memcontrol.c 142.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/shmem_fs.h>
39
#include <linux/slab.h>
40
#include <linux/swap.h>
41
#include <linux/swapops.h>
42
#include <linux/spinlock.h>
43 44
#include <linux/eventfd.h>
#include <linux/sort.h>
45
#include <linux/fs.h>
46
#include <linux/seq_file.h>
47
#include <linux/vmalloc.h>
48
#include <linux/mm_inline.h>
49
#include <linux/page_cgroup.h>
50
#include <linux/cpu.h>
51
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include "internal.h"
B
Balbir Singh 已提交
53

54 55
#include <asm/uaccess.h>

56 57
#include <trace/events/vmscan.h>

58 59
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
60
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
61

62
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
63
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64
int do_swap_account __read_mostly;
65 66 67 68 69 70 71 72

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

73 74 75 76 77
#else
#define do_swap_account		(0)
#endif


78 79 80 81 82 83 84 85
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 92 93
	MEM_CGROUP_STAT_NSTATS,
};

94 95 96 97
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 99
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 101
	MEM_CGROUP_EVENTS_NSTATS,
};
102 103 104 105 106 107 108 109 110 111 112 113 114
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
	MEM_CGROUP_TARGET_SOFTLIMIT,
	MEM_CGROUP_NTARGETS,
};
#define THRESHOLDS_EVENTS_TARGET (128)
#define SOFTLIMIT_EVENTS_TARGET (1024)
115

116
struct mem_cgroup_stat_cpu {
117
	long count[MEM_CGROUP_STAT_NSTATS];
118
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
119
	unsigned long targets[MEM_CGROUP_NTARGETS];
120 121
};

122 123 124 125
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
126 127 128
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
129 130
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
131 132

	struct zone_reclaim_stat reclaim_stat;
133 134 135 136
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
137 138
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
139 140 141 142 143 144 145 146 147 148 149 150
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

171 172 173 174 175
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
176
/* For threshold */
177 178
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
179
	int current_threshold;
180 181 182 183 184
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
185 186 187 188 189 190 191 192 193 194 195 196

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
197 198 199 200 201
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
202 203

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
204
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
205

B
Balbir Singh 已提交
206 207 208 209 210 211 212
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
213 214 215
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
216 217 218 219 220 221 222
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
223 224 225 226
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
227 228 229 230
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
231
	struct mem_cgroup_lru_info info;
232
	/*
233
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
234
	 * reclaimed from.
235
	 */
K
KAMEZAWA Hiroyuki 已提交
236
	int last_scanned_child;
237 238 239 240 241
	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	unsigned long   next_scan_node_update;
#endif
242 243 244 245
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
246
	atomic_t	oom_lock;
247
	atomic_t	refcnt;
248

K
KOSAKI Motohiro 已提交
249
	unsigned int	swappiness;
250 251
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
252

253 254 255
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

256 257 258 259
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
260
	struct mem_cgroup_thresholds thresholds;
261

262
	/* thresholds for mem+swap usage. RCU-protected */
263
	struct mem_cgroup_thresholds memsw_thresholds;
264

K
KAMEZAWA Hiroyuki 已提交
265 266 267
	/* For oom notifier event fd */
	struct list_head oom_notify;

268 269 270 271 272
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
273
	/*
274
	 * percpu counter.
275
	 */
276
	struct mem_cgroup_stat_cpu *stat;
277 278 279 280 281 282
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
283 284
};

285 286 287 288 289 290
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
291
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
292
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
293 294 295
	NR_MOVE_TYPE,
};

296 297
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
298
	spinlock_t	  lock; /* for from, to */
299 300 301
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
302
	unsigned long moved_charge;
303
	unsigned long moved_swap;
304 305 306
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
307
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
308 309
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
310

D
Daisuke Nishimura 已提交
311 312 313 314 315 316
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

317 318 319 320 321 322
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

323 324 325 326 327 328 329
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

330 331 332
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
333
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
334
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
335
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
336
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
337 338 339
	NR_CHARGE_TYPE,
};

340 341 342
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
343
#define _OOM_TYPE		(2)
344 345 346
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
347 348
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
349

350 351 352 353 354 355 356
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
357 358
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
359

360 361
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
362
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
363
static void drain_all_stock_async(struct mem_cgroup *mem);
364

365 366 367 368 369 370
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

371 372 373 374 375
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

376
static struct mem_cgroup_per_zone *
377
page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
378
{
379 380
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
401
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
402
				struct mem_cgroup_per_zone *mz,
403 404
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
405 406 407 408 409 410 411 412
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

413 414 415
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
432 433 434 435 436 437 438 439 440 441 442 443 444
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

445 446 447 448 449 450
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
451
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
452 453 454 455 456 457
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
458
	unsigned long long excess;
459 460
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
461 462
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
463 464 465
	mctz = soft_limit_tree_from_page(page);

	/*
466 467
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
468
	 */
469 470
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
471
		excess = res_counter_soft_limit_excess(&mem->res);
472 473 474 475
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
476
		if (excess || mz->on_tree) {
477 478 479 480 481
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
482 483
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
484
			 */
485
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
486 487
			spin_unlock(&mctz->lock);
		}
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

506 507 508 509
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
510
	struct mem_cgroup_per_zone *mz;
511 512

retry:
513
	mz = NULL;
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
562 563
static long mem_cgroup_read_stat(struct mem_cgroup *mem,
				 enum mem_cgroup_stat_index idx)
564
{
565
	long val = 0;
566 567
	int cpu;

568 569
	get_online_cpus();
	for_each_online_cpu(cpu)
570
		val += per_cpu(mem->stat->count[idx], cpu);
571 572 573 574 575 576
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
577 578 579
	return val;
}

580 581 582 583
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
584
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
585 586
}

587 588 589 590 591 592 593 594 595 596
void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
}

void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
{
	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
}

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

	for_each_online_cpu(cpu)
		val += per_cpu(mem->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.events[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	return val;
}

613
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
614
					 bool file, int nr_pages)
615
{
616 617
	preempt_disable();

618 619
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
620
	else
621
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
622

623 624
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
625
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
626
	else {
627
		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
628 629
		nr_pages = -nr_pages; /* for event */
	}
630

631
	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
632

633
	preempt_enable();
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648
static unsigned long
mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
{
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;
	int zid;

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
		total += MEM_CGROUP_ZSTAT(mz, idx);
	}
	return total;
}
K
KAMEZAWA Hiroyuki 已提交
649
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
650
					enum lru_list idx)
651
{
652
	int nid;
653 654 655
	u64 total = 0;

	for_each_online_node(nid)
656
		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
657
	return total;
658 659
}

660 661 662 663 664 665 666 667 668 669 670
static bool __memcg_event_check(struct mem_cgroup *mem, int target)
{
	unsigned long val, next;

	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
	next = this_cpu_read(mem->stat->targets[target]);
	/* from time_after() in jiffies.h */
	return ((long)next - (long)val < 0);
}

static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
671
{
672
	unsigned long val, next;
673

674
	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
675

676 677 678 679 680 681 682 683 684 685 686 687
	switch (target) {
	case MEM_CGROUP_TARGET_THRESH:
		next = val + THRESHOLDS_EVENTS_TARGET;
		break;
	case MEM_CGROUP_TARGET_SOFTLIMIT:
		next = val + SOFTLIMIT_EVENTS_TARGET;
		break;
	default:
		return;
	}

	this_cpu_write(mem->stat->targets[target], next);
688 689 690 691 692 693 694 695 696
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
697
	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
698
		mem_cgroup_threshold(mem);
699 700 701
		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
		if (unlikely(__memcg_event_check(mem,
			MEM_CGROUP_TARGET_SOFTLIMIT))){
702
			mem_cgroup_update_tree(mem, page);
703 704 705
			__mem_cgroup_target_update(mem,
				MEM_CGROUP_TARGET_SOFTLIMIT);
		}
706 707 708
	}
}

709
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
710 711 712 713 714 715
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

716
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
717
{
718 719 720 721 722 723 724 725
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

726 727 728 729
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

730
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
731 732
{
	struct mem_cgroup *mem = NULL;
733 734 735

	if (!mm)
		return NULL;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
751 752
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
753
{
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
776 777 778 779 780 781 782 783 784
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
785 786
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
787
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
788

K
KAMEZAWA Hiroyuki 已提交
789
	css_put(&iter->css);
790 791
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
792
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
793

794 795 796
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
797 798
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
799
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
800 801 802

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
803
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
804
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
805
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
806
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
807
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
808
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
809

K
KAMEZAWA Hiroyuki 已提交
810
	return iter;
K
KAMEZAWA Hiroyuki 已提交
811
}
K
KAMEZAWA Hiroyuki 已提交
812 813 814 815 816 817 818 819 820 821 822 823 824
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

825 826 827
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
828

829 830 831 832 833
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
{
	struct mem_cgroup *mem;

	if (!mm)
		return;

	rcu_read_lock();
	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!mem))
		goto out;

	switch (idx) {
	case PGMAJFAULT:
		mem_cgroup_pgmajfault(mem, 1);
		break;
	case PGFAULT:
		mem_cgroup_pgfault(mem, 1);
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
EXPORT_SYMBOL(mem_cgroup_count_vm_event);

K
KAMEZAWA Hiroyuki 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
874

K
KAMEZAWA Hiroyuki 已提交
875 876 877 878
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
879

880
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
881 882 883
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
884
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
885
		return;
886
	VM_BUG_ON(!pc->mem_cgroup);
887 888 889 890
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
891
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
892 893
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
894 895 896
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
897
	list_del_init(&pc->lru);
898 899
}

K
KAMEZAWA Hiroyuki 已提交
900
void mem_cgroup_del_lru(struct page *page)
901
{
K
KAMEZAWA Hiroyuki 已提交
902 903
	mem_cgroup_del_lru_list(page, page_lru(page));
}
904

905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
927
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
928 929 930
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
931 932 933 934
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
935

936
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
937
		return;
938

K
KAMEZAWA Hiroyuki 已提交
939
	pc = lookup_page_cgroup(page);
940
	/* unused or root page is not rotated. */
941 942 943 944 945
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
946
		return;
947
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KAMEZAWA Hiroyuki 已提交
948
	list_move(&pc->lru, &mz->lists[lru]);
949 950
}

K
KAMEZAWA Hiroyuki 已提交
951
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
952
{
K
KAMEZAWA Hiroyuki 已提交
953 954
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
955

956
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
957 958
		return;
	pc = lookup_page_cgroup(page);
959
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
960
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
961
		return;
962 963
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
964
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
965 966
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
967 968 969
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
970 971
	list_add(&pc->lru, &mz->lists[lru]);
}
972

K
KAMEZAWA Hiroyuki 已提交
973
/*
974 975 976 977
 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
 * while it's linked to lru because the page may be reused after it's fully
 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
 * It's done under lock_page and expected that zone->lru_lock isnever held.
K
KAMEZAWA Hiroyuki 已提交
978
 */
979
static void mem_cgroup_lru_del_before_commit(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
980
{
981 982 983 984
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

985 986 987 988 989 990 991 992 993 994 995
	/*
	 * Doing this check without taking ->lru_lock seems wrong but this
	 * is safe. Because if page_cgroup's USED bit is unset, the page
	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
	 * set, the commit after this will fail, anyway.
	 * This all charge/uncharge is done under some mutual execustion.
	 * So, we don't need to taking care of changes in USED bit.
	 */
	if (likely(!PageLRU(page)))
		return;

996 997 998 999 1000 1001 1002 1003
	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
1004 1005
}

1006
static void mem_cgroup_lru_add_after_commit(struct page *page)
1007 1008 1009 1010 1011
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

1012 1013 1014
	/* taking care of that the page is added to LRU while we commit it */
	if (likely(!PageLRU(page)))
		return;
1015 1016
	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
1017
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1018 1019 1020 1021 1022
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
1023 1024 1025
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
1026
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
1027 1028 1029
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
1030 1031
}

1032 1033 1034
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
1035
	struct mem_cgroup *curr = NULL;
1036
	struct task_struct *p;
1037

1038 1039 1040 1041 1042
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
1043 1044
	if (!curr)
		return 0;
1045 1046 1047 1048 1049 1050 1051
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
1052 1053 1054 1055
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
1056 1057 1058
	return ret;
}

1059
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1060 1061 1062
{
	unsigned long active;
	unsigned long inactive;
1063 1064
	unsigned long gb;
	unsigned long inactive_ratio;
1065

K
KAMEZAWA Hiroyuki 已提交
1066 1067
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
1096 1097 1098 1099 1100
		return 1;

	return 0;
}

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1112 1113 1114
unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
						struct zone *zone,
						enum lru_list lru)
1115
{
1116
	int nid = zone_to_nid(zone);
1117 1118 1119 1120 1121 1122
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);

	return ret;
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	unsigned long ret;

	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
	return ret;
}

#if MAX_NUMNODES > 1
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);

	return total;
}

static unsigned long
mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
{
	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
}

static unsigned long
mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);

	return total;
}

static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
							int nid)
{
	enum lru_list l;
	u64 total = 0;

	for_each_lru(l)
		total += mem_cgroup_get_zonestat_node(memcg, nid, l);

	return total;
}

static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
{
	u64 total = 0;
	int nid;

	for_each_node_state(nid, N_HIGH_MEMORY)
		total += mem_cgroup_node_nr_lru_pages(memcg, nid);

	return total;
}
#endif /* CONFIG_NUMA */

K
KOSAKI Motohiro 已提交
1209 1210 1211
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1212
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1229 1230
	if (!PageCgroupUsed(pc))
		return NULL;
1231 1232
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
1233
	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
K
KOSAKI Motohiro 已提交
1234 1235 1236
	return &mz->reclaim_stat;
}

1237 1238 1239 1240 1241
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1242
					int active, int file)
1243 1244 1245 1246 1247 1248
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1249
	struct page_cgroup *pc, *tmp;
1250
	int nid = zone_to_nid(z);
1251 1252
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1253
	int lru = LRU_FILE * file + active;
1254
	int ret;
1255

1256
	BUG_ON(!mem_cont);
1257
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1258
	src = &mz->lists[lru];
1259

1260 1261
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1262
		if (scan >= nr_to_scan)
1263
			break;
K
KAMEZAWA Hiroyuki 已提交
1264

1265 1266
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
1267

1268
		page = lookup_cgroup_page(pc);
1269

H
Hugh Dickins 已提交
1270
		if (unlikely(!PageLRU(page)))
1271 1272
			continue;

H
Hugh Dickins 已提交
1273
		scan++;
1274 1275 1276
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1277
			list_move(&page->lru, dst);
1278
			mem_cgroup_del_lru(page);
1279
			nr_taken += hpage_nr_pages(page);
1280 1281 1282 1283 1284 1285 1286
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1287 1288 1289 1290
		}
	}

	*scanned = scan;
1291 1292 1293 1294

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1295 1296 1297
	return nr_taken;
}

1298 1299 1300
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1301
/**
1302 1303
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1304
 *
1305
 * Returns the maximum amount of memory @mem can be charged with, in
1306
 * pages.
1307
 */
1308
static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1309
{
1310 1311 1312 1313 1314
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
1315
	return margin >> PAGE_SHIFT;
1316 1317
}

K
KOSAKI Motohiro 已提交
1318 1319 1320 1321 1322 1323 1324 1325
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

1326
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1327 1328
}

1329 1330 1331
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1332 1333 1334 1335

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1336
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1337 1338 1339
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1350 1351 1352
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1353
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1354 1355 1356
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1375 1376 1377

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1378 1379
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1380
	bool ret = false;
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1415
/**
1416
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1435
	if (!memcg || !p)
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1482 1483 1484 1485 1486 1487 1488
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1493 1494 1495
	return num;
}

D
David Rientjes 已提交
1496 1497 1498 1499 1500 1501 1502 1503
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1504 1505 1506
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1507 1508 1509 1510 1511 1512 1513 1514
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1515
/*
K
KAMEZAWA Hiroyuki 已提交
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
	}

	return ret;
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
/**
 * test_mem_cgroup_node_reclaimable
 * @mem: the target memcg
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
		int nid, bool noswap)
{
	if (mem_cgroup_node_nr_file_lru_pages(mem, nid))
		return true;
	if (noswap || !total_swap_pages)
		return false;
	if (mem_cgroup_node_nr_anon_lru_pages(mem, nid))
		return true;
	return false;

}
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
#if MAX_NUMNODES > 1

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
{
	int nid;

	if (time_after(mem->next_scan_node_update, jiffies))
		return;

	mem->next_scan_node_update = jiffies + 10*HZ;
	/* make a nodemask where this memcg uses memory from */
	mem->scan_nodes = node_states[N_HIGH_MEMORY];

	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {

1595 1596
		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
			node_clear(nid, mem->scan_nodes);
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	}
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	int node;

	mem_cgroup_may_update_nodemask(mem);
	node = mem->last_scanned_node;

	node = next_node(node, mem->scan_nodes);
	if (node == MAX_NUMNODES)
		node = first_node(mem->scan_nodes);
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

	mem->last_scanned_node = node;
	return node;
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(mem->scan_nodes)) {
		for (nid = first_node(mem->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, mem->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_HIGH_MEMORY) {
		if (node_isset(nid, mem->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
			return true;
	}
	return false;
}

1670 1671 1672 1673 1674
#else
int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
{
	return 0;
}
1675 1676 1677 1678 1679

bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
}
1680 1681
#endif

K
KAMEZAWA Hiroyuki 已提交
1682 1683 1684 1685
/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1686 1687
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1688 1689 1690
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1691 1692
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1693 1694
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1695
						struct zone *zone,
1696
						gfp_t gfp_mask,
1697 1698
						unsigned long reclaim_options,
						unsigned long *total_scanned)
1699
{
K
KAMEZAWA Hiroyuki 已提交
1700 1701 1702
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1703 1704
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1705
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1706
	unsigned long excess;
1707
	unsigned long nr_scanned;
1708 1709

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1710

1711
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1712
	if (!check_soft && root_mem->memsw_is_minimum)
1713 1714
		noswap = true;

1715
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1716
		victim = mem_cgroup_select_victim(root_mem);
1717
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1718
			loop++;
1719 1720 1721 1722 1723 1724 1725
			/*
			 * We are not draining per cpu cached charges during
			 * soft limit reclaim  because global reclaim doesn't
			 * care about charges. It tries to free some memory and
			 * charges will not give any.
			 */
			if (!check_soft && loop >= 1)
1726
				drain_all_stock_async(root_mem);
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
L
Lucas De Marchi 已提交
1738
				 * We want to do more targeted reclaim.
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1750
		if (!mem_cgroup_reclaimable(victim, noswap)) {
K
KAMEZAWA Hiroyuki 已提交
1751 1752
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1753 1754
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1755
		/* we use swappiness of local cgroup */
1756
		if (check_soft) {
1757
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1758 1759 1760 1761
				noswap, get_swappiness(victim), zone,
				&nr_scanned);
			*total_scanned += nr_scanned;
		} else
1762 1763
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1764
		css_put(&victim->css);
1765 1766 1767 1768 1769 1770 1771
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1772
		total += ret;
1773
		if (check_soft) {
1774
			if (!res_counter_soft_limit_excess(&root_mem->res))
1775
				return total;
1776
		} else if (mem_cgroup_margin(root_mem))
1777
			return total;
1778
	}
K
KAMEZAWA Hiroyuki 已提交
1779
	return total;
1780 1781
}

K
KAMEZAWA Hiroyuki 已提交
1782 1783 1784 1785 1786 1787
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1788 1789
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1790

K
KAMEZAWA Hiroyuki 已提交
1791 1792 1793 1794
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1795 1796 1797 1798

	if (lock_count == 1)
		return true;
	return false;
1799
}
1800

K
KAMEZAWA Hiroyuki 已提交
1801
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1802
{
K
KAMEZAWA Hiroyuki 已提交
1803 1804
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1805 1806 1807 1808 1809
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1810 1811
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1812 1813 1814
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1815 1816 1817 1818

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1855 1856
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1857
	if (mem && atomic_read(&mem->oom_lock))
1858 1859 1860
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1861 1862 1863 1864
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1865
{
K
KAMEZAWA Hiroyuki 已提交
1866
	struct oom_wait_info owait;
1867
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1868

K
KAMEZAWA Hiroyuki 已提交
1869 1870 1871 1872 1873
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1874
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1875 1876 1877 1878 1879 1880 1881 1882
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1883 1884 1885 1886
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1887
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1888 1889
	mutex_unlock(&memcg_oom_mutex);

1890 1891
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1892
		mem_cgroup_out_of_memory(mem, mask);
1893
	} else {
K
KAMEZAWA Hiroyuki 已提交
1894
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1895
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1896 1897 1898
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1899
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1900 1901 1902 1903 1904 1905 1906
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1907 1908
}

1909 1910 1911
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1931
 */
1932

1933 1934
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1935 1936
{
	struct mem_cgroup *mem;
1937 1938
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1939
	unsigned long uninitialized_var(flags);
1940 1941 1942 1943

	if (unlikely(!pc))
		return;

1944
	rcu_read_lock();
1945
	mem = pc->mem_cgroup;
1946 1947 1948
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1949
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1950
		/* take a lock against to access pc->mem_cgroup */
1951
		move_lock_page_cgroup(pc, &flags);
1952 1953 1954 1955 1956
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1957 1958

	switch (idx) {
1959
	case MEMCG_NR_FILE_MAPPED:
1960 1961 1962
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1963
			ClearPageCgroupFileMapped(pc);
1964
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1965 1966 1967
		break;
	default:
		BUG();
1968
	}
1969

1970 1971
	this_cpu_add(mem->stat->count[idx], val);

1972 1973
out:
	if (unlikely(need_unlock))
1974
		move_unlock_page_cgroup(pc, &flags);
1975 1976
	rcu_read_unlock();
	return;
1977
}
1978
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1979

1980 1981 1982 1983
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1984
#define CHARGE_BATCH	32U
1985 1986
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1987
	unsigned int nr_pages;
1988
	struct work_struct work;
1989 1990
	unsigned long flags;
#define FLUSHING_CACHED_CHARGE	(0)
1991 1992
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1993
static DEFINE_MUTEX(percpu_charge_mutex);
1994 1995

/*
1996
 * Try to consume stocked charge on this cpu. If success, one page is consumed
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
2007 2008
	if (mem == stock->cached && stock->nr_pages)
		stock->nr_pages--;
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2022 2023 2024 2025
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2026
		if (do_swap_account)
2027 2028
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2041
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2042 2043 2044 2045
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2046
 * This will be consumed by consume_stock() function, later.
2047
 */
2048
static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2049 2050 2051 2052 2053 2054 2055
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
2056
	stock->nr_pages += nr_pages;
2057 2058 2059 2060 2061 2062 2063 2064 2065
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2066
static void drain_all_stock_async(struct mem_cgroup *root_mem)
2067
{
2068 2069 2070
	int cpu, curcpu;
	/*
	 * If someone calls draining, avoid adding more kworker runs.
2071
	 */
2072
	if (!mutex_trylock(&percpu_charge_mutex))
2073 2074 2075
		return;
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2076 2077 2078 2079 2080 2081 2082
	/*
	 * Get a hint for avoiding draining charges on the current cpu,
	 * which must be exhausted by our charging.  It is not required that
	 * this be a precise check, so we use raw_smp_processor_id() instead of
	 * getcpu()/putcpu().
	 */
	curcpu = raw_smp_processor_id();
2083 2084
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		struct mem_cgroup *mem;

		if (cpu == curcpu)
			continue;

		mem = stock->cached;
		if (!mem)
			continue;
		if (mem != root_mem) {
			if (!root_mem->use_hierarchy)
				continue;
			/* check whether "mem" is under tree of "root_mem" */
			if (!css_is_ancestor(&mem->css, &root_mem->css))
				continue;
		}
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
			schedule_work_on(cpu, &stock->work);
2102 2103
	}
 	put_online_cpus();
2104
	mutex_unlock(&percpu_charge_mutex);
2105 2106 2107 2108 2109 2110 2111
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
2112
	mutex_lock(&percpu_charge_mutex);
2113
	schedule_on_each_cpu(drain_local_stock);
2114
	mutex_unlock(&percpu_charge_mutex);
2115 2116
}

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2127
		long x = per_cpu(mem->stat->count[i], cpu);
2128 2129 2130 2131

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
2132 2133 2134 2135 2136 2137
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long x = per_cpu(mem->stat->events[i], cpu);

		per_cpu(mem->stat->events[i], cpu) = 0;
		mem->nocpu_base.events[i] += x;
	}
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2149 2150 2151 2152
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2153 2154 2155 2156 2157
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2158
	struct mem_cgroup *iter;
2159

2160 2161 2162 2163 2164 2165
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

2166
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2167
		return NOTIFY_OK;
2168 2169 2170 2171

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

2172 2173 2174 2175 2176
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

2187 2188
static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				unsigned int nr_pages, bool oom_check)
2189
{
2190
	unsigned long csize = nr_pages * PAGE_SIZE;
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

2205
		res_counter_uncharge(&mem->res, csize);
2206 2207 2208 2209
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2210
	/*
2211 2212
	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2213 2214 2215 2216
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2217
	if (nr_pages == CHARGE_BATCH)
2218 2219 2220 2221 2222 2223
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2224
					      gfp_mask, flags, NULL);
2225
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2226
		return CHARGE_RETRY;
2227
	/*
2228 2229 2230 2231 2232 2233 2234
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2235
	 */
2236
	if (nr_pages == 1 && ret)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

2256 2257 2258
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
2259
 */
2260
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2261
				   gfp_t gfp_mask,
2262 2263 2264
				   unsigned int nr_pages,
				   struct mem_cgroup **memcg,
				   bool oom)
2265
{
2266
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2267 2268 2269
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
2270

K
KAMEZAWA Hiroyuki 已提交
2271 2272 2273 2274 2275 2276 2277 2278
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2279

2280
	/*
2281 2282
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2283 2284 2285
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
2286 2287 2288 2289
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
2290
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
2291 2292 2293
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
2294
		if (nr_pages == 1 && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
2295
			goto done;
2296 2297
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
2298
		struct task_struct *p;
2299

K
KAMEZAWA Hiroyuki 已提交
2300 2301 2302
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2303 2304 2305 2306 2307 2308 2309 2310
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2311 2312
		 */
		mem = mem_cgroup_from_task(p);
2313
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2314 2315 2316
			rcu_read_unlock();
			goto done;
		}
2317
		if (nr_pages == 1 && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2336

2337 2338
	do {
		bool oom_check;
2339

2340
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2341 2342
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
2343
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2344
		}
2345

2346 2347 2348 2349
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2350
		}
2351

2352
		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2353 2354 2355 2356
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2357
			batch = nr_pages;
K
KAMEZAWA Hiroyuki 已提交
2358 2359 2360
			css_put(&mem->css);
			mem = NULL;
			goto again;
2361
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2362
			css_put(&mem->css);
2363 2364
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2365 2366
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2367
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2368
			}
2369 2370 2371 2372
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2373
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2374
			goto bypass;
2375
		}
2376 2377
	} while (ret != CHARGE_OK);

2378 2379
	if (batch > nr_pages)
		refill_stock(mem, batch - nr_pages);
K
KAMEZAWA Hiroyuki 已提交
2380
	css_put(&mem->css);
2381
done:
K
KAMEZAWA Hiroyuki 已提交
2382
	*memcg = mem;
2383 2384
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2385
	*memcg = NULL;
2386
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2387 2388 2389
bypass:
	*memcg = NULL;
	return 0;
2390
}
2391

2392 2393 2394 2395 2396
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2397
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2398
				       unsigned int nr_pages)
2399 2400
{
	if (!mem_cgroup_is_root(mem)) {
2401 2402 2403
		unsigned long bytes = nr_pages * PAGE_SIZE;

		res_counter_uncharge(&mem->res, bytes);
2404
		if (do_swap_account)
2405
			res_counter_uncharge(&mem->memsw, bytes);
2406
	}
2407 2408
}

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2428
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2429
{
2430
	struct mem_cgroup *mem = NULL;
2431
	struct page_cgroup *pc;
2432
	unsigned short id;
2433 2434
	swp_entry_t ent;

2435 2436 2437
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2438
	lock_page_cgroup(pc);
2439
	if (PageCgroupUsed(pc)) {
2440
		mem = pc->mem_cgroup;
2441 2442
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2443
	} else if (PageSwapCache(page)) {
2444
		ent.val = page_private(page);
2445 2446 2447 2448 2449 2450
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2451
	}
2452
	unlock_page_cgroup(pc);
2453 2454 2455
	return mem;
}

2456
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2457
				       struct page *page,
2458
				       unsigned int nr_pages,
2459
				       struct page_cgroup *pc,
2460
				       enum charge_type ctype)
2461
{
2462 2463 2464
	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
2465
		__mem_cgroup_cancel_charge(mem, nr_pages);
2466 2467 2468 2469 2470 2471
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2472
	pc->mem_cgroup = mem;
2473 2474 2475 2476 2477 2478 2479
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2480
	smp_wmb();
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2494

2495
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2496
	unlock_page_cgroup(pc);
2497 2498 2499 2500 2501
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2502
	memcg_check_events(mem, page);
2503
}
2504

2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2519 2520
	if (mem_cgroup_disabled())
		return;
2521
	/*
2522
	 * We have no races with charge/uncharge but will have races with
2523 2524 2525 2526 2527 2528
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
2539
		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2540 2541
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2542 2543 2544 2545 2546
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2547
/**
2548
 * mem_cgroup_move_account - move account of the page
2549
 * @page: the page
2550
 * @nr_pages: number of regular pages (>1 for huge pages)
2551 2552 2553
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2554
 * @uncharge: whether we should call uncharge and css_put against @from.
2555 2556
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2557
 * - page is not on LRU (isolate_page() is useful.)
2558
 * - compound_lock is held when nr_pages > 1
2559
 *
2560
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
L
Lucas De Marchi 已提交
2561
 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2562 2563
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2564
 */
2565 2566 2567 2568 2569 2570
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
				   struct mem_cgroup *to,
				   bool uncharge)
2571
{
2572 2573
	unsigned long flags;
	int ret;
2574

2575
	VM_BUG_ON(from == to);
2576
	VM_BUG_ON(PageLRU(page));
2577 2578 2579 2580 2581 2582 2583
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
2584
	if (nr_pages > 1 && !PageTransHuge(page))
2585 2586 2587 2588 2589 2590 2591 2592 2593
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

	move_lock_page_cgroup(pc, &flags);
2594

2595
	if (PageCgroupFileMapped(pc)) {
2596 2597 2598 2599 2600
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2601
	}
2602
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2603 2604
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2605
		__mem_cgroup_cancel_charge(from, nr_pages);
2606

2607
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2608
	pc->mem_cgroup = to;
2609
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2610 2611 2612
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2613
	 * this function is just force_empty() and move charge, so it's
L
Lucas De Marchi 已提交
2614
	 * guaranteed that "to" is never removed. So, we don't check rmdir
2615
	 * status here.
2616
	 */
2617 2618 2619
	move_unlock_page_cgroup(pc, &flags);
	ret = 0;
unlock:
2620
	unlock_page_cgroup(pc);
2621 2622 2623
	/*
	 * check events
	 */
2624 2625
	memcg_check_events(to, page);
	memcg_check_events(from, page);
2626
out:
2627 2628 2629 2630 2631 2632 2633
	return ret;
}

/*
 * move charges to its parent.
 */

2634 2635
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
2636 2637 2638 2639 2640 2641
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2642
	unsigned int nr_pages;
2643
	unsigned long uninitialized_var(flags);
2644 2645 2646 2647 2648 2649
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2650 2651 2652 2653 2654
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2655

2656
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
2657

2658
	parent = mem_cgroup_from_cont(pcg);
2659
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2660
	if (ret || !parent)
2661
		goto put_back;
2662

2663
	if (nr_pages > 1)
2664 2665
		flags = compound_lock_irqsave(page);

2666
	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2667
	if (ret)
2668
		__mem_cgroup_cancel_charge(parent, nr_pages);
2669

2670
	if (nr_pages > 1)
2671
		compound_unlock_irqrestore(page, flags);
2672
put_back:
K
KAMEZAWA Hiroyuki 已提交
2673
	putback_lru_page(page);
2674
put:
2675
	put_page(page);
2676
out:
2677 2678 2679
	return ret;
}

2680 2681 2682 2683 2684 2685 2686
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2687
				gfp_t gfp_mask, enum charge_type ctype)
2688
{
2689
	struct mem_cgroup *mem = NULL;
2690
	unsigned int nr_pages = 1;
2691
	struct page_cgroup *pc;
2692
	bool oom = true;
2693
	int ret;
A
Andrea Arcangeli 已提交
2694

A
Andrea Arcangeli 已提交
2695
	if (PageTransHuge(page)) {
2696
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2697
		VM_BUG_ON(!PageTransHuge(page));
2698 2699 2700 2701 2702
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2703
	}
2704 2705

	pc = lookup_page_cgroup(page);
2706
	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2707

2708
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2709
	if (ret || !mem)
2710 2711
		return ret;

2712
	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2713 2714 2715
	return 0;
}

2716 2717
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2718
{
2719
	if (mem_cgroup_disabled())
2720
		return 0;
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2732
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2733
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2734 2735
}

D
Daisuke Nishimura 已提交
2736 2737 2738 2739
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
static void
__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
					enum charge_type ctype)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);
	/*
	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
	 * is already on LRU. It means the page may on some other page_cgroup's
	 * LRU. Take care of it.
	 */
	mem_cgroup_lru_del_before_commit(page);
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
	mem_cgroup_lru_add_after_commit(page);
	return;
}

2756 2757
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2758
{
2759
	struct mem_cgroup *mem = NULL;
2760 2761
	int ret;

2762
	if (mem_cgroup_disabled())
2763
		return 0;
2764 2765
	if (PageCompound(page))
		return 0;
2766 2767 2768 2769 2770 2771 2772 2773
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2774 2775
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2776 2777 2778 2779
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2780 2781 2782 2783 2784 2785
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2786 2787
			return 0;
		}
2788
		unlock_page_cgroup(pc);
2789 2790
	}

2791
	if (unlikely(!mm))
2792
		mm = &init_mm;
2793

2794 2795 2796 2797
	if (page_is_file_cache(page)) {
		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
		if (ret || !mem)
			return ret;
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807
		/*
		 * FUSE reuses pages without going through the final
		 * put that would remove them from the LRU list, make
		 * sure that they get relinked properly.
		 */
		__mem_cgroup_commit_charge_lrucare(page, mem,
					MEM_CGROUP_CHARGE_TYPE_CACHE);
		return ret;
	}
D
Daisuke Nishimura 已提交
2808 2809 2810 2811 2812 2813 2814 2815
	/* shmem */
	if (PageSwapCache(page)) {
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2816
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2817 2818

	return ret;
2819 2820
}

2821 2822 2823
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2824
 * struct page_cgroup is acquired. This refcnt will be consumed by
2825 2826
 * "commit()" or removed by "cancel()"
 */
2827 2828 2829 2830 2831
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2832
	int ret;
2833

2834 2835
	*ptr = NULL;

2836
	if (mem_cgroup_disabled())
2837 2838 2839 2840 2841 2842
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2843 2844 2845
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2846 2847
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2848
		goto charge_cur_mm;
2849
	mem = try_get_mem_cgroup_from_page(page);
2850 2851
	if (!mem)
		goto charge_cur_mm;
2852
	*ptr = mem;
2853
	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2854 2855
	css_put(&mem->css);
	return ret;
2856 2857 2858
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
2859
	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2860 2861
}

D
Daisuke Nishimura 已提交
2862 2863 2864
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2865
{
2866
	if (mem_cgroup_disabled())
2867 2868 2869
		return;
	if (!ptr)
		return;
2870
	cgroup_exclude_rmdir(&ptr->css);
2871 2872

	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2873 2874 2875
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2876 2877 2878
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2879
	 */
2880
	if (do_swap_account && PageSwapCache(page)) {
2881
		swp_entry_t ent = {.val = page_private(page)};
2882
		unsigned short id;
2883
		struct mem_cgroup *memcg;
2884 2885 2886 2887

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2888
		if (memcg) {
2889 2890 2891 2892
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2893
			if (!mem_cgroup_is_root(memcg))
2894
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2895
			mem_cgroup_swap_statistics(memcg, false);
2896 2897
			mem_cgroup_put(memcg);
		}
2898
		rcu_read_unlock();
2899
	}
2900 2901 2902 2903 2904 2905
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2906 2907
}

D
Daisuke Nishimura 已提交
2908 2909 2910 2911 2912 2913
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2914 2915
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2916
	if (mem_cgroup_disabled())
2917 2918 2919
		return;
	if (!mem)
		return;
2920
	__mem_cgroup_cancel_charge(mem, 1);
2921 2922
}

2923 2924 2925
static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
				   unsigned int nr_pages,
				   const enum charge_type ctype)
2926 2927 2928
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
2929

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2942 2943
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
2944
	 * In those cases, all pages freed continuously can be expected to be in
2945 2946 2947 2948 2949 2950 2951 2952
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

2953
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
2954 2955
		goto direct_uncharge;

2956 2957 2958 2959 2960 2961 2962 2963
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
2964
	batch->nr_pages++;
2965
	if (uncharge_memsw)
2966
		batch->memsw_nr_pages++;
2967 2968
	return;
direct_uncharge:
2969
	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2970
	if (uncharge_memsw)
2971
		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2972 2973
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2974 2975
	return;
}
2976

2977
/*
2978
 * uncharge if !page_mapped(page)
2979
 */
2980
static struct mem_cgroup *
2981
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2982
{
2983
	struct mem_cgroup *mem = NULL;
2984 2985
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
2986

2987
	if (mem_cgroup_disabled())
2988
		return NULL;
2989

K
KAMEZAWA Hiroyuki 已提交
2990
	if (PageSwapCache(page))
2991
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2992

A
Andrea Arcangeli 已提交
2993
	if (PageTransHuge(page)) {
2994
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
2995 2996
		VM_BUG_ON(!PageTransHuge(page));
	}
2997
	/*
2998
	 * Check if our page_cgroup is valid
2999
	 */
3000 3001
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
3002
		return NULL;
3003

3004
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3005

3006 3007
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
3008 3009 3010 3011 3012
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
3013
	case MEM_CGROUP_CHARGE_TYPE_DROP:
3014 3015
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
3027
	}
K
KAMEZAWA Hiroyuki 已提交
3028

3029
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
3030

3031
	ClearPageCgroupUsed(pc);
3032 3033 3034 3035 3036 3037
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
3038

3039
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
3040 3041 3042 3043
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
3044
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
3045 3046 3047 3048 3049
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
3050
		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3051

3052
	return mem;
K
KAMEZAWA Hiroyuki 已提交
3053 3054 3055

unlock_out:
	unlock_page_cgroup(pc);
3056
	return NULL;
3057 3058
}

3059 3060
void mem_cgroup_uncharge_page(struct page *page)
{
3061 3062 3063 3064 3065
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
3066 3067 3068 3069 3070 3071
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
3072
	VM_BUG_ON(page->mapping);
3073 3074 3075
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
3090 3091
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
3112 3113 3114 3115 3116 3117
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
3118
	memcg_oom_recover(batch->memcg);
3119 3120 3121 3122
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

3123
#ifdef CONFIG_SWAP
3124
/*
3125
 * called after __delete_from_swap_cache() and drop "page" account.
3126 3127
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
3128 3129
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3130 3131
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
3132 3133 3134 3135 3136 3137
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
3138

K
KAMEZAWA Hiroyuki 已提交
3139 3140 3141 3142 3143
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
3144
		swap_cgroup_record(ent, css_id(&memcg->css));
3145
}
3146
#endif
3147 3148 3149 3150 3151 3152 3153

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
3154
{
3155
	struct mem_cgroup *memcg;
3156
	unsigned short id;
3157 3158 3159 3160

	if (!do_swap_account)
		return;

3161 3162 3163
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
3164
	if (memcg) {
3165 3166 3167 3168
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
3169
		if (!mem_cgroup_is_root(memcg))
3170
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3171
		mem_cgroup_swap_statistics(memcg, false);
3172 3173
		mem_cgroup_put(memcg);
	}
3174
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
3175
}
3176 3177 3178 3179 3180 3181

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
3182
 * @need_fixup: whether we should fixup res_counters and refcounts.
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
3193
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3194 3195 3196 3197 3198 3199 3200 3201
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
3202
		mem_cgroup_swap_statistics(to, true);
3203
		/*
3204 3205 3206 3207 3208 3209
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
3210 3211
		 */
		mem_cgroup_get(to);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
3223 3224 3225 3226 3227 3228
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3229
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3230 3231 3232
{
	return -EINVAL;
}
3233
#endif
K
KAMEZAWA Hiroyuki 已提交
3234

3235
/*
3236 3237
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
3238
 */
3239
int mem_cgroup_prepare_migration(struct page *page,
3240
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3241
{
3242
	struct mem_cgroup *mem = NULL;
3243
	struct page_cgroup *pc;
3244
	enum charge_type ctype;
3245
	int ret = 0;
3246

3247 3248
	*ptr = NULL;

A
Andrea Arcangeli 已提交
3249
	VM_BUG_ON(PageTransHuge(page));
3250
	if (mem_cgroup_disabled())
3251 3252
		return 0;

3253 3254 3255
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
3256 3257
		mem = pc->mem_cgroup;
		css_get(&mem->css);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
3289
	}
3290
	unlock_page_cgroup(pc);
3291 3292 3293 3294 3295 3296
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
3297

A
Andrea Arcangeli 已提交
3298
	*ptr = mem;
3299
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
3312
	}
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3326
	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3327
	return ret;
3328
}
3329

3330
/* remove redundant charge if migration failed*/
3331
void mem_cgroup_end_migration(struct mem_cgroup *mem,
3332
	struct page *oldpage, struct page *newpage, bool migration_ok)
3333
{
3334
	struct page *used, *unused;
3335 3336 3337 3338
	struct page_cgroup *pc;

	if (!mem)
		return;
3339
	/* blocks rmdir() */
3340
	cgroup_exclude_rmdir(&mem->css);
3341
	if (!migration_ok) {
3342 3343
		used = oldpage;
		unused = newpage;
3344
	} else {
3345
		used = newpage;
3346 3347
		unused = oldpage;
	}
3348
	/*
3349 3350 3351
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3352
	 */
3353 3354 3355 3356
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3357

3358 3359
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3360
	/*
3361 3362 3363 3364 3365 3366
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3367
	 */
3368 3369
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3370
	/*
3371 3372
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3373 3374 3375 3376
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3377
}
3378

3379
/*
3380 3381 3382 3383 3384 3385
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3386
 */
3387
int mem_cgroup_shmem_charge_fallback(struct page *page,
3388 3389
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3390
{
3391
	struct mem_cgroup *mem;
3392
	int ret;
3393

3394
	if (mem_cgroup_disabled())
3395
		return 0;
3396

3397 3398 3399
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3400

3401
	return ret;
3402 3403
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
		int ret = -1;
		char *path;

		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
		       pc, pc->flags, pc->mem_cgroup);

		path = kmalloc(PATH_MAX, GFP_KERNEL);
		if (path) {
			rcu_read_lock();
			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
							path, PATH_MAX);
			rcu_read_unlock();
		}

		printk(KERN_CONT "(%s)\n",
				(ret < 0) ? "cannot get the path" : path);
		kfree(path);
	}
}
#endif

3450 3451
static DEFINE_MUTEX(set_limit_mutex);

3452
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3453
				unsigned long long val)
3454
{
3455
	int retry_count;
3456
	u64 memswlimit, memlimit;
3457
	int ret = 0;
3458 3459
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3460
	int enlarge;
3461 3462 3463 3464 3465 3466 3467 3468 3469

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3470

3471
	enlarge = 0;
3472
	while (retry_count) {
3473 3474 3475 3476
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3487 3488
			break;
		}
3489 3490 3491 3492 3493

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3494
		ret = res_counter_set_limit(&memcg->res, val);
3495 3496 3497 3498 3499 3500
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3501 3502 3503 3504 3505
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3506
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3507 3508
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3509 3510 3511 3512 3513 3514
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3515
	}
3516 3517
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3518

3519 3520 3521
	return ret;
}

L
Li Zefan 已提交
3522 3523
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3524
{
3525
	int retry_count;
3526
	u64 memlimit, memswlimit, oldusage, curusage;
3527 3528
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3529
	int enlarge = 0;
3530

3531 3532 3533
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3551 3552 3553
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3554
		ret = res_counter_set_limit(&memcg->memsw, val);
3555 3556 3557 3558 3559 3560
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3561 3562 3563 3564 3565
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3566
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3567
						MEM_CGROUP_RECLAIM_NOSWAP |
3568 3569
						MEM_CGROUP_RECLAIM_SHRINK,
						NULL);
3570
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3571
		/* Usage is reduced ? */
3572
		if (curusage >= oldusage)
3573
			retry_count--;
3574 3575
		else
			oldusage = curusage;
3576
	}
3577 3578
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3579 3580 3581
	return ret;
}

3582
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3583 3584
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
3585 3586 3587 3588 3589 3590
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3591
	unsigned long long excess;
3592
	unsigned long nr_scanned;
3593 3594 3595 3596

	if (order > 0)
		return 0;

3597
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

3611
		nr_scanned = 0;
3612 3613
		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
3614 3615
						MEM_CGROUP_RECLAIM_SOFT,
						&nr_scanned);
3616
		nr_reclaimed += reclaimed;
3617
		*total_scanned += nr_scanned;
3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
3640
				if (next_mz == mz)
3641
					css_put(&next_mz->mem->css);
3642
				else /* next_mz == NULL or other memcg */
3643 3644 3645 3646
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3647
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3648 3649 3650 3651 3652 3653 3654 3655
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3656 3657
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3676 3677 3678 3679
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3680
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3681
				int node, int zid, enum lru_list lru)
3682
{
K
KAMEZAWA Hiroyuki 已提交
3683 3684
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3685
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3686
	unsigned long flags, loop;
3687
	struct list_head *list;
3688
	int ret = 0;
3689

K
KAMEZAWA Hiroyuki 已提交
3690 3691
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3692
	list = &mz->lists[lru];
3693

3694 3695 3696 3697 3698
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
3699 3700
		struct page *page;

3701
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3702
		spin_lock_irqsave(&zone->lru_lock, flags);
3703
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3704
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3705
			break;
3706 3707 3708 3709
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3710
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3711
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3712 3713
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3714
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3715

3716
		page = lookup_cgroup_page(pc);
3717 3718

		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3719
		if (ret == -ENOMEM)
3720
			break;
3721 3722 3723 3724 3725 3726 3727

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3728
	}
K
KAMEZAWA Hiroyuki 已提交
3729

3730 3731 3732
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3733 3734 3735 3736 3737 3738
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3739
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3740
{
3741 3742 3743
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3744
	struct cgroup *cgrp = mem->css.cgroup;
3745

3746
	css_get(&mem->css);
3747 3748

	shrink = 0;
3749 3750 3751
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3752
move_account:
3753
	do {
3754
		ret = -EBUSY;
3755 3756 3757 3758
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3759
			goto out;
3760 3761
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3762
		drain_all_stock_sync();
3763
		ret = 0;
3764
		mem_cgroup_start_move(mem);
3765
		for_each_node_state(node, N_HIGH_MEMORY) {
3766
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3767
				enum lru_list l;
3768 3769
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3770
							node, zid, l);
3771 3772 3773
					if (ret)
						break;
				}
3774
			}
3775 3776 3777
			if (ret)
				break;
		}
3778
		mem_cgroup_end_move(mem);
3779
		memcg_oom_recover(mem);
3780 3781 3782
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3783
		cond_resched();
3784 3785
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3786 3787 3788
out:
	css_put(&mem->css);
	return ret;
3789 3790

try_to_free:
3791 3792
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3793 3794 3795
		ret = -EBUSY;
		goto out;
	}
3796 3797
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3798 3799 3800 3801
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3802 3803 3804 3805 3806

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3807 3808
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3809
		if (!progress) {
3810
			nr_retries--;
3811
			/* maybe some writeback is necessary */
3812
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3813
		}
3814 3815

	}
K
KAMEZAWA Hiroyuki 已提交
3816
	lru_add_drain();
3817
	/* try move_account...there may be some *locked* pages. */
3818
	goto move_account;
3819 3820
}

3821 3822 3823 3824 3825 3826
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3845
	 * If parent's use_hierarchy is set, we can't make any modifications
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3865

3866 3867
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
					       enum mem_cgroup_stat_index idx)
3868
{
K
KAMEZAWA Hiroyuki 已提交
3869
	struct mem_cgroup *iter;
3870
	long val = 0;
3871

3872
	/* Per-cpu values can be negative, use a signed accumulator */
K
KAMEZAWA Hiroyuki 已提交
3873 3874 3875 3876 3877 3878
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3879 3880
}

3881 3882
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3883
	u64 val;
3884 3885 3886 3887 3888 3889 3890 3891

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

3892 3893
	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3894

K
KAMEZAWA Hiroyuki 已提交
3895
	if (swap)
3896
		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3897 3898 3899 3900

	return val << PAGE_SHIFT;
}

3901
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3902
{
3903
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3904
	u64 val;
3905 3906 3907 3908 3909 3910
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3911 3912 3913
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3914
			val = res_counter_read_u64(&mem->res, name);
3915 3916
		break;
	case _MEMSWAP:
3917 3918 3919
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3920
			val = res_counter_read_u64(&mem->memsw, name);
3921 3922 3923 3924 3925 3926
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3927
}
3928 3929 3930 3931
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3932 3933
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3934
{
3935
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3936
	int type, name;
3937 3938 3939
	unsigned long long val;
	int ret;

3940 3941 3942
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3943
	case RES_LIMIT:
3944 3945 3946 3947
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3948 3949
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3950 3951 3952
		if (ret)
			break;
		if (type == _MEM)
3953
			ret = mem_cgroup_resize_limit(memcg, val);
3954 3955
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3956
		break;
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3971 3972 3973 3974 3975
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3976 3977
}

3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

4006
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4007 4008
{
	struct mem_cgroup *mem;
4009
	int type, name;
4010 4011

	mem = mem_cgroup_from_cont(cont);
4012 4013 4014
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
4015
	case RES_MAX_USAGE:
4016 4017 4018 4019
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
4020 4021
		break;
	case RES_FAILCNT:
4022 4023 4024 4025
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
4026 4027
		break;
	}
4028

4029
	return 0;
4030 4031
}

4032 4033 4034 4035 4036 4037
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

4038
#ifdef CONFIG_MMU
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
4057 4058 4059 4060 4061 4062 4063
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
4064

K
KAMEZAWA Hiroyuki 已提交
4065 4066 4067 4068 4069

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
4070
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
4071 4072
	MCS_PGPGIN,
	MCS_PGPGOUT,
4073
	MCS_SWAP,
4074 4075
	MCS_PGFAULT,
	MCS_PGMAJFAULT,
K
KAMEZAWA Hiroyuki 已提交
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
4086 4087
};

K
KAMEZAWA Hiroyuki 已提交
4088 4089 4090 4091 4092 4093
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
4094
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
4095 4096
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
4097
	{"swap", "total_swap"},
4098 4099
	{"pgfault", "total_pgfault"},
	{"pgmajfault", "total_pgmajfault"},
K
KAMEZAWA Hiroyuki 已提交
4100 4101 4102 4103 4104 4105 4106 4107
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
4108 4109
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
4110 4111 4112 4113
{
	s64 val;

	/* per cpu stat */
4114
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
4115
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4116
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
4117
	s->stat[MCS_RSS] += val * PAGE_SIZE;
4118
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4119
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4120
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
K
KAMEZAWA Hiroyuki 已提交
4121
	s->stat[MCS_PGPGIN] += val;
4122
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
K
KAMEZAWA Hiroyuki 已提交
4123
	s->stat[MCS_PGPGOUT] += val;
4124
	if (do_swap_account) {
4125
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4126 4127
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
4128 4129 4130 4131
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
	s->stat[MCS_PGFAULT] += val;
	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
	s->stat[MCS_PGMAJFAULT] += val;
K
KAMEZAWA Hiroyuki 已提交
4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
4149 4150 4151 4152
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
4153 4154
}

4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
#ifdef CONFIG_NUMA
static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
{
	int nid;
	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
	unsigned long node_nr;
	struct cgroup *cont = m->private;
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);

	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
	seq_printf(m, "total=%lu", total_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
	seq_printf(m, "file=%lu", file_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
	seq_printf(m, "anon=%lu", anon_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');

	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
	seq_printf(m, "unevictable=%lu", unevictable_nr);
	for_each_node_state(nid, N_HIGH_MEMORY) {
		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
									nid);
		seq_printf(m, " N%d=%lu", nid, node_nr);
	}
	seq_putc(m, '\n');
	return 0;
}
#endif /* CONFIG_NUMA */

4200 4201
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
4202 4203
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
4204
	struct mcs_total_stat mystat;
4205 4206
	int i;

K
KAMEZAWA Hiroyuki 已提交
4207 4208
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
4209

4210

4211 4212 4213
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4214
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4215
	}
L
Lee Schermerhorn 已提交
4216

K
KAMEZAWA Hiroyuki 已提交
4217
	/* Hierarchical information */
4218 4219 4220 4221 4222 4223 4224
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
4225

K
KAMEZAWA Hiroyuki 已提交
4226 4227
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
4228 4229 4230
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
4231
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4232
	}
K
KAMEZAWA Hiroyuki 已提交
4233

K
KOSAKI Motohiro 已提交
4234
#ifdef CONFIG_DEBUG_VM
4235
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

4263 4264 4265
	return 0;
}

K
KOSAKI Motohiro 已提交
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
4278

K
KOSAKI Motohiro 已提交
4279 4280 4281 4282 4283 4284 4285
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
4286 4287 4288

	cgroup_lock();

K
KOSAKI Motohiro 已提交
4289 4290
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
4291 4292
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
4293
		return -EINVAL;
4294
	}
K
KOSAKI Motohiro 已提交
4295 4296 4297

	memcg->swappiness = val;

4298 4299
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
4300 4301 4302
	return 0;
}

4303 4304 4305 4306 4307 4308 4309 4310
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
4311
		t = rcu_dereference(memcg->thresholds.primary);
4312
	else
4313
		t = rcu_dereference(memcg->memsw_thresholds.primary);
4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
4325
	i = t->current_threshold;
4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
4349
	t->current_threshold = i - 1;
4350 4351 4352 4353 4354 4355
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
4356 4357 4358 4359 4360 4361 4362
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
4373
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
4384 4385 4386 4387
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
4388 4389 4390 4391
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4392 4393
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4394 4395
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4396 4397
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
4398
	int i, size, ret;
4399 4400 4401 4402 4403 4404

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
4405

4406
	if (type == _MEM)
4407
		thresholds = &memcg->thresholds;
4408
	else if (type == _MEMSWAP)
4409
		thresholds = &memcg->memsw_thresholds;
4410 4411 4412 4413 4414 4415
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
4416
	if (thresholds->primary)
4417 4418
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

4419
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4420 4421

	/* Allocate memory for new array of thresholds */
4422
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4423
			GFP_KERNEL);
4424
	if (!new) {
4425 4426 4427
		ret = -ENOMEM;
		goto unlock;
	}
4428
	new->size = size;
4429 4430

	/* Copy thresholds (if any) to new array */
4431 4432
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4433
				sizeof(struct mem_cgroup_threshold));
4434 4435
	}

4436
	/* Add new threshold */
4437 4438
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
4439 4440

	/* Sort thresholds. Registering of new threshold isn't time-critical */
4441
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4442 4443 4444
			compare_thresholds, NULL);

	/* Find current threshold */
4445
	new->current_threshold = -1;
4446
	for (i = 0; i < size; i++) {
4447
		if (new->entries[i].threshold < usage) {
4448
			/*
4449 4450
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
4451 4452
			 * it here.
			 */
4453
			++new->current_threshold;
4454 4455 4456
		}
	}

4457 4458 4459 4460 4461
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4462

4463
	/* To be sure that nobody uses thresholds */
4464 4465 4466 4467 4468 4469 4470 4471
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4472
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4473
	struct cftype *cft, struct eventfd_ctx *eventfd)
4474 4475
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4476 4477
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4478 4479
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4480
	int i, j, size;
4481 4482 4483

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4484
		thresholds = &memcg->thresholds;
4485
	else if (type == _MEMSWAP)
4486
		thresholds = &memcg->memsw_thresholds;
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4502 4503 4504
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4505 4506 4507
			size++;
	}

4508
	new = thresholds->spare;
4509

4510 4511
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4512 4513
		kfree(new);
		new = NULL;
4514
		goto swap_buffers;
4515 4516
	}

4517
	new->size = size;
4518 4519

	/* Copy thresholds and find current threshold */
4520 4521 4522
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4523 4524
			continue;

4525 4526
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4527
			/*
4528
			 * new->current_threshold will not be used
4529 4530 4531
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4532
			++new->current_threshold;
4533 4534 4535 4536
		}
		j++;
	}

4537
swap_buffers:
4538 4539 4540
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4541

4542
	/* To be sure that nobody uses thresholds */
4543 4544 4545 4546
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4547

K
KAMEZAWA Hiroyuki 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4573
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4628 4629
	if (!val)
		memcg_oom_recover(mem);
4630 4631 4632 4633
	cgroup_unlock();
	return 0;
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
#ifdef CONFIG_NUMA
static const struct file_operations mem_control_numa_stat_file_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
{
	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;

	file->f_op = &mem_control_numa_stat_file_operations;
	return single_open(file, mem_control_numa_stat_show, cont);
}
#endif /* CONFIG_NUMA */

B
Balbir Singh 已提交
4650 4651
static struct cftype mem_cgroup_files[] = {
	{
4652
		.name = "usage_in_bytes",
4653
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4654
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4655 4656
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4657
	},
4658 4659
	{
		.name = "max_usage_in_bytes",
4660
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4661
		.trigger = mem_cgroup_reset,
4662 4663
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4664
	{
4665
		.name = "limit_in_bytes",
4666
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4667
		.write_string = mem_cgroup_write,
4668
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4669
	},
4670 4671 4672 4673 4674 4675
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4676 4677
	{
		.name = "failcnt",
4678
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4679
		.trigger = mem_cgroup_reset,
4680
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4681
	},
4682 4683
	{
		.name = "stat",
4684
		.read_map = mem_control_stat_show,
4685
	},
4686 4687 4688 4689
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4690 4691 4692 4693 4694
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4695 4696 4697 4698 4699
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4700 4701 4702 4703 4704
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4705 4706
	{
		.name = "oom_control",
4707 4708
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4709 4710 4711 4712
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
4713 4714 4715 4716
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
		.open = mem_control_numa_stat_open,
4717
		.mode = S_IRUGO,
4718 4719
	},
#endif
B
Balbir Singh 已提交
4720 4721
};

4722 4723 4724 4725 4726 4727
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4728 4729
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4765 4766 4767
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4768
	struct mem_cgroup_per_zone *mz;
4769
	enum lru_list l;
4770
	int zone, tmp = node;
4771 4772 4773 4774 4775 4776 4777 4778
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4779 4780
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4781
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4782 4783
	if (!pn)
		return 1;
4784

4785
	mem->info.nodeinfo[node] = pn;
4786 4787
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4788 4789
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4790
		mz->usage_in_excess = 0;
4791 4792
		mz->on_tree = false;
		mz->mem = mem;
4793
	}
4794 4795 4796
	return 0;
}

4797 4798 4799 4800 4801
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4802 4803 4804
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4805
	int size = sizeof(struct mem_cgroup);
4806

4807
	/* Can be very big if MAX_NUMNODES is very big */
4808
	if (size < PAGE_SIZE)
4809
		mem = kzalloc(size, GFP_KERNEL);
4810
	else
4811
		mem = vzalloc(size);
4812

4813 4814 4815
	if (!mem)
		return NULL;

4816
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4817 4818
	if (!mem->stat)
		goto out_free;
4819
	spin_lock_init(&mem->pcp_counter_lock);
4820
	return mem;
4821 4822 4823 4824 4825 4826 4827

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4828 4829
}

4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4841
static void __mem_cgroup_free(struct mem_cgroup *mem)
4842
{
K
KAMEZAWA Hiroyuki 已提交
4843 4844
	int node;

4845
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4846 4847
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4848 4849 4850
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4851 4852
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4853 4854 4855 4856 4857
		kfree(mem);
	else
		vfree(mem);
}

4858 4859 4860 4861 4862
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4863
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4864
{
4865
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4866
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4867
		__mem_cgroup_free(mem);
4868 4869 4870
		if (parent)
			mem_cgroup_put(parent);
	}
4871 4872
}

4873 4874 4875 4876 4877
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4878 4879 4880 4881 4882 4883 4884 4885 4886
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4887

4888 4889 4890
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4891
	if (!mem_cgroup_disabled() && really_do_swap_account)
4892 4893 4894 4895 4896 4897 4898 4899
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4925
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4926 4927
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4928
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4929
	long error = -ENOMEM;
4930
	int node;
B
Balbir Singh 已提交
4931

4932 4933
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4934
		return ERR_PTR(error);
4935

4936 4937 4938
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4939

4940
	/* root ? */
4941
	if (cont->parent == NULL) {
4942
		int cpu;
4943
		enable_swap_cgroup();
4944
		parent = NULL;
4945
		root_mem_cgroup = mem;
4946 4947
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4948 4949 4950 4951 4952
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4953
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4954
	} else {
4955
		parent = mem_cgroup_from_cont(cont->parent);
4956
		mem->use_hierarchy = parent->use_hierarchy;
4957
		mem->oom_kill_disable = parent->oom_kill_disable;
4958
	}
4959

4960 4961 4962
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4963 4964 4965 4966 4967 4968 4969
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4970 4971 4972 4973
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4974
	mem->last_scanned_child = 0;
4975
	mem->last_scanned_node = MAX_NUMNODES;
K
KAMEZAWA Hiroyuki 已提交
4976
	INIT_LIST_HEAD(&mem->oom_notify);
4977

K
KOSAKI Motohiro 已提交
4978 4979
	if (parent)
		mem->swappiness = get_swappiness(parent);
4980
	atomic_set(&mem->refcnt, 1);
4981
	mem->move_charge_at_immigrate = 0;
4982
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4983
	return &mem->css;
4984
free_out:
4985
	__mem_cgroup_free(mem);
4986
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4987
	return ERR_PTR(error);
B
Balbir Singh 已提交
4988 4989
}

4990
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4991 4992 4993
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4994 4995

	return mem_cgroup_force_empty(mem, false);
4996 4997
}

B
Balbir Singh 已提交
4998 4999 5000
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5001 5002 5003
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
5004 5005 5006 5007 5008
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
5009 5010 5011 5012 5013 5014 5015 5016
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
5017 5018
}

5019
#ifdef CONFIG_MMU
5020
/* Handlers for move charge at task migration. */
5021 5022
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
5023
{
5024 5025
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5026 5027
	struct mem_cgroup *mem = mc.to;

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
5063
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5064 5065 5066 5067 5068
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
5069 5070 5071 5072 5073 5074 5075 5076
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
5077
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5078 5079 5080 5081 5082 5083
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
5084 5085 5086
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
5087 5088 5089 5090 5091
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
5092
	swp_entry_t	ent;
5093 5094 5095 5096 5097
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
5098
	MC_TARGET_SWAP,
5099 5100
};

D
Daisuke Nishimura 已提交
5101 5102
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
5103
{
D
Daisuke Nishimura 已提交
5104
	struct page *page = vm_normal_page(vma, addr, ptent);
5105

D
Daisuke Nishimura 已提交
5106 5107 5108 5109 5110 5111
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
5112 5113
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
5132 5133
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
5134
		return NULL;
5135
	}
D
Daisuke Nishimura 已提交
5136 5137 5138 5139 5140 5141
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5187 5188
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
5189 5190 5191

	if (!page && !ent.val)
		return 0;
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
5207 5208
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
5209 5210 5211 5212
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5225 5226
	split_huge_page_pmd(walk->mm, pmd);

5227 5228 5229 5230 5231 5232 5233
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

5234 5235 5236
	return 0;
}

5237 5238 5239 5240 5241
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

5242
	down_read(&mm->mmap_sem);
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
5254
	up_read(&mm->mmap_sem);
5255 5256 5257 5258 5259 5260 5261 5262 5263

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
5264 5265 5266 5267 5268
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
5269 5270
}

5271 5272
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
5273
{
5274 5275 5276
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

5277
	/* we must uncharge all the leftover precharges from mc.to */
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
5289
	}
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
5324
	spin_lock(&mc.lock);
5325 5326
	mc.from = NULL;
	mc.to = NULL;
5327
	spin_unlock(&mc.lock);
5328
	mem_cgroup_end_move(from);
5329 5330
}

5331 5332
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5333
				struct task_struct *p)
5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
5348 5349 5350 5351
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
5352
			VM_BUG_ON(mc.moved_charge);
5353
			VM_BUG_ON(mc.moved_swap);
5354
			mem_cgroup_start_move(from);
5355
			spin_lock(&mc.lock);
5356 5357
			mc.from = from;
			mc.to = mem;
5358
			spin_unlock(&mc.lock);
5359
			/* We set mc.moving_task later */
5360 5361 5362 5363

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
5364 5365
		}
		mmput(mm);
5366 5367 5368 5369 5370 5371
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5372
				struct task_struct *p)
5373
{
5374
	mem_cgroup_clear_mc();
5375 5376
}

5377 5378 5379
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
5380
{
5381 5382 5383 5384 5385
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

5386
	split_huge_page_pmd(walk->mm, pmd);
5387 5388 5389 5390 5391 5392 5393 5394
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
5395
		swp_entry_t ent;
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
5407 5408
			if (!mem_cgroup_move_account(page, 1, pc,
						     mc.from, mc.to, false)) {
5409
				mc.precharge--;
5410 5411
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
5412 5413 5414 5415 5416
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
5417 5418
		case MC_TARGET_SWAP:
			ent = target.ent;
5419 5420
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
5421
				mc.precharge--;
5422 5423 5424
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
5425
			break;
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
5440
		ret = mem_cgroup_do_precharge(1);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5484
	up_read(&mm->mmap_sem);
5485 5486
}

B
Balbir Singh 已提交
5487 5488 5489
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5490
				struct task_struct *p)
B
Balbir Singh 已提交
5491
{
5492
	struct mm_struct *mm = get_task_mm(p);
5493 5494

	if (mm) {
5495 5496 5497
		if (mc.to)
			mem_cgroup_move_charge(mm);
		put_swap_token(mm);
5498 5499
		mmput(mm);
	}
5500 5501
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5502
}
5503 5504 5505
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5506
				struct task_struct *p)
5507 5508 5509 5510 5511
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
5512
				struct task_struct *p)
5513 5514 5515 5516 5517
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5518
				struct task_struct *p)
5519 5520 5521
{
}
#endif
B
Balbir Singh 已提交
5522

B
Balbir Singh 已提交
5523 5524 5525 5526
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5527
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5528 5529
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5530 5531
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5532
	.attach = mem_cgroup_move_task,
5533
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5534
	.use_id = 1,
B
Balbir Singh 已提交
5535
};
5536 5537

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5538 5539 5540
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5541
	if (!strcmp(s, "1"))
5542
		really_do_swap_account = 1;
5543
	else if (!strcmp(s, "0"))
5544 5545 5546
		really_do_swap_account = 0;
	return 1;
}
5547
__setup("swapaccount=", enable_swap_account);
5548 5549

#endif