sched.c 267.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 381 382 383
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
384

385
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
386

I
Ingo Molnar 已提交
387 388 389 390 391 392
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
393
	u64 min_vruntime;
I
Ingo Molnar 已提交
394 395 396

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
397 398 399 400 401 402

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
403 404
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
405
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
406

P
Peter Zijlstra 已提交
407
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
408

409
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
410 411
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
412 413
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
414 415 416 417 418 419
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
420 421
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
422 423 424

#ifdef CONFIG_SMP
	/*
425
	 * the part of load.weight contributed by tasks
426
	 */
427
	unsigned long task_weight;
428

429 430 431 432 433 434 435
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
436

437 438 439 440
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
441 442 443 444 445

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
446
#endif
I
Ingo Molnar 已提交
447 448
#endif
};
L
Linus Torvalds 已提交
449

I
Ingo Molnar 已提交
450 451 452
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
453
	unsigned long rt_nr_running;
454
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 456
	struct {
		int curr; /* highest queued rt task prio */
457
#ifdef CONFIG_SMP
458
		int next; /* next highest */
459
#endif
460
	} highest_prio;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
464
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
465
	int overloaded;
466
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
467
#endif
P
Peter Zijlstra 已提交
468
	int rt_throttled;
P
Peter Zijlstra 已提交
469
	u64 rt_time;
P
Peter Zijlstra 已提交
470
	u64 rt_runtime;
I
Ingo Molnar 已提交
471
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
472
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
473

474
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475 476
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
477 478 479 480 481
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
482 483
};

G
Gregory Haskins 已提交
484 485 486 487
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
488 489
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
496 497
	cpumask_var_t span;
	cpumask_var_t online;
498

I
Ingo Molnar 已提交
499
	/*
500 501 502
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
503
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
504
	atomic_t rto_count;
505 506 507
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
508 509
};

510 511 512 513
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
514 515 516 517
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
518 519 520 521 522 523 524
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
525
struct rq {
526 527
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
534 535
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536
#ifdef CONFIG_NO_HZ
537
	unsigned long last_tick_seen;
538 539
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543
	unsigned long nr_load_updates;
	u64 nr_switches;
544
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
545 546

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
547 548
	struct rt_rq rt;

I
Ingo Molnar 已提交
549
#ifdef CONFIG_FAIR_GROUP_SCHED
550 551
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
552 553
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
554
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

565
	struct task_struct *curr, *idle;
566
	unsigned long next_balance;
L
Linus Torvalds 已提交
567
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
568

569
	u64 clock;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576
	struct sched_domain *sd;

577
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
578
	/* For active balancing */
579
	int post_schedule;
L
Linus Torvalds 已提交
580 581
	int active_balance;
	int push_cpu;
582 583
	/* cpu of this runqueue: */
	int cpu;
584
	int online;
L
Linus Torvalds 已提交
585

586
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
587

588
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
589
	struct list_head migration_queue;
590 591 592

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
593 594
#endif

595 596 597 598
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
599
#ifdef CONFIG_SCHED_HRTICK
600 601 602 603
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
604 605 606
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
607 608 609
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
610 611
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
612 613

	/* sys_sched_yield() stats */
614
	unsigned int yld_count;
L
Linus Torvalds 已提交
615 616

	/* schedule() stats */
617 618 619
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
620 621

	/* try_to_wake_up() stats */
622 623
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
624 625

	/* BKL stats */
626
	unsigned int bkl_count;
L
Linus Torvalds 已提交
627 628 629
#endif
};

630
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
631

P
Peter Zijlstra 已提交
632 633
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
634
{
P
Peter Zijlstra 已提交
635
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
636 637
}

638 639 640 641 642 643 644 645 646
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
661
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
662

I
Ingo Molnar 已提交
663
inline void update_rq_clock(struct rq *rq)
664 665 666 667
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
668 669 670 671 672 673 674 675 676
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
677 678
/**
 * runqueue_is_locked
679
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
680 681 682 683 684
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
685
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
686
{
687
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
688 689
}

I
Ingo Molnar 已提交
690 691 692
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
693 694 695 696

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
697
enum {
P
Peter Zijlstra 已提交
698
#include "sched_features.h"
I
Ingo Molnar 已提交
699 700
};

P
Peter Zijlstra 已提交
701 702 703 704 705
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
706
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

716
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
717 718 719 720 721 722
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
723
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
724 725 726 727
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
728 729 730
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
731
	}
L
Li Zefan 已提交
732
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
733

L
Li Zefan 已提交
734
	return 0;
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
754
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
779 780 781 782 783
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

784
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
785 786 787 788 789
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
804

805 806 807 808 809 810
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
811 812
/*
 * ratelimit for updating the group shares.
813
 * default: 0.25ms
P
Peter Zijlstra 已提交
814
 */
815
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
816

817 818 819 820 821 822 823
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

824 825 826 827 828 829 830 831
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
832
/*
P
Peter Zijlstra 已提交
833
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
834 835
 * default: 1s
 */
P
Peter Zijlstra 已提交
836
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
837

838 839
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
840 841 842 843 844
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
845

846 847 848 849 850 851 852
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
853
	if (sysctl_sched_rt_runtime < 0)
854 855 856 857
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
858

L
Linus Torvalds 已提交
859
#ifndef prepare_arch_switch
860 861 862 863 864 865
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

866 867 868 869 870
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

871
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
872
static inline int task_running(struct rq *rq, struct task_struct *p)
873
{
874
	return task_current(rq, p);
875 876
}

877
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 879 880
{
}

881
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882
{
883 884 885 886
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
887 888 889 890 891 892 893
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

894 895 896 897
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
898
static inline int task_running(struct rq *rq, struct task_struct *p)
899 900 901 902
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
903
	return task_current(rq, p);
904 905 906
#endif
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

924
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 926 927 928 929 930 931 932 933 934 935 936
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
937
#endif
938 939
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
940

941 942 943 944
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
945
static inline struct rq *__task_rq_lock(struct task_struct *p)
946 947
	__acquires(rq->lock)
{
948 949 950 951 952
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
953 954 955 956
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
957 958
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
959
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
960 961
 * explicitly disabling preemption.
 */
962
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
963 964
	__acquires(rq->lock)
{
965
	struct rq *rq;
L
Linus Torvalds 已提交
966

967 968 969 970 971 972
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
973 974 975 976
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

977 978 979 980 981 982 983 984
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
985
static void __task_rq_unlock(struct rq *rq)
986 987 988 989 990
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

991
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
992 993 994 995 996 997
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
998
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
999
 */
A
Alexey Dobriyan 已提交
1000
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1001 1002
	__acquires(rq->lock)
{
1003
	struct rq *rq;
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1033
	if (!cpu_active(cpu_of(rq)))
1034
		return 0;
P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1055
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1062
#ifdef CONFIG_SMP
1063 1064 1065 1066
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1067
{
1068
	struct rq *rq = arg;
1069

1070 1071 1072 1073
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1074 1075
}

1076 1077 1078 1079 1080 1081
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1082
{
1083 1084
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085

1086
	hrtimer_set_expires(timer, time);
1087 1088 1089 1090

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1091
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 1093
		rq->hrtick_csd_pending = 1;
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1108
		hrtick_clear(cpu_rq(cpu));
1109 1110 1111 1112 1113 1114
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1115
static __init void init_hrtick(void)
1116 1117 1118
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1119 1120 1121 1122 1123 1124 1125 1126
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1127
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128
			HRTIMER_MODE_REL_PINNED, 0);
1129
}
1130

A
Andrew Morton 已提交
1131
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1132 1133
{
}
1134
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1135

1136
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1137
{
1138 1139
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1140

1141 1142 1143 1144
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1145

1146 1147
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1148
}
A
Andrew Morton 已提交
1149
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154 1155 1156 1157
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1158 1159 1160
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1161
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1162

I
Ingo Molnar 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1176
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1177 1178 1179 1180 1181
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1182
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1183 1184
		return;

1185
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1241
	set_tsk_need_resched(rq->idle);
1242 1243 1244 1245 1246 1247

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277 1278 1279 1280

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1281
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1291 1292 1293
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1294
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1295

1296 1297 1298
/*
 * delta *= weight / lw
 */
1299
static unsigned long
1300 1301 1302 1303 1304
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1305 1306 1307 1308 1309 1310 1311
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1312 1313 1314 1315 1316

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1317
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1318
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1319 1320
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1321
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322

1323
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 1325
}

1326
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 1328
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 1334
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338 1339 1340 1341
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1342
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 1344 1345 1346
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1347 1348
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 1359 1360
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1361 1362
 */
static const int prio_to_weight[40] = {
1363 1364 1365 1366 1367 1368 1369 1370
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1371 1372
};

1373 1374 1375 1376 1377 1378 1379
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1380
static const u32 prio_to_wmult[40] = {
1381 1382 1383 1384 1385 1386 1387 1388
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1389
};
1390

I
Ingo Molnar 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1425 1426
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 1428
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1429 1430
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 1432
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1433 1434
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1445
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1446
typedef int (*tg_visitor)(struct task_group *, void *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1452
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 1454
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1455
	int ret;
1456 1457 1458 1459

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467 1468 1469
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1470 1471 1472
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1473 1474 1475 1476 1477

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1478
out_unlock:
1479
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1480 1481

	return ret;
1482 1483
}

P
Peter Zijlstra 已提交
1484 1485 1486
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1487
}
P
Peter Zijlstra 已提交
1488 1489 1490
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1550 1551 1552 1553 1554
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1555
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1556

1557 1558
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1559 1560
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1561 1562 1563 1564 1565

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1566

1567
static __read_mostly unsigned long *update_shares_data;
1568

1569 1570 1571 1572 1573
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1574 1575 1576
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1577
				    unsigned long *usd_rq_weight)
1578
{
1579
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1580
	int boost = 0;
1581

1582
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1583 1584 1585 1586
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1587

1588
	/*
P
Peter Zijlstra 已提交
1589 1590 1591
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1592
	 */
1593
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1594
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1595

1596 1597 1598 1599
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1600

1601
		spin_lock_irqsave(&rq->lock, flags);
1602
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1603
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1604 1605 1606
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1607
}
1608 1609

/*
1610 1611 1612
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1613
 */
P
Peter Zijlstra 已提交
1614
static int tg_shares_up(struct task_group *tg, void *data)
1615
{
1616
	unsigned long weight, rq_weight = 0, shares = 0;
1617
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1618
	struct sched_domain *sd = data;
1619
	unsigned long flags;
1620
	int i;
1621

1622 1623 1624 1625
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1626
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1627

1628
	for_each_cpu(i, sched_domain_span(sd)) {
1629
		weight = tg->cfs_rq[i]->load.weight;
1630
		usd_rq_weight[i] = weight;
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1641
		shares += tg->cfs_rq[i]->shares;
1642 1643
	}

1644 1645 1646 1647 1648
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1649

1650
	for_each_cpu(i, sched_domain_span(sd))
1651
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1652 1653

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1654 1655

	return 0;
1656 1657 1658
}

/*
1659 1660 1661
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1662
 */
P
Peter Zijlstra 已提交
1663
static int tg_load_down(struct task_group *tg, void *data)
1664
{
1665
	unsigned long load;
P
Peter Zijlstra 已提交
1666
	long cpu = (long)data;
1667

1668 1669 1670 1671 1672 1673 1674
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1675

1676
	tg->cfs_rq[cpu]->h_load = load;
1677

P
Peter Zijlstra 已提交
1678
	return 0;
1679 1680
}

1681
static void update_shares(struct sched_domain *sd)
1682
{
1683 1684 1685 1686 1687 1688 1689 1690
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1691 1692 1693

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1694
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1695
	}
1696 1697
}

1698 1699
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1700 1701 1702
	if (root_task_group_empty())
		return;

1703 1704 1705 1706 1707
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1708
static void update_h_load(long cpu)
1709
{
1710 1711 1712
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1713
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1714 1715 1716 1717
}

#else

1718
static inline void update_shares(struct sched_domain *sd)
1719 1720 1721
{
}

1722 1723 1724 1725
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1726 1727
#endif

1728 1729
#ifdef CONFIG_PREEMPT

1730 1731
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1732
/*
1733 1734 1735 1736 1737 1738
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1739
 */
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1794 1795 1796 1797 1798 1799
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1800 1801
#endif

V
Vegard Nossum 已提交
1802
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1803 1804
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1805
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1806 1807 1808
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1809
#endif
1810

1811 1812
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1813 1814
#include "sched_stats.h"
#include "sched_idletask.c"
1815 1816
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1817 1818 1819 1820 1821
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1822 1823
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1824

1825
static void inc_nr_running(struct rq *rq)
1826 1827 1828 1829
{
	rq->nr_running++;
}

1830
static void dec_nr_running(struct rq *rq)
1831 1832 1833 1834
{
	rq->nr_running--;
}

1835 1836 1837
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1838 1839 1840 1841
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1842

I
Ingo Molnar 已提交
1843 1844 1845 1846 1847 1848 1849 1850
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1851

I
Ingo Molnar 已提交
1852 1853
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1854 1855
}

1856 1857 1858 1859 1860 1861
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1862
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1863
{
P
Peter Zijlstra 已提交
1864 1865 1866
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1867
	sched_info_queued(p);
1868
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1869
	p->se.on_rq = 1;
1870 1871
}

1872
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1873
{
P
Peter Zijlstra 已提交
1874 1875 1876 1877 1878 1879 1880 1881 1882
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1883 1884
	}

1885
	sched_info_dequeued(p);
1886
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1887
	p->se.on_rq = 0;
1888 1889
}

1890
/*
I
Ingo Molnar 已提交
1891
 * __normal_prio - return the priority that is based on the static prio
1892 1893 1894
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1895
	return p->static_prio;
1896 1897
}

1898 1899 1900 1901 1902 1903 1904
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1905
static inline int normal_prio(struct task_struct *p)
1906 1907 1908
{
	int prio;

1909
	if (task_has_rt_policy(p))
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1923
static int effective_prio(struct task_struct *p)
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1936
/*
I
Ingo Molnar 已提交
1937
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1938
 */
I
Ingo Molnar 已提交
1939
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1940
{
1941
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1942
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1943

1944
	enqueue_task(rq, p, wakeup);
1945
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1946 1947 1948 1949 1950
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1951
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1952
{
1953
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1954 1955
		rq->nr_uninterruptible++;

1956
	dequeue_task(rq, p, sleep);
1957
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1958 1959 1960 1961 1962 1963
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1964
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1965 1966 1967 1968
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1969 1970
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1971
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1972
#ifdef CONFIG_SMP
1973 1974 1975 1976 1977 1978
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1979 1980
	task_thread_info(p)->cpu = cpu;
#endif
1981 1982
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
/**
 * kthread_bind - bind a just-created kthread to a cpu.
 * @k: thread created by kthread_create().
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

	spin_lock_irqsave(&rq->lock, flags);
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
	spin_unlock_irqrestore(&rq->lock, flags);
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2027
#ifdef CONFIG_SMP
2028 2029 2030
/*
 * Is this task likely cache-hot:
 */
2031
static int
2032 2033 2034 2035
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2036 2037 2038
	/*
	 * Buddy candidates are cache hot:
	 */
2039
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2040 2041
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2042 2043
		return 1;

2044 2045 2046
	if (p->sched_class != &fair_sched_class)
		return 0;

2047 2048 2049 2050 2051
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2052 2053 2054 2055 2056 2057
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2058
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2059
{
I
Ingo Molnar 已提交
2060 2061
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2062 2063
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2064
	u64 clock_offset;
I
Ingo Molnar 已提交
2065 2066

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2067

2068
	trace_sched_migrate_task(p, new_cpu);
2069

I
Ingo Molnar 已提交
2070 2071 2072
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2073 2074 2075 2076
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2077
#endif
2078
	if (old_cpu != new_cpu) {
2079
		p->se.nr_migrations++;
2080
		new_rq->nr_migrations_in++;
2081
#ifdef CONFIG_SCHEDSTATS
2082 2083
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2084
#endif
2085
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2086
				     1, 1, NULL, 0);
2087
	}
2088 2089
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2090 2091

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2092 2093
}

2094
struct migration_req {
L
Linus Torvalds 已提交
2095 2096
	struct list_head list;

2097
	struct task_struct *task;
L
Linus Torvalds 已提交
2098 2099 2100
	int dest_cpu;

	struct completion done;
2101
};
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2107
static int
2108
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2109
{
2110
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2111 2112 2113 2114 2115

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2116
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2117 2118 2119 2120 2121 2122 2123 2124
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2125

L
Linus Torvalds 已提交
2126 2127 2128
	return 1;
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2172 2173 2174
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2175 2176 2177 2178 2179 2180 2181
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2188
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2189 2190
{
	unsigned long flags;
I
Ingo Molnar 已提交
2191
	int running, on_rq;
R
Roland McGrath 已提交
2192
	unsigned long ncsw;
2193
	struct rq *rq;
L
Linus Torvalds 已提交
2194

2195 2196 2197 2198 2199 2200 2201 2202
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2215 2216 2217
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2218
			cpu_relax();
R
Roland McGrath 已提交
2219
		}
2220

2221 2222 2223 2224 2225 2226
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2227
		trace_sched_wait_task(rq, p);
2228 2229
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2230
		ncsw = 0;
2231
		if (!match_state || p->state == match_state)
2232
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2233
		task_rq_unlock(rq, &flags);
2234

R
Roland McGrath 已提交
2235 2236 2237 2238 2239 2240
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2251

2252 2253 2254 2255 2256
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2257
		 * So if it was still runnable (but just not actively
2258 2259 2260 2261 2262 2263 2264
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2265

2266 2267 2268 2269 2270 2271 2272
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2273 2274

	return ncsw;
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2290
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2300
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2301
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2302

T
Thomas Gleixner 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2338 2339
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2340
{
2341
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2342
	unsigned long flags;
2343
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2344

2345
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2346
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2347

P
Peter Zijlstra 已提交
2348
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2349

2350
	smp_wmb();
2351
	rq = orig_rq = task_rq_lock(p, &flags);
2352
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2353
	if (!(p->state & state))
L
Linus Torvalds 已提交
2354 2355
		goto out;

I
Ingo Molnar 已提交
2356
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2357 2358 2359
		goto out_running;

	cpu = task_cpu(p);
2360
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2366 2367 2368
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2369 2370
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2371
	 */
2372 2373
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2374 2375 2376
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2377
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2378
	if (cpu != orig_cpu)
2379
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2380

P
Peter Zijlstra 已提交
2381
	rq = task_rq_lock(p, &flags);
2382 2383 2384 2385

	if (rq != orig_rq)
		update_rq_clock(rq);

P
Peter Zijlstra 已提交
2386 2387
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2388

2389 2390 2391 2392 2393 2394 2395
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2396
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2397 2398 2399 2400 2401
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2402
#endif /* CONFIG_SCHEDSTATS */
2403

L
Linus Torvalds 已提交
2404 2405
out_activate:
#endif /* CONFIG_SMP */
2406
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2407
	if (wake_flags & WF_SYNC)
2408 2409 2410 2411 2412 2413 2414
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2415
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2416 2417
	success = 1;

P
Peter Zijlstra 已提交
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2434
out_running:
2435
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2436
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2437

L
Linus Torvalds 已提交
2438
	p->state = TASK_RUNNING;
2439 2440 2441 2442
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2443 2444
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2445
	put_cpu();
L
Linus Torvalds 已提交
2446 2447 2448 2449

	return success;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2461
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2462
{
2463
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2464 2465 2466
}
EXPORT_SYMBOL(wake_up_process);

2467
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2475 2476 2477 2478 2479 2480 2481
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2482
	p->se.prev_sum_exec_runtime	= 0;
2483
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2484 2485
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2486 2487
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2488
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2489 2490

#ifdef CONFIG_SCHEDSTATS
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2522
#endif
N
Nick Piggin 已提交
2523

P
Peter Zijlstra 已提交
2524
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2525
	p->se.on_rq = 0;
2526
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2527

2528 2529 2530 2531
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2550 2551 2552 2553
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2554
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2555
			p->policy = SCHED_NORMAL;
2556 2557
			p->normal_prio = p->static_prio;
		}
2558

2559 2560
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2561
			p->normal_prio = p->static_prio;
2562 2563 2564
			set_load_weight(p);
		}

2565 2566 2567 2568 2569 2570
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2571

2572 2573 2574 2575 2576
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2577 2578
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2579

2580 2581 2582 2583 2584
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2585
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2586
	if (likely(sched_info_on()))
2587
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2588
#endif
2589
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2590 2591
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2592
#ifdef CONFIG_PREEMPT
2593
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2594
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2595
#endif
2596 2597
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2598
	put_cpu();
L
Linus Torvalds 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2608
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2609 2610
{
	unsigned long flags;
I
Ingo Molnar 已提交
2611
	struct rq *rq;
L
Linus Torvalds 已提交
2612 2613

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2614
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2615
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2616

2617
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2618
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2619 2620
	} else {
		/*
I
Ingo Molnar 已提交
2621 2622
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2623
		 */
2624
		p->sched_class->task_new(rq, p);
2625
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2626
	}
2627
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2628
	check_preempt_curr(rq, p, WF_FORK);
2629 2630 2631 2632
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2633
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2634 2635
}

2636 2637 2638
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2639
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2640
 * @notifier: notifier struct to register
2641 2642 2643 2644 2645 2646 2647 2648 2649
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2650
 * @notifier: notifier struct to unregister
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2680
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2692
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2693

2694 2695 2696
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2697
 * @prev: the current task that is being switched out
2698 2699 2700 2701 2702 2703 2704 2705 2706
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2707 2708 2709
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2710
{
2711
	fire_sched_out_preempt_notifiers(prev, next);
2712 2713 2714 2715
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2716 2717
/**
 * finish_task_switch - clean up after a task-switch
2718
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2719 2720
 * @prev: the thread we just switched away from.
 *
2721 2722 2723 2724
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2725 2726
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2727
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2728 2729 2730
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2731
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2732 2733 2734
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2735
	long prev_state;
L
Linus Torvalds 已提交
2736 2737 2738 2739 2740

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2741
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2742 2743
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2744
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2750
	prev_state = prev->state;
2751
	finish_arch_switch(prev);
2752
	perf_event_task_sched_in(current, cpu_of(rq));
2753
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2754

2755
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2756 2757
	if (mm)
		mmdrop(mm);
2758
	if (unlikely(prev_state == TASK_DEAD)) {
2759 2760 2761
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2762
		 */
2763
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2764
		put_task_struct(prev);
2765
	}
L
Linus Torvalds 已提交
2766 2767
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2793

2794 2795 2796 2797 2798 2799
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2800 2801
}

2802 2803
#endif

L
Linus Torvalds 已提交
2804 2805 2806 2807
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2808
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2809 2810
	__releases(rq->lock)
{
2811 2812
	struct rq *rq = this_rq();

2813
	finish_task_switch(rq, prev);
2814

2815 2816 2817 2818 2819
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2820

2821 2822 2823 2824
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2825
	if (current->set_child_tid)
2826
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2833
static inline void
2834
context_switch(struct rq *rq, struct task_struct *prev,
2835
	       struct task_struct *next)
L
Linus Torvalds 已提交
2836
{
I
Ingo Molnar 已提交
2837
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2838

2839
	prepare_task_switch(rq, prev, next);
2840
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2841 2842
	mm = next->mm;
	oldmm = prev->active_mm;
2843 2844 2845 2846 2847
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2848
	arch_start_context_switch(prev);
2849

I
Ingo Molnar 已提交
2850
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2857
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2858 2859 2860
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2861 2862 2863 2864 2865 2866 2867
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2868
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2869
#endif
L
Linus Torvalds 已提交
2870 2871 2872 2873

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2874 2875 2876 2877 2878 2879 2880
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2904
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2919 2920
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2921

2922
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2932
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2933 2934 2935 2936 2937
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2951 2952 2953 2954 2955 2956
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2972 2973
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2974
{
2975 2976 2977 2978
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2991

2992 2993
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3017 3018
}

3019 3020 3021 3022 3023 3024 3025 3026 3027
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3028
/*
I
Ingo Molnar 已提交
3029 3030
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3031
 */
I
Ingo Molnar 已提交
3032
static void update_cpu_load(struct rq *this_rq)
3033
{
3034
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3047 3048 3049 3050 3051 3052 3053
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3054 3055
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3056 3057 3058 3059 3060

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3061 3062
}

I
Ingo Molnar 已提交
3063 3064
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3065 3066 3067 3068 3069 3070
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3071
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3072 3073 3074
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3075
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3076 3077 3078 3079
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3080
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3081
			spin_lock(&rq1->lock);
3082
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3083 3084
		} else {
			spin_lock(&rq2->lock);
3085
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3086 3087
		}
	}
3088 3089
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095 3096 3097
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3098
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3112
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3113 3114
 * the cpu_allowed mask is restored.
 */
3115
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3116
{
3117
	struct migration_req req;
L
Linus Torvalds 已提交
3118
	unsigned long flags;
3119
	struct rq *rq;
L
Linus Torvalds 已提交
3120 3121

	rq = task_rq_lock(p, &flags);
3122
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3123
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3124 3125 3126 3127 3128 3129
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3130

L
Linus Torvalds 已提交
3131 3132 3133 3134 3135
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3136

L
Linus Torvalds 已提交
3137 3138 3139 3140 3141 3142 3143
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3144 3145
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3146 3147 3148 3149
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3150
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3151
	put_cpu();
N
Nick Piggin 已提交
3152 3153
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3160 3161
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3162
{
3163
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3164
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3165
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3166 3167 3168 3169
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3170
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3176
static
3177
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3178
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3179
		     int *all_pinned)
L
Linus Torvalds 已提交
3180
{
3181
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3182 3183 3184 3185 3186 3187
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3188
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3189
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3190
		return 0;
3191
	}
3192 3193
	*all_pinned = 0;

3194 3195
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3196
		return 0;
3197
	}
L
Linus Torvalds 已提交
3198

3199 3200 3201 3202 3203 3204
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3205 3206 3207
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3208
#ifdef CONFIG_SCHEDSTATS
3209
		if (tsk_cache_hot) {
3210
			schedstat_inc(sd, lb_hot_gained[idle]);
3211 3212
			schedstat_inc(p, se.nr_forced_migrations);
		}
3213 3214 3215 3216
#endif
		return 1;
	}

3217
	if (tsk_cache_hot) {
3218
		schedstat_inc(p, se.nr_failed_migrations_hot);
3219
		return 0;
3220
	}
L
Linus Torvalds 已提交
3221 3222 3223
	return 1;
}

3224 3225 3226 3227 3228
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3229
{
3230
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3231 3232
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3233

3234
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3235 3236
		goto out;

3237 3238
	pinned = 1;

L
Linus Torvalds 已提交
3239
	/*
I
Ingo Molnar 已提交
3240
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3241
	 */
I
Ingo Molnar 已提交
3242 3243
	p = iterator->start(iterator->arg);
next:
3244
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3245
		goto out;
3246 3247

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3248 3249 3250
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3251 3252
	}

I
Ingo Molnar 已提交
3253
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3254
	pulled++;
I
Ingo Molnar 已提交
3255
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3256

3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3267
	/*
3268
	 * We only want to steal up to the prescribed amount of weighted load.
3269
	 */
3270
	if (rem_load_move > 0) {
3271 3272
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3273 3274
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3275 3276 3277
	}
out:
	/*
3278
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3279 3280 3281 3282
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3283 3284 3285

	if (all_pinned)
		*all_pinned = pinned;
3286 3287

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3288 3289
}

I
Ingo Molnar 已提交
3290
/*
P
Peter Williams 已提交
3291 3292 3293
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3294 3295 3296 3297
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3298
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3299 3300 3301
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3302
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3303
	unsigned long total_load_moved = 0;
3304
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3305 3306

	do {
P
Peter Williams 已提交
3307 3308
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3309
				max_load_move - total_load_moved,
3310
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3311
		class = class->next;
3312

3313 3314 3315 3316 3317 3318
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3319 3320
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3321
#endif
P
Peter Williams 已提交
3322
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3323

P
Peter Williams 已提交
3324 3325 3326
	return total_load_moved > 0;
}

3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3363
	const struct sched_class *class;
P
Peter Williams 已提交
3364

3365
	for_each_class(class) {
3366
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3367
			return 1;
3368
	}
P
Peter Williams 已提交
3369 3370

	return 0;
I
Ingo Molnar 已提交
3371
}
3372
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3373
/*
3374 3375
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3376
 */
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3395
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3396 3397 3398 3399 3400 3401
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3402
#endif
3403
};
L
Linus Torvalds 已提交
3404

3405
/*
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3438
		load_idx = sd->busy_idx;
3439 3440 3441
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3442
		load_idx = sd->newidle_idx;
3443 3444
		break;
	default:
N
Nick Piggin 已提交
3445
		load_idx = sd->idle_idx;
3446 3447
		break;
	}
L
Linus Torvalds 已提交
3448

3449 3450
	return load_idx;
}
L
Linus Torvalds 已提交
3451 3452


3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3491

3492 3493
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3494

3495 3496 3497 3498 3499 3500 3501
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3502

3503 3504 3505 3506 3507 3508 3509 3510
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3511

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3525

3526 3527 3528 3529 3530
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3531
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3532
		return;
L
Linus Torvalds 已提交
3533

3534 3535 3536 3537 3538 3539 3540
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3541

3542
/**
3543
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3544 3545 3546 3547 3548
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3549 3550 3551 3552 3553
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3554 3555 3556 3557 3558 3559 3560 3561
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3562

3563 3564 3565
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3566

3567 3568
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3569

3570
	return 1;
L
Linus Torvalds 已提交
3571

3572 3573 3574 3575 3576 3577 3578
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3579

3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3605 3606 3607 3608 3609 3610 3611 3612 3613
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3614 3615 3616 3617 3618
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3637 3638 3639 3640 3641 3642
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3643 3644 3645 3646 3647
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3648
	power >>= SCHED_LOAD_SHIFT;
3649 3650

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3651 3652 3653 3654 3655
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3656 3657 3658
		power >>= SCHED_LOAD_SHIFT;
	}

3659 3660 3661 3662 3663
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3664

3665
	sdg->cpu_power = power;
3666 3667 3668
}

static void update_group_power(struct sched_domain *sd, int cpu)
3669 3670 3671
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3672
	unsigned long power;
3673 3674

	if (!child) {
3675
		update_cpu_power(sd, cpu);
3676 3677 3678
		return;
	}

3679
	power = 0;
3680 3681 3682

	group = child->groups;
	do {
3683
		power += group->cpu_power;
3684 3685
		group = group->next;
	} while (group != child->groups);
3686 3687

	sdg->cpu_power = power;
3688
}
3689

3690 3691
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3692
 * @sd: The sched_domain whose statistics are to be updated.
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3703 3704
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3715
	if (local_group) {
3716
		balance_cpu = group_first_cpu(group);
3717
		if (balance_cpu == this_cpu)
3718
			update_group_power(sd, this_cpu);
3719
	}
3720 3721 3722 3723 3724

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3725

3726 3727
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3728

3729 3730
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3731

3732
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3733
		if (local_group) {
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3746
		}
3747

3748 3749 3750
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3751

3752 3753
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3766

3767
	/* Adjust by relative CPU power of the group */
3768
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3769

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3780 3781
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3782 3783 3784 3785

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3786
	sgs->group_capacity =
3787
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3788
}
I
Ingo Molnar 已提交
3789

3790 3791 3792 3793 3794 3795 3796 3797 3798
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3799
 */
3800 3801 3802 3803
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3804
{
P
Peter Zijlstra 已提交
3805
	struct sched_domain *child = sd->child;
3806
	struct sched_group *group = sd->groups;
3807
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3808 3809 3810 3811
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3812

3813
	init_sd_power_savings_stats(sd, sds, idle);
3814
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3815 3816 3817 3818

	do {
		int local_group;

3819 3820
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3821
		memset(&sgs, 0, sizeof(sgs));
3822
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3823
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3824

3825 3826
		if (local_group && balance && !(*balance))
			return;
3827

3828
		sds->total_load += sgs.group_load;
3829
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3830

P
Peter Zijlstra 已提交
3831 3832 3833 3834 3835 3836
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3837
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3838 3839

		if (local_group) {
3840 3841 3842 3843 3844
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3845 3846
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3847 3848 3849 3850 3851
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3852
		}
3853

3854
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3855 3856
		group = group->next;
	} while (group != sd->groups);
3857
}
L
Linus Torvalds 已提交
3858

3859 3860
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3861 3862
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3881

3882 3883 3884 3885 3886
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3887

L
Linus Torvalds 已提交
3888
	/*
3889 3890 3891
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3892
	 */
3893

3894
	pwr_now += sds->busiest->cpu_power *
3895
			min(sds->busiest_load_per_task, sds->max_load);
3896
	pwr_now += sds->this->cpu_power *
3897 3898 3899 3900
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3901 3902
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3903
	if (sds->max_load > tmp)
3904
		pwr_move += sds->busiest->cpu_power *
3905 3906 3907
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3908
	if (sds->max_load * sds->busiest->cpu_power <
3909
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3910 3911
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3912
	else
3913 3914 3915
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3916 3917 3918 3919 3920 3921 3922
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3935 3936 3937 3938 3939
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3940
	if (sds->max_load < sds->avg_load) {
3941
		*imbalance = 0;
3942
		return fix_small_imbalance(sds, this_cpu, imbalance);
3943
	}
3944 3945

	/* Don't want to pull so many tasks that a group would go idle */
3946 3947
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3948

L
Linus Torvalds 已提交
3949
	/* How much load to actually move to equalise the imbalance */
3950 3951
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3952 3953
			/ SCHED_LOAD_SCALE;

3954 3955 3956 3957 3958 3959
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3960 3961
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3962

3963
}
3964
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3990 3991 3992 3993 3994 3995 3996
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3997

3998
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3999

4000 4001 4002 4003 4004 4005 4006
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4017 4018
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4019

4020 4021
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4022

4023
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4024 4025
		goto out_balanced;

4026
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4027

4028 4029 4030 4031
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4032 4033
		goto out_balanced;

4034 4035 4036 4037
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4038

L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4047
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4048 4049
	 * appear as very large values with unsigned longs.
	 */
4050
	if (sds.max_load <= sds.busiest_load_per_task)
4051 4052
		goto out_balanced;

4053 4054
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4055
	return sds.busiest;
L
Linus Torvalds 已提交
4056 4057

out_balanced:
4058 4059 4060 4061 4062 4063
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4064
ret:
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069 4070 4071
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4072
static struct rq *
I
Ingo Molnar 已提交
4073
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4074
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4075
{
4076
	struct rq *busiest = NULL, *rq;
4077
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4078 4079
	int i;

4080
	for_each_cpu(i, sched_group_cpus(group)) {
4081 4082
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4083
		unsigned long wl;
4084

4085
		if (!cpumask_test_cpu(i, cpus))
4086 4087
			continue;

4088
		rq = cpu_rq(i);
4089 4090
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4091

4092
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4093
			continue;
L
Linus Torvalds 已提交
4094

I
Ingo Molnar 已提交
4095 4096
		if (wl > max_load) {
			max_load = wl;
4097
			busiest = rq;
L
Linus Torvalds 已提交
4098 4099 4100 4101 4102 4103
		}
	}

	return busiest;
}

4104 4105 4106 4107 4108 4109
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4110 4111 4112
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4113 4114 4115 4116
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4117
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4118
			struct sched_domain *sd, enum cpu_idle_type idle,
4119
			int *balance)
L
Linus Torvalds 已提交
4120
{
P
Peter Williams 已提交
4121
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4122 4123
	struct sched_group *group;
	unsigned long imbalance;
4124
	struct rq *busiest;
4125
	unsigned long flags;
4126
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4127

4128
	cpumask_setall(cpus);
4129

4130 4131 4132
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4133
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4134
	 * portraying it as CPU_NOT_IDLE.
4135
	 */
I
Ingo Molnar 已提交
4136
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4137
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4138
		sd_idle = 1;
L
Linus Torvalds 已提交
4139

4140
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4141

4142
redo:
4143
	update_shares(sd);
4144
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4145
				   cpus, balance);
4146

4147
	if (*balance == 0)
4148 4149
		goto out_balanced;

L
Linus Torvalds 已提交
4150 4151 4152 4153 4154
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4155
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4156 4157 4158 4159 4160
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4161
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4162 4163 4164

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4165
	ld_moved = 0;
L
Linus Torvalds 已提交
4166 4167 4168 4169
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4170
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4171 4172
		 * correctly treated as an imbalance.
		 */
4173
		local_irq_save(flags);
N
Nick Piggin 已提交
4174
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4175
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4176
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4177
		double_rq_unlock(this_rq, busiest);
4178
		local_irq_restore(flags);
4179

4180 4181 4182
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4183
		if (ld_moved && this_cpu != smp_processor_id())
4184 4185
			resched_cpu(this_cpu);

4186
		/* All tasks on this runqueue were pinned by CPU affinity */
4187
		if (unlikely(all_pinned)) {
4188 4189
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4190
				goto redo;
4191
			goto out_balanced;
4192
		}
L
Linus Torvalds 已提交
4193
	}
4194

P
Peter Williams 已提交
4195
	if (!ld_moved) {
L
Linus Torvalds 已提交
4196 4197 4198 4199 4200
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4201
			spin_lock_irqsave(&busiest->lock, flags);
4202 4203 4204 4205

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4206 4207
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4208
				spin_unlock_irqrestore(&busiest->lock, flags);
4209 4210 4211 4212
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4213 4214 4215
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4216
				active_balance = 1;
L
Linus Torvalds 已提交
4217
			}
4218
			spin_unlock_irqrestore(&busiest->lock, flags);
4219
			if (active_balance)
L
Linus Torvalds 已提交
4220 4221 4222 4223 4224 4225
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4226
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4227
		}
4228
	} else
L
Linus Torvalds 已提交
4229 4230
		sd->nr_balance_failed = 0;

4231
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4232 4233
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4234 4235 4236 4237 4238 4239 4240 4241 4242
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4243 4244
	}

P
Peter Williams 已提交
4245
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4246
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4247 4248 4249
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4250 4251 4252 4253

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4254
	sd->nr_balance_failed = 0;
4255 4256

out_one_pinned:
L
Linus Torvalds 已提交
4257
	/* tune up the balancing interval */
4258 4259
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4260 4261
		sd->balance_interval *= 2;

4262
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4263
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4264 4265 4266 4267
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4268 4269
	if (ld_moved)
		update_shares(sd);
4270
	return ld_moved;
L
Linus Torvalds 已提交
4271 4272 4273 4274 4275 4276
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4277
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4278 4279
 * this_rq is locked.
 */
4280
static int
4281
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4282 4283
{
	struct sched_group *group;
4284
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4285
	unsigned long imbalance;
P
Peter Williams 已提交
4286
	int ld_moved = 0;
N
Nick Piggin 已提交
4287
	int sd_idle = 0;
4288
	int all_pinned = 0;
4289
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4290

4291
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4292

4293 4294 4295 4296
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4297
	 * portraying it as CPU_NOT_IDLE.
4298 4299 4300
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4301
		sd_idle = 1;
L
Linus Torvalds 已提交
4302

4303
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4304
redo:
4305
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4306
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4307
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4308
	if (!group) {
I
Ingo Molnar 已提交
4309
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4310
		goto out_balanced;
L
Linus Torvalds 已提交
4311 4312
	}

4313
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4314
	if (!busiest) {
I
Ingo Molnar 已提交
4315
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4316
		goto out_balanced;
L
Linus Torvalds 已提交
4317 4318
	}

N
Nick Piggin 已提交
4319 4320
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4321
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4322

P
Peter Williams 已提交
4323
	ld_moved = 0;
4324 4325 4326
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4327 4328
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4329
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4330 4331
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4332
		double_unlock_balance(this_rq, busiest);
4333

4334
		if (unlikely(all_pinned)) {
4335 4336
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4337 4338
				goto redo;
		}
4339 4340
	}

P
Peter Williams 已提交
4341
	if (!ld_moved) {
4342
		int active_balance = 0;
4343

I
Ingo Molnar 已提交
4344
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4345 4346
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4347
			return -1;
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4384
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4397 4398 4399 4400
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4401 4402
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4403
		spin_lock(&this_rq->lock);
4404

N
Nick Piggin 已提交
4405
	} else
4406
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4407

4408
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4409
	return ld_moved;
4410 4411

out_balanced:
I
Ingo Molnar 已提交
4412
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4413
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4414
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4415
		return -1;
4416
	sd->nr_balance_failed = 0;
4417

4418
	return 0;
L
Linus Torvalds 已提交
4419 4420 4421 4422 4423 4424
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4425
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4426 4427
{
	struct sched_domain *sd;
4428
	int pulled_task = 0;
I
Ingo Molnar 已提交
4429
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4430 4431

	for_each_domain(this_cpu, sd) {
4432 4433 4434 4435 4436 4437
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4438
			/* If we've pulled tasks over stop searching: */
4439
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4440
							   sd);
4441 4442 4443 4444 4445 4446

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4447
	}
I
Ingo Molnar 已提交
4448
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4449 4450 4451 4452 4453
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4454
	}
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4465
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4466
{
4467
	int target_cpu = busiest_rq->push_cpu;
4468 4469
	struct sched_domain *sd;
	struct rq *target_rq;
4470

4471
	/* Is there any task to move? */
4472 4473 4474 4475
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4476 4477

	/*
4478
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4479
	 * we need to fix it. Originally reported by
4480
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4481
	 */
4482
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4483

4484 4485
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4486 4487
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4488 4489

	/* Search for an sd spanning us and the target CPU. */
4490
	for_each_domain(target_cpu, sd) {
4491
		if ((sd->flags & SD_LOAD_BALANCE) &&
4492
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493
				break;
4494
	}
4495

4496
	if (likely(sd)) {
4497
		schedstat_inc(sd, alb_count);
4498

P
Peter Williams 已提交
4499 4500
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4501 4502 4503 4504
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4505
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4506 4507
}

4508 4509 4510
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4511
	cpumask_var_t cpu_mask;
4512
	cpumask_var_t ilb_grp_nohz_mask;
4513 4514 4515 4516
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4517 4518 4519 4520 4521
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4633
	return cpumask_first(nohz.cpu_mask);
4634 4635 4636
}
#endif

4637
/*
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4648
 *
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4664 4665 4666 4667 4668 4669 4670 4671
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4672 4673
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4674

4675 4676 4677
			return 0;
		}

4678 4679
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4680
		/* time for ilb owner also to sleep */
4681
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4682 4683 4684 4685 4686 4687 4688 4689 4690
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4707
			return 1;
4708
		}
4709
	} else {
4710
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4711 4712
			return 0;

4713
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4726 4727 4728 4729 4730
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4731
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4732
{
4733 4734
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4735 4736
	unsigned long interval;
	struct sched_domain *sd;
4737
	/* Earliest time when we have to do rebalance again */
4738
	unsigned long next_balance = jiffies + 60*HZ;
4739
	int update_next_balance = 0;
4740
	int need_serialize;
L
Linus Torvalds 已提交
4741

4742
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4743 4744 4745 4746
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4747
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4754 4755 4756
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4757
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4758

4759
		if (need_serialize) {
4760 4761 4762 4763
			if (!spin_trylock(&balancing))
				goto out;
		}

4764
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4765
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4766 4767
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4768 4769 4770
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4771
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4772
			}
4773
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4774
		}
4775
		if (need_serialize)
4776 4777
			spin_unlock(&balancing);
out:
4778
		if (time_after(next_balance, sd->last_balance + interval)) {
4779
			next_balance = sd->last_balance + interval;
4780 4781
			update_next_balance = 1;
		}
4782 4783 4784 4785 4786 4787 4788 4789

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4790
	}
4791 4792 4793 4794 4795 4796 4797 4798

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4799 4800 4801 4802 4803 4804 4805 4806 4807
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4808 4809 4810 4811
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4812

I
Ingo Molnar 已提交
4813
	rebalance_domains(this_cpu, idle);
4814 4815 4816 4817 4818 4819 4820

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4821 4822
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4823 4824 4825
		struct rq *rq;
		int balance_cpu;

4826 4827 4828 4829
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4830 4831 4832 4833 4834 4835 4836 4837
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4838
			rebalance_domains(balance_cpu, CPU_IDLE);
4839 4840

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4841 4842
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4843 4844 4845 4846 4847
		}
	}
#endif
}

4848 4849 4850 4851 4852
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4853 4854 4855 4856 4857 4858 4859
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4860
static inline void trigger_load_balance(struct rq *rq, int cpu)
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4872
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4873 4874 4875 4876
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4877
			int ilb = find_new_ilb(cpu);
4878

4879
			if (ilb < nr_cpu_ids)
4880 4881 4882 4883 4884 4885 4886 4887 4888
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4889
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4890 4891 4892 4893 4894 4895 4896 4897 4898
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4899
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4900 4901
		return;
#endif
4902 4903 4904
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4905
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4906
}
I
Ingo Molnar 已提交
4907 4908 4909

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4910 4911 4912
/*
 * on UP we do not need to balance between CPUs:
 */
4913
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4914 4915
{
}
I
Ingo Molnar 已提交
4916

L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4924
 * Return any ns on the sched_clock that have not yet been accounted in
4925
 * @p in case that task is currently running.
4926 4927
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4928
 */
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4943
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4944 4945
{
	unsigned long flags;
4946
	struct rq *rq;
4947
	u64 ns = 0;
4948

4949
	rq = task_rq_lock(p, &flags);
4950 4951
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4952

4953 4954
	return ns;
}
4955

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4973

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4993
	task_rq_unlock(rq, &flags);
4994

L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5002
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5003
 */
5004 5005
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5006 5007 5008 5009
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5010
	/* Add user time to process. */
L
Linus Torvalds 已提交
5011
	p->utime = cputime_add(p->utime, cputime);
5012
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5013
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5021 5022

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5023 5024
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5025 5026
}

5027 5028 5029 5030
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5031
 * @cputime_scaled: cputime scaled by cpu frequency
5032
 */
5033 5034
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5035 5036 5037 5038 5039 5040
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5041
	/* Add guest time to process. */
5042
	p->utime = cputime_add(p->utime, cputime);
5043
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044
	account_group_user_time(p, cputime);
5045 5046
	p->gtime = cputime_add(p->gtime, cputime);

5047
	/* Add guest time to cpustat. */
5048 5049 5050 5051
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5052 5053 5054 5055 5056
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5057
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5058 5059
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5060
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5061 5062 5063 5064
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5065
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5066
		account_guest_time(p, cputime, cputime_scaled);
5067 5068
		return;
	}
5069

5070
	/* Add system time to process. */
L
Linus Torvalds 已提交
5071
	p->stime = cputime_add(p->stime, cputime);
5072
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5073
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5074 5075 5076 5077 5078 5079 5080 5081

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5082 5083
		cpustat->system = cputime64_add(cpustat->system, tmp);

5084 5085
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5086 5087 5088 5089
	/* Account for system time used */
	acct_update_integrals(p);
}

5090
/*
L
Linus Torvalds 已提交
5091 5092
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5093
 */
5094
void account_steal_time(cputime_t cputime)
5095
{
5096 5097 5098 5099
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5100 5101
}

L
Linus Torvalds 已提交
5102
/*
5103 5104
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5105
 */
5106
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5107 5108
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5109
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5110
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5111

5112 5113 5114 5115
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5116 5117
}

5118 5119 5120 5121 5122 5123 5124 5125 5126
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5127
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5128 5129 5130
	struct rq *rq = this_rq();

	if (user_tick)
5131
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5132
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5133
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5134 5135
				    one_jiffy_scaled);
	else
5136
		account_idle_time(cputime_one_jiffy);
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5156 5157
}

5158 5159
#endif

5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5230
	struct task_struct *curr = rq->curr;
5231 5232

	sched_clock_tick();
I
Ingo Molnar 已提交
5233 5234

	spin_lock(&rq->lock);
5235
	update_rq_clock(rq);
5236
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5237
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5238
	spin_unlock(&rq->lock);
5239

5240
	perf_event_task_tick(curr, cpu);
5241

5242
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5243 5244
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5245
#endif
L
Linus Torvalds 已提交
5246 5247
}

5248
notrace unsigned long get_parent_ip(unsigned long addr)
5249 5250 5251 5252 5253 5254 5255 5256
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5257

5258 5259 5260
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5261
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5262
{
5263
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5264 5265 5266
	/*
	 * Underflow?
	 */
5267 5268
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5269
#endif
L
Linus Torvalds 已提交
5270
	preempt_count() += val;
5271
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5272 5273 5274
	/*
	 * Spinlock count overflowing soon?
	 */
5275 5276
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5277 5278 5279
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5280 5281 5282
}
EXPORT_SYMBOL(add_preempt_count);

5283
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5284
{
5285
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5286 5287 5288
	/*
	 * Underflow?
	 */
5289
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5290
		return;
L
Linus Torvalds 已提交
5291 5292 5293
	/*
	 * Is the spinlock portion underflowing?
	 */
5294 5295 5296
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5297
#endif
5298

5299 5300
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305 5306 5307
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5308
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5309
 */
I
Ingo Molnar 已提交
5310
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5311
{
5312 5313 5314 5315 5316
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5317
	debug_show_held_locks(prev);
5318
	print_modules();
I
Ingo Molnar 已提交
5319 5320
	if (irqs_disabled())
		print_irqtrace_events(prev);
5321 5322 5323 5324 5325

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5326
}
L
Linus Torvalds 已提交
5327

I
Ingo Molnar 已提交
5328 5329 5330 5331 5332
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5333
	/*
I
Ingo Molnar 已提交
5334
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5335 5336 5337
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5338
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5339 5340
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5341 5342
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5343
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5344 5345
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5346 5347
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5348 5349
	}
#endif
I
Ingo Molnar 已提交
5350 5351
}

5352
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5353
{
5354
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5355

5356
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5357

5358
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5359 5360 5361 5362 5363 5364 5365 5366 5367
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5368 5369 5370 5371
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5372
	}
5373
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5374 5375
}

I
Ingo Molnar 已提交
5376 5377 5378 5379
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5380
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5381
{
5382
	const struct sched_class *class;
I
Ingo Molnar 已提交
5383
	struct task_struct *p;
L
Linus Torvalds 已提交
5384 5385

	/*
I
Ingo Molnar 已提交
5386 5387
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5388
	 */
I
Ingo Molnar 已提交
5389
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5390
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5391 5392
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5393 5394
	}

I
Ingo Molnar 已提交
5395 5396
	class = sched_class_highest;
	for ( ; ; ) {
5397
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5398 5399 5400 5401 5402 5403 5404 5405 5406
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5407

I
Ingo Molnar 已提交
5408 5409 5410
/*
 * schedule() is the main scheduler function.
 */
5411
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5412 5413
{
	struct task_struct *prev, *next;
5414
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5415
	struct rq *rq;
5416
	int cpu;
I
Ingo Molnar 已提交
5417

5418 5419
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5420 5421
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5422
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5423 5424 5425 5426 5427 5428 5429
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5430

5431
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5432
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5433

5434
	spin_lock_irq(&rq->lock);
5435
	update_rq_clock(rq);
5436
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5437 5438

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5439
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5440
			prev->state = TASK_RUNNING;
5441
		else
5442
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5443
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5444 5445
	}

5446
	pre_schedule(rq, prev);
5447

I
Ingo Molnar 已提交
5448
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5449 5450
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5451
	put_prev_task(rq, prev);
5452
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5453 5454

	if (likely(prev != next)) {
5455
		sched_info_switch(prev, next);
5456
		perf_event_task_sched_out(prev, next, cpu);
5457

L
Linus Torvalds 已提交
5458 5459 5460 5461
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5462
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5463 5464 5465 5466 5467 5468
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5469 5470 5471
	} else
		spin_unlock_irq(&rq->lock);

5472
	post_schedule(rq);
L
Linus Torvalds 已提交
5473

P
Peter Zijlstra 已提交
5474
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5475
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5476

L
Linus Torvalds 已提交
5477
	preempt_enable_no_resched();
5478
	if (need_resched())
L
Linus Torvalds 已提交
5479 5480 5481 5482
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5544 5545
#ifdef CONFIG_PREEMPT
/*
5546
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5547
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5553

L
Linus Torvalds 已提交
5554 5555
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5556
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5557
	 */
N
Nick Piggin 已提交
5558
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5559 5560
		return;

5561 5562 5563 5564
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5565

5566 5567 5568 5569 5570
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5571
	} while (need_resched());
L
Linus Torvalds 已提交
5572 5573 5574 5575
}
EXPORT_SYMBOL(preempt_schedule);

/*
5576
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581 5582 5583
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5584

5585
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5586 5587
	BUG_ON(ti->preempt_count || !irqs_disabled());

5588 5589 5590 5591 5592 5593
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5594

5595 5596 5597 5598 5599
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5600
	} while (need_resched());
L
Linus Torvalds 已提交
5601 5602 5603 5604
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5605
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5606
			  void *key)
L
Linus Torvalds 已提交
5607
{
P
Peter Zijlstra 已提交
5608
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5609 5610 5611 5612
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5613 5614
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5615 5616 5617
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5618
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5619 5620
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5621
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5622
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5623
{
5624
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5625

5626
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5627 5628
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5629
		if (curr->func(curr, mode, wake_flags, key) &&
5630
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5640
 * @key: is directly passed to the wakeup function
5641 5642 5643
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5644
 */
5645
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5646
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5659
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5660 5661 5662 5663
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5664 5665 5666 5667 5668
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5669
/**
5670
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5671 5672 5673
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5674
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5675 5676 5677 5678 5679 5680 5681
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5682 5683 5684
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5685
 */
5686 5687
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5688 5689
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5690
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5696
		wake_flags = 0;
L
Linus Torvalds 已提交
5697 5698

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5699
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5700 5701
	spin_unlock_irqrestore(&q->lock, flags);
}
5702 5703 5704 5705 5706 5707 5708 5709 5710
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5711 5712
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5713 5714 5715 5716 5717 5718 5719 5720
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5721 5722 5723
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5724
 */
5725
void complete(struct completion *x)
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5731
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5732 5733 5734 5735
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5736 5737 5738 5739 5740
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5741 5742 5743
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5744
 */
5745
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5746 5747 5748 5749 5750
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5751
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5752 5753 5754 5755
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5756 5757
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5758 5759 5760 5761 5762 5763 5764
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5765
			if (signal_pending_state(state, current)) {
5766 5767
				timeout = -ERESTARTSYS;
				break;
5768 5769
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5770 5771 5772
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5773
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5774
		__remove_wait_queue(&x->wait, &wait);
5775 5776
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5777 5778
	}
	x->done--;
5779
	return timeout ?: 1;
L
Linus Torvalds 已提交
5780 5781
}

5782 5783
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5784 5785 5786 5787
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5788
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5789
	spin_unlock_irq(&x->wait.lock);
5790 5791
	return timeout;
}
L
Linus Torvalds 已提交
5792

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5803
void __sched wait_for_completion(struct completion *x)
5804 5805
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5806
}
5807
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5808

5809 5810 5811 5812 5813 5814 5815 5816 5817
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5818
unsigned long __sched
5819
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5820
{
5821
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5822
}
5823
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5824

5825 5826 5827 5828 5829 5830 5831
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5832
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5833
{
5834 5835 5836 5837
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5838
}
5839
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5840

5841 5842 5843 5844 5845 5846 5847 5848
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5849
unsigned long __sched
5850 5851
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5852
{
5853
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5854
}
5855
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5856

5857 5858 5859 5860 5861 5862 5863
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5919 5920
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5921
{
I
Ingo Molnar 已提交
5922 5923 5924 5925
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5926

5927
	__set_current_state(state);
L
Linus Torvalds 已提交
5928

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5943 5944 5945
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5946
long __sched
I
Ingo Molnar 已提交
5947
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5948
{
5949
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5950 5951 5952
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5953
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5954
{
5955
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5956 5957 5958
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5959
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5960
{
5961
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5962 5963 5964
}
EXPORT_SYMBOL(sleep_on_timeout);

5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5977
void rt_mutex_setprio(struct task_struct *p, int prio)
5978 5979
{
	unsigned long flags;
5980
	int oldprio, on_rq, running;
5981
	struct rq *rq;
5982
	const struct sched_class *prev_class = p->sched_class;
5983 5984 5985 5986

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5987
	update_rq_clock(rq);
5988

5989
	oldprio = p->prio;
I
Ingo Molnar 已提交
5990
	on_rq = p->se.on_rq;
5991
	running = task_current(rq, p);
5992
	if (on_rq)
5993
		dequeue_task(rq, p, 0);
5994 5995
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5996 5997 5998 5999 6000 6001

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6002 6003
	p->prio = prio;

6004 6005
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6006
	if (on_rq) {
6007
		enqueue_task(rq, p, 0);
6008 6009

		check_class_changed(rq, p, prev_class, oldprio, running);
6010 6011 6012 6013 6014 6015
	}
	task_rq_unlock(rq, &flags);
}

#endif

6016
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6017
{
I
Ingo Molnar 已提交
6018
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6019
	unsigned long flags;
6020
	struct rq *rq;
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026 6027 6028

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6029
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6030 6031 6032 6033
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6034
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6035
	 */
6036
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6037 6038 6039
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6040
	on_rq = p->se.on_rq;
6041
	if (on_rq)
6042
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6043 6044

	p->static_prio = NICE_TO_PRIO(nice);
6045
	set_load_weight(p);
6046 6047 6048
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6049

I
Ingo Molnar 已提交
6050
	if (on_rq) {
6051
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6052
		/*
6053 6054
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6055
		 */
6056
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6057 6058 6059 6060 6061 6062 6063
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6064 6065 6066 6067 6068
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6069
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6070
{
6071 6072
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6073

M
Matt Mackall 已提交
6074 6075 6076 6077
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6087
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6088
{
6089
	long nice, retval;
L
Linus Torvalds 已提交
6090 6091 6092 6093 6094 6095

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6096 6097
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6098 6099 6100
	if (increment > 40)
		increment = 40;

6101
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6102 6103 6104 6105 6106
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6107 6108 6109
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6128
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133 6134 6135 6136
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6137
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6138 6139 6140
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6141
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6156
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6157 6158 6159 6160 6161 6162 6163 6164
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6165
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6166
{
6167
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6168 6169 6170
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6171 6172
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6173
{
I
Ingo Molnar 已提交
6174
	BUG_ON(p->se.on_rq);
6175

L
Linus Torvalds 已提交
6176
	p->policy = policy;
I
Ingo Molnar 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6189
	p->rt_priority = prio;
6190 6191 6192
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6193
	set_load_weight(p);
L
Linus Torvalds 已提交
6194 6195
}

6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6212 6213
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6214
{
6215
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6216
	unsigned long flags;
6217
	const struct sched_class *prev_class = p->sched_class;
6218
	struct rq *rq;
6219
	int reset_on_fork;
L
Linus Torvalds 已提交
6220

6221 6222
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6223 6224
recheck:
	/* double check policy once rq lock held */
6225 6226
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6227
		policy = oldpolicy = p->policy;
6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6238 6239
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6240 6241
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6242 6243
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6244
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6245
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6246
		return -EINVAL;
6247
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6248 6249
		return -EINVAL;

6250 6251 6252
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6253
	if (user && !capable(CAP_SYS_NICE)) {
6254
		if (rt_policy(policy)) {
6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6271 6272 6273 6274 6275 6276
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6277

6278
		/* can't change other user's priorities */
6279
		if (!check_same_owner(p))
6280
			return -EPERM;
6281 6282 6283 6284

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6285
	}
L
Linus Torvalds 已提交
6286

6287
	if (user) {
6288
#ifdef CONFIG_RT_GROUP_SCHED
6289 6290 6291 6292
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6293 6294
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6295
			return -EPERM;
6296 6297
#endif

6298 6299 6300 6301 6302
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6303 6304 6305 6306 6307
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6308 6309 6310 6311
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6312
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6313 6314 6315
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6316 6317
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6318 6319
		goto recheck;
	}
I
Ingo Molnar 已提交
6320
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6321
	on_rq = p->se.on_rq;
6322
	running = task_current(rq, p);
6323
	if (on_rq)
6324
		deactivate_task(rq, p, 0);
6325 6326
	if (running)
		p->sched_class->put_prev_task(rq, p);
6327

6328 6329
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6330
	oldprio = p->prio;
I
Ingo Molnar 已提交
6331
	__setscheduler(rq, p, policy, param->sched_priority);
6332

6333 6334
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6335 6336
	if (on_rq) {
		activate_task(rq, p, 0);
6337 6338

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6339
	}
6340 6341 6342
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6343 6344
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6345 6346
	return 0;
}
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6361 6362
EXPORT_SYMBOL_GPL(sched_setscheduler);

6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6380 6381
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6382 6383 6384
{
	struct sched_param lparam;
	struct task_struct *p;
6385
	int retval;
L
Linus Torvalds 已提交
6386 6387 6388 6389 6390

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6391 6392 6393

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6394
	p = find_process_by_pid(pid);
6395 6396 6397
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6398

L
Linus Torvalds 已提交
6399 6400 6401 6402 6403 6404 6405 6406 6407
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6408 6409
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6410
{
6411 6412 6413 6414
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6415 6416 6417 6418 6419 6420 6421 6422
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6423
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6424 6425 6426 6427 6428 6429 6430 6431
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6432
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6433
{
6434
	struct task_struct *p;
6435
	int retval;
L
Linus Torvalds 已提交
6436 6437

	if (pid < 0)
6438
		return -EINVAL;
L
Linus Torvalds 已提交
6439 6440 6441 6442 6443 6444 6445

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6446 6447
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6448 6449 6450 6451 6452 6453
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6454
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6455 6456 6457
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6458
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6459 6460
{
	struct sched_param lp;
6461
	struct task_struct *p;
6462
	int retval;
L
Linus Torvalds 已提交
6463 6464

	if (!param || pid < 0)
6465
		return -EINVAL;
L
Linus Torvalds 已提交
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6492
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6493
{
6494
	cpumask_var_t cpus_allowed, new_mask;
6495 6496
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6497

6498
	get_online_cpus();
L
Linus Torvalds 已提交
6499 6500 6501 6502 6503
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6504
		put_online_cpus();
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6510
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6516 6517 6518 6519 6520 6521 6522 6523
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6524
	retval = -EPERM;
6525
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6526 6527
		goto out_unlock;

6528 6529 6530 6531
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6532 6533
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6534
 again:
6535
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6536

P
Paul Menage 已提交
6537
	if (!retval) {
6538 6539
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6540 6541 6542 6543 6544
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6545
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6546 6547 6548
			goto again;
		}
	}
L
Linus Torvalds 已提交
6549
out_unlock:
6550 6551 6552 6553
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6554
	put_task_struct(p);
6555
	put_online_cpus();
L
Linus Torvalds 已提交
6556 6557 6558 6559
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6560
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6561
{
6562 6563 6564 6565 6566
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6567 6568 6569 6570 6571 6572 6573 6574 6575
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6576 6577
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6578
{
6579
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6580 6581
	int retval;

6582 6583
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6584

6585 6586 6587 6588 6589
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6590 6591
}

6592
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6593
{
6594
	struct task_struct *p;
L
Linus Torvalds 已提交
6595 6596
	int retval;

6597
	get_online_cpus();
L
Linus Torvalds 已提交
6598 6599 6600 6601 6602 6603 6604
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6605 6606 6607 6608
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6609
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6610 6611 6612

out_unlock:
	read_unlock(&tasklist_lock);
6613
	put_online_cpus();
L
Linus Torvalds 已提交
6614

6615
	return retval;
L
Linus Torvalds 已提交
6616 6617 6618 6619 6620 6621 6622 6623
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6624 6625
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6626 6627
{
	int ret;
6628
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6629

6630
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6631 6632
		return -EINVAL;

6633 6634
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6635

6636 6637 6638 6639 6640 6641 6642 6643
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6644

6645
	return ret;
L
Linus Torvalds 已提交
6646 6647 6648 6649 6650
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6651 6652
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6653
 */
6654
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6655
{
6656
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6657

6658
	schedstat_inc(rq, yld_count);
6659
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6660 6661 6662 6663 6664 6665

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6666
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6667 6668 6669 6670 6671 6672 6673 6674
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6675 6676 6677 6678 6679
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6680
static void __cond_resched(void)
L
Linus Torvalds 已提交
6681
{
6682 6683 6684
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6685 6686
}

6687
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6688
{
P
Peter Zijlstra 已提交
6689
	if (should_resched()) {
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694
		__cond_resched();
		return 1;
	}
	return 0;
}
6695
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6696 6697

/*
6698
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6699 6700
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6701
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6702 6703 6704
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6705
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6706
{
P
Peter Zijlstra 已提交
6707
	int resched = should_resched();
J
Jan Kara 已提交
6708 6709
	int ret = 0;

6710 6711
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6712
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6713
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6714
		if (resched)
N
Nick Piggin 已提交
6715 6716 6717
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6718
		ret = 1;
L
Linus Torvalds 已提交
6719 6720
		spin_lock(lock);
	}
J
Jan Kara 已提交
6721
	return ret;
L
Linus Torvalds 已提交
6722
}
6723
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6724

6725
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6726 6727 6728
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6729
	if (should_resched()) {
6730
		local_bh_enable();
L
Linus Torvalds 已提交
6731 6732 6733 6734 6735 6736
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6737
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6738 6739 6740 6741

/**
 * yield - yield the current processor to other threads.
 *
6742
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6753
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6754 6755 6756 6757
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6758
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6759

6760
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6761
	atomic_inc(&rq->nr_iowait);
6762
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6763
	schedule();
6764
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6765
	atomic_dec(&rq->nr_iowait);
6766
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6767 6768 6769 6770 6771
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6772
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6773 6774
	long ret;

6775
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6776
	atomic_inc(&rq->nr_iowait);
6777
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6778
	ret = schedule_timeout(timeout);
6779
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6780
	atomic_dec(&rq->nr_iowait);
6781
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6792
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6802
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6803
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6817
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6827
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6828
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6842
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6843
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6844
{
6845
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6846
	unsigned int time_slice;
6847
	int retval;
L
Linus Torvalds 已提交
6848 6849 6850
	struct timespec t;

	if (pid < 0)
6851
		return -EINVAL;
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6863
	time_slice = p->sched_class->get_rr_interval(p);
D
Dmitry Adamushko 已提交
6864

L
Linus Torvalds 已提交
6865
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6866
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6867 6868
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6869

L
Linus Torvalds 已提交
6870 6871 6872 6873 6874
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6875
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6876

6877
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6878 6879
{
	unsigned long free = 0;
6880
	unsigned state;
L
Linus Torvalds 已提交
6881 6882

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6883
	printk(KERN_INFO "%-13.13s %c", p->comm,
6884
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6885
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6886
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6887
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6888
	else
I
Ingo Molnar 已提交
6889
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6890 6891
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6892
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6893
	else
I
Ingo Molnar 已提交
6894
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6895 6896
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6897
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6898
#endif
6899 6900 6901
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6902

6903
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6904 6905
}

I
Ingo Molnar 已提交
6906
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6907
{
6908
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6909

6910 6911 6912
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6913
#else
6914 6915
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6916 6917 6918 6919 6920 6921 6922 6923
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6924
		if (!state_filter || (p->state & state_filter))
6925
			sched_show_task(p);
L
Linus Torvalds 已提交
6926 6927
	} while_each_thread(g, p);

6928 6929
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6930 6931 6932
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6933
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6934 6935 6936 6937 6938
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6939 6940
}

I
Ingo Molnar 已提交
6941 6942
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6943
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6944 6945
}

6946 6947 6948 6949 6950 6951 6952 6953
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6954
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6955
{
6956
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6957 6958
	unsigned long flags;

6959 6960
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6961 6962 6963
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6964
	idle->prio = idle->normal_prio = MAX_PRIO;
6965
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6966
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6967 6968

	rq->curr = rq->idle = idle;
6969 6970 6971
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6972 6973 6974
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6975 6976 6977
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6978
	task_thread_info(idle)->preempt_count = 0;
6979
#endif
I
Ingo Molnar 已提交
6980 6981 6982 6983
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6984
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6985 6986 6987 6988 6989 6990 6991
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6992
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6993
 */
6994
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6995

I
Ingo Molnar 已提交
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7019 7020

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7021 7022
}

L
Linus Torvalds 已提交
7023 7024 7025 7026
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7027
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7046
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7047 7048
 * call is not atomic; no spinlocks may be held.
 */
7049
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7050
{
7051
	struct migration_req req;
L
Linus Torvalds 已提交
7052
	unsigned long flags;
7053
	struct rq *rq;
7054
	int ret = 0;
L
Linus Torvalds 已提交
7055 7056

	rq = task_rq_lock(p, &flags);
7057
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7058 7059 7060 7061
		ret = -EINVAL;
		goto out;
	}

7062
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7063
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7064 7065 7066 7067
		ret = -EINVAL;
		goto out;
	}

7068
	if (p->sched_class->set_cpus_allowed)
7069
		p->sched_class->set_cpus_allowed(p, new_mask);
7070
	else {
7071 7072
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7073 7074
	}

L
Linus Torvalds 已提交
7075
	/* Can the task run on the task's current CPU? If so, we're done */
7076
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7077 7078
		goto out;

R
Rusty Russell 已提交
7079
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7080
		/* Need help from migration thread: drop lock and wait. */
7081 7082 7083
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7084 7085
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7086
		put_task_struct(mt);
L
Linus Torvalds 已提交
7087 7088 7089 7090 7091 7092
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7093

L
Linus Torvalds 已提交
7094 7095
	return ret;
}
7096
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7097 7098

/*
I
Ingo Molnar 已提交
7099
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7100 7101 7102 7103 7104 7105
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7106 7107
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7108
 */
7109
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7110
{
7111
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7112
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7113

7114
	if (unlikely(!cpu_active(dest_cpu)))
7115
		return ret;
L
Linus Torvalds 已提交
7116 7117 7118 7119 7120 7121 7122

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7123
		goto done;
L
Linus Torvalds 已提交
7124
	/* Affinity changed (again). */
7125
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7126
		goto fail;
L
Linus Torvalds 已提交
7127

I
Ingo Molnar 已提交
7128
	on_rq = p->se.on_rq;
7129
	if (on_rq)
7130
		deactivate_task(rq_src, p, 0);
7131

L
Linus Torvalds 已提交
7132
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7133 7134
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7135
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7136
	}
L
Linus Torvalds 已提交
7137
done:
7138
	ret = 1;
L
Linus Torvalds 已提交
7139
fail:
L
Linus Torvalds 已提交
7140
	double_rq_unlock(rq_src, rq_dest);
7141
	return ret;
L
Linus Torvalds 已提交
7142 7143
}

7144 7145 7146 7147 7148
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7149 7150 7151 7152 7153
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7154
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7155
{
7156
	int badcpu;
L
Linus Torvalds 已提交
7157
	int cpu = (long)data;
7158
	struct rq *rq;
L
Linus Torvalds 已提交
7159 7160 7161 7162 7163 7164

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7165
		struct migration_req *req;
L
Linus Torvalds 已提交
7166 7167 7168 7169 7170 7171
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7172
			break;
L
Linus Torvalds 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7188
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7189 7190
		list_del_init(head->next);

7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7202
		local_irq_enable();
L
Linus Torvalds 已提交
7203 7204 7205 7206 7207 7208 7209 7210 7211

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7223
/*
7224
 * Figure out where task on dead CPU should go, use force if necessary.
7225
 */
7226
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7227
{
7228
	int dest_cpu;
7229
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7246

7247 7248 7249 7250 7251 7252 7253 7254 7255
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7256
		}
7257 7258 7259 7260 7261 7262
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7272
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7273
{
R
Rusty Russell 已提交
7274
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7288
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7289

7290
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7291

7292 7293
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7294 7295
			continue;

7296 7297 7298
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7299

7300
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7301 7302
}

I
Ingo Molnar 已提交
7303 7304
/*
 * Schedules idle task to be the next runnable task on current CPU.
7305 7306
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7307 7308 7309
 */
void sched_idle_next(void)
{
7310
	int this_cpu = smp_processor_id();
7311
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7312 7313 7314 7315
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7316
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7317

7318 7319 7320
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7321 7322 7323
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7324
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7325

7326 7327
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7328 7329 7330 7331

	spin_unlock_irqrestore(&rq->lock, flags);
}

7332 7333
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7347
/* called under rq->lock with disabled interrupts */
7348
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7349
{
7350
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7351 7352

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7353
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7354 7355

	/* Cannot have done final schedule yet: would have vanished. */
7356
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7357

7358
	get_task_struct(p);
L
Linus Torvalds 已提交
7359 7360 7361

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7362
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7363 7364
	 * fine.
	 */
7365
	spin_unlock_irq(&rq->lock);
7366
	move_task_off_dead_cpu(dead_cpu, p);
7367
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7368

7369
	put_task_struct(p);
L
Linus Torvalds 已提交
7370 7371 7372 7373 7374
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7375
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7376
	struct task_struct *next;
7377

I
Ingo Molnar 已提交
7378 7379 7380
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7381
		update_rq_clock(rq);
7382
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7383 7384
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7385
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7386
		migrate_dead(dead_cpu, next);
7387

L
Linus Torvalds 已提交
7388 7389
	}
}
7390 7391 7392 7393 7394 7395 7396

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7397
	rq->calc_load_active = 0;
7398
}
L
Linus Torvalds 已提交
7399 7400
#endif /* CONFIG_HOTPLUG_CPU */

7401 7402 7403
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7404 7405
	{
		.procname	= "sched_domain",
7406
		.mode		= 0555,
7407
	},
I
Ingo Molnar 已提交
7408
	{0, },
7409 7410 7411
};

static struct ctl_table sd_ctl_root[] = {
7412
	{
7413
		.ctl_name	= CTL_KERN,
7414
		.procname	= "kernel",
7415
		.mode		= 0555,
7416 7417
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7418
	{0, },
7419 7420 7421 7422 7423
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7424
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7425 7426 7427 7428

	return entry;
}

7429 7430
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7431
	struct ctl_table *entry;
7432

7433 7434 7435
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7436
	 * will always be set. In the lowest directory the names are
7437 7438 7439
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7440 7441
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7442 7443 7444
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7445 7446 7447 7448 7449

	kfree(*tablep);
	*tablep = NULL;
}

7450
static void
7451
set_table_entry(struct ctl_table *entry,
7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7465
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7466

7467 7468 7469
	if (table == NULL)
		return NULL;

7470
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7471
		sizeof(long), 0644, proc_doulongvec_minmax);
7472
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7473
		sizeof(long), 0644, proc_doulongvec_minmax);
7474
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7475
		sizeof(int), 0644, proc_dointvec_minmax);
7476
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7477
		sizeof(int), 0644, proc_dointvec_minmax);
7478
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7479
		sizeof(int), 0644, proc_dointvec_minmax);
7480
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7481
		sizeof(int), 0644, proc_dointvec_minmax);
7482
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7483
		sizeof(int), 0644, proc_dointvec_minmax);
7484
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7485
		sizeof(int), 0644, proc_dointvec_minmax);
7486
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7487
		sizeof(int), 0644, proc_dointvec_minmax);
7488
	set_table_entry(&table[9], "cache_nice_tries",
7489 7490
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7491
	set_table_entry(&table[10], "flags", &sd->flags,
7492
		sizeof(int), 0644, proc_dointvec_minmax);
7493 7494 7495
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7496 7497 7498 7499

	return table;
}

7500
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7501 7502 7503 7504 7505 7506 7507 7508 7509
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7510 7511
	if (table == NULL)
		return NULL;
7512 7513 7514 7515 7516

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7517
		entry->mode = 0555;
7518 7519 7520 7521 7522 7523 7524 7525
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7526
static void register_sched_domain_sysctl(void)
7527 7528 7529 7530 7531
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7532 7533 7534
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7535 7536 7537
	if (entry == NULL)
		return;

7538
	for_each_online_cpu(i) {
7539 7540
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7541
		entry->mode = 0555;
7542
		entry->child = sd_alloc_ctl_cpu_table(i);
7543
		entry++;
7544
	}
7545 7546

	WARN_ON(sd_sysctl_header);
7547 7548
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7549

7550
/* may be called multiple times per register */
7551 7552
static void unregister_sched_domain_sysctl(void)
{
7553 7554
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7555
	sd_sysctl_header = NULL;
7556 7557
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7558
}
7559
#else
7560 7561 7562 7563
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7564 7565 7566 7567
{
}
#endif

7568 7569 7570 7571 7572
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7573
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7593
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7594 7595 7596 7597
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7598 7599 7600 7601
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7602 7603
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7604 7605
{
	struct task_struct *p;
7606
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7607
	unsigned long flags;
7608
	struct rq *rq;
L
Linus Torvalds 已提交
7609 7610

	switch (action) {
7611

L
Linus Torvalds 已提交
7612
	case CPU_UP_PREPARE:
7613
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7614
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7615 7616 7617 7618 7619
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7620
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7621
		task_rq_unlock(rq, &flags);
7622
		get_task_struct(p);
L
Linus Torvalds 已提交
7623
		cpu_rq(cpu)->migration_thread = p;
7624
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7625
		break;
7626

L
Linus Torvalds 已提交
7627
	case CPU_ONLINE:
7628
	case CPU_ONLINE_FROZEN:
7629
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7630
		wake_up_process(cpu_rq(cpu)->migration_thread);
7631 7632 7633 7634 7635

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7636
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7637 7638

			set_rq_online(rq);
7639 7640
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7641
		break;
7642

L
Linus Torvalds 已提交
7643 7644
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7645
	case CPU_UP_CANCELED_FROZEN:
7646 7647
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7648
		/* Unbind it from offline cpu so it can run. Fall thru. */
7649
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7650
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7651
		kthread_stop(cpu_rq(cpu)->migration_thread);
7652
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7653 7654
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7655

L
Linus Torvalds 已提交
7656
	case CPU_DEAD:
7657
	case CPU_DEAD_FROZEN:
7658
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7659 7660 7661
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7662
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7663 7664
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7665
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7666
		update_rq_clock(rq);
7667
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7668
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7669 7670
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7671
		migrate_dead_tasks(cpu);
7672
		spin_unlock_irq(&rq->lock);
7673
		cpuset_unlock();
L
Linus Torvalds 已提交
7674 7675
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7676
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7677 7678 7679 7680 7681
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7682 7683
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7684 7685
			struct migration_req *req;

L
Linus Torvalds 已提交
7686
			req = list_entry(rq->migration_queue.next,
7687
					 struct migration_req, list);
L
Linus Torvalds 已提交
7688
			list_del_init(&req->list);
B
Brian King 已提交
7689
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7690
			complete(&req->done);
B
Brian King 已提交
7691
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7692 7693 7694
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7695

7696 7697
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7698 7699 7700 7701
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7702
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7703
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7704 7705 7706
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7707 7708 7709 7710 7711
#endif
	}
	return NOTIFY_OK;
}

7712 7713 7714
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7715
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7716
 */
7717
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7718 7719 7720 7721
	.notifier_call = migration_call,
	.priority = 10
};

7722
static int __init migration_init(void)
L
Linus Torvalds 已提交
7723 7724
{
	void *cpu = (void *)(long)smp_processor_id();
7725
	int err;
7726 7727

	/* Start one for the boot CPU: */
7728 7729
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7730 7731
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7732

7733
	return 0;
L
Linus Torvalds 已提交
7734
}
7735
early_initcall(migration_init);
L
Linus Torvalds 已提交
7736 7737 7738
#endif

#ifdef CONFIG_SMP
7739

7740
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7741

7742
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7743
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7744
{
I
Ingo Molnar 已提交
7745
	struct sched_group *group = sd->groups;
7746
	char str[256];
L
Linus Torvalds 已提交
7747

R
Rusty Russell 已提交
7748
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7749
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7750 7751 7752 7753 7754 7755 7756 7757 7758

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7759 7760
	}

7761
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7762

7763
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7764 7765 7766
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7767
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7768 7769 7770
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7771

I
Ingo Molnar 已提交
7772
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7773
	do {
I
Ingo Molnar 已提交
7774 7775 7776
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7777 7778 7779
			break;
		}

7780
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7781 7782 7783 7784 7785
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7786

7787
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7788 7789 7790 7791
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7792

7793
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7794 7795 7796 7797
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7798

7799
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7800

R
Rusty Russell 已提交
7801
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7802 7803

		printk(KERN_CONT " %s", str);
7804 7805 7806
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7807
		}
L
Linus Torvalds 已提交
7808

I
Ingo Molnar 已提交
7809 7810 7811
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7812

7813
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7814
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7815

7816 7817
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7818 7819 7820 7821
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7822

I
Ingo Molnar 已提交
7823 7824
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7825
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7826
	int level = 0;
L
Linus Torvalds 已提交
7827

I
Ingo Molnar 已提交
7828 7829 7830 7831
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7832

I
Ingo Molnar 已提交
7833 7834
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7835
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7836 7837 7838 7839
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7840
	for (;;) {
7841
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7842
			break;
L
Linus Torvalds 已提交
7843 7844
		level++;
		sd = sd->parent;
7845
		if (!sd)
I
Ingo Molnar 已提交
7846 7847
			break;
	}
7848
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7849
}
7850
#else /* !CONFIG_SCHED_DEBUG */
7851
# define sched_domain_debug(sd, cpu) do { } while (0)
7852
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7853

7854
static int sd_degenerate(struct sched_domain *sd)
7855
{
7856
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7857 7858 7859 7860 7861 7862
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7863 7864 7865
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7866 7867 7868 7869 7870
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7871
	if (sd->flags & (SD_WAKE_AFFINE))
7872 7873 7874 7875 7876
		return 0;

	return 1;
}

7877 7878
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7879 7880 7881 7882 7883 7884
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7885
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7886 7887 7888 7889 7890 7891 7892
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7893 7894 7895
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7896 7897
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7898 7899 7900 7901 7902 7903 7904
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7905 7906
static void free_rootdomain(struct root_domain *rd)
{
7907 7908
	cpupri_cleanup(&rd->cpupri);

7909 7910 7911 7912 7913 7914
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7915 7916
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7917
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7918 7919 7920 7921 7922
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7923
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7924

7925
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7926
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7927

7928
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7929

I
Ingo Molnar 已提交
7930 7931 7932 7933 7934 7935 7936
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7937 7938 7939 7940 7941
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7942
	cpumask_set_cpu(rq->cpu, rd->span);
7943
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7944
		set_rq_online(rq);
G
Gregory Haskins 已提交
7945 7946

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7947 7948 7949

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7950 7951
}

L
Li Zefan 已提交
7952
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7953
{
7954 7955
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7956 7957
	memset(rd, 0, sizeof(*rd));

7958 7959
	if (bootmem)
		gfp = GFP_NOWAIT;
7960

7961
	if (!alloc_cpumask_var(&rd->span, gfp))
7962
		goto out;
7963
	if (!alloc_cpumask_var(&rd->online, gfp))
7964
		goto free_span;
7965
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7966
		goto free_online;
7967

P
Pekka Enberg 已提交
7968
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7969
		goto free_rto_mask;
7970
	return 0;
7971

7972 7973
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7974 7975 7976 7977
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7978
out:
7979
	return -ENOMEM;
G
Gregory Haskins 已提交
7980 7981 7982 7983
}

static void init_defrootdomain(void)
{
7984 7985
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7986 7987 7988
	atomic_set(&def_root_domain.refcount, 1);
}

7989
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7990 7991 7992 7993 7994 7995 7996
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7997 7998 7999 8000
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8001 8002 8003 8004

	return rd;
}

L
Linus Torvalds 已提交
8005
/*
I
Ingo Molnar 已提交
8006
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8007 8008
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8009 8010
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8011
{
8012
	struct rq *rq = cpu_rq(cpu);
8013 8014 8015
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8016
	for (tmp = sd; tmp; ) {
8017 8018 8019
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8020

8021
		if (sd_parent_degenerate(tmp, parent)) {
8022
			tmp->parent = parent->parent;
8023 8024
			if (parent->parent)
				parent->parent->child = tmp;
8025 8026
		} else
			tmp = tmp->parent;
8027 8028
	}

8029
	if (sd && sd_degenerate(sd)) {
8030
		sd = sd->parent;
8031 8032 8033
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8034 8035 8036

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8037
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8038
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8039 8040 8041
}

/* cpus with isolated domains */
8042
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8043 8044 8045 8046

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8047
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8048 8049 8050
	return 1;
}

I
Ingo Molnar 已提交
8051
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8052 8053

/*
8054 8055
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8056 8057
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8058 8059 8060 8061 8062
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8063
static void
8064 8065 8066
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8067
					struct sched_group **sg,
8068 8069
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8070 8071 8072 8073
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8074
	cpumask_clear(covered);
8075

8076
	for_each_cpu(i, span) {
8077
		struct sched_group *sg;
8078
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8079 8080
		int j;

8081
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8082 8083
			continue;

8084
		cpumask_clear(sched_group_cpus(sg));
8085
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8086

8087
		for_each_cpu(j, span) {
8088
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8089 8090
				continue;

8091
			cpumask_set_cpu(j, covered);
8092
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8093 8094 8095 8096 8097 8098 8099 8100 8101 8102
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8103
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8104

8105
#ifdef CONFIG_NUMA
8106

8107 8108 8109 8110 8111
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8112
 * Find the next node to include in a given scheduling domain. Simply
8113 8114 8115 8116
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8117
static int find_next_best_node(int node, nodemask_t *used_nodes)
8118 8119 8120 8121 8122
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8123
	for (i = 0; i < nr_node_ids; i++) {
8124
		/* Start at @node */
8125
		n = (node + i) % nr_node_ids;
8126 8127 8128 8129 8130

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8131
		if (node_isset(n, *used_nodes))
8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8143
	node_set(best_node, *used_nodes);
8144 8145 8146 8147 8148 8149
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8150
 * @span: resulting cpumask
8151
 *
I
Ingo Molnar 已提交
8152
 * Given a node, construct a good cpumask for its sched_domain to span. It
8153 8154 8155
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8156
static void sched_domain_node_span(int node, struct cpumask *span)
8157
{
8158
	nodemask_t used_nodes;
8159
	int i;
8160

8161
	cpumask_clear(span);
8162
	nodes_clear(used_nodes);
8163

8164
	cpumask_or(span, span, cpumask_of_node(node));
8165
	node_set(node, used_nodes);
8166 8167

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8168
		int next_node = find_next_best_node(node, &used_nodes);
8169

8170
		cpumask_or(span, span, cpumask_of_node(next_node));
8171 8172
	}
}
8173
#endif /* CONFIG_NUMA */
8174

8175
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8176

8177 8178
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8179 8180 8181
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8226
/*
8227
 * SMT sched-domains:
8228
 */
L
Linus Torvalds 已提交
8229
#ifdef CONFIG_SCHED_SMT
8230 8231
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8232

I
Ingo Molnar 已提交
8233
static int
8234 8235
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8236
{
8237
	if (sg)
8238
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8239 8240
	return cpu;
}
8241
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8242

8243 8244 8245
/*
 * multi-core sched-domains:
 */
8246
#ifdef CONFIG_SCHED_MC
8247 8248
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8249
#endif /* CONFIG_SCHED_MC */
8250 8251

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8252
static int
8253 8254
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8255
{
8256
	int group;
8257

8258
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8259
	group = cpumask_first(mask);
8260
	if (sg)
8261
		*sg = &per_cpu(sched_group_core, group).sg;
8262
	return group;
8263 8264
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8265
static int
8266 8267
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8268
{
8269
	if (sg)
8270
		*sg = &per_cpu(sched_group_core, cpu).sg;
8271 8272 8273 8274
	return cpu;
}
#endif

8275 8276
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8277

I
Ingo Molnar 已提交
8278
static int
8279 8280
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8281
{
8282
	int group;
8283
#ifdef CONFIG_SCHED_MC
8284
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8285
	group = cpumask_first(mask);
8286
#elif defined(CONFIG_SCHED_SMT)
8287
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8288
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8289
#else
8290
	group = cpu;
L
Linus Torvalds 已提交
8291
#endif
8292
	if (sg)
8293
		*sg = &per_cpu(sched_group_phys, group).sg;
8294
	return group;
L
Linus Torvalds 已提交
8295 8296 8297 8298
}

#ifdef CONFIG_NUMA
/*
8299 8300 8301
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8302
 */
8303
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8304
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8305

8306
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8307
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8308

8309 8310 8311
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8312
{
8313 8314
	int group;

8315
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8316
	group = cpumask_first(nodemask);
8317 8318

	if (sg)
8319
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8320
	return group;
L
Linus Torvalds 已提交
8321
}
8322

8323 8324 8325 8326 8327 8328 8329
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8330
	do {
8331
		for_each_cpu(j, sched_group_cpus(sg)) {
8332
			struct sched_domain *sd;
8333

8334
			sd = &per_cpu(phys_domains, j).sd;
8335
			if (j != group_first_cpu(sd->groups)) {
8336 8337 8338 8339 8340 8341
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8342

8343
			sg->cpu_power += sd->groups->cpu_power;
8344 8345 8346
		}
		sg = sg->next;
	} while (sg != group_head);
8347
}
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8380
	sg->cpu_power = 0;
8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8403
		sg->cpu_power = 0;
8404 8405 8406 8407 8408 8409 8410 8411 8412
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8413
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8414

8415
#ifdef CONFIG_NUMA
8416
/* Free memory allocated for various sched_group structures */
8417 8418
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8419
{
8420
	int cpu, i;
8421

8422
	for_each_cpu(cpu, cpu_map) {
8423 8424 8425 8426 8427 8428
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8429
		for (i = 0; i < nr_node_ids; i++) {
8430 8431
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8432
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8433
			if (cpumask_empty(nodemask))
8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8450
#else /* !CONFIG_NUMA */
8451 8452
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8453 8454
{
}
8455
#endif /* CONFIG_NUMA */
8456

8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8471 8472
	long power;
	int weight;
8473 8474 8475

	WARN_ON(!sd || !sd->groups);

8476
	if (cpu != group_first_cpu(sd->groups))
8477 8478 8479 8480
		return;

	child = sd->child;

8481
	sd->groups->cpu_power = 0;
8482

8483 8484 8485 8486 8487
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8488 8489 8490
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8491
		 */
P
Peter Zijlstra 已提交
8492 8493
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8494
			power /= weight;
P
Peter Zijlstra 已提交
8495 8496
			power >>= SCHED_LOAD_SHIFT;
		}
8497
		sd->groups->cpu_power += power;
8498 8499 8500 8501
		return;
	}

	/*
8502
	 * Add cpu_power of each child group to this groups cpu_power.
8503 8504 8505
	 */
	group = child->groups;
	do {
8506
		sd->groups->cpu_power += group->cpu_power;
8507 8508 8509 8510
		group = group->next;
	} while (group != child->groups);
}

8511 8512 8513 8514 8515
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8516 8517 8518 8519 8520 8521
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8522
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8523

8524 8525 8526 8527 8528
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8529
	sd->level = SD_LV_##type;				\
8530
	SD_INIT_NAME(sd, type);					\
8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8545 8546 8547 8548
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8549 8550 8551 8552 8553 8554
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8573
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8574 8575
	} else {
		/* turn on idle balance on this domain */
8576
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8577 8578 8579
	}
}

8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8600
#ifdef CONFIG_NUMA
8601 8602 8603 8604 8605 8606 8607
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8608
#endif
8609 8610 8611 8612
	case sa_none:
		break;
	}
}
8613

8614 8615 8616
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8617
#ifdef CONFIG_NUMA
8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8628
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8629
		return sa_notcovered;
8630
	}
8631
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8632
#endif
8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8645
		printk(KERN_WARNING "Cannot alloc root domain\n");
8646
		return sa_tmpmask;
G
Gregory Haskins 已提交
8647
	}
8648 8649
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8650

8651 8652 8653 8654
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8655
#ifdef CONFIG_NUMA
8656
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8657

8658 8659 8660 8661 8662
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8663
		set_domain_attribute(sd, attr);
8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8678
#endif
8679 8680
	return sd;
}
L
Linus Torvalds 已提交
8681

8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8697

8698 8699 8700 8701 8702
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8703
#ifdef CONFIG_SCHED_MC
8704 8705 8706 8707 8708 8709 8710
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8711
#endif
8712 8713
	return sd;
}
8714

8715 8716 8717 8718 8719
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8720
#ifdef CONFIG_SCHED_SMT
8721 8722 8723 8724 8725 8726 8727
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8728
#endif
8729 8730
	return sd;
}
L
Linus Torvalds 已提交
8731

8732 8733 8734 8735
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8736
#ifdef CONFIG_SCHED_SMT
8737 8738 8739 8740 8741 8742 8743 8744
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8745
#endif
8746
#ifdef CONFIG_SCHED_MC
8747 8748 8749 8750 8751 8752 8753
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8754
#endif
8755 8756 8757 8758 8759 8760 8761
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8762
#ifdef CONFIG_NUMA
8763 8764 8765 8766 8767
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8768 8769
	default:
		break;
8770
	}
8771
}
8772

8773 8774 8775 8776 8777 8778 8779 8780 8781
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8782
	struct sched_domain *sd;
8783
	int i;
8784
#ifdef CONFIG_NUMA
8785
	d.sd_allnodes = 0;
8786
#endif
8787

8788 8789 8790 8791
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8792

L
Linus Torvalds 已提交
8793
	/*
8794
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8795
	 */
8796
	for_each_cpu(i, cpu_map) {
8797 8798
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8799

8800
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8801
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8802
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8803
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8804
	}
8805

8806
	for_each_cpu(i, cpu_map) {
8807
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8808
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8809
	}
8810

L
Linus Torvalds 已提交
8811
	/* Set up physical groups */
8812 8813
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8814

L
Linus Torvalds 已提交
8815 8816
#ifdef CONFIG_NUMA
	/* Set up node groups */
8817 8818
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8819

8820 8821
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8822
			goto error;
L
Linus Torvalds 已提交
8823 8824 8825
#endif

	/* Calculate CPU power for physical packages and nodes */
8826
#ifdef CONFIG_SCHED_SMT
8827
	for_each_cpu(i, cpu_map) {
8828
		sd = &per_cpu(cpu_domains, i).sd;
8829
		init_sched_groups_power(i, sd);
8830
	}
L
Linus Torvalds 已提交
8831
#endif
8832
#ifdef CONFIG_SCHED_MC
8833
	for_each_cpu(i, cpu_map) {
8834
		sd = &per_cpu(core_domains, i).sd;
8835
		init_sched_groups_power(i, sd);
8836 8837
	}
#endif
8838

8839
	for_each_cpu(i, cpu_map) {
8840
		sd = &per_cpu(phys_domains, i).sd;
8841
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8842 8843
	}

8844
#ifdef CONFIG_NUMA
8845
	for (i = 0; i < nr_node_ids; i++)
8846
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8847

8848
	if (d.sd_allnodes) {
8849
		struct sched_group *sg;
8850

8851
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8852
								d.tmpmask);
8853 8854
		init_numa_sched_groups_power(sg);
	}
8855 8856
#endif

L
Linus Torvalds 已提交
8857
	/* Attach the domains */
8858
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8859
#ifdef CONFIG_SCHED_SMT
8860
		sd = &per_cpu(cpu_domains, i).sd;
8861
#elif defined(CONFIG_SCHED_MC)
8862
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8863
#else
8864
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8865
#endif
8866
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8867
	}
8868

8869 8870 8871
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8872 8873

error:
8874 8875
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8876
}
P
Paul Jackson 已提交
8877

8878
static int build_sched_domains(const struct cpumask *cpu_map)
8879 8880 8881 8882
{
	return __build_sched_domains(cpu_map, NULL);
}

8883
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8884
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8885 8886
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8887 8888 8889

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8890 8891
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8892
 */
8893
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8894

8895 8896 8897 8898 8899 8900
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8901
{
8902
	return 0;
8903 8904
}

8905
/*
I
Ingo Molnar 已提交
8906
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8907 8908
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8909
 */
8910
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8911
{
8912 8913
	int err;

8914
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8915
	ndoms_cur = 1;
8916
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8917
	if (!doms_cur)
8918
		doms_cur = fallback_doms;
8919
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8920
	dattr_cur = NULL;
8921
	err = build_sched_domains(doms_cur);
8922
	register_sched_domain_sysctl();
8923 8924

	return err;
8925 8926
}

8927 8928
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8929
{
8930
	free_sched_groups(cpu_map, tmpmask);
8931
}
L
Linus Torvalds 已提交
8932

8933 8934 8935 8936
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8937
static void detach_destroy_domains(const struct cpumask *cpu_map)
8938
{
8939 8940
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8941 8942
	int i;

8943
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8944
		cpu_attach_domain(NULL, &def_root_domain, i);
8945
	synchronize_sched();
8946
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8947 8948
}

8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8965 8966
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8967
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8968 8969 8970
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8971
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8972 8973 8974
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8975 8976 8977
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8978 8979
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8980 8981 8982 8983
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8984
 *
8985
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8986 8987
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8988
 *
P
Paul Jackson 已提交
8989 8990
 * Call with hotplug lock held
 */
8991 8992
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8993
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8994
{
8995
	int i, j, n;
8996
	int new_topology;
P
Paul Jackson 已提交
8997

8998
	mutex_lock(&sched_domains_mutex);
8999

9000 9001 9002
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9003 9004 9005
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9006
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9007 9008 9009

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9010
		for (j = 0; j < n && !new_topology; j++) {
9011
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9012
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9013 9014 9015 9016 9017 9018 9019 9020
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9021 9022
	if (doms_new == NULL) {
		ndoms_cur = 0;
9023
		doms_new = fallback_doms;
9024
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9025
		WARN_ON_ONCE(dattr_new);
9026 9027
	}

P
Paul Jackson 已提交
9028 9029
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9030
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9031
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9032
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9033 9034 9035
				goto match2;
		}
		/* no match - add a new doms_new */
9036 9037
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9038 9039 9040 9041 9042
match2:
		;
	}

	/* Remember the new sched domains */
9043
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9044
		kfree(doms_cur);
9045
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9046
	doms_cur = doms_new;
9047
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9048
	ndoms_cur = ndoms_new;
9049 9050

	register_sched_domain_sysctl();
9051

9052
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9053 9054
}

9055
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9056
static void arch_reinit_sched_domains(void)
9057
{
9058
	get_online_cpus();
9059 9060 9061 9062

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9063
	rebuild_sched_domains();
9064
	put_online_cpus();
9065 9066 9067 9068
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9069
	unsigned int level = 0;
9070

9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9082 9083 9084
		return -EINVAL;

	if (smt)
9085
		sched_smt_power_savings = level;
9086
	else
9087
		sched_mc_power_savings = level;
9088

9089
	arch_reinit_sched_domains();
9090

9091
	return count;
9092 9093 9094
}

#ifdef CONFIG_SCHED_MC
9095 9096
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9097 9098 9099
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9100
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9101
					    const char *buf, size_t count)
9102 9103 9104
{
	return sched_power_savings_store(buf, count, 0);
}
9105 9106 9107
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9108 9109 9110
#endif

#ifdef CONFIG_SCHED_SMT
9111 9112
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9113 9114 9115
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9116
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9117
					     const char *buf, size_t count)
9118 9119 9120
{
	return sched_power_savings_store(buf, count, 1);
}
9121 9122
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9123 9124 9125
		   sched_smt_power_savings_store);
#endif

9126
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9142
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9143

9144
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9145
/*
9146 9147
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9148 9149 9150
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9151 9152 9153 9154 9155 9156
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9157
		partition_sched_domains(1, NULL, NULL);
9158 9159 9160 9161 9162 9163 9164 9165 9166 9167
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9168
{
P
Peter Zijlstra 已提交
9169 9170
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9171 9172
	switch (action) {
	case CPU_DOWN_PREPARE:
9173
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9174
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9175 9176 9177
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9178
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9179
	case CPU_ONLINE:
9180
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9181
		enable_runtime(cpu_rq(cpu));
9182 9183
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9184 9185 9186 9187 9188 9189 9190
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9191 9192 9193
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9194
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9195

9196 9197 9198 9199 9200
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9201
	get_online_cpus();
9202
	mutex_lock(&sched_domains_mutex);
9203 9204 9205 9206
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9207
	mutex_unlock(&sched_domains_mutex);
9208
	put_online_cpus();
9209 9210

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9211 9212
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9213 9214 9215 9216 9217
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9218
	init_hrtick();
9219 9220

	/* Move init over to a non-isolated CPU */
9221
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9222
		BUG();
I
Ingo Molnar 已提交
9223
	sched_init_granularity();
9224
	free_cpumask_var(non_isolated_cpus);
9225

9226
	init_sched_rt_class();
L
Linus Torvalds 已提交
9227 9228 9229 9230
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9231
	sched_init_granularity();
L
Linus Torvalds 已提交
9232 9233 9234
}
#endif /* CONFIG_SMP */

9235 9236
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9237 9238 9239 9240 9241 9242 9243
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9244
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9245 9246
{
	cfs_rq->tasks_timeline = RB_ROOT;
9247
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9248 9249 9250
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9251
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9252 9253
}

P
Peter Zijlstra 已提交
9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9267
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9268
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9269
#ifdef CONFIG_SMP
9270
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9271 9272
#endif
#endif
P
Peter Zijlstra 已提交
9273 9274 9275
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9276
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9277 9278 9279 9280
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9281 9282
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9283

9284
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9285
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9286 9287
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9288 9289
}

P
Peter Zijlstra 已提交
9290
#ifdef CONFIG_FAIR_GROUP_SCHED
9291 9292 9293
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9294
{
9295
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9296 9297 9298 9299 9300 9301 9302
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9303 9304 9305 9306
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9307 9308 9309 9310 9311
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9312 9313
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9314
	se->load.inv_weight = 0;
9315
	se->parent = parent;
P
Peter Zijlstra 已提交
9316
}
9317
#endif
P
Peter Zijlstra 已提交
9318

9319
#ifdef CONFIG_RT_GROUP_SCHED
9320 9321 9322
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9323
{
9324 9325
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9326 9327 9328 9329
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9330
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9331 9332 9333 9334
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9335 9336 9337
	if (!rt_se)
		return;

9338 9339 9340 9341 9342
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9343
	rt_se->my_q = rt_rq;
9344
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9345 9346 9347 9348
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9349 9350
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9351
	int i, j;
9352 9353 9354 9355 9356 9357 9358
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9359 9360 9361
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9362 9363
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9364
	alloc_size += num_possible_cpus() * cpumask_size();
9365 9366 9367 9368 9369 9370
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9371
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9372 9373 9374 9375 9376 9377 9378

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9379 9380 9381 9382 9383 9384 9385

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9386 9387
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9388 9389 9390 9391 9392
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9393 9394 9395 9396 9397 9398 9399 9400
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9401 9402
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9403 9404 9405 9406 9407 9408
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9409
	}
I
Ingo Molnar 已提交
9410

G
Gregory Haskins 已提交
9411 9412 9413 9414
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9415 9416 9417 9418 9419 9420
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9421 9422 9423
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9424 9425
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9426

9427
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9428
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9429 9430 9431 9432 9433 9434
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9435 9436
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9437

9438 9439 9440 9441
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9442
	for_each_possible_cpu(i) {
9443
		struct rq *rq;
L
Linus Torvalds 已提交
9444 9445 9446

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9447
		rq->nr_running = 0;
9448 9449
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9450
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9451
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9452
#ifdef CONFIG_FAIR_GROUP_SCHED
9453
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9454
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9470
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9471 9472 9473 9474
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9475
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9476
#elif defined CONFIG_USER_SCHED
9477 9478
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9479 9480 9481 9482 9483 9484 9485 9486
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9487
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9488 9489
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9490
		init_tg_cfs_entry(&init_task_group,
9491
				&per_cpu(init_tg_cfs_rq, i),
9492 9493
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9494

9495
#endif
D
Dhaval Giani 已提交
9496 9497 9498
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9499
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9500
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9501
#ifdef CONFIG_CGROUP_SCHED
9502
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9503
#elif defined CONFIG_USER_SCHED
9504
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9505
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9506
				&per_cpu(init_rt_rq, i),
9507 9508
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9509
#endif
I
Ingo Molnar 已提交
9510
#endif
L
Linus Torvalds 已提交
9511

I
Ingo Molnar 已提交
9512 9513
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9514
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9515
		rq->sd = NULL;
G
Gregory Haskins 已提交
9516
		rq->rd = NULL;
9517
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9518
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9519
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9520
		rq->push_cpu = 0;
9521
		rq->cpu = i;
9522
		rq->online = 0;
L
Linus Torvalds 已提交
9523 9524
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9525
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9526
#endif
P
Peter Zijlstra 已提交
9527
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9528 9529 9530
		atomic_set(&rq->nr_iowait, 0);
	}

9531
	set_load_weight(&init_task);
9532

9533 9534 9535 9536
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9537
#ifdef CONFIG_SMP
9538
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9539 9540
#endif

9541 9542 9543 9544
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9558 9559 9560

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9561 9562 9563 9564
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9565

9566
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9567
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9568
#ifdef CONFIG_SMP
9569
#ifdef CONFIG_NO_HZ
9570
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9571
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9572
#endif
9573
	zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9574
#endif /* SMP */
9575

9576
	perf_event_init();
9577

9578
	scheduler_running = 1;
L
Linus Torvalds 已提交
9579 9580 9581
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9582 9583 9584 9585 9586 9587 9588 9589
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9590
{
9591
#ifdef in_atomic
L
Linus Torvalds 已提交
9592 9593
	static unsigned long prev_jiffy;	/* ratelimiting */

9594 9595
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9613 9614 9615 9616 9617 9618
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9619 9620 9621
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9622

9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9634 9635
void normalize_rt_tasks(void)
{
9636
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9637
	unsigned long flags;
9638
	struct rq *rq;
L
Linus Torvalds 已提交
9639

9640
	read_lock_irqsave(&tasklist_lock, flags);
9641
	do_each_thread(g, p) {
9642 9643 9644 9645 9646 9647
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9648 9649
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9650 9651 9652
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9653
#endif
I
Ingo Molnar 已提交
9654 9655 9656 9657 9658 9659 9660 9661

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9662
			continue;
I
Ingo Molnar 已提交
9663
		}
L
Linus Torvalds 已提交
9664

9665
		spin_lock(&p->pi_lock);
9666
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9667

9668
		normalize_task(rq, p);
9669

9670
		__task_rq_unlock(rq);
9671
		spin_unlock(&p->pi_lock);
9672 9673
	} while_each_thread(g, p);

9674
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9675 9676 9677
}

#endif /* CONFIG_MAGIC_SYSRQ */
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9696
struct task_struct *curr_task(int cpu)
9697 9698 9699 9700 9701 9702 9703 9704 9705 9706
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9707 9708
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9709 9710 9711 9712 9713 9714 9715
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9716
void set_curr_task(int cpu, struct task_struct *p)
9717 9718 9719 9720 9721
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9722

9723 9724
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9739 9740
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9741 9742
{
	struct cfs_rq *cfs_rq;
9743
	struct sched_entity *se;
9744
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9745 9746
	int i;

9747
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9748 9749
	if (!tg->cfs_rq)
		goto err;
9750
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9751 9752
	if (!tg->se)
		goto err;
9753 9754

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9755 9756

	for_each_possible_cpu(i) {
9757
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9758

9759 9760
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9761 9762 9763
		if (!cfs_rq)
			goto err;

9764 9765
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9766 9767 9768
		if (!se)
			goto err;

9769
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9788
#else /* !CONFG_FAIR_GROUP_SCHED */
9789 9790 9791 9792
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9793 9794
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9806
#endif /* CONFIG_FAIR_GROUP_SCHED */
9807 9808

#ifdef CONFIG_RT_GROUP_SCHED
9809 9810 9811 9812
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9813 9814
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9826 9827
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9828 9829
{
	struct rt_rq *rt_rq;
9830
	struct sched_rt_entity *rt_se;
9831 9832 9833
	struct rq *rq;
	int i;

9834
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9835 9836
	if (!tg->rt_rq)
		goto err;
9837
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9838 9839 9840
	if (!tg->rt_se)
		goto err;

9841 9842
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9843 9844 9845 9846

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9847 9848
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9849 9850
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9851

9852 9853
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9854 9855
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9856

9857
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9858 9859
	}

9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9876
#else /* !CONFIG_RT_GROUP_SCHED */
9877 9878 9879 9880
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9881 9882
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9894
#endif /* CONFIG_RT_GROUP_SCHED */
9895

9896
#ifdef CONFIG_GROUP_SCHED
9897 9898 9899 9900 9901 9902 9903 9904
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9905
struct task_group *sched_create_group(struct task_group *parent)
9906 9907 9908 9909 9910 9911 9912 9913 9914
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9915
	if (!alloc_fair_sched_group(tg, parent))
9916 9917
		goto err;

9918
	if (!alloc_rt_sched_group(tg, parent))
9919 9920
		goto err;

9921
	spin_lock_irqsave(&task_group_lock, flags);
9922
	for_each_possible_cpu(i) {
9923 9924
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9925
	}
P
Peter Zijlstra 已提交
9926
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9927 9928 9929 9930 9931

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9932
	list_add_rcu(&tg->siblings, &parent->children);
9933
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9934

9935
	return tg;
S
Srivatsa Vaddagiri 已提交
9936 9937

err:
P
Peter Zijlstra 已提交
9938
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9939 9940 9941
	return ERR_PTR(-ENOMEM);
}

9942
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9943
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9944 9945
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9946
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9947 9948
}

9949
/* Destroy runqueue etc associated with a task group */
9950
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9951
{
9952
	unsigned long flags;
9953
	int i;
S
Srivatsa Vaddagiri 已提交
9954

9955
	spin_lock_irqsave(&task_group_lock, flags);
9956
	for_each_possible_cpu(i) {
9957 9958
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9959
	}
P
Peter Zijlstra 已提交
9960
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9961
	list_del_rcu(&tg->siblings);
9962
	spin_unlock_irqrestore(&task_group_lock, flags);
9963 9964

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9965
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9966 9967
}

9968
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9969 9970 9971
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9972 9973
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9974 9975 9976 9977 9978 9979 9980 9981 9982
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9983
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9984 9985
	on_rq = tsk->se.on_rq;

9986
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9987
		dequeue_task(rq, tsk, 0);
9988 9989
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9990

P
Peter Zijlstra 已提交
9991
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9992

P
Peter Zijlstra 已提交
9993 9994 9995 9996 9997
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9998 9999 10000
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10001
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10002 10003 10004

	task_rq_unlock(rq, &flags);
}
10005
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10006

10007
#ifdef CONFIG_FAIR_GROUP_SCHED
10008
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10009 10010 10011 10012 10013
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10014
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10015 10016 10017
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10018
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10019

10020
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10021
		enqueue_entity(cfs_rq, se, 0);
10022
}
10023

10024 10025 10026 10027 10028 10029 10030 10031 10032
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10033 10034
}

10035 10036
static DEFINE_MUTEX(shares_mutex);

10037
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10038 10039
{
	int i;
10040
	unsigned long flags;
10041

10042 10043 10044 10045 10046 10047
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10048 10049
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10050 10051
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10052

10053
	mutex_lock(&shares_mutex);
10054
	if (tg->shares == shares)
10055
		goto done;
S
Srivatsa Vaddagiri 已提交
10056

10057
	spin_lock_irqsave(&task_group_lock, flags);
10058 10059
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10060
	list_del_rcu(&tg->siblings);
10061
	spin_unlock_irqrestore(&task_group_lock, flags);
10062 10063 10064 10065 10066 10067 10068 10069

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10070
	tg->shares = shares;
10071 10072 10073 10074 10075
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10076
		set_se_shares(tg->se[i], shares);
10077
	}
S
Srivatsa Vaddagiri 已提交
10078

10079 10080 10081 10082
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10083
	spin_lock_irqsave(&task_group_lock, flags);
10084 10085
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10086
	list_add_rcu(&tg->siblings, &tg->parent->children);
10087
	spin_unlock_irqrestore(&task_group_lock, flags);
10088
done:
10089
	mutex_unlock(&shares_mutex);
10090
	return 0;
S
Srivatsa Vaddagiri 已提交
10091 10092
}

10093 10094 10095 10096
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10097
#endif
10098

10099
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10100
/*
P
Peter Zijlstra 已提交
10101
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10102
 */
P
Peter Zijlstra 已提交
10103 10104 10105 10106 10107
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10108
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10109

P
Peter Zijlstra 已提交
10110
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10111 10112
}

P
Peter Zijlstra 已提交
10113 10114
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10115
{
P
Peter Zijlstra 已提交
10116
	struct task_struct *g, *p;
10117

P
Peter Zijlstra 已提交
10118 10119 10120 10121
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10122

P
Peter Zijlstra 已提交
10123 10124
	return 0;
}
10125

P
Peter Zijlstra 已提交
10126 10127 10128 10129 10130
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10131

P
Peter Zijlstra 已提交
10132 10133 10134 10135 10136 10137
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10138

P
Peter Zijlstra 已提交
10139 10140
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10141

P
Peter Zijlstra 已提交
10142 10143 10144
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10145 10146
	}

10147 10148 10149 10150 10151 10152 10153
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10154 10155 10156 10157 10158
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10159

10160 10161 10162
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10163 10164
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10165

P
Peter Zijlstra 已提交
10166
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10167

10168 10169 10170 10171 10172
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10173

10174 10175 10176
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10177 10178 10179
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10180

P
Peter Zijlstra 已提交
10181 10182 10183 10184
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10185

P
Peter Zijlstra 已提交
10186
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10187
	}
P
Peter Zijlstra 已提交
10188

P
Peter Zijlstra 已提交
10189 10190 10191 10192
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10193 10194
}

P
Peter Zijlstra 已提交
10195
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10196
{
P
Peter Zijlstra 已提交
10197 10198 10199 10200 10201 10202 10203
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10204 10205
}

10206 10207
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10208
{
P
Peter Zijlstra 已提交
10209
	int i, err = 0;
P
Peter Zijlstra 已提交
10210 10211

	mutex_lock(&rt_constraints_mutex);
10212
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10213 10214
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10215
		goto unlock;
P
Peter Zijlstra 已提交
10216 10217

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10218 10219
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10220 10221 10222 10223 10224 10225 10226 10227 10228

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10229
 unlock:
10230
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10231 10232 10233
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10234 10235
}

10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10248 10249 10250 10251
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10252
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10253 10254
		return -1;

10255
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10256 10257 10258
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10259 10260 10261 10262 10263 10264 10265 10266

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10267 10268 10269
	if (rt_period == 0)
		return -EINVAL;

10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10284
	u64 runtime, period;
10285 10286
	int ret = 0;

10287 10288 10289
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10290 10291 10292 10293 10294 10295 10296 10297
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10298

10299
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10300
	read_lock(&tasklist_lock);
10301
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10302
	read_unlock(&tasklist_lock);
10303 10304 10305 10306
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10307 10308 10309 10310 10311 10312 10313 10314 10315 10316

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10317
#else /* !CONFIG_RT_GROUP_SCHED */
10318 10319
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10320 10321 10322
	unsigned long flags;
	int i;

10323 10324 10325
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10326 10327 10328 10329 10330 10331 10332
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10333 10334 10335 10336 10337 10338 10339 10340 10341 10342
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10343 10344
	return 0;
}
10345
#endif /* CONFIG_RT_GROUP_SCHED */
10346 10347

int sched_rt_handler(struct ctl_table *table, int write,
10348
		void __user *buffer, size_t *lenp,
10349 10350 10351 10352 10353 10354 10355 10356 10357 10358
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10359
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10376

10377
#ifdef CONFIG_CGROUP_SCHED
10378 10379

/* return corresponding task_group object of a cgroup */
10380
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10381
{
10382 10383
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10384 10385 10386
}

static struct cgroup_subsys_state *
10387
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10388
{
10389
	struct task_group *tg, *parent;
10390

10391
	if (!cgrp->parent) {
10392 10393 10394 10395
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10396 10397
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10398 10399 10400 10401 10402 10403
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10404 10405
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10406
{
10407
	struct task_group *tg = cgroup_tg(cgrp);
10408 10409 10410 10411

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10412
static int
10413
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10414
{
10415
#ifdef CONFIG_RT_GROUP_SCHED
10416
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10417 10418
		return -EINVAL;
#else
10419 10420 10421
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10422
#endif
10423 10424
	return 0;
}
10425

10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10445 10446 10447 10448
	return 0;
}

static void
10449
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10450 10451
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10452 10453
{
	sched_move_task(tsk);
10454 10455 10456 10457 10458 10459 10460 10461
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10462 10463
}

10464
#ifdef CONFIG_FAIR_GROUP_SCHED
10465
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10466
				u64 shareval)
10467
{
10468
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10469 10470
}

10471
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10472
{
10473
	struct task_group *tg = cgroup_tg(cgrp);
10474 10475 10476

	return (u64) tg->shares;
}
10477
#endif /* CONFIG_FAIR_GROUP_SCHED */
10478

10479
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10480
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10481
				s64 val)
P
Peter Zijlstra 已提交
10482
{
10483
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10484 10485
}

10486
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10487
{
10488
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10489
}
10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10501
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10502

10503
static struct cftype cpu_files[] = {
10504
#ifdef CONFIG_FAIR_GROUP_SCHED
10505 10506
	{
		.name = "shares",
10507 10508
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10509
	},
10510 10511
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10512
	{
P
Peter Zijlstra 已提交
10513
		.name = "rt_runtime_us",
10514 10515
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10516
	},
10517 10518
	{
		.name = "rt_period_us",
10519 10520
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10521
	},
10522
#endif
10523 10524 10525 10526
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10527
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10528 10529 10530
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10531 10532 10533 10534 10535 10536 10537
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10538 10539 10540
	.early_init	= 1,
};

10541
#endif	/* CONFIG_CGROUP_SCHED */
10542 10543 10544 10545 10546 10547 10548 10549 10550 10551

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10552
/* track cpu usage of a group of tasks and its child groups */
10553 10554 10555 10556
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10557
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10558
	struct cpuacct *parent;
10559 10560 10561 10562 10563
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10564
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10565
{
10566
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10579
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10580 10581
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10582
	int i;
10583 10584

	if (!ca)
10585
		goto out;
10586 10587

	ca->cpuusage = alloc_percpu(u64);
10588 10589 10590 10591 10592 10593
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10594

10595 10596 10597
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10598
	return &ca->css;
10599 10600 10601 10602 10603 10604 10605 10606 10607

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10608 10609 10610
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10611
static void
10612
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10613
{
10614
	struct cpuacct *ca = cgroup_ca(cgrp);
10615
	int i;
10616

10617 10618
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10619 10620 10621 10622
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10623 10624
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10625
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10644
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10658
/* return total cpu usage (in nanoseconds) of a group */
10659
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10660
{
10661
	struct cpuacct *ca = cgroup_ca(cgrp);
10662 10663 10664
	u64 totalcpuusage = 0;
	int i;

10665 10666
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10667 10668 10669 10670

	return totalcpuusage;
}

10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10683 10684
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10685 10686 10687 10688 10689

out:
	return err;
}

10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10724 10725 10726
static struct cftype files[] = {
	{
		.name = "usage",
10727 10728
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10729
	},
10730 10731 10732 10733
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10734 10735 10736 10737
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10738 10739
};

10740
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10741
{
10742
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10743 10744 10745 10746 10747 10748 10749 10750 10751 10752
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10753
	int cpu;
10754

L
Li Zefan 已提交
10755
	if (unlikely(!cpuacct_subsys.active))
10756 10757
		return;

10758
	cpu = task_cpu(tsk);
10759 10760 10761

	rcu_read_lock();

10762 10763
	ca = task_ca(tsk);

10764
	for (; ca; ca = ca->parent) {
10765
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10766 10767
		*cpuusage += cputime;
	}
10768 10769

	rcu_read_unlock();
10770 10771
}

10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10793 10794 10795 10796 10797 10798 10799 10800
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */