sched.c 263.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311
/*
 * Root task group.
312 313
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
314 315 316
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
321
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618
	/* For active balancing */
619
	int post_schedule;
L
Linus Torvalds 已提交
620 621
	int active_balance;
	int push_cpu;
622 623
	/* cpu of this runqueue: */
	int cpu;
624
	int online;
L
Linus Torvalds 已提交
625

626
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
627

628
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
629 630 631
	struct list_head migration_queue;
#endif

632 633 634 635
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
636
#ifdef CONFIG_SCHED_HRTICK
637 638 639 640
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
641 642 643
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
644 645 646
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
647 648
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
649 650

	/* sys_sched_yield() stats */
651
	unsigned int yld_count;
L
Linus Torvalds 已提交
652 653

	/* schedule() stats */
654 655 656
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
657 658

	/* try_to_wake_up() stats */
659 660
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
661 662

	/* BKL stats */
663
	unsigned int bkl_count;
L
Linus Torvalds 已提交
664 665 666
#endif
};

667
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
668

669
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
670
{
671
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
672 673
}

674 675 676 677 678 679 680 681 682
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
683 684
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
686 687 688 689
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
690 691
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
692 693 694 695 696

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
697
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
698

I
Ingo Molnar 已提交
699
inline void update_rq_clock(struct rq *rq)
700 701 702 703
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
704 705 706 707 708 709 710 711 712
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
731 732 733
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
734 735 736 737

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
738
enum {
P
Peter Zijlstra 已提交
739
#include "sched_features.h"
I
Ingo Molnar 已提交
740 741
};

P
Peter Zijlstra 已提交
742 743 744 745 746
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
747
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

757
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
758 759 760 761 762 763
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
764
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
765 766 767 768
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
769 770 771
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
772
	}
L
Li Zefan 已提交
773
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
774

L
Li Zefan 已提交
775
	return 0;
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
795
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
820 821 822 823 824
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
825
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
826 827 828 829 830
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
845

846 847 848 849 850 851
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
852 853
/*
 * ratelimit for updating the group shares.
854
 * default: 0.25ms
P
Peter Zijlstra 已提交
855
 */
856
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
857

858 859 860 861 862 863 864
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
865
/*
P
Peter Zijlstra 已提交
866
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
867 868
 * default: 1s
 */
P
Peter Zijlstra 已提交
869
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
870

871 872
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
873 874 875 876 877
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
878

879 880 881 882 883 884 885
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
886
	if (sysctl_sched_rt_runtime < 0)
887 888 889 890
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
891

L
Linus Torvalds 已提交
892
#ifndef prepare_arch_switch
893 894 895 896 897 898
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

899 900 901 902 903
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

904
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
905
static inline int task_running(struct rq *rq, struct task_struct *p)
906
{
907
	return task_current(rq, p);
908 909
}

910
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 912 913
{
}

914
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915
{
916 917 918 919
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
920 921 922 923 924 925 926
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

927 928 929 930
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
931
static inline int task_running(struct rq *rq, struct task_struct *p)
932 933 934 935
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
936
	return task_current(rq, p);
937 938 939
#endif
}

940
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

957
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 959 960 961 962 963 964 965 966 967 968 969
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
970
#endif
971 972
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
973

974 975 976 977
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
978
static inline struct rq *__task_rq_lock(struct task_struct *p)
979 980
	__acquires(rq->lock)
{
981 982 983 984 985
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
986 987 988 989
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
990 991
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
992
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
993 994
 * explicitly disabling preemption.
 */
995
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999

1000 1001 1002 1003 1004 1005
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1010 1011 1012 1013 1014 1015 1016 1017
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1018
static void __task_rq_unlock(struct rq *rq)
1019 1020 1021 1022 1023
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1024
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1031
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1032
 */
A
Alexey Dobriyan 已提交
1033
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1034 1035
	__acquires(rq->lock)
{
1036
	struct rq *rq;
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1066
	if (!cpu_active(cpu_of(rq)))
1067
		return 0;
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1088
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1089 1090 1091 1092 1093 1094
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1095
#ifdef CONFIG_SMP
1096 1097 1098 1099
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1100
{
1101
	struct rq *rq = arg;
1102

1103 1104 1105 1106
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1107 1108
}

1109 1110 1111 1112 1113 1114
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1115
{
1116 1117
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118

1119
	hrtimer_set_expires(timer, time);
1120 1121 1122 1123

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1124
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 1126
		rq->hrtick_csd_pending = 1;
	}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1141
		hrtick_clear(cpu_rq(cpu));
1142 1143 1144 1145 1146 1147
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1148
static __init void init_hrtick(void)
1149 1150 1151
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1152 1153 1154 1155 1156 1157 1158 1159
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1160
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161
			HRTIMER_MODE_REL_PINNED, 0);
1162
}
1163

A
Andrew Morton 已提交
1164
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1165 1166
{
}
1167
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1168

1169
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1170
{
1171 1172
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1173

1174 1175 1176 1177
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1178

1179 1180
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1181
}
A
Andrew Morton 已提交
1182
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188 1189 1190
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1191 1192 1193
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1194
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1195

I
Ingo Molnar 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1209
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1210 1211 1212 1213 1214
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1215
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1216 1217
		return;

1218
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1274
	set_tsk_need_resched(rq->idle);
1275 1276 1277 1278 1279 1280

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1281
#endif /* CONFIG_NO_HZ */
1282

1283
#else /* !CONFIG_SMP */
1284
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1285 1286
{
	assert_spin_locked(&task_rq(p)->lock);
1287
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1288
}
1289
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1299 1300 1301
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1302
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1303

1304 1305 1306
/*
 * delta *= weight / lw
 */
1307
static unsigned long
1308 1309 1310 1311 1312
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1313 1314 1315 1316 1317 1318 1319
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1320 1321 1322 1323 1324

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1325
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1326
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1327 1328
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1329
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330

1331
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 1333
}

1334
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 1336
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 1342
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1343
	lw->inv_weight = 0;
1344 1345
}

1346 1347 1348 1349
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1350
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 1352 1353 1354
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1355 1356
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 1367 1368
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1369 1370
 */
static const int prio_to_weight[40] = {
1371 1372 1373 1374 1375 1376 1377 1378
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1379 1380
};

1381 1382 1383 1384 1385 1386 1387
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1388
static const u32 prio_to_wmult[40] = {
1389 1390 1391 1392 1393 1394 1395 1396
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1397
};
1398

I
Ingo Molnar 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1433 1434
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 1436
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1437 1438
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 1440
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1441 1442
#endif

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1453
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1454
typedef int (*tg_visitor)(struct task_group *, void *);
1455 1456 1457 1458 1459

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1460
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 1462
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1463
	int ret;
1464 1465 1466 1467

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1468 1469 1470
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1471 1472 1473 1474 1475 1476 1477
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1478 1479 1480
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1481 1482 1483 1484 1485

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1486
out_unlock:
1487
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1488 1489

	return ret;
1490 1491
}

P
Peter Zijlstra 已提交
1492 1493 1494
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1495
}
P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1506
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1507

1508 1509
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1510 1511
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1512 1513 1514 1515 1516

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1517

1518 1519 1520 1521 1522 1523
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1524 1525 1526 1527 1528
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1529 1530 1531 1532
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1533
{
1534
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1535
	int boost = 0;
1536

1537
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1538 1539 1540 1541
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1542

1543
	/*
P
Peter Zijlstra 已提交
1544 1545 1546
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1547
	 */
1548
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1549
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1550

1551 1552 1553 1554
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1555

1556
		spin_lock_irqsave(&rq->lock, flags);
1557
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1558
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1559 1560 1561
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1562
}
1563 1564

/*
1565 1566 1567
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1568
 */
P
Peter Zijlstra 已提交
1569
static int tg_shares_up(struct task_group *tg, void *data)
1570
{
1571 1572
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1573
	struct sched_domain *sd = data;
1574
	unsigned long flags;
1575
	int i;
1576

1577 1578 1579 1580 1581 1582
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1583
	for_each_cpu(i, sched_domain_span(sd)) {
1584 1585 1586
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1587 1588 1589 1590 1591 1592 1593 1594
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1595
		rq_weight += weight;
1596
		shares += tg->cfs_rq[i]->shares;
1597 1598
	}

1599 1600 1601 1602 1603
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1604

P
Peter Zijlstra 已提交
1605
	for_each_cpu(i, sched_domain_span(sd))
1606 1607 1608
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1609 1610

	return 0;
1611 1612 1613
}

/*
1614 1615 1616
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_load_down(struct task_group *tg, void *data)
1619
{
1620
	unsigned long load;
P
Peter Zijlstra 已提交
1621
	long cpu = (long)data;
1622

1623 1624 1625 1626 1627 1628 1629
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1630

1631
	tg->cfs_rq[cpu]->h_load = load;
1632

P
Peter Zijlstra 已提交
1633
	return 0;
1634 1635
}

1636
static void update_shares(struct sched_domain *sd)
1637
{
1638 1639 1640 1641 1642 1643 1644 1645
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1646 1647 1648

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1649
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1650
	}
1651 1652
}

1653 1654
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1655 1656 1657
	if (root_task_group_empty())
		return;

1658 1659 1660 1661 1662
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1663
static void update_h_load(long cpu)
1664
{
1665 1666 1667
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1668
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1669 1670 1671 1672
}

#else

1673
static inline void update_shares(struct sched_domain *sd)
1674 1675 1676
{
}

1677 1678 1679 1680
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1681 1682
#endif

1683 1684
#ifdef CONFIG_PREEMPT

1685
/*
1686 1687 1688 1689 1690 1691
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1692
 */
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1747 1748 1749 1750 1751 1752
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1753 1754
#endif

V
Vegard Nossum 已提交
1755
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1756 1757
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1758
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1759 1760 1761
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1762
#endif
1763

1764 1765
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1766 1767
#include "sched_stats.h"
#include "sched_idletask.c"
1768 1769
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1770 1771 1772 1773 1774
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1775 1776
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1777

1778
static void inc_nr_running(struct rq *rq)
1779 1780 1781 1782
{
	rq->nr_running++;
}

1783
static void dec_nr_running(struct rq *rq)
1784 1785 1786 1787
{
	rq->nr_running--;
}

1788 1789 1790
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1791 1792 1793 1794
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1795

I
Ingo Molnar 已提交
1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1804

I
Ingo Molnar 已提交
1805 1806
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1807 1808
}

1809 1810 1811 1812 1813 1814
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1815
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1816
{
P
Peter Zijlstra 已提交
1817 1818 1819
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1820
	sched_info_queued(p);
1821
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1822
	p->se.on_rq = 1;
1823 1824
}

1825
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1826
{
P
Peter Zijlstra 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1836 1837
	}

1838
	sched_info_dequeued(p);
1839
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1840
	p->se.on_rq = 0;
1841 1842
}

1843
/*
I
Ingo Molnar 已提交
1844
 * __normal_prio - return the priority that is based on the static prio
1845 1846 1847
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1848
	return p->static_prio;
1849 1850
}

1851 1852 1853 1854 1855 1856 1857
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1858
static inline int normal_prio(struct task_struct *p)
1859 1860 1861
{
	int prio;

1862
	if (task_has_rt_policy(p))
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1876
static int effective_prio(struct task_struct *p)
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1889
/*
I
Ingo Molnar 已提交
1890
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1891
 */
I
Ingo Molnar 已提交
1892
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1893
{
1894
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1895
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1896

1897
	enqueue_task(rq, p, wakeup);
1898
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1899 1900 1901 1902 1903
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1904
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1905
{
1906
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1907 1908
		rq->nr_uninterruptible++;

1909
	dequeue_task(rq, p, sleep);
1910
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1917
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1918 1919 1920 1921
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1922 1923
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1924
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1925
#ifdef CONFIG_SMP
1926 1927 1928 1929 1930 1931
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1932 1933
	task_thread_info(p)->cpu = cpu;
#endif
1934 1935
}

1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1948
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1949

1950 1951 1952 1953 1954 1955
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1956 1957 1958
/*
 * Is this task likely cache-hot:
 */
1959
static int
1960 1961 1962 1963
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1964 1965 1966
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1967 1968 1969
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1970 1971
		return 1;

1972 1973 1974
	if (p->sched_class != &fair_sched_class)
		return 0;

1975 1976 1977 1978 1979
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1980 1981 1982 1983 1984 1985
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1986
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1987
{
I
Ingo Molnar 已提交
1988 1989
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1990 1991
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1992
	u64 clock_offset;
I
Ingo Molnar 已提交
1993 1994

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1995

1996
	trace_sched_migrate_task(p, new_cpu);
1997

I
Ingo Molnar 已提交
1998 1999 2000
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2001 2002 2003 2004
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2005
#endif
2006
	if (old_cpu != new_cpu) {
2007
		p->se.nr_migrations++;
2008
		new_rq->nr_migrations_in++;
2009
#ifdef CONFIG_SCHEDSTATS
2010 2011
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2012
#endif
2013 2014
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2015
	}
2016 2017
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2018 2019

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2020 2021
}

2022
struct migration_req {
L
Linus Torvalds 已提交
2023 2024
	struct list_head list;

2025
	struct task_struct *task;
L
Linus Torvalds 已提交
2026 2027 2028
	int dest_cpu;

	struct completion done;
2029
};
L
Linus Torvalds 已提交
2030 2031 2032 2033 2034

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2035
static int
2036
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2037
{
2038
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2039 2040 2041 2042 2043

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2044
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2045 2046 2047 2048 2049 2050 2051 2052
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2053

L
Linus Torvalds 已提交
2054 2055 2056
	return 1;
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2100 2101 2102
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2103 2104 2105 2106 2107 2108 2109
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2116
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2117 2118
{
	unsigned long flags;
I
Ingo Molnar 已提交
2119
	int running, on_rq;
R
Roland McGrath 已提交
2120
	unsigned long ncsw;
2121
	struct rq *rq;
L
Linus Torvalds 已提交
2122

2123 2124 2125 2126 2127 2128 2129 2130
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2143 2144 2145
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2146
			cpu_relax();
R
Roland McGrath 已提交
2147
		}
2148

2149 2150 2151 2152 2153 2154
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2155
		trace_sched_wait_task(rq, p);
2156 2157
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2158
		ncsw = 0;
2159
		if (!match_state || p->state == match_state)
2160
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2161
		task_rq_unlock(rq, &flags);
2162

R
Roland McGrath 已提交
2163 2164 2165 2166 2167 2168
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2179

2180 2181 2182 2183 2184
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2185
		 * So if it was still runnable (but just not actively
2186 2187 2188 2189 2190 2191 2192
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2193

2194 2195 2196 2197 2198 2199 2200
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2201 2202

	return ncsw;
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2218
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2228
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2229 2230

/*
2231 2232
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2233 2234 2235 2236
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2237
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2238
{
2239
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2240
	unsigned long total = weighted_cpuload(cpu);
2241

2242
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2243
		return total;
2244

I
Ingo Molnar 已提交
2245
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2246 2247 2248
}

/*
2249 2250
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2251
 */
A
Alexey Dobriyan 已提交
2252
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2253
{
2254
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2255
	unsigned long total = weighted_cpuload(cpu);
2256

2257
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2258
		return total;
2259

I
Ingo Molnar 已提交
2260
	return max(rq->cpu_load[type-1], total);
2261 2262
}

N
Nick Piggin 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2280
		/* Skip over this group if it has no CPUs allowed */
2281 2282
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2283
			continue;
2284

2285 2286
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2287 2288 2289 2290

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2291
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2302 2303
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2304 2305 2306 2307 2308 2309 2310 2311

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2312
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2313 2314 2315 2316 2317 2318 2319

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2320
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2321
 */
I
Ingo Molnar 已提交
2322
static int
2323
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2324 2325 2326 2327 2328
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2329
	/* Traverse only the allowed CPUs */
2330
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2331
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2357

2358
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2359 2360 2361
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2362 2363
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2364 2365
		if (tmp->flags & flag)
			sd = tmp;
2366
	}
N
Nick Piggin 已提交
2367

2368 2369 2370
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2371 2372
	while (sd) {
		struct sched_group *group;
2373 2374 2375 2376 2377 2378
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2379 2380

		group = find_idlest_group(sd, t, cpu);
2381 2382 2383 2384
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2385

2386
		new_cpu = find_idlest_cpu(group, t, cpu);
2387 2388 2389 2390 2391
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2392

2393
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2394
		cpu = new_cpu;
2395
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2396 2397
		sd = NULL;
		for_each_domain(cpu, tmp) {
2398
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2410

T
Thomas Gleixner 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2446
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2447
{
2448
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2449 2450
	unsigned long flags;
	long old_state;
2451
	struct rq *rq;
L
Linus Torvalds 已提交
2452

2453 2454 2455
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2456
#ifdef CONFIG_SMP
2457
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2458 2459 2460 2461 2462 2463
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2464
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2465 2466 2467 2468 2469 2470 2471
				update_shares(sd);
				break;
			}
		}
	}
#endif

2472
	smp_wmb();
L
Linus Torvalds 已提交
2473
	rq = task_rq_lock(p, &flags);
2474
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2475 2476 2477 2478
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2479
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2480 2481 2482
		goto out_running;

	cpu = task_cpu(p);
2483
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2484 2485 2486 2487 2488 2489
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2490 2491 2492
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2493 2494 2495 2496 2497 2498
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2499
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2506 2507 2508 2509 2510 2511 2512
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2513
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2514 2515 2516 2517 2518
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2519
#endif /* CONFIG_SCHEDSTATS */
2520

L
Linus Torvalds 已提交
2521 2522
out_activate:
#endif /* CONFIG_SMP */
2523 2524 2525 2526 2527 2528 2529 2530 2531
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2532
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2533 2534
	success = 1;

P
Peter Zijlstra 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2551
out_running:
2552
	trace_sched_wakeup(rq, p, success);
2553
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2554

L
Linus Torvalds 已提交
2555
	p->state = TASK_RUNNING;
2556 2557 2558 2559
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564 2565
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2577
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2578
{
2579
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2580 2581 2582
}
EXPORT_SYMBOL(wake_up_process);

2583
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589 2590
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2591 2592 2593 2594 2595 2596 2597
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2598
	p->se.prev_sum_exec_runtime	= 0;
2599
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2600 2601
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2602 2603
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2604 2605

#ifdef CONFIG_SCHEDSTATS
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2637
#endif
N
Nick Piggin 已提交
2638

P
Peter Zijlstra 已提交
2639
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2640
	p->se.on_rq = 0;
2641
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2642

2643 2644 2645 2646
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2668
	set_task_cpu(p, cpu);
2669 2670

	/*
2671
	 * Make sure we do not leak PI boosting priority to the child.
2672
	 */
2673
	p->prio = current->normal_prio;
2674

2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2685 2686 2687 2688 2689
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2690 2691 2692 2693 2694 2695
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2696

H
Hiroshi Shimamoto 已提交
2697 2698
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2699

2700
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2701
	if (likely(sched_info_on()))
2702
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2703
#endif
2704
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2705 2706
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2707
#ifdef CONFIG_PREEMPT
2708
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2709
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2710
#endif
2711 2712
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2713
	put_cpu();
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719 2720 2721 2722
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2723
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2724 2725
{
	unsigned long flags;
I
Ingo Molnar 已提交
2726
	struct rq *rq;
L
Linus Torvalds 已提交
2727 2728

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2729
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2730
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2731 2732 2733

	p->prio = effective_prio(p);

2734
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2735
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2736 2737
	} else {
		/*
I
Ingo Molnar 已提交
2738 2739
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2740
		 */
2741
		p->sched_class->task_new(rq, p);
2742
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2743
	}
2744
	trace_sched_wakeup_new(rq, p, 1);
2745
	check_preempt_curr(rq, p, 0);
2746 2747 2748 2749
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2750
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2751 2752
}

2753 2754 2755
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2756
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2757
 * @notifier: notifier struct to register
2758 2759 2760 2761 2762 2763 2764 2765 2766
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2767
 * @notifier: notifier struct to unregister
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2797
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2809
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2810

2811 2812 2813
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2814
 * @prev: the current task that is being switched out
2815 2816 2817 2818 2819 2820 2821 2822 2823
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2824 2825 2826
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2827
{
2828
	fire_sched_out_preempt_notifiers(prev, next);
2829 2830 2831 2832
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2833 2834
/**
 * finish_task_switch - clean up after a task-switch
2835
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2836 2837
 * @prev: the thread we just switched away from.
 *
2838 2839 2840 2841
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2842 2843
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2844
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2845 2846 2847
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
2848
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2849 2850 2851
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2852
	long prev_state;
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2858
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2859 2860
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2861
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2862 2863 2864 2865 2866
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2867
	prev_state = prev->state;
2868
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2869
	perf_counter_task_sched_in(current, cpu_of(rq));
2870
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2871

2872
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2873 2874
	if (mm)
		mmdrop(mm);
2875
	if (unlikely(prev_state == TASK_DEAD)) {
2876 2877 2878
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2879
		 */
2880
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2881
		put_task_struct(prev);
2882
	}
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
}

#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2910

2911 2912 2913 2914 2915 2916
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2917 2918
}

2919 2920
#endif

L
Linus Torvalds 已提交
2921 2922 2923 2924
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2925
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2926 2927
	__releases(rq->lock)
{
2928
	struct rq *rq = this_rq();
2929

2930
	finish_task_switch(rq, prev);
2931

2932 2933 2934 2935 2936
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2937

2938 2939 2940 2941
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2942
	if (current->set_child_tid)
2943
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
2950
static inline void
2951
context_switch(struct rq *rq, struct task_struct *prev,
2952
	       struct task_struct *next)
L
Linus Torvalds 已提交
2953
{
I
Ingo Molnar 已提交
2954
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2955

2956
	prepare_task_switch(rq, prev, next);
2957
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2958 2959
	mm = next->mm;
	oldmm = prev->active_mm;
2960 2961 2962 2963 2964
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2965
	arch_start_context_switch(prev);
2966

I
Ingo Molnar 已提交
2967
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2968 2969 2970 2971 2972 2973
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2974
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2975 2976 2977
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2978 2979 2980 2981 2982 2983 2984
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2985
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2986
#endif
L
Linus Torvalds 已提交
2987 2988 2989 2990

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2991 2992 2993 2994 2995 2996
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
2997
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

3021
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
3036 3037
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
3038

3039
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3049
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3050 3051 3052 3053 3054
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3055 3056 3057 3058 3059 3060
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3076 3077
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3078
{
3079 3080 3081 3082
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3083

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3095

3096 3097
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3098

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3121 3122
}

3123 3124 3125 3126 3127 3128 3129 3130 3131
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3132
/*
I
Ingo Molnar 已提交
3133 3134
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3135
 */
I
Ingo Molnar 已提交
3136
static void update_cpu_load(struct rq *this_rq)
3137
{
3138
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3151 3152 3153 3154 3155 3156 3157
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3158 3159
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3160 3161 3162 3163 3164

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3165 3166
}

I
Ingo Molnar 已提交
3167 3168
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3169 3170 3171 3172 3173 3174
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3175
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3176 3177 3178
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3179
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3180 3181 3182 3183
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3184
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3185
			spin_lock(&rq1->lock);
3186
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3187 3188
		} else {
			spin_lock(&rq2->lock);
3189
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3190 3191
		}
	}
3192 3193
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199 3200 3201
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3202
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3216
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3217 3218
 * the cpu_allowed mask is restored.
 */
3219
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3220
{
3221
	struct migration_req req;
L
Linus Torvalds 已提交
3222
	unsigned long flags;
3223
	struct rq *rq;
L
Linus Torvalds 已提交
3224 3225

	rq = task_rq_lock(p, &flags);
3226
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3227
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3234

L
Linus Torvalds 已提交
3235 3236 3237 3238 3239
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3240

L
Linus Torvalds 已提交
3241 3242 3243 3244 3245 3246 3247
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3248 3249
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3250 3251 3252 3253
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3254
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3255
	put_cpu();
N
Nick Piggin 已提交
3256 3257
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3264 3265
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3266
{
3267
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3268
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3269
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3270 3271 3272 3273
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3274
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3280
static
3281
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3282
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3283
		     int *all_pinned)
L
Linus Torvalds 已提交
3284
{
3285
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3286 3287 3288 3289 3290 3291
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3292
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3293
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3294
		return 0;
3295
	}
3296 3297
	*all_pinned = 0;

3298 3299
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3300
		return 0;
3301
	}
L
Linus Torvalds 已提交
3302

3303 3304 3305 3306 3307 3308
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3309 3310 3311
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3312
#ifdef CONFIG_SCHEDSTATS
3313
		if (tsk_cache_hot) {
3314
			schedstat_inc(sd, lb_hot_gained[idle]);
3315 3316
			schedstat_inc(p, se.nr_forced_migrations);
		}
3317 3318 3319 3320
#endif
		return 1;
	}

3321
	if (tsk_cache_hot) {
3322
		schedstat_inc(p, se.nr_failed_migrations_hot);
3323
		return 0;
3324
	}
L
Linus Torvalds 已提交
3325 3326 3327
	return 1;
}

3328 3329 3330 3331 3332
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3333
{
3334
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3335 3336
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3337

3338
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3339 3340
		goto out;

3341 3342
	pinned = 1;

L
Linus Torvalds 已提交
3343
	/*
I
Ingo Molnar 已提交
3344
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3345
	 */
I
Ingo Molnar 已提交
3346 3347
	p = iterator->start(iterator->arg);
next:
3348
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3349
		goto out;
3350 3351

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3352 3353 3354
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3355 3356
	}

I
Ingo Molnar 已提交
3357
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3358
	pulled++;
I
Ingo Molnar 已提交
3359
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3360

3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3371
	/*
3372
	 * We only want to steal up to the prescribed amount of weighted load.
3373
	 */
3374
	if (rem_load_move > 0) {
3375 3376
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3377 3378
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3379 3380 3381
	}
out:
	/*
3382
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3383 3384 3385 3386
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3387 3388 3389

	if (all_pinned)
		*all_pinned = pinned;
3390 3391

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3392 3393
}

I
Ingo Molnar 已提交
3394
/*
P
Peter Williams 已提交
3395 3396 3397
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3398 3399 3400 3401
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3402
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3403 3404 3405
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3406
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3407
	unsigned long total_load_moved = 0;
3408
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3409 3410

	do {
P
Peter Williams 已提交
3411 3412
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3413
				max_load_move - total_load_moved,
3414
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3415
		class = class->next;
3416

3417 3418 3419 3420 3421 3422
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3423 3424
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3425
#endif
P
Peter Williams 已提交
3426
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3427

P
Peter Williams 已提交
3428 3429 3430
	return total_load_moved > 0;
}

3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3467
	const struct sched_class *class;
P
Peter Williams 已提交
3468

3469
	for_each_class(class) {
3470
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3471
			return 1;
3472
	}
P
Peter Williams 已提交
3473 3474

	return 0;
I
Ingo Molnar 已提交
3475
}
3476
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3477
/*
3478 3479
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3480
 */
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3499
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3500 3501 3502 3503 3504 3505
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3506
#endif
3507
};
L
Linus Torvalds 已提交
3508

3509
/*
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3520

3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3542
		load_idx = sd->busy_idx;
3543 3544 3545
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3546
		load_idx = sd->newidle_idx;
3547 3548
		break;
	default:
N
Nick Piggin 已提交
3549
		load_idx = sd->idle_idx;
3550 3551
		break;
	}
L
Linus Torvalds 已提交
3552

3553 3554
	return load_idx;
}
L
Linus Torvalds 已提交
3555 3556


3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3595

3596 3597
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3598

3599 3600 3601 3602 3603 3604 3605
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3606

3607 3608 3609 3610 3611 3612 3613 3614
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3615

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3629

3630 3631 3632 3633 3634 3635 3636
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3637

3638 3639 3640 3641 3642 3643 3644
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3645

3646
/**
3647
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3648 3649 3650 3651 3652
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3653 3654 3655 3656 3657
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3658 3659 3660 3661 3662 3663 3664 3665
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3666

3667 3668 3669
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3670

3671 3672
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3673

3674 3675 3676 3677 3678 3679
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3680

3681 3682 3683 3684 3685 3686 3687
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3733

3734 3735
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3736

3737 3738
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3739

3740
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3741
		if (local_group) {
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3754
		}
3755

3756 3757 3758
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3759

3760 3761
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3774

3775 3776 3777
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3778

3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3798

3799 3800 3801 3802 3803 3804 3805 3806 3807
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3808
 */
3809 3810 3811 3812
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3813
{
P
Peter Zijlstra 已提交
3814
	struct sched_domain *child = sd->child;
3815
	struct sched_group *group = sd->groups;
3816
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3817 3818 3819 3820
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3821

3822
	init_sd_power_savings_stats(sd, sds, idle);
3823
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3824 3825 3826 3827

	do {
		int local_group;

3828 3829
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3830
		memset(&sgs, 0, sizeof(sgs));
3831 3832
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3833

3834 3835
		if (local_group && balance && !(*balance))
			return;
3836

3837 3838
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3839

P
Peter Zijlstra 已提交
3840 3841 3842 3843 3844 3845 3846 3847
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
			sgs.group_capacity = 1;

L
Linus Torvalds 已提交
3848
		if (local_group) {
3849 3850 3851 3852 3853
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3854 3855
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3856 3857 3858 3859 3860
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3861
		}
3862

3863
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3864 3865 3866
		group = group->next;
	} while (group != sd->groups);

3867
}
L
Linus Torvalds 已提交
3868

3869 3870
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3871 3872
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3891

3892 3893 3894 3895 3896
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3897

L
Linus Torvalds 已提交
3898
	/*
3899 3900 3901
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3902
	 */
3903

3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3945 3946 3947 3948 3949
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3950
	if (sds->max_load < sds->avg_load) {
3951
		*imbalance = 0;
3952
		return fix_small_imbalance(sds, this_cpu, imbalance);
3953
	}
3954 3955

	/* Don't want to pull so many tasks that a group would go idle */
3956 3957
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3958

L
Linus Torvalds 已提交
3959
	/* How much load to actually move to equalise the imbalance */
3960 3961
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3962 3963
			/ SCHED_LOAD_SCALE;

3964 3965 3966 3967 3968 3969
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3970 3971
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3972

3973
}
3974
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3975

3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4000 4001 4002 4003 4004 4005 4006
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4007

4008
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4009

4010 4011 4012 4013 4014 4015 4016
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4027 4028
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4029

4030 4031
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4032

4033
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4034 4035
		goto out_balanced;

4036
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4037

4038 4039 4040 4041
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4042 4043
		goto out_balanced;

4044 4045 4046 4047
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4048

L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055 4056
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4057
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4058 4059
	 * appear as very large values with unsigned longs.
	 */
4060
	if (sds.max_load <= sds.busiest_load_per_task)
4061 4062
		goto out_balanced;

4063 4064
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4065
	return sds.busiest;
L
Linus Torvalds 已提交
4066 4067

out_balanced:
4068 4069 4070 4071 4072 4073
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4074
ret:
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4082
static struct rq *
I
Ingo Molnar 已提交
4083
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4084
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4085
{
4086
	struct rq *busiest = NULL, *rq;
4087
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4088 4089
	int i;

4090
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
4091
		unsigned long wl;
4092

4093
		if (!cpumask_test_cpu(i, cpus))
4094 4095
			continue;

4096
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
4097
		wl = weighted_cpuload(i);
4098

I
Ingo Molnar 已提交
4099
		if (rq->nr_running == 1 && wl > imbalance)
4100
			continue;
L
Linus Torvalds 已提交
4101

I
Ingo Molnar 已提交
4102 4103
		if (wl > max_load) {
			max_load = wl;
4104
			busiest = rq;
L
Linus Torvalds 已提交
4105 4106 4107 4108 4109 4110
		}
	}

	return busiest;
}

4111 4112 4113 4114 4115 4116
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4117 4118 4119
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4120 4121 4122 4123
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4124
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4125
			struct sched_domain *sd, enum cpu_idle_type idle,
4126
			int *balance)
L
Linus Torvalds 已提交
4127
{
P
Peter Williams 已提交
4128
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4129 4130
	struct sched_group *group;
	unsigned long imbalance;
4131
	struct rq *busiest;
4132
	unsigned long flags;
4133
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4134

4135
	cpumask_setall(cpus);
4136

4137 4138 4139
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4140
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4141
	 * portraying it as CPU_NOT_IDLE.
4142
	 */
I
Ingo Molnar 已提交
4143
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4144
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4145
		sd_idle = 1;
L
Linus Torvalds 已提交
4146

4147
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4148

4149
redo:
4150
	update_shares(sd);
4151
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4152
				   cpus, balance);
4153

4154
	if (*balance == 0)
4155 4156
		goto out_balanced;

L
Linus Torvalds 已提交
4157 4158 4159 4160 4161
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4162
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4163 4164 4165 4166 4167
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4168
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4169 4170 4171

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4172
	ld_moved = 0;
L
Linus Torvalds 已提交
4173 4174 4175 4176
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4177
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4178 4179
		 * correctly treated as an imbalance.
		 */
4180
		local_irq_save(flags);
N
Nick Piggin 已提交
4181
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4182
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4183
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4184
		double_rq_unlock(this_rq, busiest);
4185
		local_irq_restore(flags);
4186

4187 4188 4189
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4190
		if (ld_moved && this_cpu != smp_processor_id())
4191 4192
			resched_cpu(this_cpu);

4193
		/* All tasks on this runqueue were pinned by CPU affinity */
4194
		if (unlikely(all_pinned)) {
4195 4196
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4197
				goto redo;
4198
			goto out_balanced;
4199
		}
L
Linus Torvalds 已提交
4200
	}
4201

P
Peter Williams 已提交
4202
	if (!ld_moved) {
L
Linus Torvalds 已提交
4203 4204 4205 4206 4207
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4208
			spin_lock_irqsave(&busiest->lock, flags);
4209 4210 4211 4212

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4213 4214
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4215
				spin_unlock_irqrestore(&busiest->lock, flags);
4216 4217 4218 4219
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4220 4221 4222
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4223
				active_balance = 1;
L
Linus Torvalds 已提交
4224
			}
4225
			spin_unlock_irqrestore(&busiest->lock, flags);
4226
			if (active_balance)
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4233
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4234
		}
4235
	} else
L
Linus Torvalds 已提交
4236 4237
		sd->nr_balance_failed = 0;

4238
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4239 4240
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4241 4242 4243 4244 4245 4246 4247 4248 4249
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4250 4251
	}

P
Peter Williams 已提交
4252
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4253
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 4255 4256
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4257 4258 4259 4260

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4261
	sd->nr_balance_failed = 0;
4262 4263

out_one_pinned:
L
Linus Torvalds 已提交
4264
	/* tune up the balancing interval */
4265 4266
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4267 4268
		sd->balance_interval *= 2;

4269
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4270
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4271 4272 4273 4274
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4275 4276
	if (ld_moved)
		update_shares(sd);
4277
	return ld_moved;
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4284
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4285 4286
 * this_rq is locked.
 */
4287
static int
4288
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4289 4290
{
	struct sched_group *group;
4291
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4292
	unsigned long imbalance;
P
Peter Williams 已提交
4293
	int ld_moved = 0;
N
Nick Piggin 已提交
4294
	int sd_idle = 0;
4295
	int all_pinned = 0;
4296
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4297

4298
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4299

4300 4301 4302 4303
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4304
	 * portraying it as CPU_NOT_IDLE.
4305 4306 4307
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4308
		sd_idle = 1;
L
Linus Torvalds 已提交
4309

4310
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4311
redo:
4312
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4313
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4314
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4315
	if (!group) {
I
Ingo Molnar 已提交
4316
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4317
		goto out_balanced;
L
Linus Torvalds 已提交
4318 4319
	}

4320
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4321
	if (!busiest) {
I
Ingo Molnar 已提交
4322
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4323
		goto out_balanced;
L
Linus Torvalds 已提交
4324 4325
	}

N
Nick Piggin 已提交
4326 4327
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4328
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4329

P
Peter Williams 已提交
4330
	ld_moved = 0;
4331 4332 4333
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4334 4335
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4336
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4337 4338
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4339
		double_unlock_balance(this_rq, busiest);
4340

4341
		if (unlikely(all_pinned)) {
4342 4343
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4344 4345
				goto redo;
		}
4346 4347
	}

P
Peter Williams 已提交
4348
	if (!ld_moved) {
4349
		int active_balance = 0;
4350

I
Ingo Molnar 已提交
4351
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4352 4353
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4354
			return -1;
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4391
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4404 4405 4406 4407
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4408 4409
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4410
		spin_lock(&this_rq->lock);
4411

N
Nick Piggin 已提交
4412
	} else
4413
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4414

4415
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4416
	return ld_moved;
4417 4418

out_balanced:
I
Ingo Molnar 已提交
4419
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4420
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4421
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4422
		return -1;
4423
	sd->nr_balance_failed = 0;
4424

4425
	return 0;
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4432
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4433 4434
{
	struct sched_domain *sd;
4435
	int pulled_task = 0;
I
Ingo Molnar 已提交
4436
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4437 4438

	for_each_domain(this_cpu, sd) {
4439 4440 4441 4442 4443 4444
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4445
			/* If we've pulled tasks over stop searching: */
4446
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4447
							   sd);
4448 4449 4450 4451 4452 4453

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4454
	}
I
Ingo Molnar 已提交
4455
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4456 4457 4458 4459 4460
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4461
	}
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4472
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4473
{
4474
	int target_cpu = busiest_rq->push_cpu;
4475 4476
	struct sched_domain *sd;
	struct rq *target_rq;
4477

4478
	/* Is there any task to move? */
4479 4480 4481 4482
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4483 4484

	/*
4485
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4486
	 * we need to fix it. Originally reported by
4487
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4488
	 */
4489
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4490

4491 4492
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4493 4494
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4495 4496

	/* Search for an sd spanning us and the target CPU. */
4497
	for_each_domain(target_cpu, sd) {
4498
		if ((sd->flags & SD_LOAD_BALANCE) &&
4499
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4500
				break;
4501
	}
4502

4503
	if (likely(sd)) {
4504
		schedstat_inc(sd, alb_count);
4505

P
Peter Williams 已提交
4506 4507
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4508 4509 4510 4511
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4512
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4513 4514
}

4515 4516 4517
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4518
	cpumask_var_t cpu_mask;
4519
	cpumask_var_t ilb_grp_nohz_mask;
4520 4521 4522 4523
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4524 4525 4526 4527 4528
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4640
	return cpumask_first(nohz.cpu_mask);
4641 4642 4643
}
#endif

4644
/*
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4655
 *
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4671 4672 4673 4674 4675 4676 4677 4678
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4679 4680
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4681

4682 4683 4684
			return 0;
		}

4685 4686
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4687
		/* time for ilb owner also to sleep */
4688
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4689 4690 4691 4692 4693 4694 4695 4696 4697
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4714
			return 1;
4715
		}
4716
	} else {
4717
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4718 4719
			return 0;

4720
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4733 4734 4735 4736 4737
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4738
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4739
{
4740 4741
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4742 4743
	unsigned long interval;
	struct sched_domain *sd;
4744
	/* Earliest time when we have to do rebalance again */
4745
	unsigned long next_balance = jiffies + 60*HZ;
4746
	int update_next_balance = 0;
4747
	int need_serialize;
L
Linus Torvalds 已提交
4748

4749
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4750 4751 4752 4753
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4754
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4761 4762 4763
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4764
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4765

4766
		if (need_serialize) {
4767 4768 4769 4770
			if (!spin_trylock(&balancing))
				goto out;
		}

4771
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4772
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4773 4774
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4775 4776 4777
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4778
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4779
			}
4780
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4781
		}
4782
		if (need_serialize)
4783 4784
			spin_unlock(&balancing);
out:
4785
		if (time_after(next_balance, sd->last_balance + interval)) {
4786
			next_balance = sd->last_balance + interval;
4787 4788
			update_next_balance = 1;
		}
4789 4790 4791 4792 4793 4794 4795 4796

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4797
	}
4798 4799 4800 4801 4802 4803 4804 4805

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4806 4807 4808 4809 4810 4811 4812 4813 4814
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4815 4816 4817 4818
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4819

I
Ingo Molnar 已提交
4820
	rebalance_domains(this_cpu, idle);
4821 4822 4823 4824 4825 4826 4827

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4828 4829
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4830 4831 4832
		struct rq *rq;
		int balance_cpu;

4833 4834 4835 4836
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4837 4838 4839 4840 4841 4842 4843 4844
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4845
			rebalance_domains(balance_cpu, CPU_IDLE);
4846 4847

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4848 4849
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4850 4851 4852 4853 4854
		}
	}
#endif
}

4855 4856 4857 4858 4859
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4860 4861 4862 4863 4864 4865 4866
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4867
static inline void trigger_load_balance(struct rq *rq, int cpu)
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4879
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4880 4881 4882 4883
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4884
			int ilb = find_new_ilb(cpu);
4885

4886
			if (ilb < nr_cpu_ids)
4887 4888 4889 4890 4891 4892 4893 4894 4895
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4896
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4897 4898 4899 4900 4901 4902 4903 4904 4905
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4906
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4907 4908
		return;
#endif
4909 4910 4911
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4912
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4913
}
I
Ingo Molnar 已提交
4914 4915 4916

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4917 4918 4919
/*
 * on UP we do not need to balance between CPUs:
 */
4920
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4921 4922
{
}
I
Ingo Molnar 已提交
4923

L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4931
 * Return any ns on the sched_clock that have not yet been accounted in
4932
 * @p in case that task is currently running.
4933 4934
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4935
 */
4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4950
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4951 4952
{
	unsigned long flags;
4953
	struct rq *rq;
4954
	u64 ns = 0;
4955

4956
	rq = task_rq_lock(p, &flags);
4957 4958
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4959

4960 4961
	return ns;
}
4962

4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4980

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5000
	task_rq_unlock(rq, &flags);
5001

L
Linus Torvalds 已提交
5002 5003 5004 5005 5006 5007 5008
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5009
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5010
 */
5011 5012
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5013 5014 5015 5016
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5017
	/* Add user time to process. */
L
Linus Torvalds 已提交
5018
	p->utime = cputime_add(p->utime, cputime);
5019
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5020
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5021 5022 5023 5024 5025 5026 5027

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5028 5029

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5030 5031
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5032 5033
}

5034 5035 5036 5037
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5038
 * @cputime_scaled: cputime scaled by cpu frequency
5039
 */
5040 5041
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5042 5043 5044 5045 5046 5047
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5048
	/* Add guest time to process. */
5049
	p->utime = cputime_add(p->utime, cputime);
5050
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5051
	account_group_user_time(p, cputime);
5052 5053
	p->gtime = cputime_add(p->gtime, cputime);

5054
	/* Add guest time to cpustat. */
5055 5056 5057 5058
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5059 5060 5061 5062 5063
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5064
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5065 5066
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5067
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5068 5069 5070 5071
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5072
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5073
		account_guest_time(p, cputime, cputime_scaled);
5074 5075
		return;
	}
5076

5077
	/* Add system time to process. */
L
Linus Torvalds 已提交
5078
	p->stime = cputime_add(p->stime, cputime);
5079
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5080
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5089 5090
		cpustat->system = cputime64_add(cpustat->system, tmp);

5091 5092
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5093 5094 5095 5096
	/* Account for system time used */
	acct_update_integrals(p);
}

5097
/*
L
Linus Torvalds 已提交
5098 5099
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5100
 */
5101
void account_steal_time(cputime_t cputime)
5102
{
5103 5104 5105 5106
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5107 5108
}

L
Linus Torvalds 已提交
5109
/*
5110 5111
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5112
 */
5113
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5114 5115
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5116
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5117
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5118

5119 5120 5121 5122
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5123 5124
}

5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5140
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5164 5165
}

5166 5167
#endif

5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5238
	struct task_struct *curr = rq->curr;
5239 5240

	sched_clock_tick();
I
Ingo Molnar 已提交
5241 5242

	spin_lock(&rq->lock);
5243
	update_rq_clock(rq);
5244
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5245
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5246
	spin_unlock(&rq->lock);
5247

5248 5249
	perf_counter_task_tick(curr, cpu);

5250
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5251 5252
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5253
#endif
L
Linus Torvalds 已提交
5254 5255
}

5256
notrace unsigned long get_parent_ip(unsigned long addr)
5257 5258 5259 5260 5261 5262 5263 5264
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5265

5266 5267 5268
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5269
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5270
{
5271
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5272 5273 5274
	/*
	 * Underflow?
	 */
5275 5276
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5277
#endif
L
Linus Torvalds 已提交
5278
	preempt_count() += val;
5279
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5280 5281 5282
	/*
	 * Spinlock count overflowing soon?
	 */
5283 5284
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5285 5286 5287
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5288 5289 5290
}
EXPORT_SYMBOL(add_preempt_count);

5291
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5292
{
5293
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5294 5295 5296
	/*
	 * Underflow?
	 */
5297
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5298
		return;
L
Linus Torvalds 已提交
5299 5300 5301
	/*
	 * Is the spinlock portion underflowing?
	 */
5302 5303 5304
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5305
#endif
5306

5307 5308
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5316
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5317
 */
I
Ingo Molnar 已提交
5318
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5319
{
5320 5321 5322 5323 5324
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5325
	debug_show_held_locks(prev);
5326
	print_modules();
I
Ingo Molnar 已提交
5327 5328
	if (irqs_disabled())
		print_irqtrace_events(prev);
5329 5330 5331 5332 5333

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5334
}
L
Linus Torvalds 已提交
5335

I
Ingo Molnar 已提交
5336 5337 5338 5339 5340
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5341
	/*
I
Ingo Molnar 已提交
5342
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5343 5344 5345
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5346
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5347 5348
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5349 5350
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5351
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5352 5353
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5354 5355
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5356 5357
	}
#endif
I
Ingo Molnar 已提交
5358 5359
}

M
Mike Galbraith 已提交
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5382 5383 5384 5385
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5386
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5387
{
5388
	const struct sched_class *class;
I
Ingo Molnar 已提交
5389
	struct task_struct *p;
L
Linus Torvalds 已提交
5390 5391

	/*
I
Ingo Molnar 已提交
5392 5393
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5394
	 */
I
Ingo Molnar 已提交
5395
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5396
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5397 5398
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5399 5400
	}

I
Ingo Molnar 已提交
5401 5402
	class = sched_class_highest;
	for ( ; ; ) {
5403
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5404 5405 5406 5407 5408 5409 5410 5411 5412
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5413

I
Ingo Molnar 已提交
5414 5415 5416
/*
 * schedule() is the main scheduler function.
 */
5417
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5418 5419
{
	struct task_struct *prev, *next;
5420
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5421
	struct rq *rq;
5422
	int cpu;
I
Ingo Molnar 已提交
5423

5424 5425
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5436

5437
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5438
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5439

5440
	spin_lock_irq(&rq->lock);
5441
	update_rq_clock(rq);
5442
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5443 5444

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5445
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5446
			prev->state = TASK_RUNNING;
5447
		else
5448
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5449
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5450 5451
	}

5452
	pre_schedule(rq, prev);
5453

I
Ingo Molnar 已提交
5454
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5455 5456
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5457
	put_prev_task(rq, prev);
5458
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5459 5460

	if (likely(prev != next)) {
5461
		sched_info_switch(prev, next);
5462
		perf_counter_task_sched_out(prev, next, cpu);
5463

L
Linus Torvalds 已提交
5464 5465 5466 5467
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

5468
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5469 5470 5471 5472 5473 5474
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
5475
	} else
L
Linus Torvalds 已提交
5476
		spin_unlock_irq(&rq->lock);
5477

5478
	post_schedule(rq);
L
Linus Torvalds 已提交
5479

P
Peter Zijlstra 已提交
5480
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5481
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5482

L
Linus Torvalds 已提交
5483
	preempt_enable_no_resched();
5484
	if (need_resched())
L
Linus Torvalds 已提交
5485 5486 5487 5488
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5550 5551
#ifdef CONFIG_PREEMPT
/*
5552
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5553
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5559

L
Linus Torvalds 已提交
5560 5561
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5562
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5563
	 */
N
Nick Piggin 已提交
5564
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5565 5566
		return;

5567 5568 5569 5570
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5571

5572 5573 5574 5575 5576
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5577
	} while (need_resched());
L
Linus Torvalds 已提交
5578 5579 5580 5581
}
EXPORT_SYMBOL(preempt_schedule);

/*
5582
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5583 5584 5585 5586 5587 5588 5589
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5590

5591
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5592 5593
	BUG_ON(ti->preempt_count || !irqs_disabled());

5594 5595 5596 5597 5598 5599
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5600

5601 5602 5603 5604 5605
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5606
	} while (need_resched());
L
Linus Torvalds 已提交
5607 5608 5609 5610
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5611 5612
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5613
{
5614
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5615 5616 5617 5618
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5619 5620
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5621 5622 5623
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5624
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5625 5626
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5627
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5628
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5629
{
5630
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5631

5632
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5633 5634
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5635
		if (curr->func(curr, mode, sync, key) &&
5636
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5637 5638 5639 5640 5641 5642 5643 5644 5645
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5646
 * @key: is directly passed to the wakeup function
5647 5648 5649
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5650
 */
5651
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5652
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5665
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5666 5667 5668 5669
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5670 5671 5672 5673 5674
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5675
/**
5676
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5677 5678 5679
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5680
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686 5687
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5688 5689 5690
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5691
 */
5692 5693
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5705
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5706 5707
	spin_unlock_irqrestore(&q->lock, flags);
}
5708 5709 5710 5711 5712 5713 5714 5715 5716
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5717 5718
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5719 5720 5721 5722 5723 5724 5725 5726
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5727 5728 5729
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5730
 */
5731
void complete(struct completion *x)
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5737
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5738 5739 5740 5741
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5742 5743 5744 5745 5746
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5747 5748 5749
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5750
 */
5751
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5752 5753 5754 5755 5756
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5757
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5758 5759 5760 5761
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5762 5763
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5764 5765 5766 5767 5768 5769 5770
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5771
			if (signal_pending_state(state, current)) {
5772 5773
				timeout = -ERESTARTSYS;
				break;
5774 5775
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5776 5777 5778
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5779
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5780
		__remove_wait_queue(&x->wait, &wait);
5781 5782
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5783 5784
	}
	x->done--;
5785
	return timeout ?: 1;
L
Linus Torvalds 已提交
5786 5787
}

5788 5789
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5790 5791 5792 5793
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5794
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5795
	spin_unlock_irq(&x->wait.lock);
5796 5797
	return timeout;
}
L
Linus Torvalds 已提交
5798

5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5809
void __sched wait_for_completion(struct completion *x)
5810 5811
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5812
}
5813
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5814

5815 5816 5817 5818 5819 5820 5821 5822 5823
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5824
unsigned long __sched
5825
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5826
{
5827
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5828
}
5829
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5830

5831 5832 5833 5834 5835 5836 5837
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5838
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5839
{
5840 5841 5842 5843
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5844
}
5845
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5846

5847 5848 5849 5850 5851 5852 5853 5854
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5855
unsigned long __sched
5856 5857
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5858
{
5859
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5860
}
5861
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5862

5863 5864 5865 5866 5867 5868 5869
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5870 5871 5872 5873 5874 5875 5876 5877 5878
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5925 5926
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5927
{
I
Ingo Molnar 已提交
5928 5929 5930 5931
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5932

5933
	__set_current_state(state);
L
Linus Torvalds 已提交
5934

5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5949 5950 5951
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5952
long __sched
I
Ingo Molnar 已提交
5953
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5954
{
5955
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5956 5957 5958
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5959
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5960
{
5961
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5962 5963 5964
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5965
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5966
{
5967
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5968 5969 5970
}
EXPORT_SYMBOL(sleep_on_timeout);

5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5983
void rt_mutex_setprio(struct task_struct *p, int prio)
5984 5985
{
	unsigned long flags;
5986
	int oldprio, on_rq, running;
5987
	struct rq *rq;
5988
	const struct sched_class *prev_class = p->sched_class;
5989 5990 5991 5992

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5993
	update_rq_clock(rq);
5994

5995
	oldprio = p->prio;
I
Ingo Molnar 已提交
5996
	on_rq = p->se.on_rq;
5997
	running = task_current(rq, p);
5998
	if (on_rq)
5999
		dequeue_task(rq, p, 0);
6000 6001
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6002 6003 6004 6005 6006 6007

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6008 6009
	p->prio = prio;

6010 6011
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6012
	if (on_rq) {
6013
		enqueue_task(rq, p, 0);
6014 6015

		check_class_changed(rq, p, prev_class, oldprio, running);
6016 6017 6018 6019 6020 6021
	}
	task_rq_unlock(rq, &flags);
}

#endif

6022
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6023
{
I
Ingo Molnar 已提交
6024
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6025
	unsigned long flags;
6026
	struct rq *rq;
L
Linus Torvalds 已提交
6027 6028 6029 6030 6031 6032 6033 6034

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6035
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6036 6037 6038 6039
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6040
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6041
	 */
6042
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6043 6044 6045
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6046
	on_rq = p->se.on_rq;
6047
	if (on_rq)
6048
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6049 6050

	p->static_prio = NICE_TO_PRIO(nice);
6051
	set_load_weight(p);
6052 6053 6054
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6055

I
Ingo Molnar 已提交
6056
	if (on_rq) {
6057
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6058
		/*
6059 6060
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6061
		 */
6062
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6063 6064 6065 6066 6067 6068 6069
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6070 6071 6072 6073 6074
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6075
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6076
{
6077 6078
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6079

M
Matt Mackall 已提交
6080 6081 6082 6083
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6093
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6094
{
6095
	long nice, retval;
L
Linus Torvalds 已提交
6096 6097 6098 6099 6100 6101

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6102 6103
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6104 6105 6106
	if (increment > 40)
		increment = 40;

6107
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6108 6109 6110 6111 6112
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6113 6114 6115
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6134
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6135 6136 6137 6138 6139 6140 6141 6142
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6143
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6144 6145 6146
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6147
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6162
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6163 6164 6165 6166 6167 6168 6169 6170
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6171
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6172
{
6173
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6174 6175 6176
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6177 6178
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6179
{
I
Ingo Molnar 已提交
6180
	BUG_ON(p->se.on_rq);
6181

L
Linus Torvalds 已提交
6182
	p->policy = policy;
I
Ingo Molnar 已提交
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6195
	p->rt_priority = prio;
6196 6197 6198
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6199
	set_load_weight(p);
L
Linus Torvalds 已提交
6200 6201
}

6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6218 6219
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6220
{
6221
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6222
	unsigned long flags;
6223
	const struct sched_class *prev_class = p->sched_class;
6224
	struct rq *rq;
6225
	int reset_on_fork;
L
Linus Torvalds 已提交
6226

6227 6228
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6229 6230
recheck:
	/* double check policy once rq lock held */
6231 6232
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6233
		policy = oldpolicy = p->policy;
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6244 6245
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6246 6247
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6248 6249
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6250
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6251
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6252
		return -EINVAL;
6253
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6254 6255
		return -EINVAL;

6256 6257 6258
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6259
	if (user && !capable(CAP_SYS_NICE)) {
6260
		if (rt_policy(policy)) {
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6277 6278 6279 6280 6281 6282
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6283

6284
		/* can't change other user's priorities */
6285
		if (!check_same_owner(p))
6286
			return -EPERM;
6287 6288 6289 6290

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6291
	}
L
Linus Torvalds 已提交
6292

6293
	if (user) {
6294
#ifdef CONFIG_RT_GROUP_SCHED
6295 6296 6297 6298
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6299 6300
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6301
			return -EPERM;
6302 6303
#endif

6304 6305 6306 6307 6308
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6309 6310 6311 6312 6313
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6314 6315 6316 6317
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6318
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6319 6320 6321
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6322 6323
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6324 6325
		goto recheck;
	}
I
Ingo Molnar 已提交
6326
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6327
	on_rq = p->se.on_rq;
6328
	running = task_current(rq, p);
6329
	if (on_rq)
6330
		deactivate_task(rq, p, 0);
6331 6332
	if (running)
		p->sched_class->put_prev_task(rq, p);
6333

6334 6335
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6336
	oldprio = p->prio;
I
Ingo Molnar 已提交
6337
	__setscheduler(rq, p, policy, param->sched_priority);
6338

6339 6340
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6341 6342
	if (on_rq) {
		activate_task(rq, p, 0);
6343 6344

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6345
	}
6346 6347 6348
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6349 6350
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6351 6352
	return 0;
}
6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6367 6368
EXPORT_SYMBOL_GPL(sched_setscheduler);

6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6386 6387
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6388 6389 6390
{
	struct sched_param lparam;
	struct task_struct *p;
6391
	int retval;
L
Linus Torvalds 已提交
6392 6393 6394 6395 6396

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6397 6398 6399

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6400
	p = find_process_by_pid(pid);
6401 6402 6403
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6404

L
Linus Torvalds 已提交
6405 6406 6407 6408 6409 6410 6411 6412 6413
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6414 6415
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6416
{
6417 6418 6419 6420
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6421 6422 6423 6424 6425 6426 6427 6428
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6429
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434 6435 6436 6437
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6438
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6439
{
6440
	struct task_struct *p;
6441
	int retval;
L
Linus Torvalds 已提交
6442 6443

	if (pid < 0)
6444
		return -EINVAL;
L
Linus Torvalds 已提交
6445 6446 6447 6448 6449 6450 6451

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6452 6453
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458 6459
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6460
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6461 6462 6463
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6464
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6465 6466
{
	struct sched_param lp;
6467
	struct task_struct *p;
6468
	int retval;
L
Linus Torvalds 已提交
6469 6470

	if (!param || pid < 0)
6471
		return -EINVAL;
L
Linus Torvalds 已提交
6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6498
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6499
{
6500
	cpumask_var_t cpus_allowed, new_mask;
6501 6502
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6503

6504
	get_online_cpus();
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6510
		put_online_cpus();
L
Linus Torvalds 已提交
6511 6512 6513 6514 6515
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6516
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6517 6518 6519 6520 6521
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6522 6523 6524 6525 6526 6527 6528 6529
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6530
	retval = -EPERM;
6531
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6532 6533
		goto out_unlock;

6534 6535 6536 6537
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6538 6539
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6540
 again:
6541
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6542

P
Paul Menage 已提交
6543
	if (!retval) {
6544 6545
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6546 6547 6548 6549 6550
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6551
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6552 6553 6554
			goto again;
		}
	}
L
Linus Torvalds 已提交
6555
out_unlock:
6556 6557 6558 6559
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6560
	put_task_struct(p);
6561
	put_online_cpus();
L
Linus Torvalds 已提交
6562 6563 6564 6565
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6566
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6567
{
6568 6569 6570 6571 6572
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6573 6574 6575 6576 6577 6578 6579 6580 6581
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6582 6583
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6584
{
6585
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6586 6587
	int retval;

6588 6589
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6590

6591 6592 6593 6594 6595
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6596 6597
}

6598
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6599
{
6600
	struct task_struct *p;
L
Linus Torvalds 已提交
6601 6602
	int retval;

6603
	get_online_cpus();
L
Linus Torvalds 已提交
6604 6605 6606 6607 6608 6609 6610
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6611 6612 6613 6614
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6615
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6616 6617 6618

out_unlock:
	read_unlock(&tasklist_lock);
6619
	put_online_cpus();
L
Linus Torvalds 已提交
6620

6621
	return retval;
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628 6629
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6630 6631
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6632 6633
{
	int ret;
6634
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6635

6636
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6637 6638
		return -EINVAL;

6639 6640
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6641

6642 6643 6644 6645 6646 6647 6648 6649
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6650

6651
	return ret;
L
Linus Torvalds 已提交
6652 6653 6654 6655 6656
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6657 6658
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6659
 */
6660
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6661
{
6662
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6663

6664
	schedstat_inc(rq, yld_count);
6665
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6666 6667 6668 6669 6670 6671

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6672
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6673 6674 6675 6676 6677 6678 6679 6680
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6681 6682 6683 6684 6685
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6686
static void __cond_resched(void)
L
Linus Torvalds 已提交
6687
{
6688 6689 6690
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6691 6692
}

6693
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6694
{
P
Peter Zijlstra 已提交
6695
	if (should_resched()) {
L
Linus Torvalds 已提交
6696 6697 6698 6699 6700
		__cond_resched();
		return 1;
	}
	return 0;
}
6701
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6702 6703

/*
6704
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6705 6706
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6707
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6708 6709 6710
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6711
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6712
{
P
Peter Zijlstra 已提交
6713
	int resched = should_resched();
J
Jan Kara 已提交
6714 6715
	int ret = 0;

N
Nick Piggin 已提交
6716
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6717
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6718
		if (resched)
N
Nick Piggin 已提交
6719 6720 6721
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6722
		ret = 1;
L
Linus Torvalds 已提交
6723 6724
		spin_lock(lock);
	}
J
Jan Kara 已提交
6725
	return ret;
L
Linus Torvalds 已提交
6726
}
6727
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6728

6729
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6730 6731 6732
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6733
	if (should_resched()) {
6734
		local_bh_enable();
L
Linus Torvalds 已提交
6735 6736 6737 6738 6739 6740
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6741
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6742 6743 6744 6745

/**
 * yield - yield the current processor to other threads.
 *
6746
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6757
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6758 6759 6760 6761 6762 6763 6764
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6765
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6766

6767
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6768
	atomic_inc(&rq->nr_iowait);
6769
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6770
	schedule();
6771
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6772
	atomic_dec(&rq->nr_iowait);
6773
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6774 6775 6776 6777 6778
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6779
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6780 6781
	long ret;

6782
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6783
	atomic_inc(&rq->nr_iowait);
6784
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6785
	ret = schedule_timeout(timeout);
6786
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6787
	atomic_dec(&rq->nr_iowait);
6788
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6799
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6809
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6810
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6824
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6825 6826 6827 6828 6829 6830 6831 6832 6833
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6834
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6835
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6849
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6850
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6851
{
6852
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6853
	unsigned int time_slice;
6854
	int retval;
L
Linus Torvalds 已提交
6855 6856 6857
	struct timespec t;

	if (pid < 0)
6858
		return -EINVAL;
L
Linus Torvalds 已提交
6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6870 6871 6872 6873 6874 6875
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6876
		time_slice = DEF_TIMESLICE;
6877
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6878 6879 6880 6881 6882
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6883 6884
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6885 6886
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6887
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6888
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6889 6890
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6891

L
Linus Torvalds 已提交
6892 6893 6894 6895 6896
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6897
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6898

6899
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6900 6901
{
	unsigned long free = 0;
6902
	unsigned state;
L
Linus Torvalds 已提交
6903 6904

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6905
	printk(KERN_INFO "%-13.13s %c", p->comm,
6906
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6907
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6908
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6909
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6910
	else
I
Ingo Molnar 已提交
6911
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6912 6913
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6914
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6915
	else
I
Ingo Molnar 已提交
6916
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6917 6918
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6919
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6920
#endif
6921 6922 6923
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6924

6925
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6926 6927
}

I
Ingo Molnar 已提交
6928
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6929
{
6930
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6931

6932 6933 6934
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6935
#else
6936 6937
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6938 6939 6940 6941 6942 6943 6944 6945
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6946
		if (!state_filter || (p->state & state_filter))
6947
			sched_show_task(p);
L
Linus Torvalds 已提交
6948 6949
	} while_each_thread(g, p);

6950 6951
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6952 6953 6954
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6955
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6956 6957 6958 6959 6960
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6961 6962
}

I
Ingo Molnar 已提交
6963 6964
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6965
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6966 6967
}

6968 6969 6970 6971 6972 6973 6974 6975
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6976
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6977
{
6978
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6979 6980
	unsigned long flags;

6981 6982
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6983 6984 6985
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6986
	idle->prio = idle->normal_prio = MAX_PRIO;
6987
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6988
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6989 6990

	rq->curr = rq->idle = idle;
6991 6992 6993
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6994 6995 6996
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6997 6998 6999
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7000
	task_thread_info(idle)->preempt_count = 0;
7001
#endif
I
Ingo Molnar 已提交
7002 7003 7004 7005
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7006
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7007 7008 7009 7010 7011 7012 7013
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7014
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7015
 */
7016
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7017

I
Ingo Molnar 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7041 7042

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7043 7044
}

L
Linus Torvalds 已提交
7045 7046 7047 7048
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7049
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7068
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7069 7070
 * call is not atomic; no spinlocks may be held.
 */
7071
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7072
{
7073
	struct migration_req req;
L
Linus Torvalds 已提交
7074
	unsigned long flags;
7075
	struct rq *rq;
7076
	int ret = 0;
L
Linus Torvalds 已提交
7077 7078

	rq = task_rq_lock(p, &flags);
7079
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7080 7081 7082 7083
		ret = -EINVAL;
		goto out;
	}

7084
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7085
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7086 7087 7088 7089
		ret = -EINVAL;
		goto out;
	}

7090
	if (p->sched_class->set_cpus_allowed)
7091
		p->sched_class->set_cpus_allowed(p, new_mask);
7092
	else {
7093 7094
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7095 7096
	}

L
Linus Torvalds 已提交
7097
	/* Can the task run on the task's current CPU? If so, we're done */
7098
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7099 7100
		goto out;

R
Rusty Russell 已提交
7101
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7102
		/* Need help from migration thread: drop lock and wait. */
7103 7104 7105
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7106 7107
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7108
		put_task_struct(mt);
L
Linus Torvalds 已提交
7109 7110 7111 7112 7113 7114
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7115

L
Linus Torvalds 已提交
7116 7117
	return ret;
}
7118
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7119 7120

/*
I
Ingo Molnar 已提交
7121
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7122 7123 7124 7125 7126 7127
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7128 7129
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7130
 */
7131
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7132
{
7133
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7134
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7135

7136
	if (unlikely(!cpu_active(dest_cpu)))
7137
		return ret;
L
Linus Torvalds 已提交
7138 7139 7140 7141 7142 7143 7144

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7145
		goto done;
L
Linus Torvalds 已提交
7146
	/* Affinity changed (again). */
7147
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7148
		goto fail;
L
Linus Torvalds 已提交
7149

I
Ingo Molnar 已提交
7150
	on_rq = p->se.on_rq;
7151
	if (on_rq)
7152
		deactivate_task(rq_src, p, 0);
7153

L
Linus Torvalds 已提交
7154
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7155 7156
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7157
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7158
	}
L
Linus Torvalds 已提交
7159
done:
7160
	ret = 1;
L
Linus Torvalds 已提交
7161
fail:
L
Linus Torvalds 已提交
7162
	double_rq_unlock(rq_src, rq_dest);
7163
	return ret;
L
Linus Torvalds 已提交
7164 7165 7166 7167 7168 7169 7170
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7171
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7172 7173
{
	int cpu = (long)data;
7174
	struct rq *rq;
L
Linus Torvalds 已提交
7175 7176 7177 7178 7179 7180

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7181
		struct migration_req *req;
L
Linus Torvalds 已提交
7182 7183 7184 7185 7186 7187
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7188
			break;
L
Linus Torvalds 已提交
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7204
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7205 7206
		list_del_init(head->next);

N
Nick Piggin 已提交
7207 7208 7209
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7230
/*
7231
 * Figure out where task on dead CPU should go, use force if necessary.
7232
 */
7233
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7234
{
7235
	int dest_cpu;
7236
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7253

7254 7255 7256 7257 7258 7259 7260 7261 7262
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7263
		}
7264 7265 7266 7267 7268 7269
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7270 7271 7272 7273 7274 7275 7276 7277 7278
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7279
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7280
{
R
Rusty Russell 已提交
7281
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7295
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7296

7297
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7298

7299 7300
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7301 7302
			continue;

7303 7304 7305
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7306

7307
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7308 7309
}

I
Ingo Molnar 已提交
7310 7311
/*
 * Schedules idle task to be the next runnable task on current CPU.
7312 7313
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7314 7315 7316
 */
void sched_idle_next(void)
{
7317
	int this_cpu = smp_processor_id();
7318
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7319 7320 7321 7322
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7323
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7324

7325 7326 7327
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7328 7329 7330
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7331
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7332

7333 7334
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7335 7336 7337 7338

	spin_unlock_irqrestore(&rq->lock, flags);
}

7339 7340
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7354
/* called under rq->lock with disabled interrupts */
7355
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7356
{
7357
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7358 7359

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7360
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7361 7362

	/* Cannot have done final schedule yet: would have vanished. */
7363
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7364

7365
	get_task_struct(p);
L
Linus Torvalds 已提交
7366 7367 7368

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7369
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7370 7371
	 * fine.
	 */
7372
	spin_unlock_irq(&rq->lock);
7373
	move_task_off_dead_cpu(dead_cpu, p);
7374
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7375

7376
	put_task_struct(p);
L
Linus Torvalds 已提交
7377 7378 7379 7380 7381
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7382
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7383
	struct task_struct *next;
7384

I
Ingo Molnar 已提交
7385 7386 7387
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7388
		update_rq_clock(rq);
7389
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7390 7391
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7392
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7393
		migrate_dead(dead_cpu, next);
7394

L
Linus Torvalds 已提交
7395 7396
	}
}
7397 7398 7399 7400 7401 7402 7403

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7404
	rq->calc_load_active = 0;
7405
}
L
Linus Torvalds 已提交
7406 7407
#endif /* CONFIG_HOTPLUG_CPU */

7408 7409 7410
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7411 7412
	{
		.procname	= "sched_domain",
7413
		.mode		= 0555,
7414
	},
I
Ingo Molnar 已提交
7415
	{0, },
7416 7417 7418
};

static struct ctl_table sd_ctl_root[] = {
7419
	{
7420
		.ctl_name	= CTL_KERN,
7421
		.procname	= "kernel",
7422
		.mode		= 0555,
7423 7424
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7425
	{0, },
7426 7427 7428 7429 7430
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7431
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7432 7433 7434 7435

	return entry;
}

7436 7437
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7438
	struct ctl_table *entry;
7439

7440 7441 7442
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7443
	 * will always be set. In the lowest directory the names are
7444 7445 7446
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7447 7448
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7449 7450 7451
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7452 7453 7454 7455 7456

	kfree(*tablep);
	*tablep = NULL;
}

7457
static void
7458
set_table_entry(struct ctl_table *entry,
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7472
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7473

7474 7475 7476
	if (table == NULL)
		return NULL;

7477
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7478
		sizeof(long), 0644, proc_doulongvec_minmax);
7479
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7480
		sizeof(long), 0644, proc_doulongvec_minmax);
7481
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7482
		sizeof(int), 0644, proc_dointvec_minmax);
7483
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7484
		sizeof(int), 0644, proc_dointvec_minmax);
7485
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7486
		sizeof(int), 0644, proc_dointvec_minmax);
7487
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7488
		sizeof(int), 0644, proc_dointvec_minmax);
7489
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7490
		sizeof(int), 0644, proc_dointvec_minmax);
7491
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7492
		sizeof(int), 0644, proc_dointvec_minmax);
7493
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7494
		sizeof(int), 0644, proc_dointvec_minmax);
7495
	set_table_entry(&table[9], "cache_nice_tries",
7496 7497
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7498
	set_table_entry(&table[10], "flags", &sd->flags,
7499
		sizeof(int), 0644, proc_dointvec_minmax);
7500 7501 7502
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7503 7504 7505 7506

	return table;
}

7507
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7508 7509 7510 7511 7512 7513 7514 7515 7516
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7517 7518
	if (table == NULL)
		return NULL;
7519 7520 7521 7522 7523

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7524
		entry->mode = 0555;
7525 7526 7527 7528 7529 7530 7531 7532
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7533
static void register_sched_domain_sysctl(void)
7534 7535 7536 7537 7538
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7539 7540 7541
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7542 7543 7544
	if (entry == NULL)
		return;

7545
	for_each_online_cpu(i) {
7546 7547
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7548
		entry->mode = 0555;
7549
		entry->child = sd_alloc_ctl_cpu_table(i);
7550
		entry++;
7551
	}
7552 7553

	WARN_ON(sd_sysctl_header);
7554 7555
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7556

7557
/* may be called multiple times per register */
7558 7559
static void unregister_sched_domain_sysctl(void)
{
7560 7561
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7562
	sd_sysctl_header = NULL;
7563 7564
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7565
}
7566
#else
7567 7568 7569 7570
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7571 7572 7573 7574
{
}
#endif

7575 7576 7577 7578 7579
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7580
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7600
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7601 7602 7603 7604
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7605 7606 7607 7608
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7609 7610
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7611 7612
{
	struct task_struct *p;
7613
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7614
	unsigned long flags;
7615
	struct rq *rq;
L
Linus Torvalds 已提交
7616 7617

	switch (action) {
7618

L
Linus Torvalds 已提交
7619
	case CPU_UP_PREPARE:
7620
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7621
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7622 7623 7624 7625 7626
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7627
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7628
		task_rq_unlock(rq, &flags);
7629
		get_task_struct(p);
L
Linus Torvalds 已提交
7630
		cpu_rq(cpu)->migration_thread = p;
7631
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7632
		break;
7633

L
Linus Torvalds 已提交
7634
	case CPU_ONLINE:
7635
	case CPU_ONLINE_FROZEN:
7636
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7637
		wake_up_process(cpu_rq(cpu)->migration_thread);
7638 7639 7640 7641 7642

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7643
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7644 7645

			set_rq_online(rq);
7646 7647
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7648
		break;
7649

L
Linus Torvalds 已提交
7650 7651
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7652
	case CPU_UP_CANCELED_FROZEN:
7653 7654
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7655
		/* Unbind it from offline cpu so it can run. Fall thru. */
7656
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7657
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7658
		kthread_stop(cpu_rq(cpu)->migration_thread);
7659
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7660 7661
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7662

L
Linus Torvalds 已提交
7663
	case CPU_DEAD:
7664
	case CPU_DEAD_FROZEN:
7665
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7666 7667 7668
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7669
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7670 7671
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7672
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7673
		update_rq_clock(rq);
7674
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7675
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7676 7677
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7678
		migrate_dead_tasks(cpu);
7679
		spin_unlock_irq(&rq->lock);
7680
		cpuset_unlock();
L
Linus Torvalds 已提交
7681 7682
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7683
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7684 7685 7686 7687 7688
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7689 7690
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7691 7692
			struct migration_req *req;

L
Linus Torvalds 已提交
7693
			req = list_entry(rq->migration_queue.next,
7694
					 struct migration_req, list);
L
Linus Torvalds 已提交
7695
			list_del_init(&req->list);
B
Brian King 已提交
7696
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7697
			complete(&req->done);
B
Brian King 已提交
7698
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7699 7700 7701
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7702

7703 7704
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7705 7706 7707 7708
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7709
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7710
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7711 7712 7713
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7714 7715 7716 7717 7718
#endif
	}
	return NOTIFY_OK;
}

7719 7720 7721 7722
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7723
 */
7724
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7725 7726 7727 7728
	.notifier_call = migration_call,
	.priority = 10
};

7729
static int __init migration_init(void)
L
Linus Torvalds 已提交
7730 7731
{
	void *cpu = (void *)(long)smp_processor_id();
7732
	int err;
7733 7734

	/* Start one for the boot CPU: */
7735 7736
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7737 7738
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7739

7740
	return 0;
L
Linus Torvalds 已提交
7741
}
7742
early_initcall(migration_init);
L
Linus Torvalds 已提交
7743 7744 7745
#endif

#ifdef CONFIG_SMP
7746

7747
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7748

7749
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7750
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7751
{
I
Ingo Molnar 已提交
7752
	struct sched_group *group = sd->groups;
7753
	char str[256];
L
Linus Torvalds 已提交
7754

R
Rusty Russell 已提交
7755
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7756
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7766 7767
	}

7768
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7769

7770
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7771 7772 7773
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7774
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7775 7776 7777
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7778

I
Ingo Molnar 已提交
7779
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7780
	do {
I
Ingo Molnar 已提交
7781 7782 7783
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7784 7785 7786
			break;
		}

I
Ingo Molnar 已提交
7787 7788 7789 7790 7791 7792
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7793

7794
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7795 7796 7797 7798
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7799

7800
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7801 7802 7803 7804
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7805

7806
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7807

R
Rusty Russell 已提交
7808
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7809 7810 7811 7812 7813 7814

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7815

I
Ingo Molnar 已提交
7816 7817 7818
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7819

7820
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7821
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7822

7823 7824
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7825 7826 7827 7828
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7829

I
Ingo Molnar 已提交
7830 7831
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7832
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7833
	int level = 0;
L
Linus Torvalds 已提交
7834

I
Ingo Molnar 已提交
7835 7836 7837 7838
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7839

I
Ingo Molnar 已提交
7840 7841
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7842
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7843 7844 7845 7846
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7847
	for (;;) {
7848
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7849
			break;
L
Linus Torvalds 已提交
7850 7851
		level++;
		sd = sd->parent;
7852
		if (!sd)
I
Ingo Molnar 已提交
7853 7854
			break;
	}
7855
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7856
}
7857
#else /* !CONFIG_SCHED_DEBUG */
7858
# define sched_domain_debug(sd, cpu) do { } while (0)
7859
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7860

7861
static int sd_degenerate(struct sched_domain *sd)
7862
{
7863
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7864 7865 7866 7867 7868 7869
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7870 7871 7872
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7886 7887
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7888 7889 7890 7891 7892 7893
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7894
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7906 7907 7908
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7909 7910
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7911 7912 7913 7914 7915 7916 7917
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7918 7919
static void free_rootdomain(struct root_domain *rd)
{
7920 7921
	cpupri_cleanup(&rd->cpupri);

7922 7923 7924 7925 7926 7927
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7928 7929
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7930
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7931 7932 7933 7934 7935
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7936
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7937

7938
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7939
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7940

7941
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7942

I
Ingo Molnar 已提交
7943 7944 7945 7946 7947 7948 7949
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7950 7951 7952 7953 7954
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7955
	cpumask_set_cpu(rq->cpu, rd->span);
7956
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7957
		set_rq_online(rq);
G
Gregory Haskins 已提交
7958 7959

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7960 7961 7962

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7963 7964
}

L
Li Zefan 已提交
7965
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7966
{
7967 7968
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7969 7970
	memset(rd, 0, sizeof(*rd));

7971 7972
	if (bootmem)
		gfp = GFP_NOWAIT;
7973

7974
	if (!alloc_cpumask_var(&rd->span, gfp))
7975
		goto out;
7976
	if (!alloc_cpumask_var(&rd->online, gfp))
7977
		goto free_span;
7978
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7979
		goto free_online;
7980

P
Pekka Enberg 已提交
7981
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7982
		goto free_rto_mask;
7983
	return 0;
7984

7985 7986
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7987 7988 7989 7990
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7991
out:
7992
	return -ENOMEM;
G
Gregory Haskins 已提交
7993 7994 7995 7996
}

static void init_defrootdomain(void)
{
7997 7998
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7999 8000 8001
	atomic_set(&def_root_domain.refcount, 1);
}

8002
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8003 8004 8005 8006 8007 8008 8009
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8010 8011 8012 8013
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8014 8015 8016 8017

	return rd;
}

L
Linus Torvalds 已提交
8018
/*
I
Ingo Molnar 已提交
8019
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8020 8021
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8022 8023
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8024
{
8025
	struct rq *rq = cpu_rq(cpu);
8026 8027 8028
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8029
	for (tmp = sd; tmp; ) {
8030 8031 8032
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8033

8034
		if (sd_parent_degenerate(tmp, parent)) {
8035
			tmp->parent = parent->parent;
8036 8037
			if (parent->parent)
				parent->parent->child = tmp;
8038 8039
		} else
			tmp = tmp->parent;
8040 8041
	}

8042
	if (sd && sd_degenerate(sd)) {
8043
		sd = sd->parent;
8044 8045 8046
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8047 8048 8049

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8050
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8051
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8052 8053 8054
}

/* cpus with isolated domains */
8055
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8056 8057 8058 8059

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8060
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8061 8062 8063
	return 1;
}

I
Ingo Molnar 已提交
8064
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8065 8066

/*
8067 8068
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8069 8070
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8071 8072 8073 8074 8075
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8076
static void
8077 8078 8079
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8080
					struct sched_group **sg,
8081 8082
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8083 8084 8085 8086
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8087
	cpumask_clear(covered);
8088

8089
	for_each_cpu(i, span) {
8090
		struct sched_group *sg;
8091
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8092 8093
		int j;

8094
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8095 8096
			continue;

8097
		cpumask_clear(sched_group_cpus(sg));
8098
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8099

8100
		for_each_cpu(j, span) {
8101
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8102 8103
				continue;

8104
			cpumask_set_cpu(j, covered);
8105
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8116
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8117

8118
#ifdef CONFIG_NUMA
8119

8120 8121 8122 8123 8124
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8125
 * Find the next node to include in a given scheduling domain. Simply
8126 8127 8128 8129
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8130
static int find_next_best_node(int node, nodemask_t *used_nodes)
8131 8132 8133 8134 8135
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8136
	for (i = 0; i < nr_node_ids; i++) {
8137
		/* Start at @node */
8138
		n = (node + i) % nr_node_ids;
8139 8140 8141 8142 8143

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8144
		if (node_isset(n, *used_nodes))
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8156
	node_set(best_node, *used_nodes);
8157 8158 8159 8160 8161 8162
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8163
 * @span: resulting cpumask
8164
 *
I
Ingo Molnar 已提交
8165
 * Given a node, construct a good cpumask for its sched_domain to span. It
8166 8167 8168
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8169
static void sched_domain_node_span(int node, struct cpumask *span)
8170
{
8171
	nodemask_t used_nodes;
8172
	int i;
8173

8174
	cpumask_clear(span);
8175
	nodes_clear(used_nodes);
8176

8177
	cpumask_or(span, span, cpumask_of_node(node));
8178
	node_set(node, used_nodes);
8179 8180

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8181
		int next_node = find_next_best_node(node, &used_nodes);
8182

8183
		cpumask_or(span, span, cpumask_of_node(next_node));
8184 8185
	}
}
8186
#endif /* CONFIG_NUMA */
8187

8188
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8189

8190 8191
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8192 8193 8194
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8239
/*
8240
 * SMT sched-domains:
8241
 */
L
Linus Torvalds 已提交
8242
#ifdef CONFIG_SCHED_SMT
8243 8244
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8245

I
Ingo Molnar 已提交
8246
static int
8247 8248
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8249
{
8250
	if (sg)
8251
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8252 8253
	return cpu;
}
8254
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8255

8256 8257 8258
/*
 * multi-core sched-domains:
 */
8259
#ifdef CONFIG_SCHED_MC
8260 8261
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8262
#endif /* CONFIG_SCHED_MC */
8263 8264

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8265
static int
8266 8267
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8268
{
8269
	int group;
8270

8271
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8272
	group = cpumask_first(mask);
8273
	if (sg)
8274
		*sg = &per_cpu(sched_group_core, group).sg;
8275
	return group;
8276 8277
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8278
static int
8279 8280
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8281
{
8282
	if (sg)
8283
		*sg = &per_cpu(sched_group_core, cpu).sg;
8284 8285 8286 8287
	return cpu;
}
#endif

8288 8289
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8290

I
Ingo Molnar 已提交
8291
static int
8292 8293
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8294
{
8295
	int group;
8296
#ifdef CONFIG_SCHED_MC
8297
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8298
	group = cpumask_first(mask);
8299
#elif defined(CONFIG_SCHED_SMT)
8300
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8301
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8302
#else
8303
	group = cpu;
L
Linus Torvalds 已提交
8304
#endif
8305
	if (sg)
8306
		*sg = &per_cpu(sched_group_phys, group).sg;
8307
	return group;
L
Linus Torvalds 已提交
8308 8309 8310 8311
}

#ifdef CONFIG_NUMA
/*
8312 8313 8314
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8315
 */
8316
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8317
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8318

8319
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8320
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8321

8322 8323 8324
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8325
{
8326 8327
	int group;

8328
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8329
	group = cpumask_first(nodemask);
8330 8331

	if (sg)
8332
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8333
	return group;
L
Linus Torvalds 已提交
8334
}
8335

8336 8337 8338 8339 8340 8341 8342
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8343
	do {
8344
		for_each_cpu(j, sched_group_cpus(sg)) {
8345
			struct sched_domain *sd;
8346

8347
			sd = &per_cpu(phys_domains, j).sd;
8348
			if (j != group_first_cpu(sd->groups)) {
8349 8350 8351 8352 8353 8354
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8355

8356 8357 8358 8359
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8360
}
8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

	sg->__cpu_power = 0;
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
		sg->__cpu_power = 0;
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8426
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8427

8428
#ifdef CONFIG_NUMA
8429
/* Free memory allocated for various sched_group structures */
8430 8431
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8432
{
8433
	int cpu, i;
8434

8435
	for_each_cpu(cpu, cpu_map) {
8436 8437 8438 8439 8440 8441
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8442
		for (i = 0; i < nr_node_ids; i++) {
8443 8444
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8445
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8446
			if (cpumask_empty(nodemask))
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8463
#else /* !CONFIG_NUMA */
8464 8465
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8466 8467
{
}
8468
#endif /* CONFIG_NUMA */
8469

8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8484 8485
	long power;
	int weight;
8486 8487 8488

	WARN_ON(!sd || !sd->groups);

8489
	if (cpu != group_first_cpu(sd->groups))
8490 8491 8492 8493
		return;

	child = sd->child;

8494 8495
	sd->groups->__cpu_power = 0;

8496 8497 8498 8499 8500 8501 8502 8503 8504
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
		 */
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1)
			power /= weight;
		sg_inc_cpu_power(sd->groups, power);
8505 8506 8507 8508
		return;
	}

	/*
8509
	 * Add cpu_power of each child group to this groups cpu_power.
8510 8511 8512
	 */
	group = child->groups;
	do {
8513
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8514 8515 8516 8517
		group = group->next;
	} while (group != child->groups);
}

8518 8519 8520 8521 8522
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8523 8524 8525 8526 8527 8528
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8529
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8530

8531 8532 8533 8534 8535
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8536
	sd->level = SD_LV_##type;				\
8537
	SD_INIT_NAME(sd, type);					\
8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8552 8553 8554 8555
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8556 8557 8558 8559 8560 8561
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8607
#ifdef CONFIG_NUMA
8608 8609 8610 8611 8612 8613 8614
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8615
#endif
8616 8617 8618 8619
	case sa_none:
		break;
	}
}
8620

8621 8622 8623
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8624
#ifdef CONFIG_NUMA
8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8635
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8636
		return sa_notcovered;
8637
	}
8638
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8639
#endif
8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8652
		printk(KERN_WARNING "Cannot alloc root domain\n");
8653
		return sa_tmpmask;
G
Gregory Haskins 已提交
8654
	}
8655 8656
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8657

8658 8659 8660 8661
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8662
#ifdef CONFIG_NUMA
8663
	struct sched_domain *parent;
8664

8665 8666 8667 8668 8669
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8670
		set_domain_attribute(sd, attr);
8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8685
#endif
8686 8687
	return sd;
}
L
Linus Torvalds 已提交
8688

8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8704

8705 8706 8707 8708 8709
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8710
#ifdef CONFIG_SCHED_MC
8711 8712 8713 8714 8715 8716 8717
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8718
#endif
8719 8720
	return sd;
}
8721

8722 8723 8724 8725 8726
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8727
#ifdef CONFIG_SCHED_SMT
8728 8729 8730 8731 8732 8733 8734
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8735
#endif
8736 8737
	return sd;
}
L
Linus Torvalds 已提交
8738

8739 8740 8741 8742
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8743
#ifdef CONFIG_SCHED_SMT
8744 8745 8746 8747 8748 8749 8750 8751
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8752
#endif
8753
#ifdef CONFIG_SCHED_MC
8754 8755 8756 8757 8758 8759 8760
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8761
#endif
8762 8763 8764 8765 8766 8767 8768
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8769
#ifdef CONFIG_NUMA
8770 8771 8772 8773 8774
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8775 8776
	default:
		break;
8777
	}
8778
}
8779

8780 8781 8782 8783 8784 8785 8786 8787 8788
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8789
	struct sched_domain *sd;
8790
	int i;
8791
#ifdef CONFIG_NUMA
8792
	d.sd_allnodes = 0;
8793
#endif
8794

8795 8796 8797 8798
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8799

L
Linus Torvalds 已提交
8800
	/*
8801
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8802
	 */
8803
	for_each_cpu(i, cpu_map) {
8804 8805
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8806

8807
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8808
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8809
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8810
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8811
	}
8812

8813
	for_each_cpu(i, cpu_map) {
8814
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8815
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8816
	}
8817

L
Linus Torvalds 已提交
8818
	/* Set up physical groups */
8819 8820
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8821

L
Linus Torvalds 已提交
8822 8823
#ifdef CONFIG_NUMA
	/* Set up node groups */
8824 8825
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8826

8827 8828
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8829
			goto error;
L
Linus Torvalds 已提交
8830 8831 8832
#endif

	/* Calculate CPU power for physical packages and nodes */
8833
#ifdef CONFIG_SCHED_SMT
8834
	for_each_cpu(i, cpu_map) {
8835
		sd = &per_cpu(cpu_domains, i).sd;
8836
		init_sched_groups_power(i, sd);
8837
	}
L
Linus Torvalds 已提交
8838
#endif
8839
#ifdef CONFIG_SCHED_MC
8840
	for_each_cpu(i, cpu_map) {
8841
		sd = &per_cpu(core_domains, i).sd;
8842
		init_sched_groups_power(i, sd);
8843 8844
	}
#endif
8845

8846
	for_each_cpu(i, cpu_map) {
8847
		sd = &per_cpu(phys_domains, i).sd;
8848
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8849 8850
	}

8851
#ifdef CONFIG_NUMA
8852
	for (i = 0; i < nr_node_ids; i++)
8853
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8854

8855
	if (d.sd_allnodes) {
8856
		struct sched_group *sg;
8857

8858
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8859
								d.tmpmask);
8860 8861
		init_numa_sched_groups_power(sg);
	}
8862 8863
#endif

L
Linus Torvalds 已提交
8864
	/* Attach the domains */
8865
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8866
#ifdef CONFIG_SCHED_SMT
8867
		sd = &per_cpu(cpu_domains, i).sd;
8868
#elif defined(CONFIG_SCHED_MC)
8869
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8870
#else
8871
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8872
#endif
8873
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8874
	}
8875

8876 8877 8878
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8879 8880

error:
8881 8882
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8883
}
P
Paul Jackson 已提交
8884

8885
static int build_sched_domains(const struct cpumask *cpu_map)
8886 8887 8888 8889
{
	return __build_sched_domains(cpu_map, NULL);
}

8890
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8891
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8892 8893
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8894 8895 8896

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8897 8898
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8899
 */
8900
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8901

8902 8903 8904 8905 8906 8907
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8908
{
8909
	return 0;
8910 8911
}

8912
/*
I
Ingo Molnar 已提交
8913
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8914 8915
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8916
 */
8917
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8918
{
8919 8920
	int err;

8921
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8922
	ndoms_cur = 1;
8923
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8924
	if (!doms_cur)
8925
		doms_cur = fallback_doms;
8926
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8927
	dattr_cur = NULL;
8928
	err = build_sched_domains(doms_cur);
8929
	register_sched_domain_sysctl();
8930 8931

	return err;
8932 8933
}

8934 8935
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8936
{
8937
	free_sched_groups(cpu_map, tmpmask);
8938
}
L
Linus Torvalds 已提交
8939

8940 8941 8942 8943
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8944
static void detach_destroy_domains(const struct cpumask *cpu_map)
8945
{
8946 8947
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8948 8949
	int i;

8950
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8951
		cpu_attach_domain(NULL, &def_root_domain, i);
8952
	synchronize_sched();
8953
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8954 8955
}

8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8972 8973
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8974
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8975 8976 8977
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8978
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8979 8980 8981
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8982 8983 8984
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8985 8986
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8987 8988 8989 8990
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8991
 *
8992
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8993 8994
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8995
 *
P
Paul Jackson 已提交
8996 8997
 * Call with hotplug lock held
 */
8998 8999
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9000
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9001
{
9002
	int i, j, n;
9003
	int new_topology;
P
Paul Jackson 已提交
9004

9005
	mutex_lock(&sched_domains_mutex);
9006

9007 9008 9009
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9010 9011 9012
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9013
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9014 9015 9016

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9017
		for (j = 0; j < n && !new_topology; j++) {
9018
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9019
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9020 9021 9022 9023 9024 9025 9026 9027
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9028 9029
	if (doms_new == NULL) {
		ndoms_cur = 0;
9030
		doms_new = fallback_doms;
9031
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9032
		WARN_ON_ONCE(dattr_new);
9033 9034
	}

P
Paul Jackson 已提交
9035 9036
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9037
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9038
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9039
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9040 9041 9042
				goto match2;
		}
		/* no match - add a new doms_new */
9043 9044
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9045 9046 9047 9048 9049
match2:
		;
	}

	/* Remember the new sched domains */
9050
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9051
		kfree(doms_cur);
9052
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9053
	doms_cur = doms_new;
9054
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9055
	ndoms_cur = ndoms_new;
9056 9057

	register_sched_domain_sysctl();
9058

9059
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9060 9061
}

9062
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9063
static void arch_reinit_sched_domains(void)
9064
{
9065
	get_online_cpus();
9066 9067 9068 9069

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9070
	rebuild_sched_domains();
9071
	put_online_cpus();
9072 9073 9074 9075
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9076
	unsigned int level = 0;
9077

9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9089 9090 9091
		return -EINVAL;

	if (smt)
9092
		sched_smt_power_savings = level;
9093
	else
9094
		sched_mc_power_savings = level;
9095

9096
	arch_reinit_sched_domains();
9097

9098
	return count;
9099 9100 9101
}

#ifdef CONFIG_SCHED_MC
9102 9103
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9104 9105 9106
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9107
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9108
					    const char *buf, size_t count)
9109 9110 9111
{
	return sched_power_savings_store(buf, count, 0);
}
9112 9113 9114
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9115 9116 9117
#endif

#ifdef CONFIG_SCHED_SMT
9118 9119
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9120 9121 9122
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9123
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9124
					     const char *buf, size_t count)
9125 9126 9127
{
	return sched_power_savings_store(buf, count, 1);
}
9128 9129
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9130 9131 9132
		   sched_smt_power_savings_store);
#endif

9133
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9149
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9150

9151
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9152
/*
9153 9154
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9155 9156 9157
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9158 9159 9160 9161 9162 9163
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9164
		partition_sched_domains(1, NULL, NULL);
9165 9166 9167 9168 9169 9170 9171 9172 9173 9174
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9175
{
P
Peter Zijlstra 已提交
9176 9177
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9178 9179
	switch (action) {
	case CPU_DOWN_PREPARE:
9180
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9181
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9182 9183 9184
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9185
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9186
	case CPU_ONLINE:
9187
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9188
		enable_runtime(cpu_rq(cpu));
9189 9190
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9191 9192 9193 9194 9195 9196 9197
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9198 9199 9200
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9201

9202 9203 9204 9205 9206
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9207
	get_online_cpus();
9208
	mutex_lock(&sched_domains_mutex);
9209 9210 9211 9212
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9213
	mutex_unlock(&sched_domains_mutex);
9214
	put_online_cpus();
9215 9216

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9217 9218
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9219 9220 9221 9222 9223
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9224
	init_hrtick();
9225 9226

	/* Move init over to a non-isolated CPU */
9227
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9228
		BUG();
I
Ingo Molnar 已提交
9229
	sched_init_granularity();
9230
	free_cpumask_var(non_isolated_cpus);
9231 9232

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9233
	init_sched_rt_class();
L
Linus Torvalds 已提交
9234 9235 9236 9237
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9238
	sched_init_granularity();
L
Linus Torvalds 已提交
9239 9240 9241
}
#endif /* CONFIG_SMP */

9242 9243
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9244 9245 9246 9247 9248 9249 9250
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9251
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9252 9253
{
	cfs_rq->tasks_timeline = RB_ROOT;
9254
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9255 9256 9257
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9258
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9259 9260
}

P
Peter Zijlstra 已提交
9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9274
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9275
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9276
#ifdef CONFIG_SMP
9277
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9278 9279
#endif
#endif
P
Peter Zijlstra 已提交
9280 9281 9282
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9283
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9284 9285 9286 9287
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9288 9289
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9290

9291
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9292
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9293 9294
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9295 9296
}

P
Peter Zijlstra 已提交
9297
#ifdef CONFIG_FAIR_GROUP_SCHED
9298 9299 9300
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9301
{
9302
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9303 9304 9305 9306 9307 9308 9309
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9310 9311 9312 9313
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9314 9315 9316 9317 9318
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9319 9320
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9321
	se->load.inv_weight = 0;
9322
	se->parent = parent;
P
Peter Zijlstra 已提交
9323
}
9324
#endif
P
Peter Zijlstra 已提交
9325

9326
#ifdef CONFIG_RT_GROUP_SCHED
9327 9328 9329
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9330
{
9331 9332
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9333 9334 9335 9336
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9337
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9338 9339 9340 9341
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9342 9343 9344
	if (!rt_se)
		return;

9345 9346 9347 9348 9349
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9350
	rt_se->my_q = rt_rq;
9351
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9352 9353 9354 9355
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9356 9357
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9358
	int i, j;
9359 9360 9361 9362 9363 9364 9365
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9366 9367 9368
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9369 9370
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9371
	alloc_size += num_possible_cpus() * cpumask_size();
9372 9373 9374 9375 9376 9377
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9378
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9379 9380 9381 9382 9383 9384 9385

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9386 9387 9388 9389 9390 9391 9392

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9393 9394
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9395 9396 9397 9398 9399
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9400 9401 9402 9403 9404 9405 9406 9407
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9408 9409
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9410 9411 9412 9413 9414 9415
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9416
	}
I
Ingo Molnar 已提交
9417

G
Gregory Haskins 已提交
9418 9419 9420 9421
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9422 9423 9424 9425 9426 9427
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9428 9429 9430
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9431 9432
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9433

9434
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9435
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9436 9437 9438 9439 9440 9441
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9442 9443
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9444

9445
	for_each_possible_cpu(i) {
9446
		struct rq *rq;
L
Linus Torvalds 已提交
9447 9448 9449

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9450
		rq->nr_running = 0;
9451 9452
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9453
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9454
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9455
#ifdef CONFIG_FAIR_GROUP_SCHED
9456
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9457
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9473
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9474 9475 9476 9477
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9478
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9479
#elif defined CONFIG_USER_SCHED
9480 9481
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9482 9483 9484 9485 9486 9487 9488 9489
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9490
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9491 9492
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9493
		init_tg_cfs_entry(&init_task_group,
9494
				&per_cpu(init_tg_cfs_rq, i),
9495 9496
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9497

9498
#endif
D
Dhaval Giani 已提交
9499 9500 9501
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9502
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9503
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9504
#ifdef CONFIG_CGROUP_SCHED
9505
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9506
#elif defined CONFIG_USER_SCHED
9507
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9508
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9509
				&per_cpu(init_rt_rq, i),
9510 9511
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9512
#endif
I
Ingo Molnar 已提交
9513
#endif
L
Linus Torvalds 已提交
9514

I
Ingo Molnar 已提交
9515 9516
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9517
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9518
		rq->sd = NULL;
G
Gregory Haskins 已提交
9519
		rq->rd = NULL;
9520
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9521
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9522
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9523
		rq->push_cpu = 0;
9524
		rq->cpu = i;
9525
		rq->online = 0;
L
Linus Torvalds 已提交
9526 9527
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9528
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9529
#endif
P
Peter Zijlstra 已提交
9530
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9531 9532 9533
		atomic_set(&rq->nr_iowait, 0);
	}

9534
	set_load_weight(&init_task);
9535

9536 9537 9538 9539
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9540
#ifdef CONFIG_SMP
9541
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9542 9543
#endif

9544 9545 9546 9547
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9561 9562 9563

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9564 9565 9566 9567
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9568

9569
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9570
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9571
#ifdef CONFIG_SMP
9572
#ifdef CONFIG_NO_HZ
9573 9574
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9575
#endif
9576
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9577
#endif /* SMP */
9578

9579 9580
	perf_counter_init();

9581
	scheduler_running = 1;
L
Linus Torvalds 已提交
9582 9583 9584
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9585 9586 9587 9588 9589 9590 9591 9592
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9593
{
9594
#ifdef in_atomic
L
Linus Torvalds 已提交
9595 9596
	static unsigned long prev_jiffy;	/* ratelimiting */

9597 9598
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9616 9617 9618 9619 9620 9621
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9622 9623 9624
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9625

9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9637 9638
void normalize_rt_tasks(void)
{
9639
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9640
	unsigned long flags;
9641
	struct rq *rq;
L
Linus Torvalds 已提交
9642

9643
	read_lock_irqsave(&tasklist_lock, flags);
9644
	do_each_thread(g, p) {
9645 9646 9647 9648 9649 9650
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9651 9652
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9653 9654 9655
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9656
#endif
I
Ingo Molnar 已提交
9657 9658 9659 9660 9661 9662 9663 9664

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9665
			continue;
I
Ingo Molnar 已提交
9666
		}
L
Linus Torvalds 已提交
9667

9668
		spin_lock(&p->pi_lock);
9669
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9670

9671
		normalize_task(rq, p);
9672

9673
		__task_rq_unlock(rq);
9674
		spin_unlock(&p->pi_lock);
9675 9676
	} while_each_thread(g, p);

9677
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9678 9679 9680
}

#endif /* CONFIG_MAGIC_SYSRQ */
9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9699
struct task_struct *curr_task(int cpu)
9700 9701 9702 9703 9704 9705 9706 9707 9708 9709
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9710 9711
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9712 9713 9714 9715 9716 9717 9718
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9719
void set_curr_task(int cpu, struct task_struct *p)
9720 9721 9722 9723 9724
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9725

9726 9727
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9742 9743
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9744 9745
{
	struct cfs_rq *cfs_rq;
9746
	struct sched_entity *se;
9747
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9748 9749
	int i;

9750
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9751 9752
	if (!tg->cfs_rq)
		goto err;
9753
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9754 9755
	if (!tg->se)
		goto err;
9756 9757

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9758 9759

	for_each_possible_cpu(i) {
9760
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9761

9762 9763
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9764 9765 9766
		if (!cfs_rq)
			goto err;

9767 9768
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9769 9770 9771
		if (!se)
			goto err;

9772
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9791
#else /* !CONFG_FAIR_GROUP_SCHED */
9792 9793 9794 9795
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9796 9797
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9809
#endif /* CONFIG_FAIR_GROUP_SCHED */
9810 9811

#ifdef CONFIG_RT_GROUP_SCHED
9812 9813 9814 9815
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9816 9817
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9829 9830
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9831 9832
{
	struct rt_rq *rt_rq;
9833
	struct sched_rt_entity *rt_se;
9834 9835 9836
	struct rq *rq;
	int i;

9837
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9838 9839
	if (!tg->rt_rq)
		goto err;
9840
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9841 9842 9843
	if (!tg->rt_se)
		goto err;

9844 9845
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9846 9847 9848 9849

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9850 9851
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9852 9853
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9854

9855 9856
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9857 9858
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9859

9860
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9861 9862
	}

9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9879
#else /* !CONFIG_RT_GROUP_SCHED */
9880 9881 9882 9883
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9884 9885
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9897
#endif /* CONFIG_RT_GROUP_SCHED */
9898

9899
#ifdef CONFIG_GROUP_SCHED
9900 9901 9902 9903 9904 9905 9906 9907
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9908
struct task_group *sched_create_group(struct task_group *parent)
9909 9910 9911 9912 9913 9914 9915 9916 9917
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9918
	if (!alloc_fair_sched_group(tg, parent))
9919 9920
		goto err;

9921
	if (!alloc_rt_sched_group(tg, parent))
9922 9923
		goto err;

9924
	spin_lock_irqsave(&task_group_lock, flags);
9925
	for_each_possible_cpu(i) {
9926 9927
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9928
	}
P
Peter Zijlstra 已提交
9929
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9930 9931 9932 9933 9934

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9935
	list_add_rcu(&tg->siblings, &parent->children);
9936
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9937

9938
	return tg;
S
Srivatsa Vaddagiri 已提交
9939 9940

err:
P
Peter Zijlstra 已提交
9941
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9942 9943 9944
	return ERR_PTR(-ENOMEM);
}

9945
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9946
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9947 9948
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9949
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9950 9951
}

9952
/* Destroy runqueue etc associated with a task group */
9953
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9954
{
9955
	unsigned long flags;
9956
	int i;
S
Srivatsa Vaddagiri 已提交
9957

9958
	spin_lock_irqsave(&task_group_lock, flags);
9959
	for_each_possible_cpu(i) {
9960 9961
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9962
	}
P
Peter Zijlstra 已提交
9963
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9964
	list_del_rcu(&tg->siblings);
9965
	spin_unlock_irqrestore(&task_group_lock, flags);
9966 9967

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9968
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9969 9970
}

9971
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9972 9973 9974
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9975 9976
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9977 9978 9979 9980 9981 9982 9983 9984 9985
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9986
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9987 9988
	on_rq = tsk->se.on_rq;

9989
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9990
		dequeue_task(rq, tsk, 0);
9991 9992
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9993

P
Peter Zijlstra 已提交
9994
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9995

P
Peter Zijlstra 已提交
9996 9997 9998 9999 10000
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10001 10002 10003
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10004
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10005 10006 10007

	task_rq_unlock(rq, &flags);
}
10008
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10009

10010
#ifdef CONFIG_FAIR_GROUP_SCHED
10011
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10012 10013 10014 10015 10016
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10017
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10018 10019 10020
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10021
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10022

10023
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10024
		enqueue_entity(cfs_rq, se, 0);
10025
}
10026

10027 10028 10029 10030 10031 10032 10033 10034 10035
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10036 10037
}

10038 10039
static DEFINE_MUTEX(shares_mutex);

10040
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10041 10042
{
	int i;
10043
	unsigned long flags;
10044

10045 10046 10047 10048 10049 10050
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10051 10052
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10053 10054
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10055

10056
	mutex_lock(&shares_mutex);
10057
	if (tg->shares == shares)
10058
		goto done;
S
Srivatsa Vaddagiri 已提交
10059

10060
	spin_lock_irqsave(&task_group_lock, flags);
10061 10062
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10063
	list_del_rcu(&tg->siblings);
10064
	spin_unlock_irqrestore(&task_group_lock, flags);
10065 10066 10067 10068 10069 10070 10071 10072

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10073
	tg->shares = shares;
10074 10075 10076 10077 10078
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10079
		set_se_shares(tg->se[i], shares);
10080
	}
S
Srivatsa Vaddagiri 已提交
10081

10082 10083 10084 10085
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10086
	spin_lock_irqsave(&task_group_lock, flags);
10087 10088
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10089
	list_add_rcu(&tg->siblings, &tg->parent->children);
10090
	spin_unlock_irqrestore(&task_group_lock, flags);
10091
done:
10092
	mutex_unlock(&shares_mutex);
10093
	return 0;
S
Srivatsa Vaddagiri 已提交
10094 10095
}

10096 10097 10098 10099
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10100
#endif
10101

10102
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10103
/*
P
Peter Zijlstra 已提交
10104
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10105
 */
P
Peter Zijlstra 已提交
10106 10107 10108 10109 10110
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10111
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10112

P
Peter Zijlstra 已提交
10113
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10114 10115
}

P
Peter Zijlstra 已提交
10116 10117
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10118
{
P
Peter Zijlstra 已提交
10119
	struct task_struct *g, *p;
10120

P
Peter Zijlstra 已提交
10121 10122 10123 10124
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10125

P
Peter Zijlstra 已提交
10126 10127
	return 0;
}
10128

P
Peter Zijlstra 已提交
10129 10130 10131 10132 10133
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10134

P
Peter Zijlstra 已提交
10135 10136 10137 10138 10139 10140
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10141

P
Peter Zijlstra 已提交
10142 10143
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10144

P
Peter Zijlstra 已提交
10145 10146 10147
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10148 10149
	}

10150 10151 10152 10153 10154 10155 10156
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10157 10158 10159 10160 10161
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10162

10163 10164 10165
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10166 10167
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10168

P
Peter Zijlstra 已提交
10169
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10170

10171 10172 10173 10174 10175
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10176

10177 10178 10179
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10180 10181 10182
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10183

P
Peter Zijlstra 已提交
10184 10185 10186 10187
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10188

P
Peter Zijlstra 已提交
10189
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10190
	}
P
Peter Zijlstra 已提交
10191

P
Peter Zijlstra 已提交
10192 10193 10194 10195
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10196 10197
}

P
Peter Zijlstra 已提交
10198
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10199
{
P
Peter Zijlstra 已提交
10200 10201 10202 10203 10204 10205 10206
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10207 10208
}

10209 10210
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10211
{
P
Peter Zijlstra 已提交
10212
	int i, err = 0;
P
Peter Zijlstra 已提交
10213 10214

	mutex_lock(&rt_constraints_mutex);
10215
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10216 10217
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10218
		goto unlock;
P
Peter Zijlstra 已提交
10219 10220

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10221 10222
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10223 10224 10225 10226 10227 10228 10229 10230 10231

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10232
 unlock:
10233
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10234 10235 10236
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10237 10238
}

10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10251 10252 10253 10254
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10255
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10256 10257
		return -1;

10258
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10259 10260 10261
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10262 10263 10264 10265 10266 10267 10268 10269

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10270 10271 10272
	if (rt_period == 0)
		return -EINVAL;

10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10287
	u64 runtime, period;
10288 10289
	int ret = 0;

10290 10291 10292
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10293 10294 10295 10296 10297 10298 10299 10300
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10301

10302
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10303
	read_lock(&tasklist_lock);
10304
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10305
	read_unlock(&tasklist_lock);
10306 10307 10308 10309
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10310 10311 10312 10313 10314 10315 10316 10317 10318 10319

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10320
#else /* !CONFIG_RT_GROUP_SCHED */
10321 10322
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10323 10324 10325
	unsigned long flags;
	int i;

10326 10327 10328
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10329 10330 10331 10332 10333 10334 10335
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10336 10337 10338 10339 10340 10341 10342 10343 10344 10345
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10346 10347
	return 0;
}
10348
#endif /* CONFIG_RT_GROUP_SCHED */
10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10379

10380
#ifdef CONFIG_CGROUP_SCHED
10381 10382

/* return corresponding task_group object of a cgroup */
10383
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10384
{
10385 10386
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10387 10388 10389
}

static struct cgroup_subsys_state *
10390
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10391
{
10392
	struct task_group *tg, *parent;
10393

10394
	if (!cgrp->parent) {
10395 10396 10397 10398
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10399 10400
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10401 10402 10403 10404 10405 10406
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10407 10408
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10409
{
10410
	struct task_group *tg = cgroup_tg(cgrp);
10411 10412 10413 10414

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10415 10416 10417
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10418
{
10419
#ifdef CONFIG_RT_GROUP_SCHED
10420
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10421 10422
		return -EINVAL;
#else
10423 10424 10425
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10426
#endif
10427 10428 10429 10430 10431

	return 0;
}

static void
10432
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10433 10434 10435 10436 10437
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10438
#ifdef CONFIG_FAIR_GROUP_SCHED
10439
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10440
				u64 shareval)
10441
{
10442
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10443 10444
}

10445
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10446
{
10447
	struct task_group *tg = cgroup_tg(cgrp);
10448 10449 10450

	return (u64) tg->shares;
}
10451
#endif /* CONFIG_FAIR_GROUP_SCHED */
10452

10453
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10454
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10455
				s64 val)
P
Peter Zijlstra 已提交
10456
{
10457
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10458 10459
}

10460
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10461
{
10462
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10463
}
10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10475
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10476

10477
static struct cftype cpu_files[] = {
10478
#ifdef CONFIG_FAIR_GROUP_SCHED
10479 10480
	{
		.name = "shares",
10481 10482
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10483
	},
10484 10485
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10486
	{
P
Peter Zijlstra 已提交
10487
		.name = "rt_runtime_us",
10488 10489
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10490
	},
10491 10492
	{
		.name = "rt_period_us",
10493 10494
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10495
	},
10496
#endif
10497 10498 10499 10500
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10501
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10502 10503 10504
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10505 10506 10507 10508 10509 10510 10511
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10512 10513 10514
	.early_init	= 1,
};

10515
#endif	/* CONFIG_CGROUP_SCHED */
10516 10517 10518 10519 10520 10521 10522 10523 10524 10525

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10526
/* track cpu usage of a group of tasks and its child groups */
10527 10528 10529 10530
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10531
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10532
	struct cpuacct *parent;
10533 10534 10535 10536 10537
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10538
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10539
{
10540
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10553
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10554 10555
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10556
	int i;
10557 10558

	if (!ca)
10559
		goto out;
10560 10561

	ca->cpuusage = alloc_percpu(u64);
10562 10563 10564 10565 10566 10567
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10568

10569 10570 10571
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10572
	return &ca->css;
10573 10574 10575 10576 10577 10578 10579 10580 10581

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10582 10583 10584
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10585
static void
10586
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10587
{
10588
	struct cpuacct *ca = cgroup_ca(cgrp);
10589
	int i;
10590

10591 10592
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10593 10594 10595 10596
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10597 10598
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10599
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10618
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10632
/* return total cpu usage (in nanoseconds) of a group */
10633
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10634
{
10635
	struct cpuacct *ca = cgroup_ca(cgrp);
10636 10637 10638
	u64 totalcpuusage = 0;
	int i;

10639 10640
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10641 10642 10643 10644

	return totalcpuusage;
}

10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10657 10658
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10659 10660 10661 10662 10663

out:
	return err;
}

10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10698 10699 10700
static struct cftype files[] = {
	{
		.name = "usage",
10701 10702
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10703
	},
10704 10705 10706 10707
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10708 10709 10710 10711
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10712 10713
};

10714
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10715
{
10716
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10717 10718 10719 10720 10721 10722 10723 10724 10725 10726
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10727
	int cpu;
10728

L
Li Zefan 已提交
10729
	if (unlikely(!cpuacct_subsys.active))
10730 10731
		return;

10732
	cpu = task_cpu(tsk);
10733 10734 10735

	rcu_read_lock();

10736 10737
	ca = task_ca(tsk);

10738
	for (; ca; ca = ca->parent) {
10739
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10740 10741
		*cpuusage += cputime;
	}
10742 10743

	rcu_read_unlock();
10744 10745
}

10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10767 10768 10769 10770 10771 10772 10773 10774
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */