memcontrol.c 150.8 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
17 18 19 20 21 22
 * Native page reclaim
 * Charge lifetime sanitation
 * Lockless page tracking & accounting
 * Unified hierarchy configuration model
 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
 *
B
Balbir Singh 已提交
23 24 25 26 27 28 29 30 31 32 33
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

34
#include <linux/page_counter.h>
B
Balbir Singh 已提交
35 36
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
37
#include <linux/mm.h>
38
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
39
#include <linux/pagemap.h>
40
#include <linux/smp.h>
41
#include <linux/page-flags.h>
42
#include <linux/backing-dev.h>
43 44
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
45
#include <linux/limits.h>
46
#include <linux/export.h>
47
#include <linux/mutex.h>
48
#include <linux/rbtree.h>
49
#include <linux/slab.h>
50
#include <linux/swap.h>
51
#include <linux/swapops.h>
52
#include <linux/spinlock.h>
53
#include <linux/eventfd.h>
54
#include <linux/poll.h>
55
#include <linux/sort.h>
56
#include <linux/fs.h>
57
#include <linux/seq_file.h>
58
#include <linux/vmpressure.h>
59
#include <linux/mm_inline.h>
60
#include <linux/swap_cgroup.h>
61
#include <linux/cpu.h>
62
#include <linux/oom.h>
63
#include <linux/lockdep.h>
64
#include <linux/file.h>
65
#include <linux/tracehook.h>
K
KAMEZAWA Hiroyuki 已提交
66
#include "internal.h"
G
Glauber Costa 已提交
67
#include <net/sock.h>
M
Michal Hocko 已提交
68
#include <net/ip.h>
69
#include "slab.h"
B
Balbir Singh 已提交
70

71 72
#include <asm/uaccess.h>

73 74
#include <trace/events/vmscan.h>

75 76
struct cgroup_subsys memory_cgrp_subsys __read_mostly;
EXPORT_SYMBOL(memory_cgrp_subsys);
77

78 79
struct mem_cgroup *root_mem_cgroup __read_mostly;

80
#define MEM_CGROUP_RECLAIM_RETRIES	5
B
Balbir Singh 已提交
81

82 83 84
/* Socket memory accounting disabled? */
static bool cgroup_memory_nosocket;

85 86 87
/* Kernel memory accounting disabled? */
static bool cgroup_memory_nokmem;

88
/* Whether the swap controller is active */
A
Andrew Morton 已提交
89
#ifdef CONFIG_MEMCG_SWAP
90 91
int do_swap_account __read_mostly;
#else
92
#define do_swap_account		0
93 94
#endif

95 96 97 98 99 100
/* Whether legacy memory+swap accounting is active */
static bool do_memsw_account(void)
{
	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
}

101 102 103
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
104
	"rss_huge",
105
	"mapped_file",
106
	"dirty",
107
	"writeback",
108 109 110 111 112 113 114 115 116 117
	"swap",
};

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

118 119 120 121 122 123 124 125
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

126 127 128
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

K
KAMEZAWA Hiroyuki 已提交
150 151 152 153 154
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
155

156 157 158
/*
 * cgroup_event represents events which userspace want to receive.
 */
159
struct mem_cgroup_event {
160
	/*
161
	 * memcg which the event belongs to.
162
	 */
163
	struct mem_cgroup *memcg;
164 165 166 167 168 169 170 171
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
172 173 174 175 176
	/*
	 * register_event() callback will be used to add new userspace
	 * waiter for changes related to this event.  Use eventfd_signal()
	 * on eventfd to send notification to userspace.
	 */
177
	int (*register_event)(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
178
			      struct eventfd_ctx *eventfd, const char *args);
179 180 181 182 183
	/*
	 * unregister_event() callback will be called when userspace closes
	 * the eventfd or on cgroup removing.  This callback must be set,
	 * if you want provide notification functionality.
	 */
184
	void (*unregister_event)(struct mem_cgroup *memcg,
185
				 struct eventfd_ctx *eventfd);
186 187 188 189 190 191 192 193 194 195
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};

196 197
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198

199 200
/* Stuffs for move charges at task migration. */
/*
201
 * Types of charges to be moved.
202
 */
203 204 205
#define MOVE_ANON	0x1U
#define MOVE_FILE	0x2U
#define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206

207 208
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
209
	spinlock_t	  lock; /* for from, to */
210
	struct mm_struct  *mm;
211 212
	struct mem_cgroup *from;
	struct mem_cgroup *to;
213
	unsigned long flags;
214
	unsigned long precharge;
215
	unsigned long moved_charge;
216
	unsigned long moved_swap;
217 218 219
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
220
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 222
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
223

224 225 226 227
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
228
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230

231 232
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
234
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
235
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 237 238
	NR_CHARGE_TYPE,
};

239
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
240 241 242 243
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
244
	_KMEM,
V
Vladimir Davydov 已提交
245
	_TCP,
G
Glauber Costa 已提交
246 247
};

248 249
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
251 252
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
253

254 255 256 257 258 259 260 261 262 263 264 265 266
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

267 268 269 270 271
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

272
#ifndef CONFIG_SLOB
273
/*
274
 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
L
Li Zefan 已提交
275 276 277 278 279
 * The main reason for not using cgroup id for this:
 *  this works better in sparse environments, where we have a lot of memcgs,
 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *  200 entry array for that.
280
 *
281 282
 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 * will double each time we have to increase it.
283
 */
284 285
static DEFINE_IDA(memcg_cache_ida);
int memcg_nr_cache_ids;
286

287 288 289 290 291 292 293 294 295 296 297 298 299
/* Protects memcg_nr_cache_ids */
static DECLARE_RWSEM(memcg_cache_ids_sem);

void memcg_get_cache_ids(void)
{
	down_read(&memcg_cache_ids_sem);
}

void memcg_put_cache_ids(void)
{
	up_read(&memcg_cache_ids_sem);
}

300 301 302 303 304 305
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
L
Li Zefan 已提交
306
 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 308
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
L
Li Zefan 已提交
309
 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 311 312
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
L
Li Zefan 已提交
313
#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314

315 316 317 318 319 320
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
321
DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322
EXPORT_SYMBOL(memcg_kmem_enabled_key);
323

324
#endif /* !CONFIG_SLOB */
325

326
static struct mem_cgroup_per_zone *
327
mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328
{
329 330 331
	int nid = zone_to_nid(zone);
	int zid = zone_idx(zone);

332
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * mem_cgroup_css_from_page - css of the memcg associated with a page
 * @page: page of interest
 *
 * If memcg is bound to the default hierarchy, css of the memcg associated
 * with @page is returned.  The returned css remains associated with @page
 * until it is released.
 *
 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 * is returned.
 */
struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
{
	struct mem_cgroup *memcg;

	memcg = page->mem_cgroup;

352
	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 354 355 356 357
		memcg = root_mem_cgroup;

	return &memcg->css;
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
/**
 * page_cgroup_ino - return inode number of the memcg a page is charged to
 * @page: the page
 *
 * Look up the closest online ancestor of the memory cgroup @page is charged to
 * and return its inode number or 0 if @page is not charged to any cgroup. It
 * is safe to call this function without holding a reference to @page.
 *
 * Note, this function is inherently racy, because there is nothing to prevent
 * the cgroup inode from getting torn down and potentially reallocated a moment
 * after page_cgroup_ino() returns, so it only should be used by callers that
 * do not care (such as procfs interfaces).
 */
ino_t page_cgroup_ino(struct page *page)
{
	struct mem_cgroup *memcg;
	unsigned long ino = 0;

	rcu_read_lock();
	memcg = READ_ONCE(page->mem_cgroup);
	while (memcg && !(memcg->css.flags & CSS_ONLINE))
		memcg = parent_mem_cgroup(memcg);
	if (memcg)
		ino = cgroup_ino(memcg->css.cgroup);
	rcu_read_unlock();
	return ino;
}

386
static struct mem_cgroup_per_zone *
387
mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388
{
389 390
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
391

392
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 394
}

395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

410 411
static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz,
412
					 unsigned long new_usage_in_excess)
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

442 443
static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
					 struct mem_cgroup_tree_per_zone *mctz)
444 445 446 447 448 449 450
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

451 452
static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
				       struct mem_cgroup_tree_per_zone *mctz)
453
{
454 455 456
	unsigned long flags;

	spin_lock_irqsave(&mctz->lock, flags);
457
	__mem_cgroup_remove_exceeded(mz, mctz);
458
	spin_unlock_irqrestore(&mctz->lock, flags);
459 460
}

461 462 463
static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
{
	unsigned long nr_pages = page_counter_read(&memcg->memory);
464
	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 466 467 468 469 470 471
	unsigned long excess = 0;

	if (nr_pages > soft_limit)
		excess = nr_pages - soft_limit;

	return excess;
}
472 473 474

static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
475
	unsigned long excess;
476 477 478
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

479
	mctz = soft_limit_tree_from_page(page);
480 481 482 483 484
	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485
		mz = mem_cgroup_page_zoneinfo(memcg, page);
486
		excess = soft_limit_excess(memcg);
487 488 489 490 491
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
492 493 494
			unsigned long flags;

			spin_lock_irqsave(&mctz->lock, flags);
495 496
			/* if on-tree, remove it */
			if (mz->on_tree)
497
				__mem_cgroup_remove_exceeded(mz, mctz);
498 499 500 501
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
502
			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503
			spin_unlock_irqrestore(&mctz->lock, flags);
504 505 506 507 508 509 510
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	struct mem_cgroup_tree_per_zone *mctz;
511 512
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
513

514 515 516 517
	for_each_node(nid) {
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			mctz = soft_limit_tree_node_zone(nid, zid);
518
			mem_cgroup_remove_exceeded(mz, mctz);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
541
	__mem_cgroup_remove_exceeded(mz, mctz);
542
	if (!soft_limit_excess(mz->memcg) ||
543
	    !css_tryget_online(&mz->memcg->css))
544 545 546 547 548 549 550 551 552 553
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

554
	spin_lock_irq(&mctz->lock);
555
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556
	spin_unlock_irq(&mctz->lock);
557 558 559
	return mz;
}

560
/*
561 562
 * Return page count for single (non recursive) @memcg.
 *
563 564 565 566 567
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
568
 * a periodic synchronization of counter in memcg's counter.
569 570 571 572 573 574 575 576 577
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
578
 * common workload, threshold and synchronization as vmstat[] should be
579 580
 * implemented.
 */
581 582
static unsigned long
mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583
{
584
	long val = 0;
585 586
	int cpu;

587
	/* Per-cpu values can be negative, use a signed accumulator */
588
	for_each_possible_cpu(cpu)
589
		val += per_cpu(memcg->stat->count[idx], cpu);
590 591 592 593 594 595
	/*
	 * Summing races with updates, so val may be negative.  Avoid exposing
	 * transient negative values.
	 */
	if (val < 0)
		val = 0;
596 597 598
	return val;
}

599
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 601 602 603 604
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

605
	for_each_possible_cpu(cpu)
606
		val += per_cpu(memcg->stat->events[idx], cpu);
607 608 609
	return val;
}

610
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611
					 struct page *page,
612
					 bool compound, int nr_pages)
613
{
614 615 616 617
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
618
	if (PageAnon(page))
619
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620
				nr_pages);
621
	else
622
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623
				nr_pages);
624

625 626
	if (compound) {
		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 628
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);
629
	}
630

631 632
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
633
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634
	else {
635
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 637
		nr_pages = -nr_pages; /* for event */
	}
638

639
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 641
}

642 643
unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
					   int nid, unsigned int lru_mask)
644
{
645
	unsigned long nr = 0;
646 647
	int zid;

648
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649

650 651 652 653 654 655 656 657 658 659 660 661
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct mem_cgroup_per_zone *mz;
		enum lru_list lru;

		for_each_lru(lru) {
			if (!(BIT(lru) & lru_mask))
				continue;
			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
			nr += mz->lru_size[lru];
		}
	}
	return nr;
662
}
663

664
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665
			unsigned int lru_mask)
666
{
667
	unsigned long nr = 0;
668
	int nid;
669

670
	for_each_node_state(nid, N_MEMORY)
671 672
		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
	return nr;
673 674
}

675 676
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
677 678 679
{
	unsigned long val, next;

680
	val = __this_cpu_read(memcg->stat->nr_page_events);
681
	next = __this_cpu_read(memcg->stat->targets[target]);
682
	/* from time_after() in jiffies.h */
683 684 685 686 687
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
688 689 690
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
691 692 693 694 695 696 697 698
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
699
	}
700
	return false;
701 702 703 704 705 706
}

/*
 * Check events in order.
 *
 */
707
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 709
{
	/* threshold event is triggered in finer grain than soft limit */
710 711
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
712
		bool do_softlimit;
713
		bool do_numainfo __maybe_unused;
714

715 716
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
717 718 719 720
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
721
		mem_cgroup_threshold(memcg);
722 723
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
724
#if MAX_NUMNODES > 1
725
		if (unlikely(do_numainfo))
726
			atomic_inc(&memcg->numainfo_events);
727
#endif
728
	}
729 730
}

731
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732
{
733 734 735 736 737 738 739 740
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

741
	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742
}
M
Michal Hocko 已提交
743
EXPORT_SYMBOL(mem_cgroup_from_task);
744

745
static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746
{
747
	struct mem_cgroup *memcg = NULL;
748

749 750
	rcu_read_lock();
	do {
751 752 753 754 755 756
		/*
		 * Page cache insertions can happen withou an
		 * actual mm context, e.g. during disk probing
		 * on boot, loopback IO, acct() writes etc.
		 */
		if (unlikely(!mm))
757
			memcg = root_mem_cgroup;
758 759 760 761 762
		else {
			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
			if (unlikely(!memcg))
				memcg = root_mem_cgroup;
		}
763
	} while (!css_tryget_online(&memcg->css));
764
	rcu_read_unlock();
765
	return memcg;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
785
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786
				   struct mem_cgroup *prev,
787
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
788
{
M
Michal Hocko 已提交
789
	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790
	struct cgroup_subsys_state *css = NULL;
791
	struct mem_cgroup *memcg = NULL;
792
	struct mem_cgroup *pos = NULL;
793

794 795
	if (mem_cgroup_disabled())
		return NULL;
796

797 798
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
799

800
	if (prev && !reclaim)
801
		pos = prev;
K
KAMEZAWA Hiroyuki 已提交
802

803 804
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
805
			goto out;
806
		return root;
807
	}
K
KAMEZAWA Hiroyuki 已提交
808

809
	rcu_read_lock();
M
Michal Hocko 已提交
810

811 812 813 814 815 816 817 818 819
	if (reclaim) {
		struct mem_cgroup_per_zone *mz;

		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
		iter = &mz->iter[reclaim->priority];

		if (prev && reclaim->generation != iter->generation)
			goto out_unlock;

820
		while (1) {
821
			pos = READ_ONCE(iter->position);
822 823
			if (!pos || css_tryget(&pos->css))
				break;
824
			/*
825 826 827 828 829 830
			 * css reference reached zero, so iter->position will
			 * be cleared by ->css_released. However, we should not
			 * rely on this happening soon, because ->css_released
			 * is called from a work queue, and by busy-waiting we
			 * might block it. So we clear iter->position right
			 * away.
831
			 */
832 833
			(void)cmpxchg(&iter->position, pos, NULL);
		}
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	}

	if (pos)
		css = &pos->css;

	for (;;) {
		css = css_next_descendant_pre(css, &root->css);
		if (!css) {
			/*
			 * Reclaimers share the hierarchy walk, and a
			 * new one might jump in right at the end of
			 * the hierarchy - make sure they see at least
			 * one group and restart from the beginning.
			 */
			if (!prev)
				continue;
			break;
851
		}
K
KAMEZAWA Hiroyuki 已提交
852

853 854 855 856 857 858
		/*
		 * Verify the css and acquire a reference.  The root
		 * is provided by the caller, so we know it's alive
		 * and kicking, and don't take an extra reference.
		 */
		memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
859

860 861
		if (css == &root->css)
			break;
K
KAMEZAWA Hiroyuki 已提交
862

863 864
		if (css_tryget(css))
			break;
865

866
		memcg = NULL;
867
	}
868 869 870

	if (reclaim) {
		/*
871 872 873
		 * The position could have already been updated by a competing
		 * thread, so check that the value hasn't changed since we read
		 * it to avoid reclaiming from the same cgroup twice.
874
		 */
875 876
		(void)cmpxchg(&iter->position, pos, memcg);

877 878 879 880 881 882 883
		if (pos)
			css_put(&pos->css);

		if (!memcg)
			iter->generation++;
		else if (!prev)
			reclaim->generation = iter->generation;
884
	}
885

886 887
out_unlock:
	rcu_read_unlock();
888
out:
889 890 891
	if (prev && prev != root)
		css_put(&prev->css);

892
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
893
}
K
KAMEZAWA Hiroyuki 已提交
894

895 896 897 898 899 900 901
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
902 903 904 905 906 907
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
{
	struct mem_cgroup *memcg = dead_memcg;
	struct mem_cgroup_reclaim_iter *iter;
	struct mem_cgroup_per_zone *mz;
	int nid, zid;
	int i;

	while ((memcg = parent_mem_cgroup(memcg))) {
		for_each_node(nid) {
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
				for (i = 0; i <= DEF_PRIORITY; i++) {
					iter = &mz->iter[i];
					cmpxchg(&iter->position,
						dead_memcg, NULL);
				}
			}
		}
	}
}

931 932 933 934 935 936
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
937
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938
	     iter != NULL;				\
939
	     iter = mem_cgroup_iter(root, iter, NULL))
940

941
#define for_each_mem_cgroup(iter)			\
942
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943
	     iter != NULL;				\
944
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
945

946 947 948
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
949
 * @memcg: memcg of the wanted lruvec
950 951 952 953 954 955 956 957 958
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
959
	struct lruvec *lruvec;
960

961 962 963 964
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
965

966
	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 968 969 970 971 972 973 974 975 976
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
977 978 979
}

/**
980
 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981
 * @page: the page
982
 * @zone: zone of the page
983 984 985 986
 *
 * This function is only safe when following the LRU page isolation
 * and putback protocol: the LRU lock must be held, and the page must
 * either be PageLRU() or the caller must have isolated/allocated it.
987
 */
988
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
989 990
{
	struct mem_cgroup_per_zone *mz;
991
	struct mem_cgroup *memcg;
992
	struct lruvec *lruvec;
993

994 995 996 997
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
998

999
	memcg = page->mem_cgroup;
1000
	/*
1001
	 * Swapcache readahead pages are added to the LRU - and
1002
	 * possibly migrated - before they are charged.
1003
	 */
1004 1005
	if (!memcg)
		memcg = root_mem_cgroup;
1006

1007
	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1018
}
1019

1020
/**
1021 1022 1023 1024
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1025
 *
1026 1027
 * This function must be called when a page is added to or removed from an
 * lru list.
1028
 */
1029 1030
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1031 1032
{
	struct mem_cgroup_per_zone *mz;
1033
	unsigned long *lru_size;
1034 1035 1036 1037

	if (mem_cgroup_disabled())
		return;

1038 1039 1040 1041
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1042
}
1043

1044
bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045
{
1046
	struct mem_cgroup *task_memcg;
1047
	struct task_struct *p;
1048
	bool ret;
1049

1050
	p = find_lock_task_mm(task);
1051
	if (p) {
1052
		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 1054 1055 1056 1057 1058 1059
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1060
		rcu_read_lock();
1061 1062
		task_memcg = mem_cgroup_from_task(task);
		css_get(&task_memcg->css);
1063
		rcu_read_unlock();
1064
	}
1065 1066
	ret = mem_cgroup_is_descendant(task_memcg, memcg);
	css_put(&task_memcg->css);
1067 1068 1069
	return ret;
}

1070
/**
1071
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1072
 * @memcg: the memory cgroup
1073
 *
1074
 * Returns the maximum amount of memory @mem can be charged with, in
1075
 * pages.
1076
 */
1077
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078
{
1079 1080 1081
	unsigned long margin = 0;
	unsigned long count;
	unsigned long limit;
1082

1083
	count = page_counter_read(&memcg->memory);
1084
	limit = READ_ONCE(memcg->memory.limit);
1085 1086 1087
	if (count < limit)
		margin = limit - count;

1088
	if (do_memsw_account()) {
1089
		count = page_counter_read(&memcg->memsw);
1090
		limit = READ_ONCE(memcg->memsw.limit);
1091 1092 1093 1094 1095
		if (count <= limit)
			margin = min(margin, limit - count);
	}

	return margin;
1096 1097
}

1098
/*
Q
Qiang Huang 已提交
1099
 * A routine for checking "mem" is under move_account() or not.
1100
 *
Q
Qiang Huang 已提交
1101 1102 1103
 * Checking a cgroup is mc.from or mc.to or under hierarchy of
 * moving cgroups. This is for waiting at high-memory pressure
 * caused by "move".
1104
 */
1105
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106
{
1107 1108
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1109
	bool ret = false;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1119

1120 1121
	ret = mem_cgroup_is_descendant(from, memcg) ||
		mem_cgroup_is_descendant(to, memcg);
1122 1123
unlock:
	spin_unlock(&mc.lock);
1124 1125 1126
	return ret;
}

1127
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 1129
{
	if (mc.moving_task && current != mc.moving_task) {
1130
		if (mem_cgroup_under_move(memcg)) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1143
#define K(x) ((x) << (PAGE_SHIFT-10))
1144
/**
1145
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 1147 1148 1149 1150 1151 1152 1153
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
1154 1155
	struct mem_cgroup *iter;
	unsigned int i;
1156 1157 1158

	rcu_read_lock();

1159 1160 1161 1162 1163 1164 1165 1166
	if (p) {
		pr_info("Task in ");
		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
		pr_cont(" killed as a result of limit of ");
	} else {
		pr_info("Memory limit reached of cgroup ");
	}

T
Tejun Heo 已提交
1167
	pr_cont_cgroup_path(memcg->css.cgroup);
1168
	pr_cont("\n");
1169 1170 1171

	rcu_read_unlock();

1172 1173 1174 1175 1176 1177 1178 1179 1180
	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memory)),
		K((u64)memcg->memory.limit), memcg->memory.failcnt);
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->memsw)),
		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
		K((u64)page_counter_read(&memcg->kmem)),
		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181 1182

	for_each_mem_cgroup_tree(iter, memcg) {
T
Tejun Heo 已提交
1183 1184
		pr_info("Memory cgroup stats for ");
		pr_cont_cgroup_path(iter->css.cgroup);
1185 1186 1187
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189
				continue;
1190
			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 1192 1193 1194 1195 1196 1197 1198 1199
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1200 1201
}

1202 1203 1204 1205
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1206
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 1208
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1209 1210
	struct mem_cgroup *iter;

1211
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1212
		num++;
1213 1214 1215
	return num;
}

D
David Rientjes 已提交
1216 1217 1218
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1219
static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1220
{
1221
	unsigned long limit;
1222

1223
	limit = memcg->memory.limit;
1224
	if (mem_cgroup_swappiness(memcg)) {
1225
		unsigned long memsw_limit;
1226
		unsigned long swap_limit;
1227

1228
		memsw_limit = memcg->memsw.limit;
1229 1230 1231
		swap_limit = memcg->swap.limit;
		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
		limit = min(limit + swap_limit, memsw_limit);
1232 1233
	}
	return limit;
D
David Rientjes 已提交
1234 1235
}

1236
static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237
				     int order)
1238
{
1239 1240 1241 1242 1243 1244
	struct oom_control oc = {
		.zonelist = NULL,
		.nodemask = NULL,
		.gfp_mask = gfp_mask,
		.order = order,
	};
1245 1246 1247 1248 1249 1250
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1251 1252
	mutex_lock(&oom_lock);

1253
	/*
1254 1255 1256
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1257
	 */
1258
	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259
		mark_oom_victim(current);
1260
		goto unlock;
1261 1262
	}

1263
	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264
	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265
	for_each_mem_cgroup_tree(iter, memcg) {
1266
		struct css_task_iter it;
1267 1268
		struct task_struct *task;

1269 1270
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1271
			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1282
				css_task_iter_end(&it);
1283 1284 1285
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
1286
				goto unlock;
1287 1288 1289 1290
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			if (!points || points < chosen_points)
				continue;
			/* Prefer thread group leaders for display purposes */
			if (points == chosen_points &&
			    thread_group_leader(chosen))
				continue;

			if (chosen)
				put_task_struct(chosen);
			chosen = task;
			chosen_points = points;
			get_task_struct(chosen);
1303
		}
1304
		css_task_iter_end(&it);
1305 1306
	}

1307 1308
	if (chosen) {
		points = chosen_points * 1000 / totalpages;
1309 1310
		oom_kill_process(&oc, chosen, points, totalpages, memcg,
				 "Memory cgroup out of memory");
1311 1312 1313
	}
unlock:
	mutex_unlock(&oom_lock);
1314
	return chosen;
1315 1316
}

1317 1318
#if MAX_NUMNODES > 1

1319 1320
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1321
 * @memcg: the target memcg
1322 1323 1324 1325 1326 1327 1328
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1329
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 1331
		int nid, bool noswap)
{
1332
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 1334 1335
		return true;
	if (noswap || !total_swap_pages)
		return false;
1336
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 1338 1339 1340
		return true;
	return false;

}
1341 1342 1343 1344 1345 1346 1347

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1348
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349 1350
{
	int nid;
1351 1352 1353 1354
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1355
	if (!atomic_read(&memcg->numainfo_events))
1356
		return;
1357
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 1359 1360
		return;

	/* make a nodemask where this memcg uses memory from */
1361
	memcg->scan_nodes = node_states[N_MEMORY];
1362

1363
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1364

1365 1366
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1367
	}
1368

1369 1370
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1385
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386 1387 1388
{
	int node;

1389 1390
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1391

1392
	node = next_node(node, memcg->scan_nodes);
1393
	if (node == MAX_NUMNODES)
1394
		node = first_node(memcg->scan_nodes);
1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1404
	memcg->last_scanned_node = node;
1405 1406 1407
	return node;
}
#else
1408
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 1410 1411 1412 1413
{
	return 0;
}
#endif

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

1429
	excess = soft_limit_excess(root_memcg);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
1458
		if (!soft_limit_excess(root_memcg))
1459
			break;
1460
	}
1461 1462
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
1463 1464
}

1465 1466 1467 1468 1469 1470
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

1471 1472
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
1473 1474 1475 1476
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
1477
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
1478
{
1479
	struct mem_cgroup *iter, *failed = NULL;
1480

1481 1482
	spin_lock(&memcg_oom_lock);

1483
	for_each_mem_cgroup_tree(iter, memcg) {
1484
		if (iter->oom_lock) {
1485 1486 1487 1488 1489
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
1490 1491
			mem_cgroup_iter_break(memcg, iter);
			break;
1492 1493
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
1494
	}
K
KAMEZAWA Hiroyuki 已提交
1495

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
1507
		}
1508 1509
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510 1511 1512 1513

	spin_unlock(&memcg_oom_lock);

	return !failed;
1514
}
1515

1516
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517
{
K
KAMEZAWA Hiroyuki 已提交
1518 1519
	struct mem_cgroup *iter;

1520
	spin_lock(&memcg_oom_lock);
1521
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522
	for_each_mem_cgroup_tree(iter, memcg)
1523
		iter->oom_lock = false;
1524
	spin_unlock(&memcg_oom_lock);
1525 1526
}

1527
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528 1529 1530
{
	struct mem_cgroup *iter;

1531
	spin_lock(&memcg_oom_lock);
1532
	for_each_mem_cgroup_tree(iter, memcg)
1533 1534
		iter->under_oom++;
	spin_unlock(&memcg_oom_lock);
1535 1536
}

1537
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538 1539 1540
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1541 1542
	/*
	 * When a new child is created while the hierarchy is under oom,
1543
	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
K
KAMEZAWA Hiroyuki 已提交
1544
	 */
1545
	spin_lock(&memcg_oom_lock);
1546
	for_each_mem_cgroup_tree(iter, memcg)
1547 1548 1549
		if (iter->under_oom > 0)
			iter->under_oom--;
	spin_unlock(&memcg_oom_lock);
1550 1551
}

K
KAMEZAWA Hiroyuki 已提交
1552 1553
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1554
struct oom_wait_info {
1555
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
1556 1557 1558 1559 1560 1561
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
1562 1563
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
1564 1565 1566
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
1568

1569 1570
	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
K
KAMEZAWA Hiroyuki 已提交
1571 1572 1573 1574
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

1575
static void memcg_oom_recover(struct mem_cgroup *memcg)
1576
{
1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * For the following lockless ->under_oom test, the only required
	 * guarantee is that it must see the state asserted by an OOM when
	 * this function is called as a result of userland actions
	 * triggered by the notification of the OOM.  This is trivially
	 * achieved by invoking mem_cgroup_mark_under_oom() before
	 * triggering notification.
	 */
	if (memcg && memcg->under_oom)
1586
		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587 1588
}

1589
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590
{
T
Tejun Heo 已提交
1591
	if (!current->memcg_may_oom)
1592
		return;
K
KAMEZAWA Hiroyuki 已提交
1593
	/*
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
1606
	 */
1607
	css_get(&memcg->css);
T
Tejun Heo 已提交
1608 1609 1610
	current->memcg_in_oom = memcg;
	current->memcg_oom_gfp_mask = mask;
	current->memcg_oom_order = order;
1611 1612 1613 1614
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615
 * @handle: actually kill/wait or just clean up the OOM state
1616
 *
1617 1618
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
1619
 *
1620
 * Memcg supports userspace OOM handling where failed allocations must
1621 1622 1623 1624
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625
 * the end of the page fault to complete the OOM handling.
1626 1627
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
1628
 * completed, %false otherwise.
1629
 */
1630
bool mem_cgroup_oom_synchronize(bool handle)
1631
{
T
Tejun Heo 已提交
1632
	struct mem_cgroup *memcg = current->memcg_in_oom;
1633
	struct oom_wait_info owait;
1634
	bool locked;
1635 1636 1637

	/* OOM is global, do not handle */
	if (!memcg)
1638
		return false;
1639

1640
	if (!handle || oom_killer_disabled)
1641
		goto cleanup;
1642 1643 1644 1645 1646 1647

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
1648

1649
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
T
Tejun Heo 已提交
1660 1661
		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
					 current->memcg_oom_order);
1662
	} else {
1663
		schedule();
1664 1665 1666 1667 1668
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
1669 1670 1671 1672 1673 1674 1675 1676
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
1677
cleanup:
T
Tejun Heo 已提交
1678
	current->memcg_in_oom = NULL;
1679
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
1680
	return true;
1681 1682
}

1683
/**
1684 1685
 * lock_page_memcg - lock a page->mem_cgroup binding
 * @page: the page
1686
 *
1687 1688
 * This function protects unlocked LRU pages from being moved to
 * another cgroup and stabilizes their page->mem_cgroup binding.
1689
 */
J
Johannes Weiner 已提交
1690
void lock_page_memcg(struct page *page)
1691 1692
{
	struct mem_cgroup *memcg;
1693
	unsigned long flags;
1694

1695 1696 1697 1698 1699
	/*
	 * The RCU lock is held throughout the transaction.  The fast
	 * path can get away without acquiring the memcg->move_lock
	 * because page moving starts with an RCU grace period.
	 */
1700 1701 1702
	rcu_read_lock();

	if (mem_cgroup_disabled())
J
Johannes Weiner 已提交
1703
		return;
1704
again:
1705
	memcg = page->mem_cgroup;
1706
	if (unlikely(!memcg))
J
Johannes Weiner 已提交
1707
		return;
1708

Q
Qiang Huang 已提交
1709
	if (atomic_read(&memcg->moving_account) <= 0)
J
Johannes Weiner 已提交
1710
		return;
1711

1712
	spin_lock_irqsave(&memcg->move_lock, flags);
1713
	if (memcg != page->mem_cgroup) {
1714
		spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 1716
		goto again;
	}
1717 1718 1719 1720

	/*
	 * When charge migration first begins, we can have locked and
	 * unlocked page stat updates happening concurrently.  Track
1721
	 * the task who has the lock for unlock_page_memcg().
1722 1723 1724
	 */
	memcg->move_lock_task = current;
	memcg->move_lock_flags = flags;
1725

J
Johannes Weiner 已提交
1726
	return;
1727
}
1728
EXPORT_SYMBOL(lock_page_memcg);
1729

1730
/**
1731
 * unlock_page_memcg - unlock a page->mem_cgroup binding
J
Johannes Weiner 已提交
1732
 * @page: the page
1733
 */
J
Johannes Weiner 已提交
1734
void unlock_page_memcg(struct page *page)
1735
{
J
Johannes Weiner 已提交
1736 1737
	struct mem_cgroup *memcg = page->mem_cgroup;

1738 1739 1740 1741 1742 1743 1744 1745
	if (memcg && memcg->move_lock_task == current) {
		unsigned long flags = memcg->move_lock_flags;

		memcg->move_lock_task = NULL;
		memcg->move_lock_flags = 0;

		spin_unlock_irqrestore(&memcg->move_lock, flags);
	}
1746

1747
	rcu_read_unlock();
1748
}
1749
EXPORT_SYMBOL(unlock_page_memcg);
1750

1751 1752 1753 1754
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
1755
#define CHARGE_BATCH	32U
1756 1757
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
1758
	unsigned int nr_pages;
1759
	struct work_struct work;
1760
	unsigned long flags;
1761
#define FLUSHING_CACHED_CHARGE	0
1762 1763
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764
static DEFINE_MUTEX(percpu_charge_mutex);
1765

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
1776
 */
1777
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778 1779
{
	struct memcg_stock_pcp *stock;
1780
	bool ret = false;
1781

1782
	if (nr_pages > CHARGE_BATCH)
1783
		return ret;
1784

1785
	stock = &get_cpu_var(memcg_stock);
1786
	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787
		stock->nr_pages -= nr_pages;
1788 1789
		ret = true;
	}
1790 1791 1792 1793 1794
	put_cpu_var(memcg_stock);
	return ret;
}

/*
1795
 * Returns stocks cached in percpu and reset cached information.
1796 1797 1798 1799 1800
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

1801
	if (stock->nr_pages) {
1802
		page_counter_uncharge(&old->memory, stock->nr_pages);
1803
		if (do_memsw_account())
1804
			page_counter_uncharge(&old->memsw, stock->nr_pages);
1805
		css_put_many(&old->css, stock->nr_pages);
1806
		stock->nr_pages = 0;
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
1817
	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818
	drain_stock(stock);
1819
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820 1821 1822
}

/*
1823
 * Cache charges(val) to local per_cpu area.
1824
 * This will be consumed by consume_stock() function, later.
1825
 */
1826
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 1828 1829
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

1830
	if (stock->cached != memcg) { /* reset if necessary */
1831
		drain_stock(stock);
1832
		stock->cached = memcg;
1833
	}
1834
	stock->nr_pages += nr_pages;
1835 1836 1837 1838
	put_cpu_var(memcg_stock);
}

/*
1839
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840
 * of the hierarchy under it.
1841
 */
1842
static void drain_all_stock(struct mem_cgroup *root_memcg)
1843
{
1844
	int cpu, curcpu;
1845

1846 1847 1848
	/* If someone's already draining, avoid adding running more workers. */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
1849 1850
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
1851
	curcpu = get_cpu();
1852 1853
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854
		struct mem_cgroup *memcg;
1855

1856 1857
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
1858
			continue;
1859
		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860
			continue;
1861 1862 1863 1864 1865 1866
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
1867
	}
1868
	put_cpu();
A
Andrew Morton 已提交
1869
	put_online_cpus();
1870
	mutex_unlock(&percpu_charge_mutex);
1871 1872
}

1873
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 1875 1876 1877 1878 1879
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;

1880
	if (action == CPU_ONLINE)
1881 1882
		return NOTIFY_OK;

1883
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884
		return NOTIFY_OK;
1885

1886 1887 1888 1889 1890
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
static void reclaim_high(struct mem_cgroup *memcg,
			 unsigned int nr_pages,
			 gfp_t gfp_mask)
{
	do {
		if (page_counter_read(&memcg->memory) <= memcg->high)
			continue;
		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
	} while ((memcg = parent_mem_cgroup(memcg)));
}

static void high_work_func(struct work_struct *work)
{
	struct mem_cgroup *memcg;

	memcg = container_of(work, struct mem_cgroup, high_work);
	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
}

1911 1912 1913 1914 1915 1916 1917
/*
 * Scheduled by try_charge() to be executed from the userland return path
 * and reclaims memory over the high limit.
 */
void mem_cgroup_handle_over_high(void)
{
	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918
	struct mem_cgroup *memcg;
1919 1920 1921 1922

	if (likely(!nr_pages))
		return;

1923 1924
	memcg = get_mem_cgroup_from_mm(current->mm);
	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 1926 1927 1928
	css_put(&memcg->css);
	current->memcg_nr_pages_over_high = 0;
}

1929 1930
static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
		      unsigned int nr_pages)
1931
{
1932
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934
	struct mem_cgroup *mem_over_limit;
1935
	struct page_counter *counter;
1936
	unsigned long nr_reclaimed;
1937 1938
	bool may_swap = true;
	bool drained = false;
1939

1940
	if (mem_cgroup_is_root(memcg))
1941
		return 0;
1942
retry:
1943
	if (consume_stock(memcg, nr_pages))
1944
		return 0;
1945

1946
	if (!do_memsw_account() ||
1947 1948
	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949
			goto done_restock;
1950
		if (do_memsw_account())
1951 1952
			page_counter_uncharge(&memcg->memsw, batch);
		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953
	} else {
1954
		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955
		may_swap = false;
1956
	}
1957

1958 1959 1960 1961
	if (batch > nr_pages) {
		batch = nr_pages;
		goto retry;
	}
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971
	/*
	 * Unlike in global OOM situations, memcg is not in a physical
	 * memory shortage.  Allow dying and OOM-killed tasks to
	 * bypass the last charges so that they can exit quickly and
	 * free their memory.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
		     fatal_signal_pending(current) ||
		     current->flags & PF_EXITING))
1972
		goto force;
1973 1974 1975 1976

	if (unlikely(task_in_memcg_oom(current)))
		goto nomem;

1977
	if (!gfpflags_allow_blocking(gfp_mask))
1978
		goto nomem;
1979

1980 1981
	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);

1982 1983
	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
						    gfp_mask, may_swap);
1984

1985
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986
		goto retry;
1987

1988
	if (!drained) {
1989
		drain_all_stock(mem_over_limit);
1990 1991 1992 1993
		drained = true;
		goto retry;
	}

1994 1995
	if (gfp_mask & __GFP_NORETRY)
		goto nomem;
1996 1997 1998 1999 2000 2001 2002 2003 2004
	/*
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
	 */
2005
	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 2007 2008 2009 2010 2011 2012 2013
		goto retry;
	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		goto retry;

2014 2015 2016
	if (nr_retries--)
		goto retry;

2017
	if (gfp_mask & __GFP_NOFAIL)
2018
		goto force;
2019

2020
	if (fatal_signal_pending(current))
2021
		goto force;
2022

2023 2024
	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);

2025 2026
	mem_cgroup_oom(mem_over_limit, gfp_mask,
		       get_order(nr_pages * PAGE_SIZE));
2027
nomem:
2028
	if (!(gfp_mask & __GFP_NOFAIL))
2029
		return -ENOMEM;
2030 2031 2032 2033 2034 2035 2036
force:
	/*
	 * The allocation either can't fail or will lead to more memory
	 * being freed very soon.  Allow memory usage go over the limit
	 * temporarily by force charging it.
	 */
	page_counter_charge(&memcg->memory, nr_pages);
2037
	if (do_memsw_account())
2038 2039 2040 2041
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);

	return 0;
2042 2043

done_restock:
2044
	css_get_many(&memcg->css, batch);
2045 2046
	if (batch > nr_pages)
		refill_stock(memcg, batch - nr_pages);
2047

2048
	/*
2049 2050
	 * If the hierarchy is above the normal consumption range, schedule
	 * reclaim on returning to userland.  We can perform reclaim here
2051
	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 2053 2054 2055
	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
	 * not recorded as it most likely matches current's and won't
	 * change in the meantime.  As high limit is checked again before
	 * reclaim, the cost of mismatch is negligible.
2056 2057
	 */
	do {
2058
		if (page_counter_read(&memcg->memory) > memcg->high) {
2059 2060 2061 2062 2063
			/* Don't bother a random interrupted task */
			if (in_interrupt()) {
				schedule_work(&memcg->high_work);
				break;
			}
V
Vladimir Davydov 已提交
2064
			current->memcg_nr_pages_over_high += batch;
2065 2066 2067
			set_notify_resume(current);
			break;
		}
2068
	} while ((memcg = parent_mem_cgroup(memcg)));
2069 2070

	return 0;
2071
}
2072

2073
static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074
{
2075 2076 2077
	if (mem_cgroup_is_root(memcg))
		return;

2078
	page_counter_uncharge(&memcg->memory, nr_pages);
2079
	if (do_memsw_account())
2080
		page_counter_uncharge(&memcg->memsw, nr_pages);
2081

2082
	css_put_many(&memcg->css, nr_pages);
2083 2084
}

2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static void lock_page_lru(struct page *page, int *isolated)
{
	struct zone *zone = page_zone(page);

	spin_lock_irq(&zone->lru_lock);
	if (PageLRU(page)) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		ClearPageLRU(page);
		del_page_from_lru_list(page, lruvec, page_lru(page));
		*isolated = 1;
	} else
		*isolated = 0;
}

static void unlock_page_lru(struct page *page, int isolated)
{
	struct zone *zone = page_zone(page);

	if (isolated) {
		struct lruvec *lruvec;

		lruvec = mem_cgroup_page_lruvec(page, zone);
		VM_BUG_ON_PAGE(PageLRU(page), page);
		SetPageLRU(page);
		add_page_to_lru_list(page, lruvec, page_lru(page));
	}
	spin_unlock_irq(&zone->lru_lock);
}

2116
static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117
			  bool lrucare)
2118
{
2119
	int isolated;
2120

2121
	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122 2123 2124 2125 2126

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
2127 2128
	if (lrucare)
		lock_page_lru(page, &isolated);
2129

2130 2131
	/*
	 * Nobody should be changing or seriously looking at
2132
	 * page->mem_cgroup at this point:
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
	 *
	 * - the page is uncharged
	 *
	 * - the page is off-LRU
	 *
	 * - an anonymous fault has exclusive page access, except for
	 *   a locked page table
	 *
	 * - a page cache insertion, a swapin fault, or a migration
	 *   have the page locked
	 */
2144
	page->mem_cgroup = memcg;
2145

2146 2147
	if (lrucare)
		unlock_page_lru(page, isolated);
2148
}
2149

2150
#ifndef CONFIG_SLOB
2151
static int memcg_alloc_cache_id(void)
2152
{
2153 2154 2155
	int id, size;
	int err;

2156
	id = ida_simple_get(&memcg_cache_ida,
2157 2158 2159
			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (id < 0)
		return id;
2160

2161
	if (id < memcg_nr_cache_ids)
2162 2163 2164 2165 2166 2167
		return id;

	/*
	 * There's no space for the new id in memcg_caches arrays,
	 * so we have to grow them.
	 */
2168
	down_write(&memcg_cache_ids_sem);
2169 2170

	size = 2 * (id + 1);
2171 2172 2173 2174 2175
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

2176
	err = memcg_update_all_caches(size);
2177 2178
	if (!err)
		err = memcg_update_all_list_lrus(size);
2179 2180 2181 2182 2183
	if (!err)
		memcg_nr_cache_ids = size;

	up_write(&memcg_cache_ids_sem);

2184
	if (err) {
2185
		ida_simple_remove(&memcg_cache_ida, id);
2186 2187 2188 2189 2190 2191 2192
		return err;
	}
	return id;
}

static void memcg_free_cache_id(int id)
{
2193
	ida_simple_remove(&memcg_cache_ida, id);
2194 2195
}

2196
struct memcg_kmem_cache_create_work {
2197 2198 2199 2200 2201
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

2202
static void memcg_kmem_cache_create_func(struct work_struct *w)
2203
{
2204 2205
	struct memcg_kmem_cache_create_work *cw =
		container_of(w, struct memcg_kmem_cache_create_work, work);
2206 2207
	struct mem_cgroup *memcg = cw->memcg;
	struct kmem_cache *cachep = cw->cachep;
2208

2209
	memcg_create_kmem_cache(memcg, cachep);
2210

2211
	css_put(&memcg->css);
2212 2213 2214 2215 2216 2217
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
2218 2219
static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					       struct kmem_cache *cachep)
2220
{
2221
	struct memcg_kmem_cache_create_work *cw;
2222

2223
	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224
	if (!cw)
2225
		return;
2226 2227

	css_get(&memcg->css);
2228 2229 2230

	cw->memcg = memcg;
	cw->cachep = cachep;
2231
	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232 2233 2234 2235

	schedule_work(&cw->work);
}

2236 2237
static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
					     struct kmem_cache *cachep)
2238 2239 2240 2241
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
2242
	 * in __memcg_schedule_kmem_cache_create will recurse.
2243 2244 2245 2246 2247 2248 2249
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
2250
	current->memcg_kmem_skip_account = 1;
2251
	__memcg_schedule_kmem_cache_create(memcg, cachep);
2252
	current->memcg_kmem_skip_account = 0;
2253
}
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
V
Vladimir Davydov 已提交
2268
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269 2270
{
	struct mem_cgroup *memcg;
2271
	struct kmem_cache *memcg_cachep;
2272
	int kmemcg_id;
2273

2274
	VM_BUG_ON(!is_root_cache(cachep));
2275

V
Vladimir Davydov 已提交
2276 2277 2278 2279 2280 2281
	if (cachep->flags & SLAB_ACCOUNT)
		gfp |= __GFP_ACCOUNT;

	if (!(gfp & __GFP_ACCOUNT))
		return cachep;

2282
	if (current->memcg_kmem_skip_account)
2283 2284
		return cachep;

2285
	memcg = get_mem_cgroup_from_mm(current->mm);
2286
	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287
	if (kmemcg_id < 0)
2288
		goto out;
2289

2290
	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 2292
	if (likely(memcg_cachep))
		return memcg_cachep;
2293 2294 2295 2296 2297 2298 2299 2300 2301

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
2302 2303 2304
	 * memcg_create_kmem_cache, this means no further allocation
	 * could happen with the slab_mutex held. So it's better to
	 * defer everything.
2305
	 */
2306
	memcg_schedule_kmem_cache_create(memcg, cachep);
2307
out:
2308
	css_put(&memcg->css);
2309
	return cachep;
2310 2311
}

2312 2313 2314
void __memcg_kmem_put_cache(struct kmem_cache *cachep)
{
	if (!is_root_cache(cachep))
2315
		css_put(&cachep->memcg_params.memcg->css);
2316 2317
}

2318 2319
int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
			      struct mem_cgroup *memcg)
2320
{
2321 2322
	unsigned int nr_pages = 1 << order;
	struct page_counter *counter;
2323 2324
	int ret;

2325
	ret = try_charge(memcg, gfp, nr_pages);
2326
	if (ret)
2327
		return ret;
2328 2329 2330 2331 2332

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
		cancel_charge(memcg, nr_pages);
		return -ENOMEM;
2333 2334
	}

2335
	page->mem_cgroup = memcg;
2336

2337
	return 0;
2338 2339
}

2340
int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341
{
2342
	struct mem_cgroup *memcg;
2343
	int ret = 0;
2344

2345
	memcg = get_mem_cgroup_from_mm(current->mm);
2346
	if (!mem_cgroup_is_root(memcg))
2347
		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348
	css_put(&memcg->css);
2349
	return ret;
2350 2351
}

2352
void __memcg_kmem_uncharge(struct page *page, int order)
2353
{
2354
	struct mem_cgroup *memcg = page->mem_cgroup;
2355
	unsigned int nr_pages = 1 << order;
2356 2357 2358 2359

	if (!memcg)
		return;

2360
	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361

2362 2363 2364
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
		page_counter_uncharge(&memcg->kmem, nr_pages);

2365
	page_counter_uncharge(&memcg->memory, nr_pages);
2366
	if (do_memsw_account())
2367
		page_counter_uncharge(&memcg->memsw, nr_pages);
2368

2369
	page->mem_cgroup = NULL;
2370
	css_put_many(&memcg->css, nr_pages);
2371
}
2372
#endif /* !CONFIG_SLOB */
2373

2374 2375 2376 2377
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

/*
 * Because tail pages are not marked as "used", set it. We're under
2378
 * zone->lru_lock and migration entries setup in all page mappings.
2379
 */
2380
void mem_cgroup_split_huge_fixup(struct page *head)
2381
{
2382
	int i;
2383

2384 2385
	if (mem_cgroup_disabled())
		return;
2386

2387
	for (i = 1; i < HPAGE_PMD_NR; i++)
2388
		head[i].mem_cgroup = head->mem_cgroup;
2389

2390
	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391
		       HPAGE_PMD_NR);
2392
}
2393
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394

A
Andrew Morton 已提交
2395
#ifdef CONFIG_MEMCG_SWAP
2396 2397
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
					 bool charge)
K
KAMEZAWA Hiroyuki 已提交
2398
{
2399 2400
	int val = (charge) ? 1 : -1;
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
K
KAMEZAWA Hiroyuki 已提交
2401
}
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
2414
 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 2416 2417
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418
				struct mem_cgroup *from, struct mem_cgroup *to)
2419 2420 2421
{
	unsigned short old_id, new_id;

L
Li Zefan 已提交
2422 2423
	old_id = mem_cgroup_id(from);
	new_id = mem_cgroup_id(to);
2424 2425 2426

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2427
		mem_cgroup_swap_statistics(to, true);
2428 2429 2430 2431 2432 2433
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434
				struct mem_cgroup *from, struct mem_cgroup *to)
2435 2436 2437
{
	return -EINVAL;
}
2438
#endif
K
KAMEZAWA Hiroyuki 已提交
2439

2440
static DEFINE_MUTEX(memcg_limit_mutex);
2441

2442
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443
				   unsigned long limit)
2444
{
2445 2446 2447
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2448
	int retry_count;
2449
	int ret;
2450 2451 2452 2453 2454 2455

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
2456 2457
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);
2458

2459
	oldusage = page_counter_read(&memcg->memory);
2460

2461
	do {
2462 2463 2464 2465
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2466 2467 2468 2469

		mutex_lock(&memcg_limit_mutex);
		if (limit > memcg->memsw.limit) {
			mutex_unlock(&memcg_limit_mutex);
2470
			ret = -EINVAL;
2471 2472
			break;
		}
2473 2474 2475 2476
		if (limit > memcg->memory.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memory, limit);
		mutex_unlock(&memcg_limit_mutex);
2477 2478 2479 2480

		if (!ret)
			break;

2481 2482
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);

2483
		curusage = page_counter_read(&memcg->memory);
2484
		/* Usage is reduced ? */
A
Andrew Morton 已提交
2485
		if (curusage >= oldusage)
2486 2487 2488
			retry_count--;
		else
			oldusage = curusage;
2489 2490
	} while (retry_count);

2491 2492
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2493

2494 2495 2496
	return ret;
}

L
Li Zefan 已提交
2497
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498
					 unsigned long limit)
2499
{
2500 2501 2502
	unsigned long curusage;
	unsigned long oldusage;
	bool enlarge = false;
2503
	int retry_count;
2504
	int ret;
2505

2506
	/* see mem_cgroup_resize_res_limit */
2507 2508 2509 2510 2511 2512
	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
		      mem_cgroup_count_children(memcg);

	oldusage = page_counter_read(&memcg->memsw);

	do {
2513 2514 2515 2516
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
2517 2518 2519 2520

		mutex_lock(&memcg_limit_mutex);
		if (limit < memcg->memory.limit) {
			mutex_unlock(&memcg_limit_mutex);
2521 2522 2523
			ret = -EINVAL;
			break;
		}
2524 2525 2526 2527
		if (limit > memcg->memsw.limit)
			enlarge = true;
		ret = page_counter_limit(&memcg->memsw, limit);
		mutex_unlock(&memcg_limit_mutex);
2528 2529 2530 2531

		if (!ret)
			break;

2532 2533
		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);

2534
		curusage = page_counter_read(&memcg->memsw);
2535
		/* Usage is reduced ? */
2536
		if (curusage >= oldusage)
2537
			retry_count--;
2538 2539
		else
			oldusage = curusage;
2540 2541
	} while (retry_count);

2542 2543
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
2544

2545 2546 2547
	return ret;
}

2548 2549 2550 2551 2552 2553 2554 2555 2556
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
2557
	unsigned long excess;
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
2582
		spin_lock_irq(&mctz->lock);
2583
		__mem_cgroup_remove_exceeded(mz, mctz);
2584 2585 2586 2587 2588 2589

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
2590 2591 2592
		if (!reclaimed)
			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);

2593
		excess = soft_limit_excess(mz->memcg);
2594 2595 2596 2597 2598 2599 2600 2601 2602
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
2603
		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604
		spin_unlock_irq(&mctz->lock);
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

2622 2623 2624 2625 2626 2627
/*
 * Test whether @memcg has children, dead or alive.  Note that this
 * function doesn't care whether @memcg has use_hierarchy enabled and
 * returns %true if there are child csses according to the cgroup
 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
 */
2628 2629
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
2630 2631 2632 2633 2634 2635
	bool ret;

	rcu_read_lock();
	ret = css_next_child(NULL, &memcg->css);
	rcu_read_unlock();
	return ret;
2636 2637
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;

2648 2649
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
2650
	/* try to free all pages in this cgroup */
2651
	while (nr_retries && page_counter_read(&memcg->memory)) {
2652
		int progress;
2653

2654 2655 2656
		if (signal_pending(current))
			return -EINTR;

2657 2658
		progress = try_to_free_mem_cgroup_pages(memcg, 1,
							GFP_KERNEL, true);
2659
		if (!progress) {
2660
			nr_retries--;
2661
			/* maybe some writeback is necessary */
2662
			congestion_wait(BLK_RW_ASYNC, HZ/10);
2663
		}
2664 2665

	}
2666 2667

	return 0;
2668 2669
}

2670 2671 2672
static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
					    char *buf, size_t nbytes,
					    loff_t off)
2673
{
2674
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675

2676 2677
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
2678
	return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 2680
}

2681 2682
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
2683
{
2684
	return mem_cgroup_from_css(css)->use_hierarchy;
2685 2686
}

2687 2688
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
2689 2690
{
	int retval = 0;
2691
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
2692
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693

2694
	if (memcg->use_hierarchy == val)
2695
		return 0;
2696

2697
	/*
2698
	 * If parent's use_hierarchy is set, we can't make any modifications
2699 2700 2701 2702 2703 2704
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
2705
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706
				(val == 1 || val == 0)) {
2707
		if (!memcg_has_children(memcg))
2708
			memcg->use_hierarchy = val;
2709 2710 2711 2712
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
2713

2714 2715 2716
	return retval;
}

2717
static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 2719
{
	struct mem_cgroup *iter;
2720
	int i;
2721

2722
	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723

2724 2725 2726 2727
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_STAT; i++)
			stat[i] += mem_cgroup_read_stat(iter, i);
	}
2728 2729
}

2730
static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 2732
{
	struct mem_cgroup *iter;
2733
	int i;
2734

2735
	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736

2737 2738 2739 2740
	for_each_mem_cgroup_tree(iter, memcg) {
		for (i = 0; i < MEMCG_NR_EVENTS; i++)
			events[i] += mem_cgroup_read_events(iter, i);
	}
2741 2742
}

2743
static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744
{
2745
	unsigned long val = 0;
2746

2747
	if (mem_cgroup_is_root(memcg)) {
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		struct mem_cgroup *iter;

		for_each_mem_cgroup_tree(iter, memcg) {
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_CACHE);
			val += mem_cgroup_read_stat(iter,
					MEM_CGROUP_STAT_RSS);
			if (swap)
				val += mem_cgroup_read_stat(iter,
						MEM_CGROUP_STAT_SWAP);
		}
2759
	} else {
2760
		if (!swap)
2761
			val = page_counter_read(&memcg->memory);
2762
		else
2763
			val = page_counter_read(&memcg->memsw);
2764
	}
2765
	return val;
2766 2767
}

2768 2769 2770 2771 2772 2773 2774
enum {
	RES_USAGE,
	RES_LIMIT,
	RES_MAX_USAGE,
	RES_FAILCNT,
	RES_SOFT_LIMIT,
};
2775

2776
static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777
			       struct cftype *cft)
B
Balbir Singh 已提交
2778
{
2779
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780
	struct page_counter *counter;
2781

2782
	switch (MEMFILE_TYPE(cft->private)) {
2783
	case _MEM:
2784 2785
		counter = &memcg->memory;
		break;
2786
	case _MEMSWAP:
2787 2788
		counter = &memcg->memsw;
		break;
2789
	case _KMEM:
2790
		counter = &memcg->kmem;
2791
		break;
V
Vladimir Davydov 已提交
2792
	case _TCP:
2793
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
2794
		break;
2795 2796 2797
	default:
		BUG();
	}
2798 2799 2800 2801

	switch (MEMFILE_ATTR(cft->private)) {
	case RES_USAGE:
		if (counter == &memcg->memory)
2802
			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803
		if (counter == &memcg->memsw)
2804
			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		return (u64)page_counter_read(counter) * PAGE_SIZE;
	case RES_LIMIT:
		return (u64)counter->limit * PAGE_SIZE;
	case RES_MAX_USAGE:
		return (u64)counter->watermark * PAGE_SIZE;
	case RES_FAILCNT:
		return counter->failcnt;
	case RES_SOFT_LIMIT:
		return (u64)memcg->soft_limit * PAGE_SIZE;
	default:
		BUG();
	}
B
Balbir Singh 已提交
2817
}
2818

2819
#ifndef CONFIG_SLOB
2820
static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 2822 2823
{
	int memcg_id;

2824 2825 2826
	if (cgroup_memory_nokmem)
		return 0;

2827
	BUG_ON(memcg->kmemcg_id >= 0);
2828
	BUG_ON(memcg->kmem_state);
2829

2830
	memcg_id = memcg_alloc_cache_id();
2831 2832
	if (memcg_id < 0)
		return memcg_id;
2833

2834
	static_branch_inc(&memcg_kmem_enabled_key);
2835
	/*
2836
	 * A memory cgroup is considered kmem-online as soon as it gets
V
Vladimir Davydov 已提交
2837
	 * kmemcg_id. Setting the id after enabling static branching will
2838 2839 2840
	 * guarantee no one starts accounting before all call sites are
	 * patched.
	 */
V
Vladimir Davydov 已提交
2841
	memcg->kmemcg_id = memcg_id;
2842
	memcg->kmem_state = KMEM_ONLINE;
2843 2844

	return 0;
2845 2846
}

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
	struct cgroup_subsys_state *css;
	struct mem_cgroup *parent, *child;
	int kmemcg_id;

	if (memcg->kmem_state != KMEM_ONLINE)
		return;
	/*
	 * Clear the online state before clearing memcg_caches array
	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
	 * guarantees that no cache will be created for this cgroup
	 * after we are done (see memcg_create_kmem_cache()).
	 */
	memcg->kmem_state = KMEM_ALLOCATED;

	memcg_deactivate_kmem_caches(memcg);

	kmemcg_id = memcg->kmemcg_id;
	BUG_ON(kmemcg_id < 0);

	parent = parent_mem_cgroup(memcg);
	if (!parent)
		parent = root_mem_cgroup;

	/*
	 * Change kmemcg_id of this cgroup and all its descendants to the
	 * parent's id, and then move all entries from this cgroup's list_lrus
	 * to ones of the parent. After we have finished, all list_lrus
	 * corresponding to this cgroup are guaranteed to remain empty. The
	 * ordering is imposed by list_lru_node->lock taken by
	 * memcg_drain_all_list_lrus().
	 */
	css_for_each_descendant_pre(css, &memcg->css) {
		child = mem_cgroup_from_css(css);
		BUG_ON(child->kmemcg_id != kmemcg_id);
		child->kmemcg_id = parent->kmemcg_id;
		if (!memcg->use_hierarchy)
			break;
	}
	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);

	memcg_free_cache_id(kmemcg_id);
}

static void memcg_free_kmem(struct mem_cgroup *memcg)
{
2894 2895 2896 2897
	/* css_alloc() failed, offlining didn't happen */
	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
		memcg_offline_kmem(memcg);

2898 2899 2900 2901 2902 2903
	if (memcg->kmem_state == KMEM_ALLOCATED) {
		memcg_destroy_kmem_caches(memcg);
		static_branch_dec(&memcg_kmem_enabled_key);
		WARN_ON(page_counter_read(&memcg->kmem));
	}
}
2904
#else
2905
static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
{
	return 0;
}
static void memcg_offline_kmem(struct mem_cgroup *memcg)
{
}
static void memcg_free_kmem(struct mem_cgroup *memcg)
{
}
#endif /* !CONFIG_SLOB */

2917
static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918
				   unsigned long limit)
2919
{
2920
	int ret;
2921 2922 2923 2924 2925

	mutex_lock(&memcg_limit_mutex);
	ret = page_counter_limit(&memcg->kmem, limit);
	mutex_unlock(&memcg_limit_mutex);
	return ret;
2926
}
2927

V
Vladimir Davydov 已提交
2928 2929 2930 2931 2932 2933
static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
{
	int ret;

	mutex_lock(&memcg_limit_mutex);

2934
	ret = page_counter_limit(&memcg->tcpmem, limit);
V
Vladimir Davydov 已提交
2935 2936 2937
	if (ret)
		goto out;

2938
	if (!memcg->tcpmem_active) {
V
Vladimir Davydov 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
		/*
		 * The active flag needs to be written after the static_key
		 * update. This is what guarantees that the socket activation
		 * function is the last one to run. See sock_update_memcg() for
		 * details, and note that we don't mark any socket as belonging
		 * to this memcg until that flag is up.
		 *
		 * We need to do this, because static_keys will span multiple
		 * sites, but we can't control their order. If we mark a socket
		 * as accounted, but the accounting functions are not patched in
		 * yet, we'll lose accounting.
		 *
		 * We never race with the readers in sock_update_memcg(),
		 * because when this value change, the code to process it is not
		 * patched in yet.
		 */
		static_branch_inc(&memcg_sockets_enabled_key);
2956
		memcg->tcpmem_active = true;
V
Vladimir Davydov 已提交
2957 2958 2959 2960 2961 2962
	}
out:
	mutex_unlock(&memcg_limit_mutex);
	return ret;
}

2963 2964 2965 2966
/*
 * The user of this function is...
 * RES_LIMIT.
 */
2967 2968
static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
B
Balbir Singh 已提交
2969
{
2970
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971
	unsigned long nr_pages;
2972 2973
	int ret;

2974
	buf = strstrip(buf);
2975
	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 2977
	if (ret)
		return ret;
2978

2979
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980
	case RES_LIMIT:
2981 2982 2983 2984
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
2985 2986 2987
		switch (MEMFILE_TYPE(of_cft(of)->private)) {
		case _MEM:
			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988
			break;
2989 2990
		case _MEMSWAP:
			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991
			break;
2992 2993 2994
		case _KMEM:
			ret = memcg_update_kmem_limit(memcg, nr_pages);
			break;
V
Vladimir Davydov 已提交
2995 2996 2997
		case _TCP:
			ret = memcg_update_tcp_limit(memcg, nr_pages);
			break;
2998
		}
2999
		break;
3000 3001 3002
	case RES_SOFT_LIMIT:
		memcg->soft_limit = nr_pages;
		ret = 0;
3003 3004
		break;
	}
3005
	return ret ?: nbytes;
B
Balbir Singh 已提交
3006 3007
}

3008 3009
static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
				size_t nbytes, loff_t off)
3010
{
3011
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012
	struct page_counter *counter;
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	switch (MEMFILE_TYPE(of_cft(of)->private)) {
	case _MEM:
		counter = &memcg->memory;
		break;
	case _MEMSWAP:
		counter = &memcg->memsw;
		break;
	case _KMEM:
		counter = &memcg->kmem;
		break;
V
Vladimir Davydov 已提交
3024
	case _TCP:
3025
		counter = &memcg->tcpmem;
V
Vladimir Davydov 已提交
3026
		break;
3027 3028 3029
	default:
		BUG();
	}
3030

3031
	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032
	case RES_MAX_USAGE:
3033
		page_counter_reset_watermark(counter);
3034 3035
		break;
	case RES_FAILCNT:
3036
		counter->failcnt = 0;
3037
		break;
3038 3039
	default:
		BUG();
3040
	}
3041

3042
	return nbytes;
3043 3044
}

3045
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 3047
					struct cftype *cft)
{
3048
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 3050
}

3051
#ifdef CONFIG_MMU
3052
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 3054
					struct cftype *cft, u64 val)
{
3055
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056

3057
	if (val & ~MOVE_MASK)
3058
		return -EINVAL;
3059

3060
	/*
3061 3062 3063 3064
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
3065
	 */
3066
	memcg->move_charge_at_immigrate = val;
3067 3068
	return 0;
}
3069
#else
3070
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 3072 3073 3074 3075
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3076

3077
#ifdef CONFIG_NUMA
3078
static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079
{
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
3092
	int nid;
3093
	unsigned long nr;
3094
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3105 3106
	}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
3122 3123 3124 3125 3126 3127
	}

	return 0;
}
#endif /* CONFIG_NUMA */

3128
static int memcg_stat_show(struct seq_file *m, void *v)
3129
{
3130
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131
	unsigned long memory, memsw;
3132 3133
	struct mem_cgroup *mi;
	unsigned int i;
3134

3135 3136 3137 3138
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
		     MEM_CGROUP_STAT_NSTATS);
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
		     MEM_CGROUP_EVENTS_NSTATS);
3139 3140
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);

3141
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143
			continue;
3144
		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146
	}
L
Lee Schermerhorn 已提交
3147

3148 3149 3150 3151 3152 3153 3154 3155
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
3156
	/* Hierarchical information */
3157 3158 3159 3160
	memory = memsw = PAGE_COUNTER_MAX;
	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
		memory = min(memory, mi->memory.limit);
		memsw = min(memsw, mi->memsw.limit);
3161
	}
3162 3163
	seq_printf(m, "hierarchical_memory_limit %llu\n",
		   (u64)memory * PAGE_SIZE);
3164
	if (do_memsw_account())
3165 3166
		seq_printf(m, "hierarchical_memsw_limit %llu\n",
			   (u64)memsw * PAGE_SIZE);
K
KOSAKI Motohiro 已提交
3167

3168
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169
		unsigned long long val = 0;
3170

3171
		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172
			continue;
3173 3174
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175
		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193
	}
K
KAMEZAWA Hiroyuki 已提交
3194

K
KOSAKI Motohiro 已提交
3195 3196 3197 3198
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
3199
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
3200 3201 3202 3203 3204
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205
				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
3207

3208 3209 3210 3211
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
3212
			}
3213 3214 3215 3216
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
3217 3218 3219
	}
#endif

3220 3221 3222
	return 0;
}

3223 3224
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
3225
{
3226
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3227

3228
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
3229 3230
}

3231 3232
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
3233
{
3234
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
3235

3236
	if (val > 100)
K
KOSAKI Motohiro 已提交
3237 3238
		return -EINVAL;

3239
	if (css->parent)
3240 3241 3242
		memcg->swappiness = val;
	else
		vm_swappiness = val;
3243

K
KOSAKI Motohiro 已提交
3244 3245 3246
	return 0;
}

3247 3248 3249
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
3250
	unsigned long usage;
3251 3252 3253 3254
	int i;

	rcu_read_lock();
	if (!swap)
3255
		t = rcu_dereference(memcg->thresholds.primary);
3256
	else
3257
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3258 3259 3260 3261

	if (!t)
		goto unlock;

3262
	usage = mem_cgroup_usage(memcg, swap);
3263 3264

	/*
3265
	 * current_threshold points to threshold just below or equal to usage.
3266 3267 3268
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3269
	i = t->current_threshold;
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3293
	t->current_threshold = i - 1;
3294 3295 3296 3297 3298 3299
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3300 3301
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
3302
		if (do_memsw_account())
3303 3304 3305 3306
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3307 3308 3309 3310 3311 3312 3313
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

3314 3315 3316 3317 3318 3319 3320
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
3321 3322
}

3323
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3324 3325 3326
{
	struct mem_cgroup_eventfd_list *ev;

3327 3328
	spin_lock(&memcg_oom_lock);

3329
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
3330
		eventfd_signal(ev->eventfd, 1);
3331 3332

	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3333 3334 3335
	return 0;
}

3336
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
3337
{
K
KAMEZAWA Hiroyuki 已提交
3338 3339
	struct mem_cgroup *iter;

3340
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
3341
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3342 3343
}

3344
static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3345
	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346
{
3347 3348
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3349 3350
	unsigned long threshold;
	unsigned long usage;
3351
	int i, size, ret;
3352

3353
	ret = page_counter_memparse(args, "-1", &threshold);
3354 3355 3356 3357
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3358

3359
	if (type == _MEM) {
3360
		thresholds = &memcg->thresholds;
3361
		usage = mem_cgroup_usage(memcg, false);
3362
	} else if (type == _MEMSWAP) {
3363
		thresholds = &memcg->memsw_thresholds;
3364
		usage = mem_cgroup_usage(memcg, true);
3365
	} else
3366 3367 3368
		BUG();

	/* Check if a threshold crossed before adding a new one */
3369
	if (thresholds->primary)
3370 3371
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3372
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373 3374

	/* Allocate memory for new array of thresholds */
3375
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376
			GFP_KERNEL);
3377
	if (!new) {
3378 3379 3380
		ret = -ENOMEM;
		goto unlock;
	}
3381
	new->size = size;
3382 3383

	/* Copy thresholds (if any) to new array */
3384 3385
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386
				sizeof(struct mem_cgroup_threshold));
3387 3388
	}

3389
	/* Add new threshold */
3390 3391
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3392 3393

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3394
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 3396 3397
			compare_thresholds, NULL);

	/* Find current threshold */
3398
	new->current_threshold = -1;
3399
	for (i = 0; i < size; i++) {
3400
		if (new->entries[i].threshold <= usage) {
3401
			/*
3402 3403
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3404 3405
			 * it here.
			 */
3406
			++new->current_threshold;
3407 3408
		} else
			break;
3409 3410
	}

3411 3412 3413 3414 3415
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
3416

3417
	/* To be sure that nobody uses thresholds */
3418 3419 3420 3421 3422 3423 3424 3425
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

3426
static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3427 3428
	struct eventfd_ctx *eventfd, const char *args)
{
3429
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
T
Tejun Heo 已提交
3430 3431
}

3432
static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3433 3434
	struct eventfd_ctx *eventfd, const char *args)
{
3435
	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
T
Tejun Heo 已提交
3436 3437
}

3438
static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3439
	struct eventfd_ctx *eventfd, enum res_type type)
3440
{
3441 3442
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3443
	unsigned long usage;
3444
	int i, j, size;
3445 3446

	mutex_lock(&memcg->thresholds_lock);
3447 3448

	if (type == _MEM) {
3449
		thresholds = &memcg->thresholds;
3450
		usage = mem_cgroup_usage(memcg, false);
3451
	} else if (type == _MEMSWAP) {
3452
		thresholds = &memcg->memsw_thresholds;
3453
		usage = mem_cgroup_usage(memcg, true);
3454
	} else
3455 3456
		BUG();

3457 3458 3459
	if (!thresholds->primary)
		goto unlock;

3460 3461 3462 3463
	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
3464 3465 3466
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
3467 3468 3469
			size++;
	}

3470
	new = thresholds->spare;
3471

3472 3473
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
3474 3475
		kfree(new);
		new = NULL;
3476
		goto swap_buffers;
3477 3478
	}

3479
	new->size = size;
3480 3481

	/* Copy thresholds and find current threshold */
3482 3483 3484
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
3485 3486
			continue;

3487
		new->entries[j] = thresholds->primary->entries[i];
3488
		if (new->entries[j].threshold <= usage) {
3489
			/*
3490
			 * new->current_threshold will not be used
3491 3492 3493
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
3494
			++new->current_threshold;
3495 3496 3497 3498
		}
		j++;
	}

3499
swap_buffers:
3500 3501
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
3502

3503
	rcu_assign_pointer(thresholds->primary, new);
3504

3505
	/* To be sure that nobody uses thresholds */
3506
	synchronize_rcu();
3507 3508 3509 3510 3511 3512

	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}
3513
unlock:
3514 3515
	mutex_unlock(&memcg->thresholds_lock);
}
3516

3517
static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3518 3519
	struct eventfd_ctx *eventfd)
{
3520
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
T
Tejun Heo 已提交
3521 3522
}

3523
static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3524 3525
	struct eventfd_ctx *eventfd)
{
3526
	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
T
Tejun Heo 已提交
3527 3528
}

3529
static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3530
	struct eventfd_ctx *eventfd, const char *args)
K
KAMEZAWA Hiroyuki 已提交
3531 3532 3533 3534 3535 3536 3537
{
	struct mem_cgroup_eventfd_list *event;

	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3538
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3539 3540 3541 3542 3543

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
3544
	if (memcg->under_oom)
K
KAMEZAWA Hiroyuki 已提交
3545
		eventfd_signal(eventfd, 1);
3546
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3547 3548 3549 3550

	return 0;
}

3551
static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
T
Tejun Heo 已提交
3552
	struct eventfd_ctx *eventfd)
K
KAMEZAWA Hiroyuki 已提交
3553 3554 3555
{
	struct mem_cgroup_eventfd_list *ev, *tmp;

3556
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3557

3558
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
3559 3560 3561 3562 3563 3564
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

3565
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
3566 3567
}

3568
static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569
{
3570
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571

3572
	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573
	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 3575 3576
	return 0;
}

3577
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 3579
	struct cftype *cft, u64 val)
{
3580
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581 3582

	/* cannot set to root cgroup and only 0 and 1 are allowed */
3583
	if (!css->parent || !((val == 0) || (val == 1)))
3584 3585
		return -EINVAL;

3586
	memcg->oom_kill_disable = val;
3587
	if (!val)
3588
		memcg_oom_recover(memcg);
3589

3590 3591 3592
	return 0;
}

3593 3594 3595 3596 3597 3598 3599
#ifdef CONFIG_CGROUP_WRITEBACK

struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
{
	return &memcg->cgwb_list;
}

T
Tejun Heo 已提交
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return wb_domain_init(&memcg->cgwb_domain, gfp);
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
	wb_domain_exit(&memcg->cgwb_domain);
}

3610 3611 3612 3613 3614
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
	wb_domain_size_changed(&memcg->cgwb_domain);
}

T
Tejun Heo 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);

	if (!memcg->css.parent)
		return NULL;

	return &memcg->cgwb_domain;
}

3625 3626 3627
/**
 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
 * @wb: bdi_writeback in question
3628 3629
 * @pfilepages: out parameter for number of file pages
 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 3631 3632
 * @pdirty: out parameter for number of dirty pages
 * @pwriteback: out parameter for number of pages under writeback
 *
3633 3634 3635
 * Determine the numbers of file, headroom, dirty, and writeback pages in
 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
 * is a bit more involved.
3636
 *
3637 3638 3639 3640 3641
 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
 * headroom is calculated as the lowest headroom of itself and the
 * ancestors.  Note that this doesn't consider the actual amount of
 * available memory in the system.  The caller should further cap
 * *@pheadroom accordingly.
3642
 */
3643 3644 3645
void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
			 unsigned long *pheadroom, unsigned long *pdirty,
			 unsigned long *pwriteback)
3646 3647 3648 3649 3650 3651 3652 3653
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
	struct mem_cgroup *parent;

	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);

	/* this should eventually include NR_UNSTABLE_NFS */
	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 3655 3656
	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
						     (1 << LRU_ACTIVE_FILE));
	*pheadroom = PAGE_COUNTER_MAX;
3657 3658 3659 3660 3661

	while ((parent = parent_mem_cgroup(memcg))) {
		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
		unsigned long used = page_counter_read(&memcg->memory);

3662
		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 3664 3665 3666
		memcg = parent;
	}
}

T
Tejun Heo 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
#else	/* CONFIG_CGROUP_WRITEBACK */

static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
{
	return 0;
}

static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
{
}

3678 3679 3680 3681
static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
{
}

3682 3683
#endif	/* CONFIG_CGROUP_WRITEBACK */

3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
/*
 * DO NOT USE IN NEW FILES.
 *
 * "cgroup.event_control" implementation.
 *
 * This is way over-engineered.  It tries to support fully configurable
 * events for each user.  Such level of flexibility is completely
 * unnecessary especially in the light of the planned unified hierarchy.
 *
 * Please deprecate this and replace with something simpler if at all
 * possible.
 */

3697 3698 3699 3700 3701
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
3702
static void memcg_event_remove(struct work_struct *work)
3703
{
3704 3705
	struct mem_cgroup_event *event =
		container_of(work, struct mem_cgroup_event, remove);
3706
	struct mem_cgroup *memcg = event->memcg;
3707 3708 3709

	remove_wait_queue(event->wqh, &event->wait);

3710
	event->unregister_event(memcg, event->eventfd);
3711 3712 3713 3714 3715 3716

	/* Notify userspace the event is going away. */
	eventfd_signal(event->eventfd, 1);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3717
	css_put(&memcg->css);
3718 3719 3720 3721 3722 3723 3724
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
3725 3726
static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
			    int sync, void *key)
3727
{
3728 3729
	struct mem_cgroup_event *event =
		container_of(wait, struct mem_cgroup_event, wait);
3730
	struct mem_cgroup *memcg = event->memcg;
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
		/*
		 * If the event has been detached at cgroup removal, we
		 * can simply return knowing the other side will cleanup
		 * for us.
		 *
		 * We can't race against event freeing since the other
		 * side will require wqh->lock via remove_wait_queue(),
		 * which we hold.
		 */
3743
		spin_lock(&memcg->event_list_lock);
3744 3745 3746 3747 3748 3749 3750 3751
		if (!list_empty(&event->list)) {
			list_del_init(&event->list);
			/*
			 * We are in atomic context, but cgroup_event_remove()
			 * may sleep, so we have to call it in workqueue.
			 */
			schedule_work(&event->remove);
		}
3752
		spin_unlock(&memcg->event_list_lock);
3753 3754 3755 3756 3757
	}

	return 0;
}

3758
static void memcg_event_ptable_queue_proc(struct file *file,
3759 3760
		wait_queue_head_t *wqh, poll_table *pt)
{
3761 3762
	struct mem_cgroup_event *event =
		container_of(pt, struct mem_cgroup_event, pt);
3763 3764 3765 3766 3767 3768

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
3769 3770
 * DO NOT USE IN NEW FILES.
 *
3771 3772 3773 3774 3775
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
3776 3777
static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
					 char *buf, size_t nbytes, loff_t off)
3778
{
3779
	struct cgroup_subsys_state *css = of_css(of);
3780
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781
	struct mem_cgroup_event *event;
3782 3783 3784 3785
	struct cgroup_subsys_state *cfile_css;
	unsigned int efd, cfd;
	struct fd efile;
	struct fd cfile;
3786
	const char *name;
3787 3788 3789
	char *endp;
	int ret;

3790 3791 3792
	buf = strstrip(buf);

	efd = simple_strtoul(buf, &endp, 10);
3793 3794
	if (*endp != ' ')
		return -EINVAL;
3795
	buf = endp + 1;
3796

3797
	cfd = simple_strtoul(buf, &endp, 10);
3798 3799
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
3800
	buf = endp + 1;
3801 3802 3803 3804 3805

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;

3806
	event->memcg = memcg;
3807
	INIT_LIST_HEAD(&event->list);
3808 3809 3810
	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
	INIT_WORK(&event->remove, memcg_event_remove);
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

	efile = fdget(efd);
	if (!efile.file) {
		ret = -EBADF;
		goto out_kfree;
	}

	event->eventfd = eventfd_ctx_fileget(efile.file);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto out_put_efile;
	}

	cfile = fdget(cfd);
	if (!cfile.file) {
		ret = -EBADF;
		goto out_put_eventfd;
	}

	/* the process need read permission on control file */
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(file_inode(cfile.file), MAY_READ);
	if (ret < 0)
		goto out_put_cfile;

3836 3837 3838 3839 3840
	/*
	 * Determine the event callbacks and set them in @event.  This used
	 * to be done via struct cftype but cgroup core no longer knows
	 * about these events.  The following is crude but the whole thing
	 * is for compatibility anyway.
3841 3842
	 *
	 * DO NOT ADD NEW FILES.
3843
	 */
A
Al Viro 已提交
3844
	name = cfile.file->f_path.dentry->d_name.name;
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855

	if (!strcmp(name, "memory.usage_in_bytes")) {
		event->register_event = mem_cgroup_usage_register_event;
		event->unregister_event = mem_cgroup_usage_unregister_event;
	} else if (!strcmp(name, "memory.oom_control")) {
		event->register_event = mem_cgroup_oom_register_event;
		event->unregister_event = mem_cgroup_oom_unregister_event;
	} else if (!strcmp(name, "memory.pressure_level")) {
		event->register_event = vmpressure_register_event;
		event->unregister_event = vmpressure_unregister_event;
	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
T
Tejun Heo 已提交
3856 3857
		event->register_event = memsw_cgroup_usage_register_event;
		event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 3859 3860 3861 3862
	} else {
		ret = -EINVAL;
		goto out_put_cfile;
	}

3863
	/*
3864 3865 3866
	 * Verify @cfile should belong to @css.  Also, remaining events are
	 * automatically removed on cgroup destruction but the removal is
	 * asynchronous, so take an extra ref on @css.
3867
	 */
A
Al Viro 已提交
3868
	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869
					       &memory_cgrp_subsys);
3870
	ret = -EINVAL;
3871
	if (IS_ERR(cfile_css))
3872
		goto out_put_cfile;
3873 3874
	if (cfile_css != css) {
		css_put(cfile_css);
3875
		goto out_put_cfile;
3876
	}
3877

3878
	ret = event->register_event(memcg, event->eventfd, buf);
3879 3880 3881 3882 3883
	if (ret)
		goto out_put_css;

	efile.file->f_op->poll(efile.file, &event->pt);

3884 3885 3886
	spin_lock(&memcg->event_list_lock);
	list_add(&event->list, &memcg->event_list);
	spin_unlock(&memcg->event_list_lock);
3887 3888 3889 3890

	fdput(cfile);
	fdput(efile);

3891
	return nbytes;
3892 3893

out_put_css:
3894
	css_put(css);
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
out_put_cfile:
	fdput(cfile);
out_put_eventfd:
	eventfd_ctx_put(event->eventfd);
out_put_efile:
	fdput(efile);
out_kfree:
	kfree(event);

	return ret;
}

3907
static struct cftype mem_cgroup_legacy_files[] = {
B
Balbir Singh 已提交
3908
	{
3909
		.name = "usage_in_bytes",
3910
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3912
	},
3913 3914
	{
		.name = "max_usage_in_bytes",
3915
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916
		.write = mem_cgroup_reset,
3917
		.read_u64 = mem_cgroup_read_u64,
3918
	},
B
Balbir Singh 已提交
3919
	{
3920
		.name = "limit_in_bytes",
3921
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922
		.write = mem_cgroup_write,
3923
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3924
	},
3925 3926 3927
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928
		.write = mem_cgroup_write,
3929
		.read_u64 = mem_cgroup_read_u64,
3930
	},
B
Balbir Singh 已提交
3931 3932
	{
		.name = "failcnt",
3933
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934
		.write = mem_cgroup_reset,
3935
		.read_u64 = mem_cgroup_read_u64,
B
Balbir Singh 已提交
3936
	},
3937 3938
	{
		.name = "stat",
3939
		.seq_show = memcg_stat_show,
3940
	},
3941 3942
	{
		.name = "force_empty",
3943
		.write = mem_cgroup_force_empty_write,
3944
	},
3945 3946 3947 3948 3949
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
3950
	{
3951
		.name = "cgroup.event_control",		/* XXX: for compat */
3952
		.write = memcg_write_event_control,
3953
		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954
	},
K
KOSAKI Motohiro 已提交
3955 3956 3957 3958 3959
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
3960 3961 3962 3963 3964
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
3965 3966
	{
		.name = "oom_control",
3967
		.seq_show = mem_cgroup_oom_control_read,
3968
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
3969 3970
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
3971 3972 3973
	{
		.name = "pressure_level",
	},
3974 3975 3976
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
3977
		.seq_show = memcg_numa_stat_show,
3978 3979
	},
#endif
3980 3981 3982
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983
		.write = mem_cgroup_write,
3984
		.read_u64 = mem_cgroup_read_u64,
3985 3986 3987 3988
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989
		.read_u64 = mem_cgroup_read_u64,
3990 3991 3992 3993
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994
		.write = mem_cgroup_reset,
3995
		.read_u64 = mem_cgroup_read_u64,
3996 3997 3998 3999
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000
		.write = mem_cgroup_reset,
4001
		.read_u64 = mem_cgroup_read_u64,
4002
	},
4003 4004 4005
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
4006 4007 4008 4009
		.seq_start = slab_start,
		.seq_next = slab_next,
		.seq_stop = slab_stop,
		.seq_show = memcg_slab_show,
4010 4011
	},
#endif
V
Vladimir Davydov 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	{
		.name = "kmem.tcp.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.failcnt",
		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "kmem.tcp.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
4035
	{ },	/* terminate */
4036
};
4037

4038
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039 4040
{
	struct mem_cgroup_per_node *pn;
4041
	struct mem_cgroup_per_zone *mz;
4042
	int zone, tmp = node;
4043 4044 4045 4046 4047 4048 4049 4050
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4051 4052
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4053
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 4055
	if (!pn)
		return 1;
4056 4057 4058

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4059
		lruvec_init(&mz->lruvec);
4060 4061
		mz->usage_in_excess = 0;
		mz->on_tree = false;
4062
		mz->memcg = memcg;
4063
	}
4064
	memcg->nodeinfo[node] = pn;
4065 4066 4067
	return 0;
}

4068
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069
{
4070
	kfree(memcg->nodeinfo[node]);
4071 4072
}

4073
static void mem_cgroup_free(struct mem_cgroup *memcg)
4074
{
4075
	int node;
4076

4077
	memcg_wb_domain_exit(memcg);
4078 4079 4080
	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);
	free_percpu(memcg->stat);
4081
	kfree(memcg);
4082
}
4083

4084
static struct mem_cgroup *mem_cgroup_alloc(void)
B
Balbir Singh 已提交
4085
{
4086
	struct mem_cgroup *memcg;
4087
	size_t size;
4088
	int node;
B
Balbir Singh 已提交
4089

4090 4091 4092 4093
	size = sizeof(struct mem_cgroup);
	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);

	memcg = kzalloc(size, GFP_KERNEL);
4094
	if (!memcg)
4095 4096 4097 4098 4099
		return NULL;

	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
		goto fail;
4100

B
Bob Liu 已提交
4101
	for_each_node(node)
4102
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103
			goto fail;
4104

4105 4106
	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
		goto fail;
4107

4108
	INIT_WORK(&memcg->high_work, high_work_func);
4109 4110 4111 4112
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
4113
	vmpressure_init(&memcg->vmpressure);
4114 4115
	INIT_LIST_HEAD(&memcg->event_list);
	spin_lock_init(&memcg->event_list_lock);
4116
	memcg->socket_pressure = jiffies;
4117
#ifndef CONFIG_SLOB
V
Vladimir Davydov 已提交
4118 4119
	memcg->kmemcg_id = -1;
#endif
4120 4121 4122
#ifdef CONFIG_CGROUP_WRITEBACK
	INIT_LIST_HEAD(&memcg->cgwb_list);
#endif
4123 4124 4125 4126
	return memcg;
fail:
	mem_cgroup_free(memcg);
	return NULL;
4127 4128
}

4129 4130
static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131
{
4132 4133 4134
	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
	struct mem_cgroup *memcg;
	long error = -ENOMEM;
4135

4136 4137 4138
	memcg = mem_cgroup_alloc();
	if (!memcg)
		return ERR_PTR(error);
4139

4140 4141 4142 4143 4144 4145 4146 4147
	memcg->high = PAGE_COUNTER_MAX;
	memcg->soft_limit = PAGE_COUNTER_MAX;
	if (parent) {
		memcg->swappiness = mem_cgroup_swappiness(parent);
		memcg->oom_kill_disable = parent->oom_kill_disable;
	}
	if (parent && parent->use_hierarchy) {
		memcg->use_hierarchy = true;
4148
		page_counter_init(&memcg->memory, &parent->memory);
4149
		page_counter_init(&memcg->swap, &parent->swap);
4150 4151
		page_counter_init(&memcg->memsw, &parent->memsw);
		page_counter_init(&memcg->kmem, &parent->kmem);
4152
		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153
	} else {
4154
		page_counter_init(&memcg->memory, NULL);
4155
		page_counter_init(&memcg->swap, NULL);
4156 4157
		page_counter_init(&memcg->memsw, NULL);
		page_counter_init(&memcg->kmem, NULL);
4158
		page_counter_init(&memcg->tcpmem, NULL);
4159 4160 4161 4162 4163
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
4164
		if (parent != root_mem_cgroup)
4165
			memory_cgrp_subsys.broken_hierarchy = true;
4166
	}
4167

4168 4169 4170 4171 4172 4173
	/* The following stuff does not apply to the root */
	if (!parent) {
		root_mem_cgroup = memcg;
		return &memcg->css;
	}

4174
	error = memcg_online_kmem(memcg);
4175 4176
	if (error)
		goto fail;
4177

4178
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179
		static_branch_inc(&memcg_sockets_enabled_key);
4180

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
	return &memcg->css;
fail:
	mem_cgroup_free(memcg);
	return NULL;
}

static int
mem_cgroup_css_online(struct cgroup_subsys_state *css)
{
	if (css->id > MEM_CGROUP_ID_MAX)
		return -ENOSPC;
4192 4193

	return 0;
B
Balbir Singh 已提交
4194 4195
}

4196
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197
{
4198
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199
	struct mem_cgroup_event *event, *tmp;
4200 4201 4202 4203 4204 4205

	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace.
	 */
4206 4207
	spin_lock(&memcg->event_list_lock);
	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 4209 4210
		list_del_init(&event->list);
		schedule_work(&event->remove);
	}
4211
	spin_unlock(&memcg->event_list_lock);
4212

4213
	memcg_offline_kmem(memcg);
4214
	wb_memcg_offline(memcg);
4215 4216
}

4217 4218 4219 4220 4221 4222 4223
static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	invalidate_reclaim_iterators(memcg);
}

4224
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
4225
{
4226
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227

4228
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229
		static_branch_dec(&memcg_sockets_enabled_key);
4230

4231
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
V
Vladimir Davydov 已提交
4232
		static_branch_dec(&memcg_sockets_enabled_key);
4233

4234 4235 4236
	vmpressure_cleanup(&memcg->vmpressure);
	cancel_work_sync(&memcg->high_work);
	mem_cgroup_remove_from_trees(memcg);
4237
	memcg_free_kmem(memcg);
4238
	mem_cgroup_free(memcg);
B
Balbir Singh 已提交
4239 4240
}

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
/**
 * mem_cgroup_css_reset - reset the states of a mem_cgroup
 * @css: the target css
 *
 * Reset the states of the mem_cgroup associated with @css.  This is
 * invoked when the userland requests disabling on the default hierarchy
 * but the memcg is pinned through dependency.  The memcg should stop
 * applying policies and should revert to the vanilla state as it may be
 * made visible again.
 *
 * The current implementation only resets the essential configurations.
 * This needs to be expanded to cover all the visible parts.
 */
static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

4258 4259 4260 4261 4262
	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 4264
	memcg->low = 0;
	memcg->high = PAGE_COUNTER_MAX;
4265
	memcg->soft_limit = PAGE_COUNTER_MAX;
4266
	memcg_wb_domain_size_changed(memcg);
4267 4268
}

4269
#ifdef CONFIG_MMU
4270
/* Handlers for move charge at task migration. */
4271
static int mem_cgroup_do_precharge(unsigned long count)
4272
{
4273
	int ret;
4274

4275 4276
	/* Try a single bulk charge without reclaim first, kswapd may wake */
	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277
	if (!ret) {
4278 4279 4280
		mc.precharge += count;
		return ret;
	}
4281 4282

	/* Try charges one by one with reclaim */
4283
	while (count--) {
4284
		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 4286
		if (ret)
			return ret;
4287
		mc.precharge++;
4288
		cond_resched();
4289
	}
4290
	return 0;
4291 4292 4293
}

/**
4294
 * get_mctgt_type - get target type of moving charge
4295 4296 4297
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4298
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299 4300 4301 4302 4303 4304
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4305 4306 4307
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4308 4309 4310 4311 4312
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4313
	swp_entry_t	ent;
4314 4315 4316
};

enum mc_target_type {
4317
	MC_TARGET_NONE = 0,
4318
	MC_TARGET_PAGE,
4319
	MC_TARGET_SWAP,
4320 4321
};

D
Daisuke Nishimura 已提交
4322 4323
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4324
{
D
Daisuke Nishimura 已提交
4325
	struct page *page = vm_normal_page(vma, addr, ptent);
4326

D
Daisuke Nishimura 已提交
4327 4328 4329
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
4330
		if (!(mc.flags & MOVE_ANON))
D
Daisuke Nishimura 已提交
4331
			return NULL;
4332 4333 4334 4335
	} else {
		if (!(mc.flags & MOVE_FILE))
			return NULL;
	}
D
Daisuke Nishimura 已提交
4336 4337 4338 4339 4340 4341
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

4342
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
4343 4344 4345 4346 4347 4348
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

4349
	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
D
Daisuke Nishimura 已提交
4350
		return NULL;
4351 4352 4353 4354
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
4355
	page = find_get_page(swap_address_space(ent), ent.val);
4356
	if (do_memsw_account())
D
Daisuke Nishimura 已提交
4357 4358 4359 4360
		entry->val = ent.val;

	return page;
}
4361 4362 4363 4364 4365 4366 4367
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
4378
	if (!(mc.flags & MOVE_FILE))
4379 4380 4381
		return NULL;

	mapping = vma->vm_file->f_mapping;
4382
	pgoff = linear_page_index(vma, addr);
4383 4384

	/* page is moved even if it's not RSS of this task(page-faulted). */
4385 4386
#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
4387 4388 4389 4390
	if (shmem_mapping(mapping)) {
		page = find_get_entry(mapping, pgoff);
		if (radix_tree_exceptional_entry(page)) {
			swp_entry_t swp = radix_to_swp_entry(page);
4391
			if (do_memsw_account())
4392 4393 4394 4395 4396 4397 4398
				*entry = swp;
			page = find_get_page(swap_address_space(swp), swp.val);
		}
	} else
		page = find_get_page(mapping, pgoff);
#else
	page = find_get_page(mapping, pgoff);
4399
#endif
4400 4401 4402
	return page;
}

4403 4404 4405 4406 4407 4408 4409
/**
 * mem_cgroup_move_account - move account of the page
 * @page: the page
 * @nr_pages: number of regular pages (>1 for huge pages)
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
4410
 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411 4412 4413 4414 4415
 *
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
 */
static int mem_cgroup_move_account(struct page *page,
4416
				   bool compound,
4417 4418 4419 4420
				   struct mem_cgroup *from,
				   struct mem_cgroup *to)
{
	unsigned long flags;
4421
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422
	int ret;
4423
	bool anon;
4424 4425 4426

	VM_BUG_ON(from == to);
	VM_BUG_ON_PAGE(PageLRU(page), page);
4427
	VM_BUG_ON(compound && !PageTransHuge(page));
4428 4429

	/*
4430
	 * Prevent mem_cgroup_migrate() from looking at
4431
	 * page->mem_cgroup of its source page while we change it.
4432
	 */
4433
	ret = -EBUSY;
4434 4435 4436 4437 4438 4439 4440
	if (!trylock_page(page))
		goto out;

	ret = -EINVAL;
	if (page->mem_cgroup != from)
		goto out_unlock;

4441 4442
	anon = PageAnon(page);

4443 4444
	spin_lock_irqsave(&from->move_lock, flags);

4445
	if (!anon && page_mapped(page)) {
4446 4447 4448 4449 4450 4451
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
			       nr_pages);
	}

4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
	/*
	 * move_lock grabbed above and caller set from->moving_account, so
	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
	 * So mapping should be stable for dirty pages.
	 */
	if (!anon && PageDirty(page)) {
		struct address_space *mapping = page_mapping(page);

		if (mapping_cap_account_dirty(mapping)) {
			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
				       nr_pages);
		}
	}

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487
	if (PageWriteback(page)) {
		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
			       nr_pages);
	}

	/*
	 * It is safe to change page->mem_cgroup here because the page
	 * is referenced, charged, and isolated - we can't race with
	 * uncharging, charging, migration, or LRU putback.
	 */

	/* caller should have done css_get */
	page->mem_cgroup = to;
	spin_unlock_irqrestore(&from->move_lock, flags);

	ret = 0;

	local_irq_disable();
4488
	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489
	memcg_check_events(to, page);
4490
	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 4492 4493 4494 4495 4496 4497 4498
	memcg_check_events(from, page);
	local_irq_enable();
out_unlock:
	unlock_page(page);
out:
	return ret;
}

4499
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
4500 4501 4502
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
4503
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
4504 4505 4506 4507 4508 4509
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510
	else if (pte_none(ptent))
4511
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4512 4513

	if (!page && !ent.val)
4514
		return ret;
4515 4516
	if (page) {
		/*
4517
		 * Do only loose check w/o serialization.
4518
		 * mem_cgroup_move_account() checks the page is valid or
4519
		 * not under LRU exclusion.
4520
		 */
4521
		if (page->mem_cgroup == mc.from) {
4522 4523 4524 4525 4526 4527 4528
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4529 4530
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
L
Li Zefan 已提交
4531
	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 4533 4534
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4535 4536 4537 4538
	}
	return ret;
}

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
4552
	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553
	if (!(mc.flags & MOVE_ANON))
4554
		return ret;
4555
	if (page->mem_cgroup == mc.from) {
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

4572 4573 4574 4575
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
4576
	struct vm_area_struct *vma = walk->vma;
4577 4578 4579
	pte_t *pte;
	spinlock_t *ptl;

4580 4581
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4582 4583
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
4584
		spin_unlock(ptl);
4585
		return 0;
4586
	}
4587

4588 4589
	if (pmd_trans_unstable(pmd))
		return 0;
4590 4591
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
4592
		if (get_mctgt_type(vma, addr, *pte, NULL))
4593 4594 4595 4596
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4597 4598 4599
	return 0;
}

4600 4601 4602 4603
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;

4604 4605 4606 4607
	struct mm_walk mem_cgroup_count_precharge_walk = {
		.pmd_entry = mem_cgroup_count_precharge_pte_range,
		.mm = mm,
	};
4608
	down_read(&mm->mmap_sem);
4609
	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610
	up_read(&mm->mmap_sem);
4611 4612 4613 4614 4615 4616 4617 4618 4619

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4620 4621 4622 4623 4624
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4625 4626
}

4627 4628
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4629
{
4630 4631 4632
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4633
	/* we must uncharge all the leftover precharges from mc.to */
4634
	if (mc.precharge) {
4635
		cancel_charge(mc.to, mc.precharge);
4636 4637 4638 4639 4640 4641 4642
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
4643
		cancel_charge(mc.from, mc.moved_charge);
4644
		mc.moved_charge = 0;
4645
	}
4646 4647 4648
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
4649
		if (!mem_cgroup_is_root(mc.from))
4650
			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651

4652
		/*
4653 4654
		 * we charged both to->memory and to->memsw, so we
		 * should uncharge to->memory.
4655
		 */
4656
		if (!mem_cgroup_is_root(mc.to))
4657 4658
			page_counter_uncharge(&mc.to->memory, mc.moved_swap);

4659
		css_put_many(&mc.from->css, mc.moved_swap);
4660

L
Li Zefan 已提交
4661
		/* we've already done css_get(mc.to) */
4662 4663
		mc.moved_swap = 0;
	}
4664 4665 4666 4667 4668 4669 4670
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
4671 4672
	struct mm_struct *mm = mc.mm;

4673 4674 4675 4676 4677 4678
	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4679
	spin_lock(&mc.lock);
4680 4681
	mc.from = NULL;
	mc.to = NULL;
4682
	mc.mm = NULL;
4683
	spin_unlock(&mc.lock);
4684 4685

	mmput(mm);
4686 4687
}

4688
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689
{
4690
	struct cgroup_subsys_state *css;
4691
	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692
	struct mem_cgroup *from;
4693
	struct task_struct *leader, *p;
4694
	struct mm_struct *mm;
4695
	unsigned long move_flags;
4696
	int ret = 0;
4697

4698 4699
	/* charge immigration isn't supported on the default hierarchy */
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 4701
		return 0;

4702 4703 4704 4705 4706 4707 4708
	/*
	 * Multi-process migrations only happen on the default hierarchy
	 * where charge immigration is not used.  Perform charge
	 * immigration if @tset contains a leader and whine if there are
	 * multiple.
	 */
	p = NULL;
4709
	cgroup_taskset_for_each_leader(leader, css, tset) {
4710 4711
		WARN_ON_ONCE(p);
		p = leader;
4712
		memcg = mem_cgroup_from_css(css);
4713 4714 4715 4716
	}
	if (!p)
		return 0;

4717 4718 4719 4720 4721 4722 4723 4724 4725
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
	if (!move_flags)
		return 0;

4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
	from = mem_cgroup_from_task(p);

	VM_BUG_ON(from == memcg);

	mm = get_task_mm(p);
	if (!mm)
		return 0;
	/* We move charges only when we move a owner of the mm */
	if (mm->owner == p) {
		VM_BUG_ON(mc.from);
		VM_BUG_ON(mc.to);
		VM_BUG_ON(mc.precharge);
		VM_BUG_ON(mc.moved_charge);
		VM_BUG_ON(mc.moved_swap);

		spin_lock(&mc.lock);
4742
		mc.mm = mm;
4743 4744 4745 4746 4747 4748 4749 4750 4751
		mc.from = from;
		mc.to = memcg;
		mc.flags = move_flags;
		spin_unlock(&mc.lock);
		/* We set mc.moving_task later */

		ret = mem_cgroup_precharge_mc(mm);
		if (ret)
			mem_cgroup_clear_mc();
4752 4753
	} else {
		mmput(mm);
4754 4755 4756 4757
	}
	return ret;
}

4758
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759
{
4760 4761
	if (mc.to)
		mem_cgroup_clear_mc();
4762 4763
}

4764 4765 4766
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4767
{
4768
	int ret = 0;
4769
	struct vm_area_struct *vma = walk->vma;
4770 4771
	pte_t *pte;
	spinlock_t *ptl;
4772 4773 4774
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
4775

4776 4777
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (ptl) {
4778
		if (mc.precharge < HPAGE_PMD_NR) {
4779
			spin_unlock(ptl);
4780 4781 4782 4783 4784 4785
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
4786
				if (!mem_cgroup_move_account(page, true,
4787
							     mc.from, mc.to)) {
4788 4789 4790 4791 4792 4793 4794
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
4795
		spin_unlock(ptl);
4796
		return 0;
4797 4798
	}

4799 4800
	if (pmd_trans_unstable(pmd))
		return 0;
4801 4802 4803 4804
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
4805
		swp_entry_t ent;
4806 4807 4808 4809

		if (!mc.precharge)
			break;

4810
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 4812
		case MC_TARGET_PAGE:
			page = target.page;
4813 4814 4815 4816 4817 4818 4819 4820
			/*
			 * We can have a part of the split pmd here. Moving it
			 * can be done but it would be too convoluted so simply
			 * ignore such a partial THP and keep it in original
			 * memcg. There should be somebody mapping the head.
			 */
			if (PageTransCompound(page))
				goto put;
4821 4822
			if (isolate_lru_page(page))
				goto put;
4823 4824
			if (!mem_cgroup_move_account(page, false,
						mc.from, mc.to)) {
4825
				mc.precharge--;
4826 4827
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4828 4829
			}
			putback_lru_page(page);
4830
put:			/* get_mctgt_type() gets the page */
4831 4832
			put_page(page);
			break;
4833 4834
		case MC_TARGET_SWAP:
			ent = target.ent;
4835
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836
				mc.precharge--;
4837 4838 4839
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4840
			break;
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4855
		ret = mem_cgroup_do_precharge(1);
4856 4857 4858 4859 4860 4861 4862
		if (!ret)
			goto retry;
	}

	return ret;
}

4863
static void mem_cgroup_move_charge(void)
4864
{
4865 4866
	struct mm_walk mem_cgroup_move_charge_walk = {
		.pmd_entry = mem_cgroup_move_charge_pte_range,
4867
		.mm = mc.mm,
4868
	};
4869 4870

	lru_add_drain_all();
4871
	/*
4872 4873 4874
	 * Signal lock_page_memcg() to take the memcg's move_lock
	 * while we're moving its pages to another memcg. Then wait
	 * for already started RCU-only updates to finish.
4875 4876 4877
	 */
	atomic_inc(&mc.from->moving_account);
	synchronize_rcu();
4878
retry:
4879
	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4891 4892 4893 4894 4895
	/*
	 * When we have consumed all precharges and failed in doing
	 * additional charge, the page walk just aborts.
	 */
	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896
	up_read(&mc.mm->mmap_sem);
4897
	atomic_dec(&mc.from->moving_account);
4898 4899
}

4900
static void mem_cgroup_move_task(void)
B
Balbir Singh 已提交
4901
{
4902 4903
	if (mc.to) {
		mem_cgroup_move_charge();
4904
		mem_cgroup_clear_mc();
4905
	}
B
Balbir Singh 已提交
4906
}
4907
#else	/* !CONFIG_MMU */
4908
static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909 4910 4911
{
	return 0;
}
4912
static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913 4914
{
}
4915
static void mem_cgroup_move_task(void)
4916 4917 4918
{
}
#endif
B
Balbir Singh 已提交
4919

4920 4921
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 4923
 * to verify whether we're attached to the default hierarchy on each mount
 * attempt.
4924
 */
4925
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926 4927
{
	/*
4928
	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4929 4930 4931
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
4932
	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 4934 4935
		root_mem_cgroup->use_hierarchy = true;
	else
		root_mem_cgroup->use_hierarchy = false;
4936 4937
}

4938 4939 4940
static u64 memory_current_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
{
4941 4942 4943
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944 4945 4946 4947 4948
}

static int memory_low_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949
	unsigned long low = READ_ONCE(memcg->low);
4950 4951

	if (low == PAGE_COUNTER_MAX)
4952
		seq_puts(m, "max\n");
4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	else
		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);

	return 0;
}

static ssize_t memory_low_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long low;
	int err;

	buf = strstrip(buf);
4967
	err = page_counter_memparse(buf, "max", &low);
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
	if (err)
		return err;

	memcg->low = low;

	return nbytes;
}

static int memory_high_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979
	unsigned long high = READ_ONCE(memcg->high);
4980 4981

	if (high == PAGE_COUNTER_MAX)
4982
		seq_puts(m, "max\n");
4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
	else
		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);

	return 0;
}

static ssize_t memory_high_write(struct kernfs_open_file *of,
				 char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993
	unsigned long nr_pages;
4994 4995 4996 4997
	unsigned long high;
	int err;

	buf = strstrip(buf);
4998
	err = page_counter_memparse(buf, "max", &high);
4999 5000 5001 5002 5003
	if (err)
		return err;

	memcg->high = high;

5004 5005 5006 5007 5008
	nr_pages = page_counter_read(&memcg->memory);
	if (nr_pages > high)
		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
					     GFP_KERNEL, true);

5009
	memcg_wb_domain_size_changed(memcg);
5010 5011 5012 5013 5014 5015
	return nbytes;
}

static int memory_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016
	unsigned long max = READ_ONCE(memcg->memory.limit);
5017 5018

	if (max == PAGE_COUNTER_MAX)
5019
		seq_puts(m, "max\n");
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t memory_max_write(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 5031
	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
	bool drained = false;
5032 5033 5034 5035
	unsigned long max;
	int err;

	buf = strstrip(buf);
5036
	err = page_counter_memparse(buf, "max", &max);
5037 5038 5039
	if (err)
		return err;

5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	xchg(&memcg->memory.limit, max);

	for (;;) {
		unsigned long nr_pages = page_counter_read(&memcg->memory);

		if (nr_pages <= max)
			break;

		if (signal_pending(current)) {
			err = -EINTR;
			break;
		}

		if (!drained) {
			drain_all_stock(memcg);
			drained = true;
			continue;
		}

		if (nr_reclaims) {
			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
							  GFP_KERNEL, true))
				nr_reclaims--;
			continue;
		}

		mem_cgroup_events(memcg, MEMCG_OOM, 1);
		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
			break;
	}
5070

5071
	memcg_wb_domain_size_changed(memcg);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086
	return nbytes;
}

static int memory_events_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));

	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));

	return 0;
}

5087 5088 5089
static int memory_stat_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 5091
	unsigned long stat[MEMCG_NR_STAT];
	unsigned long events[MEMCG_NR_EVENTS];
5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	int i;

	/*
	 * Provide statistics on the state of the memory subsystem as
	 * well as cumulative event counters that show past behavior.
	 *
	 * This list is ordered following a combination of these gradients:
	 * 1) generic big picture -> specifics and details
	 * 2) reflecting userspace activity -> reflecting kernel heuristics
	 *
	 * Current memory state:
	 */

5105 5106 5107
	tree_stat(memcg, stat);
	tree_events(memcg, events);

5108
	seq_printf(m, "anon %llu\n",
5109
		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110
	seq_printf(m, "file %llu\n",
5111
		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 5113
	seq_printf(m, "kernel_stack %llu\n",
		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 5115 5116
	seq_printf(m, "slab %llu\n",
		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117
	seq_printf(m, "sock %llu\n",
5118
		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119 5120

	seq_printf(m, "file_mapped %llu\n",
5121
		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122
	seq_printf(m, "file_dirty %llu\n",
5123
		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124
	seq_printf(m, "file_writeback %llu\n",
5125
		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136

	for (i = 0; i < NR_LRU_LISTS; i++) {
		struct mem_cgroup *mi;
		unsigned long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
		seq_printf(m, "%s %llu\n",
			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
	}

5137 5138 5139 5140 5141
	seq_printf(m, "slab_reclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
	seq_printf(m, "slab_unreclaimable %llu\n",
		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);

5142 5143 5144
	/* Accumulated memory events */

	seq_printf(m, "pgfault %lu\n",
5145
		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5146
	seq_printf(m, "pgmajfault %lu\n",
5147
		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148 5149 5150 5151

	return 0;
}

5152 5153 5154
static struct cftype memory_files[] = {
	{
		.name = "current",
5155
		.flags = CFTYPE_NOT_ON_ROOT,
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
		.read_u64 = memory_current_read,
	},
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_low_show,
		.write = memory_low_write,
	},
	{
		.name = "high",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_high_show,
		.write = memory_high_write,
	},
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_max_show,
		.write = memory_max_write,
	},
	{
		.name = "events",
		.flags = CFTYPE_NOT_ON_ROOT,
5179
		.file_offset = offsetof(struct mem_cgroup, events_file),
5180 5181
		.seq_show = memory_events_show,
	},
5182 5183 5184 5185 5186
	{
		.name = "stat",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = memory_stat_show,
	},
5187 5188 5189
	{ }	/* terminate */
};

5190
struct cgroup_subsys memory_cgrp_subsys = {
5191
	.css_alloc = mem_cgroup_css_alloc,
5192
	.css_online = mem_cgroup_css_online,
5193
	.css_offline = mem_cgroup_css_offline,
5194
	.css_released = mem_cgroup_css_released,
5195
	.css_free = mem_cgroup_css_free,
5196
	.css_reset = mem_cgroup_css_reset,
5197 5198
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
5199
	.post_attach = mem_cgroup_move_task,
5200
	.bind = mem_cgroup_bind,
5201 5202
	.dfl_cftypes = memory_files,
	.legacy_cftypes = mem_cgroup_legacy_files,
5203
	.early_init = 0,
B
Balbir Singh 已提交
5204
};
5205

5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227
/**
 * mem_cgroup_low - check if memory consumption is below the normal range
 * @root: the highest ancestor to consider
 * @memcg: the memory cgroup to check
 *
 * Returns %true if memory consumption of @memcg, and that of all
 * configurable ancestors up to @root, is below the normal range.
 */
bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return false;

	/*
	 * The toplevel group doesn't have a configurable range, so
	 * it's never low when looked at directly, and it is not
	 * considered an ancestor when assessing the hierarchy.
	 */

	if (memcg == root_mem_cgroup)
		return false;

M
Michal Hocko 已提交
5228
	if (page_counter_read(&memcg->memory) >= memcg->low)
5229 5230 5231 5232 5233 5234 5235 5236
		return false;

	while (memcg != root) {
		memcg = parent_mem_cgroup(memcg);

		if (memcg == root_mem_cgroup)
			break;

M
Michal Hocko 已提交
5237
		if (page_counter_read(&memcg->memory) >= memcg->low)
5238 5239 5240 5241 5242
			return false;
	}
	return true;
}

5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
/**
 * mem_cgroup_try_charge - try charging a page
 * @page: page to charge
 * @mm: mm context of the victim
 * @gfp_mask: reclaim mode
 * @memcgp: charged memcg return
 *
 * Try to charge @page to the memcg that @mm belongs to, reclaiming
 * pages according to @gfp_mask if necessary.
 *
 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
 * Otherwise, an error code is returned.
 *
 * After page->mapping has been set up, the caller must finalize the
 * charge with mem_cgroup_commit_charge().  Or abort the transaction
 * with mem_cgroup_cancel_charge() in case page instantiation fails.
 */
int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 5262
			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
			  bool compound)
5263 5264
{
	struct mem_cgroup *memcg = NULL;
5265
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278
	int ret = 0;

	if (mem_cgroup_disabled())
		goto out;

	if (PageSwapCache(page)) {
		/*
		 * Every swap fault against a single page tries to charge the
		 * page, bail as early as possible.  shmem_unuse() encounters
		 * already charged pages, too.  The USED bit is protected by
		 * the page lock, which serializes swap cache removal, which
		 * in turn serializes uncharging.
		 */
5279
		VM_BUG_ON_PAGE(!PageLocked(page), page);
5280
		if (page->mem_cgroup)
5281
			goto out;
5282

5283
		if (do_swap_account) {
5284 5285 5286 5287 5288 5289 5290 5291 5292
			swp_entry_t ent = { .val = page_private(page), };
			unsigned short id = lookup_swap_cgroup_id(ent);

			rcu_read_lock();
			memcg = mem_cgroup_from_id(id);
			if (memcg && !css_tryget_online(&memcg->css))
				memcg = NULL;
			rcu_read_unlock();
		}
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
	}

	if (!memcg)
		memcg = get_mem_cgroup_from_mm(mm);

	ret = try_charge(memcg, gfp_mask, nr_pages);

	css_put(&memcg->css);
out:
	*memcgp = memcg;
	return ret;
}

/**
 * mem_cgroup_commit_charge - commit a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 * @lrucare: page might be on LRU already
 *
 * Finalize a charge transaction started by mem_cgroup_try_charge(),
 * after page->mapping has been set up.  This must happen atomically
 * as part of the page instantiation, i.e. under the page table lock
 * for anonymous pages, under the page lock for page and swap cache.
 *
 * In addition, the page must not be on the LRU during the commit, to
 * prevent racing with task migration.  If it might be, use @lrucare.
 *
 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
 */
void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323
			      bool lrucare, bool compound)
5324
{
5325
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

	VM_BUG_ON_PAGE(!page->mapping, page);
	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

5340 5341 5342
	commit_charge(page, memcg, lrucare);

	local_irq_disable();
5343
	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 5345
	memcg_check_events(memcg, page);
	local_irq_enable();
5346

5347
	if (do_memsw_account() && PageSwapCache(page)) {
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
		swp_entry_t entry = { .val = page_private(page) };
		/*
		 * The swap entry might not get freed for a long time,
		 * let's not wait for it.  The page already received a
		 * memory+swap charge, drop the swap entry duplicate.
		 */
		mem_cgroup_uncharge_swap(entry);
	}
}

/**
 * mem_cgroup_cancel_charge - cancel a page charge
 * @page: page to charge
 * @memcg: memcg to charge the page to
 *
 * Cancel a charge transaction started by mem_cgroup_try_charge().
 */
5365 5366
void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
		bool compound)
5367
{
5368
	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382

	if (mem_cgroup_disabled())
		return;
	/*
	 * Swap faults will attempt to charge the same page multiple
	 * times.  But reuse_swap_page() might have removed the page
	 * from swapcache already, so we can't check PageSwapCache().
	 */
	if (!memcg)
		return;

	cancel_charge(memcg, nr_pages);
}

5383 5384 5385 5386
static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
			   unsigned long nr_anon, unsigned long nr_file,
			   unsigned long nr_huge, struct page *dummy_page)
{
5387
	unsigned long nr_pages = nr_anon + nr_file;
5388 5389
	unsigned long flags;

5390
	if (!mem_cgroup_is_root(memcg)) {
5391
		page_counter_uncharge(&memcg->memory, nr_pages);
5392
		if (do_memsw_account())
5393
			page_counter_uncharge(&memcg->memsw, nr_pages);
5394 5395
		memcg_oom_recover(memcg);
	}
5396 5397 5398 5399 5400 5401

	local_irq_save(flags);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 5404
	memcg_check_events(memcg, dummy_page);
	local_irq_restore(flags);
5405 5406

	if (!mem_cgroup_is_root(memcg))
5407
		css_put_many(&memcg->css, nr_pages);
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
}

static void uncharge_list(struct list_head *page_list)
{
	struct mem_cgroup *memcg = NULL;
	unsigned long nr_anon = 0;
	unsigned long nr_file = 0;
	unsigned long nr_huge = 0;
	unsigned long pgpgout = 0;
	struct list_head *next;
	struct page *page;

5420 5421 5422 5423
	/*
	 * Note that the list can be a single page->lru; hence the
	 * do-while loop instead of a simple list_for_each_entry().
	 */
5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
	next = page_list->next;
	do {
		unsigned int nr_pages = 1;

		page = list_entry(next, struct page, lru);
		next = page->lru.next;

		VM_BUG_ON_PAGE(PageLRU(page), page);
		VM_BUG_ON_PAGE(page_count(page), page);

5434
		if (!page->mem_cgroup)
5435 5436 5437 5438
			continue;

		/*
		 * Nobody should be changing or seriously looking at
5439
		 * page->mem_cgroup at this point, we have fully
5440
		 * exclusive access to the page.
5441 5442
		 */

5443
		if (memcg != page->mem_cgroup) {
5444
			if (memcg) {
5445 5446 5447
				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
					       nr_huge, page);
				pgpgout = nr_anon = nr_file = nr_huge = 0;
5448
			}
5449
			memcg = page->mem_cgroup;
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
		}

		if (PageTransHuge(page)) {
			nr_pages <<= compound_order(page);
			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
			nr_huge += nr_pages;
		}

		if (PageAnon(page))
			nr_anon += nr_pages;
		else
			nr_file += nr_pages;

5463
		page->mem_cgroup = NULL;
5464 5465 5466 5467 5468

		pgpgout++;
	} while (next != page_list);

	if (memcg)
5469 5470
		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
			       nr_huge, page);
5471 5472
}

5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
/**
 * mem_cgroup_uncharge - uncharge a page
 * @page: page to uncharge
 *
 * Uncharge a page previously charged with mem_cgroup_try_charge() and
 * mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge(struct page *page)
{
	if (mem_cgroup_disabled())
		return;

5485
	/* Don't touch page->lru of any random page, pre-check: */
5486
	if (!page->mem_cgroup)
5487 5488
		return;

5489 5490 5491
	INIT_LIST_HEAD(&page->lru);
	uncharge_list(&page->lru);
}
5492

5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
/**
 * mem_cgroup_uncharge_list - uncharge a list of page
 * @page_list: list of pages to uncharge
 *
 * Uncharge a list of pages previously charged with
 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
 */
void mem_cgroup_uncharge_list(struct list_head *page_list)
{
	if (mem_cgroup_disabled())
		return;
5504

5505 5506
	if (!list_empty(page_list))
		uncharge_list(page_list);
5507 5508 5509
}

/**
5510 5511 5512
 * mem_cgroup_migrate - charge a page's replacement
 * @oldpage: currently circulating page
 * @newpage: replacement page
5513
 *
5514 5515
 * Charge @newpage as a replacement page for @oldpage. @oldpage will
 * be uncharged upon free.
5516 5517 5518
 *
 * Both pages must be locked, @newpage->mapping must be set up.
 */
5519
void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520
{
5521
	struct mem_cgroup *memcg;
5522 5523
	unsigned int nr_pages;
	bool compound;
5524 5525 5526 5527

	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 5529
	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
		       newpage);
5530 5531 5532 5533 5534

	if (mem_cgroup_disabled())
		return;

	/* Page cache replacement: new page already charged? */
5535
	if (newpage->mem_cgroup)
5536 5537
		return;

5538
	/* Swapcache readahead pages can get replaced before being charged */
5539
	memcg = oldpage->mem_cgroup;
5540
	if (!memcg)
5541 5542
		return;

5543 5544 5545 5546 5547 5548 5549 5550
	/* Force-charge the new page. The old one will be freed soon */
	compound = PageTransHuge(newpage);
	nr_pages = compound ? hpage_nr_pages(newpage) : 1;

	page_counter_charge(&memcg->memory, nr_pages);
	if (do_memsw_account())
		page_counter_charge(&memcg->memsw, nr_pages);
	css_get_many(&memcg->css, nr_pages);
5551

5552
	commit_charge(newpage, memcg, false);
5553 5554 5555 5556 5557

	local_irq_disable();
	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
	memcg_check_events(memcg, newpage);
	local_irq_enable();
5558 5559
}

5560
DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582
EXPORT_SYMBOL(memcg_sockets_enabled_key);

void sock_update_memcg(struct sock *sk)
{
	struct mem_cgroup *memcg;

	/* Socket cloning can throw us here with sk_cgrp already
	 * filled. It won't however, necessarily happen from
	 * process context. So the test for root memcg given
	 * the current task's memcg won't help us in this case.
	 *
	 * Respecting the original socket's memcg is a better
	 * decision in this case.
	 */
	if (sk->sk_memcg) {
		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
		css_get(&sk->sk_memcg->css);
		return;
	}

	rcu_read_lock();
	memcg = mem_cgroup_from_task(current);
5583 5584
	if (memcg == root_mem_cgroup)
		goto out;
5585
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 5587
		goto out;
	if (css_tryget_online(&memcg->css))
5588
		sk->sk_memcg = memcg;
5589
out:
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
	rcu_read_unlock();
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
	WARN_ON(!sk->sk_memcg);
	css_put(&sk->sk_memcg->css);
}

/**
 * mem_cgroup_charge_skmem - charge socket memory
 * @memcg: memcg to charge
 * @nr_pages: number of pages to charge
 *
 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
 * @memcg's configured limit, %false if the charge had to be forced.
 */
bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5610
	gfp_t gfp_mask = GFP_KERNEL;
5611

5612
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613
		struct page_counter *fail;
5614

5615 5616
		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
			memcg->tcpmem_pressure = 0;
5617 5618
			return true;
		}
5619 5620
		page_counter_charge(&memcg->tcpmem, nr_pages);
		memcg->tcpmem_pressure = 1;
5621
		return false;
5622
	}
5623

5624 5625 5626 5627
	/* Don't block in the packet receive path */
	if (in_softirq())
		gfp_mask = GFP_NOWAIT;

5628 5629
	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);

5630 5631 5632 5633
	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
		return true;

	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643
	return false;
}

/**
 * mem_cgroup_uncharge_skmem - uncharge socket memory
 * @memcg - memcg to uncharge
 * @nr_pages - number of pages to uncharge
 */
void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
{
5644
	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645
		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 5647
		return;
	}
5648

5649 5650
	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);

5651 5652
	page_counter_uncharge(&memcg->memory, nr_pages);
	css_put_many(&memcg->css, nr_pages);
5653 5654
}

5655 5656 5657 5658 5659 5660 5661 5662 5663
static int __init cgroup_memory(char *s)
{
	char *token;

	while ((token = strsep(&s, ",")) != NULL) {
		if (!*token)
			continue;
		if (!strcmp(token, "nosocket"))
			cgroup_memory_nosocket = true;
5664 5665
		if (!strcmp(token, "nokmem"))
			cgroup_memory_nokmem = true;
5666 5667 5668 5669
	}
	return 0;
}
__setup("cgroup.memory=", cgroup_memory);
5670

5671
/*
5672 5673 5674 5675 5676 5677
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
5678 5679 5680
 */
static int __init mem_cgroup_init(void)
{
5681 5682
	int cpu, node;

5683
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705

	for_each_possible_cpu(cpu)
		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
			  drain_local_stock);

	for_each_node(node) {
		struct mem_cgroup_tree_per_node *rtpn;
		int zone;

		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
				    node_online(node) ? node : NUMA_NO_NODE);

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			struct mem_cgroup_tree_per_zone *rtpz;

			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
		soft_limit_tree.rb_tree_per_node[node] = rtpn;
	}

5706 5707 5708
	return 0;
}
subsys_initcall(mem_cgroup_init);
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725

#ifdef CONFIG_MEMCG_SWAP
/**
 * mem_cgroup_swapout - transfer a memsw charge to swap
 * @page: page whose memsw charge to transfer
 * @entry: swap entry to move the charge to
 *
 * Transfer the memsw charge of @page to @entry.
 */
void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short oldid;

	VM_BUG_ON_PAGE(PageLRU(page), page);
	VM_BUG_ON_PAGE(page_count(page), page);

5726
	if (!do_memsw_account())
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743
		return;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	page->mem_cgroup = NULL;

	if (!mem_cgroup_is_root(memcg))
		page_counter_uncharge(&memcg->memory, 1);

5744 5745 5746 5747 5748 5749 5750
	/*
	 * Interrupts should be disabled here because the caller holds the
	 * mapping->tree_lock lock which is taken with interrupts-off. It is
	 * important here to have the interrupts disabled because it is the
	 * only synchronisation we have for udpating the per-CPU variables.
	 */
	VM_BUG_ON(!irqs_disabled());
5751
	mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 5753 5754
	memcg_check_events(memcg, page);
}

5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790
/*
 * mem_cgroup_try_charge_swap - try charging a swap entry
 * @page: page being added to swap
 * @entry: swap entry to charge
 *
 * Try to charge @entry to the memcg that @page belongs to.
 *
 * Returns 0 on success, -ENOMEM on failure.
 */
int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	struct page_counter *counter;
	unsigned short oldid;

	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
		return 0;

	memcg = page->mem_cgroup;

	/* Readahead page, never charged */
	if (!memcg)
		return 0;

	if (!mem_cgroup_is_root(memcg) &&
	    !page_counter_try_charge(&memcg->swap, 1, &counter))
		return -ENOMEM;

	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
	VM_BUG_ON_PAGE(oldid, page);
	mem_cgroup_swap_statistics(memcg, true);

	css_get(&memcg->css);
	return 0;
}

5791 5792 5793 5794
/**
 * mem_cgroup_uncharge_swap - uncharge a swap entry
 * @entry: swap entry to uncharge
 *
5795
 * Drop the swap charge associated with @entry.
5796 5797 5798 5799 5800 5801
 */
void mem_cgroup_uncharge_swap(swp_entry_t entry)
{
	struct mem_cgroup *memcg;
	unsigned short id;

5802
	if (!do_swap_account)
5803 5804 5805 5806
		return;

	id = swap_cgroup_record(entry, 0);
	rcu_read_lock();
5807
	memcg = mem_cgroup_from_id(id);
5808
	if (memcg) {
5809 5810 5811 5812 5813 5814
		if (!mem_cgroup_is_root(memcg)) {
			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
				page_counter_uncharge(&memcg->swap, 1);
			else
				page_counter_uncharge(&memcg->memsw, 1);
		}
5815 5816 5817 5818 5819 5820
		mem_cgroup_swap_statistics(memcg, false);
		css_put(&memcg->css);
	}
	rcu_read_unlock();
}

5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833
long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
{
	long nr_swap_pages = get_nr_swap_pages();

	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return nr_swap_pages;
	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		nr_swap_pages = min_t(long, nr_swap_pages,
				      READ_ONCE(memcg->swap.limit) -
				      page_counter_read(&memcg->swap));
	return nr_swap_pages;
}

5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
bool mem_cgroup_swap_full(struct page *page)
{
	struct mem_cgroup *memcg;

	VM_BUG_ON_PAGE(!PageLocked(page), page);

	if (vm_swap_full())
		return true;
	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
		return false;

	memcg = page->mem_cgroup;
	if (!memcg)
		return false;

	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
			return true;

	return false;
}

5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872
/* for remember boot option*/
#ifdef CONFIG_MEMCG_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata;
#endif

static int __init enable_swap_account(char *s)
{
	if (!strcmp(s, "1"))
		really_do_swap_account = 1;
	else if (!strcmp(s, "0"))
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount=", enable_swap_account);

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
static u64 swap_current_read(struct cgroup_subsys_state *css,
			     struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);

	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
}

static int swap_max_show(struct seq_file *m, void *v)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
	unsigned long max = READ_ONCE(memcg->swap.limit);

	if (max == PAGE_COUNTER_MAX)
		seq_puts(m, "max\n");
	else
		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);

	return 0;
}

static ssize_t swap_max_write(struct kernfs_open_file *of,
			      char *buf, size_t nbytes, loff_t off)
{
	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
	unsigned long max;
	int err;

	buf = strstrip(buf);
	err = page_counter_memparse(buf, "max", &max);
	if (err)
		return err;

	mutex_lock(&memcg_limit_mutex);
	err = page_counter_limit(&memcg->swap, max);
	mutex_unlock(&memcg_limit_mutex);
	if (err)
		return err;

	return nbytes;
}

static struct cftype swap_files[] = {
	{
		.name = "swap.current",
		.flags = CFTYPE_NOT_ON_ROOT,
		.read_u64 = swap_current_read,
	},
	{
		.name = "swap.max",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = swap_max_show,
		.write = swap_max_write,
	},
	{ }	/* terminate */
};

5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write = mem_cgroup_write,
		.read_u64 = mem_cgroup_read_u64,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.write = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read_u64,
	},
	{ },	/* terminate */
};

static int __init mem_cgroup_swap_init(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
5961 5962
		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
					       swap_files));
5963 5964 5965 5966 5967 5968 5969 5970
		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
						  memsw_cgroup_files));
	}
	return 0;
}
subsys_initcall(mem_cgroup_swap_init);

#endif /* CONFIG_MEMCG_SWAP */