharge += count;
		return ret;
	}
4674

4675
	/* Try charges one by one with reclaim, but do not retry */
4676
	while (count--) {
4677
		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4678 4679
		if (ret)
			return ret;
4680
		mc.precharge++;
4681
		cond_resched();
4682
	}
4683
	return 0;
4684 4685 4686 4687
}

union mc_target {
	struct page	*page;
4688
	swp_entry_t	ent;
4689 4690 4691
};

enum mc_target_type {
4692
	MC_TARGET_NONE = 0,
4693
	MC_TARGET_PAGE,
4694
	MC_TARGET_SWAP,
4695
	MC_TARGET_DEVICE,
4696 4697
};

D
Daisuke Nishimura 已提交
4698 4699
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4700
{
4701
	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4702

D
Daisuke Nishimura 已提交
4703 4704 4705
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4706
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4707
			return NULL;
4708 4709 4710 4711
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4712 4713 4714 4715 4716 4717
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4718
#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
D
Daisuke Nishimura 已提交
4719
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4720
			pte_t ptent, swp_entry_t *entry)
D
Daisuke Nishimura 已提交
4721 4722 4723 4724
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4725
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4726
		return NULL;
4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743

	/*
	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
	 * a device and because they are not accessible by CPU they are store
	 * as special swap entry in the CPU page table.
	 */
	if (is_device_private_entry(ent)) {
		page = device_private_entry_to_page(ent);
		/*
		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
		 * a refcount of 1 when free (unlike normal page)
		 */
		if (!page_ref_add_unless(page, 1, 1))
			return NULL;
		return page;
	}

4744 4745 4746 4747
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4748
	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4749
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4750 4751 4752 4753
		entry->val = ent.val;

	return page;
}
4754 4755
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4756
			pte_t ptent, swp_entry_t *entry)
4757 4758 4759 4760
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4761

4762 4763 4764 4765 4766 4767 4768 4769 4770
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4771
	if (!(mc.flags & MOVE_FILE))
4772 4773 4774
		return NULL;

	mapping = vma->vm_file->f_mapping;
4775
	pgoff = linear_page_index(vma, addr);
4776 4777

	/* page is moved even if it's not RSS of this task(page-faulted). */
4778 4779
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4780 4781
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
4782
		if (xa_is_value(page)) {
4783
			swp_entry_t swp = radix_to_swp_entry(page);
4784
			if (do_memsw_account())
4785
				*entry = swp;
4786 4787
			page = find_get_page(swap_address_space(swp),
					     swp_offset(swp));
4788 4789 4790 4791 4792
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4793
#endif
4794 4795 4796
	return page;
}

4797 4798 4799
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
4800
 * @compound: charge the page as compound or small page
4801 4802 4803
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4804
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4805 4806 4807 4808 4809
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4810
				   bool compound,
4811 4812 4813 4814
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4815
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4816
	int ret;
4817
	bool anon;
4818 4819 4820

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4821
	VM_BUG_ON(compound && !PageTransHuge(page));
4822 4823

	/*
4824
	 * Prevent mem_cgroup_migrate() from looking at
4825
	 * page->mem_cgroup of its source page while we change it.
4826
	 */
4827
	ret = -EBUSY;
4828 4829 4830 4831 4832 4833 4834
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4835 4836
	anon = PageAnon(page);

4837 4838
	spin_lock_irqsave(&from->move_lock, flags);

4839
	if (!anon && page_mapped(page)) {
4840 4841
		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4842 4843
	}

4844 4845
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
4846
	 * mod_memcg_page_state will serialize updates to PageDirty.
4847 4848 4849 4850 4851 4852
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
4853 4854
			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4855 4856 4857
		}
	}

4858
	if (PageWriteback(page)) {
4859 4860
		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4876
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4877
	memcg_check_events(to, page);
4878
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4879 4880 4881 4882 4883 4884 4885 4886
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
/**
 * get_mctgt_type - get target type of moving charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4902 4903 4904 4905 4906
 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
 *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
 *     For now we such page is charge like a regular page would be as for all
 *     intent and purposes it is just special memory taking the place of a
 *     regular page.
4907 4908
 *
 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4909 4910 4911 4912
 *
 * Called with pte lock held.
 */

4913
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4914 4915 4916
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4917
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4918 4919 4920 4921 4922
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
4923
		page = mc_handle_swap_pte(vma, ptent, &ent);
4924
	else if (pte_none(ptent))
4925
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4926 4927

	if (!page && !ent.val)
4928
		return ret;
4929 4930
	if (page) {
		/*
4931
		 * Do only loose check w/o serialization.
4932
		 * mem_cgroup_move_account() checks the page is valid or
4933
		 * not under LRU exclusion.
4934
		 */
4935
		if (page->mem_cgroup == mc.from) {
4936
			ret = MC_TARGET_PAGE;
4937 4938
			if (is_device_private_page(page) ||
			    is_device_public_page(page))
4939
				ret = MC_TARGET_DEVICE;
4940 4941 4942 4943 4944 4945
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
4946 4947 4948 4949 4950
	/*
	 * There is a swap entry and a page doesn't exist or isn't charged.
	 * But we cannot move a tail-page in a THP.
	 */
	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
L
Li Zefan 已提交
4951
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4952 4953 4954
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4955 4956 4957 4958
	}
	return ret;
}

4959 4960
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
4961 4962
 * We don't consider PMD mapped swapping or file mapped pages because THP does
 * not support them for now.
4963 4964 4965 4966 4967 4968 4969 4970
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

4971 4972 4973 4974 4975
	if (unlikely(is_swap_pmd(pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(pmd));
		return ret;
	}
4976
	page = pmd_page(pmd);
4977
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4978
	if (!(mc.flags & MOVE_ANON))
4979
		return ret;
4980
	if (page->mem_cgroup == mc.from) {
4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4997 4998 4999 5000
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
5001
	struct vm_area_struct *vma = walk->vma;
5002 5003 5004
	pte_t *pte;
	spinlock_t *ptl;

5005 5006
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5007 5008 5009 5010 5011
		/*
		 * Note their can not be MC_TARGET_DEVICE for now as we do not
		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
		 * MEMORY_DEVICE_PRIVATE but this might change.
		 */
5012 5013
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
5014
		spin_unlock(ptl);
5015
		return 0;
5016
	}
5017

5018 5019
	if (pmd_trans_unstable(pmd))
		return 0;
5020 5021
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
5022
		if (get_mctgt_type(vma, addr, *pte, NULL))
5023 5024 5025 5026
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5027 5028 5029
	return 0;
}

5030 5031 5032 5033
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

5034 5035 5036 5037
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
5038
	down_read(&mm->mmap_sem);
5039 5040
	walk_page_range(0, mm->highest_vm_end,
			&mem_cgroup_count_precharge_walk);
5041
	up_read(&mm->mmap_sem);
5042 5043 5044 5045 5046 5047 5048 5049 5050

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5051 5052 5053 5054 5055
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5056 5057
}

5058 5059
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5060
{
5061 5062 5063
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5064
	/* we must uncharge all the leftover precharges from mc.to */
5065
	if (mc.precharge) {
5066
		cancel_charge(mc.to, mc.precharge);
5067 5068 5069 5070 5071 5072 5073
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
5074
		cancel_charge(mc.from, mc.moved_charge);
5075
		mc.moved_charge = 0;
5076
	}
5077 5078 5079
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
5080
		if (!mem_cgroup_is_root(mc.from))
5081
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5082

5083 5084
		mem_cgroup_id_put_many(mc.from, mc.moved_swap);

5085
		/*
5086 5087
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
5088
		 */
5089
		if (!mem_cgroup_is_root(mc.to))
5090 5091
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

5092 5093
		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
		css_put_many(&mc.to->css, mc.moved_swap);
5094

5095 5096
		mc.moved_swap = 0;
	}
5097 5098 5099 5100 5101 5102 5103
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
5104 5105
	struct mm_struct *mm = mc.mm;

5106 5107 5108 5109 5110 5111
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5112
	spin_lock(&mc.lock);
5113 5114
	mc.from = NULL;
	mc.to = NULL;
5115
	mc.mm = NULL;
5116
	spin_unlock(&mc.lock);
5117 5118

	mmput(mm);
5119 5120
}

5121
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5122
{
5123
	struct cgroup_subsys_state *css;
5124
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5125
	struct mem_cgroup *from;
5126
	struct task_struct *leader, *p;
5127
	struct mm_struct *mm;
5128
	unsigned long move_flags;
5129
	int ret = 0;
5130

5131 5132
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5133 5134
		return 0;

5135 5136 5137 5138 5139 5140 5141
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
5142
	cgroup_taskset_for_each_leader(leader, css, tset) {
5143 5144
		WARN_ON_ONCE(p);
		p = leader;
5145
		memcg = mem_cgroup_from_css(css);
5146 5147 5148 5149
	}
	if (!p)
		return 0;

5150 5151 5152 5153 5154 5155 5156 5157 5158
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
5175
		mc.mm = mm;
5176 5177 5178 5179 5180 5181 5182 5183 5184
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
5185 5186
	} else {
		mmput(mm);
5187 5188 5189 5190
	}
	return ret;
}

5191
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5192
{
5193 5194
	if (mc.to)
		mem_cgroup_clear_mc();
5195 5196
}

5197 5198 5199
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5200
{
5201
	int ret = 0;
5202
	struct vm_area_struct *vma = walk->vma;
5203 5204
	pte_t *pte;
	spinlock_t *ptl;
5205 5206 5207
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
5208

5209 5210
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
5211
		if (mc.precharge < HPAGE_PMD_NR) {
5212
			spin_unlock(ptl);
5213 5214 5215 5216 5217 5218
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
5219
				if (!mem_cgroup_move_account(page, true,
5220
							     mc.from, mc.to)) {
5221 5222 5223 5224 5225 5226
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
5227 5228 5229 5230 5231 5232 5233 5234
		} else if (target_type == MC_TARGET_DEVICE) {
			page = target.page;
			if (!mem_cgroup_move_account(page, true,
						     mc.from, mc.to)) {
				mc.precharge -= HPAGE_PMD_NR;
				mc.moved_charge += HPAGE_PMD_NR;
			}
			put_page(page);
5235
		}
5236
		spin_unlock(ptl);
5237
		return 0;
5238 5239
	}

5240 5241
	if (pmd_trans_unstable(pmd))
		return 0;
5242 5243 5244 5245
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
5246
		bool device = false;
5247
		swp_entry_t ent;
5248 5249 5250 5251

		if (!mc.precharge)
			break;

5252
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5253 5254 5255
		case MC_TARGET_DEVICE:
			device = true;
			/* fall through */
5256 5257
		case MC_TARGET_PAGE:
			page = target.page;
5258 5259 5260 5261 5262 5263 5264 5265
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
5266
			if (!device && isolate_lru_page(page))
5267
				goto put;
5268 5269
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
5270
				mc.precharge--;
5271 5272
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5273
			}
5274 5275
			if (!device)
				putback_lru_page(page);
5276
put:			/* get_mctgt_type() gets the page */
5277 5278
			put_page(page);
			break;
5279 5280
		case MC_TARGET_SWAP:
			ent = target.ent;
5281
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5282
				mc.precharge--;
5283 5284 5285
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5286
			break;
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5301
		ret = mem_cgroup_do_precharge(1);
5302 5303 5304 5305 5306 5307 5308
		if (!ret)
			goto retry;
	}

	return ret;
}

5309
static void mem_cgroup_move_charge(void)
5310
{
5311 5312
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
5313
		.mm = mc.mm,
5314
	};
5315 5316

	lru_add_drain_all();
5317
	/*
5318 5319 5320
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
5321 5322 5323
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
5324
retry:
5325
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5337 5338 5339 5340
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
5341 5342
	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);

5343
	up_read(&mc.mm->mmap_sem);
5344
	atomic_dec(&mc.from->moving_account);
5345 5346
}

5347
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
5348
{
5349 5350
	if (mc.to) {
		mem_cgroup_move_charge();
5351
		mem_cgroup_clear_mc();
5352
	}
B
Balbir Singh 已提交
5353
}
5354
#else	/* !CONFIG_MMU */
5355
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5356 5357 5358
{
	return 0;
}
5359
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5360 5361
{
}
5362
static void mem_cgroup_move_task(void)
5363 5364 5365
{
}
#endif
B
Balbir Singh 已提交
5366

5367 5368
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5369 5370
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
5371
 */
5372
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5373 5374
{
	/*
5375
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5376 5377 5378
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
5379
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5380 5381 5382
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
5383 5384
}

5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
{
	if (value == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);

	return 0;
}

5395 5396 5397
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
5398 5399 5400
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5401 5402
}

R
Roman Gushchin 已提交
5403 5404
static int memory_min_show(struct seq_file *m, void *v)
{
5405 5406
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
R
Roman Gushchin 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
}

static ssize_t memory_min_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long min;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &min);
	if (err)
		return err;

	page_counter_set_min(&memcg->memory, min);

	return nbytes;
}

5426 5427
static int memory_low_show(struct seq_file *m, void *v)
{
5428 5429
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
5440
	err = page_counter_memparse(buf, "max", &low);
5441 5442 5443
	if (err)
		return err;

5444
	page_counter_set_low(&memcg->memory, low);
5445 5446 5447 5448 5449 5450

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
5451
	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5452 5453 5454 5455 5456 5457
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5458
	unsigned long nr_pages;
5459 5460 5461 5462
	unsigned long high;
	int err;

	buf = strstrip(buf);
5463
	err = page_counter_memparse(buf, "max", &high);
5464 5465 5466 5467 5468
	if (err)
		return err;

	memcg->high = high;

5469 5470 5471 5472 5473
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5474
	memcg_wb_domain_size_changed(memcg);
5475 5476 5477 5478 5479
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
5480 5481
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5482 5483 5484 5485 5486 5487
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5488 5489
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5490 5491 5492 5493
	unsigned long max;
	int err;

	buf = strstrip(buf);
5494
	err = page_counter_memparse(buf, "max", &max);
5495 5496 5497
	if (err)
		return err;

5498
	xchg(&memcg->memory.max, max);
5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

5524
		memcg_memory_event(memcg, MEMCG_OOM);
5525 5526 5527
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5528

5529
	memcg_wb_domain_size_changed(memcg);
5530 5531 5532 5533 5534
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
5535
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5536

5537 5538 5539 5540 5541 5542 5543 5544
	seq_printf(m, "low %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
	seq_printf(m, "high %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
	seq_printf(m, "oom %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
R
Roman Gushchin 已提交
5545 5546
	seq_printf(m, "oom_kill %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5547 5548 5549 5550

	return 0;
}

5551 5552
static int memory_stat_show(struct seq_file *m, void *v)
{
5553
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5554
	struct accumulated_stats acc;
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5568 5569 5570 5571
	memset(&acc, 0, sizeof(acc));
	acc.stats_size = MEMCG_NR_STAT;
	acc.events_size = NR_VM_EVENT_ITEMS;
	accumulate_memcg_tree(memcg, &acc);
5572

5573
	seq_printf(m, "anon %llu\n",
5574
		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5575
	seq_printf(m, "file %llu\n",
5576
		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5577
	seq_printf(m, "kernel_stack %llu\n",
5578
		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5579
	seq_printf(m, "slab %llu\n",
5580 5581
		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5582
	seq_printf(m, "sock %llu\n",
5583
		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5584

5585
	seq_printf(m, "shmem %llu\n",
5586
		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5587
	seq_printf(m, "file_mapped %llu\n",
5588
		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5589
	seq_printf(m, "file_dirty %llu\n",
5590
		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5591
	seq_printf(m, "file_writeback %llu\n",
5592
		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5593

5594 5595 5596 5597 5598 5599 5600 5601 5602
	/*
	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
	 * arse because it requires migrating the work out of rmap to a place
	 * where the page->mem_cgroup is set up and stable.
	 */
	seq_printf(m, "anon_thp %llu\n",
		   (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE);

5603 5604 5605
	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5606

5607
	seq_printf(m, "slab_reclaimable %llu\n",
5608
		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5609
	seq_printf(m, "slab_unreclaimable %llu\n",
5610
		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5611

5612 5613
	/* Accumulated memory events */

5614 5615
	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5616

5617 5618 5619 5620 5621 5622 5623
	seq_printf(m, "workingset_refault %lu\n",
		   acc.stat[WORKINGSET_REFAULT]);
	seq_printf(m, "workingset_activate %lu\n",
		   acc.stat[WORKINGSET_ACTIVATE]);
	seq_printf(m, "workingset_nodereclaim %lu\n",
		   acc.stat[WORKINGSET_NODERECLAIM]);

5624 5625 5626 5627 5628 5629 5630 5631 5632
	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
		   acc.events[PGSCAN_DIRECT]);
	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
		   acc.events[PGSTEAL_DIRECT]);
	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5633

5634 5635 5636 5637 5638 5639
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]);
	seq_printf(m, "thp_collapse_alloc %lu\n",
		   acc.events[THP_COLLAPSE_ALLOC]);
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

5640 5641 5642
	return 0;
}

5643 5644
static int memory_oom_group_show(struct seq_file *m, void *v)
{
5645
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673

	seq_printf(m, "%d\n", memcg->oom_group);

	return 0;
}

static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
				      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	int ret, oom_group;

	buf = strstrip(buf);
	if (!buf)
		return -EINVAL;

	ret = kstrtoint(buf, 0, &oom_group);
	if (ret)
		return ret;

	if (oom_group != 0 && oom_group != 1)
		return -EINVAL;

	memcg->oom_group = oom_group;

	return nbytes;
}

5674 5675 5676
static struct cftype memory_files[] = {
	{
		.name = "current",
5677
		.flags = CFTYPE_NOT_ON_ROOT,
5678 5679
		.read_u64 = memory_current_read,
	},
R
Roman Gushchin 已提交
5680 5681 5682 5683 5684 5685
	{
		.name = "min",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_min_show,
		.write = memory_min_write,
	},
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5707
		.file_offset = offsetof(struct mem_cgroup, events_file),
5708 5709
		.seq_show = memory_events_show,
	},
5710 5711 5712 5713 5714
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5715 5716 5717 5718 5719 5720
	{
		.name = "oom.group",
		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
		.seq_show = memory_oom_group_show,
		.write = memory_oom_group_write,
	},
5721 5722 5723
	{ }	/* terminate */
};

5724
struct cgroup_subsys memory_cgrp_subsys = {
5725
	.css_alloc = mem_cgroup_css_alloc,
5726
	.css_online = mem_cgroup_css_online,
5727
	.css_offline = mem_cgroup_css_offline,
5728
	.css_released = mem_cgroup_css_released,
5729
	.css_free = mem_cgroup_css_free,
5730
	.css_reset = mem_cgroup_css_reset,
5731 5732
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5733
	.post_attach = mem_cgroup_move_task,
5734
	.bind = mem_cgroup_bind,
5735 5736
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5737
	.early_init = 0,
B
Balbir Singh 已提交
5738
};
5739

5740
/**
R
Roman Gushchin 已提交
5741
 * mem_cgroup_protected - check if memory consumption is in the normal range
5742
 * @root: the top ancestor of the sub-tree being checked
5743 5744
 * @memcg: the memory cgroup to check
 *
5745 5746
 * WARNING: This function is not stateless! It can only be used as part
 *          of a top-down tree iteration, not for isolated queries.
5747
 *
R
Roman Gushchin 已提交
5748 5749 5750 5751 5752
 * Returns one of the following:
 *   MEMCG_PROT_NONE: cgroup memory is not protected
 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
 *     an unprotected supply of reclaimable memory from other cgroups.
 *   MEMCG_PROT_MIN: cgroup memory is protected
5753
 *
R
Roman Gushchin 已提交
5754
 * @root is exclusive; it is never protected when looked at directly
5755
 *
R
Roman Gushchin 已提交
5756 5757 5758
 * To provide a proper hierarchical behavior, effective memory.min/low values
 * are used. Below is the description of how effective memory.low is calculated.
 * Effective memory.min values is calculated in the same way.
5759
 *
5760 5761 5762 5763 5764 5765 5766
 * Effective memory.low is always equal or less than the original memory.low.
 * If there is no memory.low overcommittment (which is always true for
 * top-level memory cgroups), these two values are equal.
 * Otherwise, it's a part of parent's effective memory.low,
 * calculated as a cgroup's memory.low usage divided by sum of sibling's
 * memory.low usages, where memory.low usage is the size of actually
 * protected memory.
5767
 *
5768 5769 5770
 *                                             low_usage
 * elow = min( memory.low, parent->elow * ------------------ ),
 *                                        siblings_low_usage
5771
 *
5772 5773
 *             | memory.current, if memory.current < memory.low
 * low_usage = |
5774
 *	       | 0, otherwise.
5775
 *
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
 *
 * Such definition of the effective memory.low provides the expected
 * hierarchical behavior: parent's memory.low value is limiting
 * children, unprotected memory is reclaimed first and cgroups,
 * which are not using their guarantee do not affect actual memory
 * distribution.
 *
 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
 *
 *     A      A/memory.low = 2G, A/memory.current = 6G
 *    //\\
 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
 *            C/memory.low = 1G  C/memory.current = 2G
 *            D/memory.low = 0   D/memory.current = 2G
 *            E/memory.low = 10G E/memory.current = 0
 *
 * and the memory pressure is applied, the following memory distribution
 * is expected (approximately):
 *
 *     A/memory.current = 2G
 *
 *     B/memory.current = 1.3G
 *     C/memory.current = 0.6G
 *     D/memory.current = 0
 *     E/memory.current = 0
 *
 * These calculations require constant tracking of the actual low usages
R
Roman Gushchin 已提交
5803 5804
 * (see propagate_protected_usage()), as well as recursive calculation of
 * effective memory.low values. But as we do call mem_cgroup_protected()
5805 5806 5807 5808
 * path for each memory cgroup top-down from the reclaim,
 * it's possible to optimize this part, and save calculated elow
 * for next usage. This part is intentionally racy, but it's ok,
 * as memory.low is a best-effort mechanism.
5809
 */
R
Roman Gushchin 已提交
5810 5811
enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
						struct mem_cgroup *memcg)
5812
{
5813
	struct mem_cgroup *parent;
R
Roman Gushchin 已提交
5814 5815 5816
	unsigned long emin, parent_emin;
	unsigned long elow, parent_elow;
	unsigned long usage;
5817

5818
	if (mem_cgroup_disabled())
R
Roman Gushchin 已提交
5819
		return MEMCG_PROT_NONE;
5820

5821 5822 5823
	if (!root)
		root = root_mem_cgroup;
	if (memcg == root)
R
Roman Gushchin 已提交
5824
		return MEMCG_PROT_NONE;
5825

5826
	usage = page_counter_read(&memcg->memory);
R
Roman Gushchin 已提交
5827 5828 5829 5830 5831
	if (!usage)
		return MEMCG_PROT_NONE;

	emin = memcg->memory.min;
	elow = memcg->memory.low;
5832

R
Roman Gushchin 已提交
5833
	parent = parent_mem_cgroup(memcg);
5834 5835 5836 5837
	/* No parent means a non-hierarchical mode on v1 memcg */
	if (!parent)
		return MEMCG_PROT_NONE;

5838 5839 5840
	if (parent == root)
		goto exit;

R
Roman Gushchin 已提交
5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854
	parent_emin = READ_ONCE(parent->memory.emin);
	emin = min(emin, parent_emin);
	if (emin && parent_emin) {
		unsigned long min_usage, siblings_min_usage;

		min_usage = min(usage, memcg->memory.min);
		siblings_min_usage = atomic_long_read(
			&parent->memory.children_min_usage);

		if (min_usage && siblings_min_usage)
			emin = min(emin, parent_emin * min_usage /
				   siblings_min_usage);
	}

5855 5856
	parent_elow = READ_ONCE(parent->memory.elow);
	elow = min(elow, parent_elow);
R
Roman Gushchin 已提交
5857 5858
	if (elow && parent_elow) {
		unsigned long low_usage, siblings_low_usage;
5859

R
Roman Gushchin 已提交
5860 5861 5862
		low_usage = min(usage, memcg->memory.low);
		siblings_low_usage = atomic_long_read(
			&parent->memory.children_low_usage);
5863

R
Roman Gushchin 已提交
5864 5865 5866 5867
		if (low_usage && siblings_low_usage)
			elow = min(elow, parent_elow * low_usage /
				   siblings_low_usage);
	}
5868 5869

exit:
R
Roman Gushchin 已提交
5870
	memcg->memory.emin = emin;
5871
	memcg->memory.elow = elow;
R
Roman Gushchin 已提交
5872 5873 5874 5875 5876 5877 5878

	if (usage <= emin)
		return MEMCG_PROT_MIN;
	else if (usage <= elow)
		return MEMCG_PROT_LOW;
	else
		return MEMCG_PROT_NONE;
5879 5880
}

5881 5882 5883 5884 5885 5886
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
5887
 * @compound: charge the page as compound or small page
5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5900 5901
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5902 5903
{
	struct mem_cgroup *memcg = NULL;
5904
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5918
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5919
		if (compound_head(page)->mem_cgroup)
5920
			goto out;
5921

5922
		if (do_swap_account) {
5923 5924 5925 5926 5927 5928 5929 5930 5931
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957
int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
{
	struct mem_cgroup *memcg;
	int ret;

	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
	memcg = *memcgp;
	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
	return ret;
}

5958 5959 5960 5961 5962
/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
5963
 * @compound: charge the page as compound or small page
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5976
			      bool lrucare, bool compound)
5977
{
5978
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5993 5994 5995
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5996
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5997 5998
	memcg_check_events(memcg, page);
	local_irq_enable();
5999

6000
	if (do_memsw_account() && PageSwapCache(page)) {
6001 6002 6003 6004 6005 6006
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
6007
		mem_cgroup_uncharge_swap(entry, nr_pages);
6008 6009 6010 6011 6012 6013 6014
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
6015
 * @compound: charge the page as compound or small page
6016 6017 6018
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
6019 6020
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
6021
{
6022
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
struct uncharge_gather {
	struct mem_cgroup *memcg;
	unsigned long pgpgout;
	unsigned long nr_anon;
	unsigned long nr_file;
	unsigned long nr_kmem;
	unsigned long nr_huge;
	unsigned long nr_shmem;
	struct page *dummy_page;
};

static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6049
{
6050 6051 6052 6053 6054 6055
	memset(ug, 0, sizeof(*ug));
}

static void uncharge_batch(const struct uncharge_gather *ug)
{
	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6056 6057
	unsigned long flags;

6058 6059
	if (!mem_cgroup_is_root(ug->memcg)) {
		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6060
		if (do_memsw_account())
6061 6062 6063 6064
			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
		memcg_oom_recover(ug->memcg);
6065
	}
6066 6067

	local_irq_save(flags);
6068 6069 6070 6071 6072
	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6073
	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6074
	memcg_check_events(ug->memcg, ug->dummy_page);
6075
	local_irq_restore(flags);
6076

6077 6078 6079 6080 6081 6082 6083
	if (!mem_cgroup_is_root(ug->memcg))
		css_put_many(&ug->memcg->css, nr_pages);
}

static void uncharge_page(struct page *page, struct uncharge_gather *ug)
{
	VM_BUG_ON_PAGE(PageLRU(page), page);
6084 6085
	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
			!PageHWPoison(page) , page);
6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125

	if (!page->mem_cgroup)
		return;

	/*
	 * Nobody should be changing or seriously looking at
	 * page->mem_cgroup at this point, we have fully
	 * exclusive access to the page.
	 */

	if (ug->memcg != page->mem_cgroup) {
		if (ug->memcg) {
			uncharge_batch(ug);
			uncharge_gather_clear(ug);
		}
		ug->memcg = page->mem_cgroup;
	}

	if (!PageKmemcg(page)) {
		unsigned int nr_pages = 1;

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			ug->nr_huge += nr_pages;
		}
		if (PageAnon(page))
			ug->nr_anon += nr_pages;
		else {
			ug->nr_file += nr_pages;
			if (PageSwapBacked(page))
				ug->nr_shmem += nr_pages;
		}
		ug->pgpgout++;
	} else {
		ug->nr_kmem += 1 << compound_order(page);
		__ClearPageKmemcg(page);
	}

	ug->dummy_page = page;
	page->mem_cgroup = NULL;
6126 6127 6128 6129
}

static void uncharge_list(struct list_head *page_list)
{
6130
	struct uncharge_gather ug;
6131
	struct list_head *next;
6132 6133

	uncharge_gather_clear(&ug);
6134

6135 6136 6137 6138
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
6139 6140
	next = page_list->next;
	do {
6141 6142
		struct page *page;

6143 6144 6145
		page = list_entry(next, struct page, lru);
		next = page->lru.next;

6146
		uncharge_page(page, &ug);
6147 6148
	} while (next != page_list);

6149 6150
	if (ug.memcg)
		uncharge_batch(&ug);
6151 6152
}

6153 6154 6155 6156 6157 6158 6159 6160 6161
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
6162 6163
	struct uncharge_gather ug;

6164 6165 6166
	if (mem_cgroup_disabled())
		return;

6167
	/* Don't touch page->lru of any random page, pre-check: */
6168
	if (!page->mem_cgroup)
6169 6170
		return;

6171 6172 6173
	uncharge_gather_clear(&ug);
	uncharge_page(page, &ug);
	uncharge_batch(&ug);
6174
}
6175

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
6187

6188 6189
	if (!list_empty(page_list))
		uncharge_list(page_list);
6190 6191 6192
}

/**
6193 6194 6195
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
6196
 *
6197 6198
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
6199 6200 6201
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
6202
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6203
{
6204
	struct mem_cgroup *memcg;
6205 6206
	unsigned int nr_pages;
	bool compound;
6207
	unsigned long flags;
6208 6209 6210 6211

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6212 6213
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
6214 6215 6216 6217 6218

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
6219
	if (newpage->mem_cgroup)
6220 6221
		return;

6222
	/* Swapcache readahead pages can get replaced before being charged */
6223
	memcg = oldpage->mem_cgroup;
6224
	if (!memcg)
6225 6226
		return;

6227 6228 6229 6230 6231 6232 6233 6234
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
6235

6236
	commit_charge(newpage, memcg, false);
6237

6238
	local_irq_save(flags);
6239 6240
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
6241
	local_irq_restore(flags);
6242 6243
}

6244
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6245 6246
EXPORT_SYMBOL(memcg_sockets_enabled_key);

6247
void mem_cgroup_sk_alloc(struct sock *sk)
6248 6249 6250
{
	struct mem_cgroup *memcg;

6251 6252 6253
	if (!mem_cgroup_sockets_enabled)
		return;

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267
	/*
	 * Socket cloning can throw us here with sk_memcg already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		css_get(&sk->sk_memcg->css);
		return;
	}

6268 6269
	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
6270 6271
	if (memcg == root_mem_cgroup)
		goto out;
6272
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6273 6274
		goto out;
	if (css_tryget_online(&memcg->css))
6275
		sk->sk_memcg = memcg;
6276
out:
6277 6278 6279
	rcu_read_unlock();
}

6280
void mem_cgroup_sk_free(struct sock *sk)
6281
{
6282 6283
	if (sk->sk_memcg)
		css_put(&sk->sk_memcg->css);
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6296
	gfp_t gfp_mask = GFP_KERNEL;
6297

6298
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6299
		struct page_counter *fail;
6300

6301 6302
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
6303 6304
			return true;
		}
6305 6306
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
6307
		return false;
6308
	}
6309

6310 6311 6312 6313
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

6314
	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6315

6316 6317 6318 6319
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6320 6321 6322 6323 6324
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
M
Mike Rapoport 已提交
6325 6326
 * @memcg: memcg to uncharge
 * @nr_pages: number of pages to uncharge
6327 6328 6329
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
6330
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6331
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6332 6333
		return;
	}
6334

6335
	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6336

6337
	refill_stock(memcg, nr_pages);
6338 6339
}

6340 6341 6342 6343 6344 6345 6346 6347 6348
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
6349 6350
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
6351 6352 6353 6354
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
6355

6356
/*
6357 6358
 * subsys_initcall() for memory controller.
 *
6359 6360 6361 6362
 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
 * basically everything that doesn't depend on a specific mem_cgroup structure
 * should be initialized from here.
6363 6364 6365
 */
static int __init mem_cgroup_init(void)
{
6366 6367
	int cpu, node;

6368
#ifdef CONFIG_MEMCG_KMEM
6369 6370
	/*
	 * Kmem cache creation is mostly done with the slab_mutex held,
6371 6372 6373
	 * so use a workqueue with limited concurrency to avoid stalling
	 * all worker threads in case lots of cgroups are created and
	 * destroyed simultaneously.
6374
	 */
6375 6376
	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
	BUG_ON(!memcg_kmem_cache_wq);
6377 6378
#endif

6379 6380
	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
				  memcg_hotplug_cpu_dead);
6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

6392
		rtpn->rb_root = RB_ROOT;
6393
		rtpn->rb_rightmost = NULL;
6394
		spin_lock_init(&rtpn->lock);
6395 6396 6397
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

6398 6399 6400
	return 0;
}
subsys_initcall(mem_cgroup_init);
6401 6402

#ifdef CONFIG_MEMCG_SWAP
6403 6404
static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
{
6405
	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420
		/*
		 * The root cgroup cannot be destroyed, so it's refcount must
		 * always be >= 1.
		 */
		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
			VM_BUG_ON(1);
			break;
		}
		memcg = parent_mem_cgroup(memcg);
		if (!memcg)
			memcg = root_mem_cgroup;
	}
	return memcg;
}

6421 6422 6423 6424 6425 6426 6427 6428 6429
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
6430
	struct mem_cgroup *memcg, *swap_memcg;
6431
	unsigned int nr_entries;
6432 6433 6434 6435 6436
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

6437
	if (!do_memsw_account())
6438 6439 6440 6441 6442 6443 6444 6445
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

6446 6447 6448 6449 6450 6451
	/*
	 * In case the memcg owning these pages has been offlined and doesn't
	 * have an ID allocated to it anymore, charge the closest online
	 * ancestor for the swap instead and transfer the memory+swap charge.
	 */
	swap_memcg = mem_cgroup_id_get_online(memcg);
6452 6453 6454 6455 6456 6457
	nr_entries = hpage_nr_pages(page);
	/* Get references for the tail pages, too */
	if (nr_entries > 1)
		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
				   nr_entries);
6458
	VM_BUG_ON_PAGE(oldid, page);
6459
	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6460 6461 6462 6463

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
6464
		page_counter_uncharge(&memcg->memory, nr_entries);
6465

6466 6467
	if (memcg != swap_memcg) {
		if (!mem_cgroup_is_root(swap_memcg))
6468 6469
			page_counter_charge(&swap_memcg->memsw, nr_entries);
		page_counter_uncharge(&memcg->memsw, nr_entries);
6470 6471
	}

6472 6473
	/*
	 * Interrupts should be disabled here because the caller holds the
M
Matthew Wilcox 已提交
6474
	 * i_pages lock which is taken with interrupts-off. It is
6475
	 * important here to have the interrupts disabled because it is the
M
Matthew Wilcox 已提交
6476
	 * only synchronisation we have for updating the per-CPU variables.
6477 6478
	 */
	VM_BUG_ON(!irqs_disabled());
6479 6480
	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
				     -nr_entries);
6481
	memcg_check_events(memcg, page);
6482 6483

	if (!mem_cgroup_is_root(memcg))
6484
		css_put_many(&memcg->css, nr_entries);
6485 6486
}

6487 6488
/**
 * mem_cgroup_try_charge_swap - try charging swap space for a page
6489 6490 6491
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
6492
 * Try to charge @page's memcg for the swap space at @entry.
6493 6494 6495 6496 6497
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
6498
	unsigned int nr_pages = hpage_nr_pages(page);
6499
	struct page_counter *counter;
6500
	struct mem_cgroup *memcg;
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

6512 6513
	if (!entry.val) {
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6514
		return 0;
6515
	}
6516

6517 6518
	memcg = mem_cgroup_id_get_online(memcg);

6519
	if (!mem_cgroup_is_root(memcg) &&
6520
	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6521 6522
		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6523
		mem_cgroup_id_put(memcg);
6524
		return -ENOMEM;
6525
	}
6526

6527 6528 6529 6530
	/* Get references for the tail pages, too */
	if (nr_pages > 1)
		mem_cgroup_id_get_many(memcg, nr_pages - 1);
	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6531
	VM_BUG_ON_PAGE(oldid, page);
6532
	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6533 6534 6535 6536

	return 0;
}

6537
/**
6538
 * mem_cgroup_uncharge_swap - uncharge swap space
6539
 * @entry: swap entry to uncharge
6540
 * @nr_pages: the amount of swap space to uncharge
6541
 */
6542
void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6543 6544 6545 6546
{
	struct mem_cgroup *memcg;
	unsigned short id;

6547
	if (!do_swap_account)
6548 6549
		return;

6550
	id = swap_cgroup_record(entry, 0, nr_pages);
6551
	rcu_read_lock();
6552
	memcg = mem_cgroup_from_id(id);
6553
	if (memcg) {
6554 6555
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6556
				page_counter_uncharge(&memcg->swap, nr_pages);
6557
			else
6558
				page_counter_uncharge(&memcg->memsw, nr_pages);
6559
		}
6560
		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6561
		mem_cgroup_id_put_many(memcg, nr_pages);
6562 6563 6564 6565
	}
	rcu_read_unlock();
}

6566 6567 6568 6569 6570 6571 6572 6573
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
6574
				      READ_ONCE(memcg->swap.max) -
6575 6576 6577 6578
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6595
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6596 6597 6598 6599 6600
			return true;

	return false;
}

6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
6628 6629
	return seq_puts_memcg_tunable(m,
		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

6644
	xchg(&memcg->swap.max, max);
6645 6646 6647 6648

	return nbytes;
}

6649 6650
static int swap_events_show(struct seq_file *m, void *v)
{
6651
	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6652 6653 6654 6655 6656 6657 6658 6659 6660

	seq_printf(m, "max %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
	seq_printf(m, "fail %lu\n",
		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));

	return 0;
}

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
6673 6674 6675 6676 6677 6678
	{
		.name = "swap.events",
		.flags = CFTYPE_NOT_ON_ROOT,
		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
		.seq_show = swap_events_show,
	},
6679 6680 6681
	{ }	/* terminate */
};

6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
6713 6714
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
6715 6716 6717 6718 6719 6720 6721 6722
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */