sched.c 266.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

379 380 381 382 383 384 385
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
386
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
387 388 389 390
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
391

392
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
393

I
Ingo Molnar 已提交
394 395 396 397 398 399
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
400
	u64 min_vruntime;
I
Ingo Molnar 已提交
401 402 403

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
404 405 406 407 408 409

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
410 411
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
412
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
413

P
Peter Zijlstra 已提交
414
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
415

416
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
417 418
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
419 420
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
421 422 423 424 425 426
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
427 428
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
429 430 431

#ifdef CONFIG_SMP
	/*
432
	 * the part of load.weight contributed by tasks
433
	 */
434
	unsigned long task_weight;
435

436 437 438 439 440 441 442
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
443

444 445 446 447
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
448 449 450 451 452

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
453
#endif
I
Ingo Molnar 已提交
454 455
#endif
};
L
Linus Torvalds 已提交
456

I
Ingo Molnar 已提交
457 458 459
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
460
	unsigned long rt_nr_running;
461
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
462 463
	struct {
		int curr; /* highest queued rt task prio */
464
#ifdef CONFIG_SMP
465
		int next; /* next highest */
466
#endif
467
	} highest_prio;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
#ifdef CONFIG_SMP
470
	unsigned long rt_nr_migratory;
471
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
472
	int overloaded;
473
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
474
#endif
P
Peter Zijlstra 已提交
475
	int rt_throttled;
P
Peter Zijlstra 已提交
476
	u64 rt_time;
P
Peter Zijlstra 已提交
477
	u64 rt_runtime;
I
Ingo Molnar 已提交
478
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
479
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
480

481
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
482 483
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
484 485 486 487 488
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
489 490
};

G
Gregory Haskins 已提交
491 492 493 494
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
495 496
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
497 498 499 500 501 502
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
503 504
	cpumask_var_t span;
	cpumask_var_t online;
505

I
Ingo Molnar 已提交
506
	/*
507 508 509
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
510
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
511
	atomic_t rto_count;
512 513 514
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
515 516 517 518 519 520 521 522
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
523 524
};

525 526 527 528
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
529 530 531 532
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
533 534 535 536 537 538 539
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
540
struct rq {
541 542
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
543 544 545 546 547 548

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
549 550
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
551
#ifdef CONFIG_NO_HZ
552
	unsigned long last_tick_seen;
553 554
	unsigned char in_nohz_recently;
#endif
555 556
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
557 558
	unsigned long nr_load_updates;
	u64 nr_switches;
559
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
560 561

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
562 563
	struct rt_rq rt;

I
Ingo Molnar 已提交
564
#ifdef CONFIG_FAIR_GROUP_SCHED
565 566
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
567 568
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
569
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

580
	struct task_struct *curr, *idle;
581
	unsigned long next_balance;
L
Linus Torvalds 已提交
582
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
583

584
	u64 clock;
I
Ingo Molnar 已提交
585

L
Linus Torvalds 已提交
586 587 588
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
589
	struct root_domain *rd;
L
Linus Torvalds 已提交
590 591
	struct sched_domain *sd;

592
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
593
	/* For active balancing */
594
	int post_schedule;
L
Linus Torvalds 已提交
595 596
	int active_balance;
	int push_cpu;
597 598
	/* cpu of this runqueue: */
	int cpu;
599
	int online;
L
Linus Torvalds 已提交
600

601
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
602

603
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
604
	struct list_head migration_queue;
605 606 607

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
608 609
#endif

610 611 612 613
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
614
#ifdef CONFIG_SCHED_HRTICK
615 616 617 618
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
619 620 621
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
622 623 624
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
625 626
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
627 628

	/* sys_sched_yield() stats */
629
	unsigned int yld_count;
L
Linus Torvalds 已提交
630 631

	/* schedule() stats */
632 633 634
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
635 636

	/* try_to_wake_up() stats */
637 638
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
639 640

	/* BKL stats */
641
	unsigned int bkl_count;
L
Linus Torvalds 已提交
642 643 644
#endif
};

645
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
646

647
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
648
{
649
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
650 651
}

652 653 654 655 656 657 658 659 660
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
661 662
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
663
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
664 665 666 667
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
668 669
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
670 671 672 673 674

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
675
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
676

I
Ingo Molnar 已提交
677
inline void update_rq_clock(struct rq *rq)
678 679 680 681
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
709 710 711
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
712 713 714 715

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
716
enum {
P
Peter Zijlstra 已提交
717
#include "sched_features.h"
I
Ingo Molnar 已提交
718 719
};

P
Peter Zijlstra 已提交
720 721 722 723 724
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
725
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
726 727 728 729 730 731 732 733 734
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

735
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
736 737 738 739 740 741
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
742
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
743 744 745 746
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
747 748 749
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
750
	}
L
Li Zefan 已提交
751
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
752

L
Li Zefan 已提交
753
	return 0;
P
Peter Zijlstra 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
773
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
798 799 800 801 802
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
803
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
804 805 806 807 808
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
823

824 825 826 827 828 829
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
830 831
/*
 * ratelimit for updating the group shares.
832
 * default: 0.25ms
P
Peter Zijlstra 已提交
833
 */
834
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
835

836 837 838 839 840 841 842
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

843 844 845 846 847 848 849 850
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
851
/*
P
Peter Zijlstra 已提交
852
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
853 854
 * default: 1s
 */
P
Peter Zijlstra 已提交
855
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
856

857 858
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
859 860 861 862 863
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
864

865 866 867 868 869 870 871
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
872
	if (sysctl_sched_rt_runtime < 0)
873 874 875 876
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
877

L
Linus Torvalds 已提交
878
#ifndef prepare_arch_switch
879 880 881 882 883 884
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

885 886 887 888 889
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

890
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
891
static inline int task_running(struct rq *rq, struct task_struct *p)
892
{
893
	return task_current(rq, p);
894 895
}

896
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 898 899
{
}

900
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901
{
902 903 904 905
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
906 907 908 909 910 911 912
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

913 914 915 916
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
917
static inline int task_running(struct rq *rq, struct task_struct *p)
918 919 920 921
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
922
	return task_current(rq, p);
923 924 925
#endif
}

926
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

943
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
944 945 946 947 948 949 950 951 952 953 954 955
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
956
#endif
957 958
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
959

960 961 962 963
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
964
static inline struct rq *__task_rq_lock(struct task_struct *p)
965 966
	__acquires(rq->lock)
{
967 968 969 970 971
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
972 973 974 975
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
976 977
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
978
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
979 980
 * explicitly disabling preemption.
 */
981
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
982 983
	__acquires(rq->lock)
{
984
	struct rq *rq;
L
Linus Torvalds 已提交
985

986 987 988 989 990 991
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
992 993 994 995
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

996 997 998 999 1000 1001 1002 1003
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1004
static void __task_rq_unlock(struct rq *rq)
1005 1006 1007 1008 1009
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1010
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1011 1012 1013 1014 1015 1016
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1017
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1018
 */
A
Alexey Dobriyan 已提交
1019
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1020 1021
	__acquires(rq->lock)
{
1022
	struct rq *rq;
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028 1029 1030

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1052
	if (!cpu_active(cpu_of(rq)))
1053
		return 0;
P
Peter Zijlstra 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1081
#ifdef CONFIG_SMP
1082 1083 1084 1085
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1086
{
1087
	struct rq *rq = arg;
1088

1089 1090 1091 1092
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1093 1094
}

1095 1096 1097 1098 1099 1100
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1101
{
1102 1103
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1104

1105
	hrtimer_set_expires(timer, time);
1106 1107 1108 1109

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1110
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1111 1112
		rq->hrtick_csd_pending = 1;
	}
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1127
		hrtick_clear(cpu_rq(cpu));
1128 1129 1130 1131 1132 1133
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1134
static __init void init_hrtick(void)
1135 1136 1137
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1138 1139 1140 1141 1142 1143 1144 1145
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1146
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1147
			HRTIMER_MODE_REL_PINNED, 0);
1148
}
1149

A
Andrew Morton 已提交
1150
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1151 1152
{
}
1153
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1154

1155
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1156
{
1157 1158
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1159

1160 1161 1162 1163
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1164

1165 1166
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1167
}
A
Andrew Morton 已提交
1168
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1169 1170 1171 1172 1173 1174 1175 1176
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1177 1178 1179
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1180
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1181

I
Ingo Molnar 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1195
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1196 1197 1198 1199 1200
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1201
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1202 1203
		return;

1204
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1260
	set_tsk_need_resched(rq->idle);
1261 1262 1263 1264 1265 1266

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1267
#endif /* CONFIG_NO_HZ */
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1290
#else /* !CONFIG_SMP */
1291
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1292 1293
{
	assert_spin_locked(&task_rq(p)->lock);
1294
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1295
}
1296 1297 1298 1299

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1300
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1301

1302 1303 1304 1305 1306 1307 1308 1309
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1310 1311 1312
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1313
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1314

1315 1316 1317
/*
 * delta *= weight / lw
 */
1318
static unsigned long
1319 1320 1321 1322 1323
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1324 1325 1326 1327 1328 1329 1330
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1331 1332 1333 1334 1335

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1336
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1337
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1338 1339
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1340
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1341

1342
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1343 1344
}

1345
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1346 1347
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1348
	lw->inv_weight = 0;
1349 1350
}

1351
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1352 1353
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1354
	lw->inv_weight = 0;
1355 1356
}

1357 1358 1359 1360
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1361
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1362 1363 1364 1365
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1366 1367
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1377 1378 1379
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1380 1381
 */
static const int prio_to_weight[40] = {
1382 1383 1384 1385 1386 1387 1388 1389
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1390 1391
};

1392 1393 1394 1395 1396 1397 1398
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1399
static const u32 prio_to_wmult[40] = {
1400 1401 1402 1403 1404 1405 1406 1407
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1408
};
1409

I
Ingo Molnar 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1435

1436 1437 1438 1439 1440 1441 1442 1443
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1444 1445
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1446 1447
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1448 1449
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1450 1451
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1452 1453
#endif

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1464
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1465
typedef int (*tg_visitor)(struct task_group *, void *);
1466 1467 1468 1469 1470

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1471
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1472 1473
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1474
	int ret;
1475 1476 1477 1478

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1479 1480 1481
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1482 1483 1484 1485 1486 1487 1488
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1489 1490 1491
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1492 1493 1494 1495 1496

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1497
out_unlock:
1498
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1499 1500

	return ret;
1501 1502
}

P
Peter Zijlstra 已提交
1503 1504 1505
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1506
}
P
Peter Zijlstra 已提交
1507 1508 1509
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

P
Peter Zijlstra 已提交
1549 1550 1551 1552 1553
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1554
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1555

1556 1557
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1558 1559
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1560 1561 1562 1563 1564

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1565

1566 1567 1568 1569 1570 1571
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1572 1573 1574 1575 1576
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1577 1578 1579 1580
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1581
{
1582
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1583
	int boost = 0;
1584

1585
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1586 1587 1588 1589
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1590

1591
	/*
P
Peter Zijlstra 已提交
1592 1593 1594
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1595
	 */
1596
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1597
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1598

1599 1600 1601 1602
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1603

1604
		spin_lock_irqsave(&rq->lock, flags);
1605
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1606
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1607 1608 1609
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1610
}
1611 1612

/*
1613 1614 1615
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1616
 */
P
Peter Zijlstra 已提交
1617
static int tg_shares_up(struct task_group *tg, void *data)
1618
{
1619 1620
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1621
	struct sched_domain *sd = data;
1622
	unsigned long flags;
1623
	int i;
1624

1625 1626 1627 1628 1629 1630
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1631
	for_each_cpu(i, sched_domain_span(sd)) {
1632 1633 1634
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1635 1636 1637 1638 1639 1640 1641 1642 1643
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649 1650 1651
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1652

1653
	for_each_cpu(i, sched_domain_span(sd))
1654 1655 1656
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1657 1658

	return 0;
1659 1660 1661
}

/*
1662 1663 1664
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1665
 */
P
Peter Zijlstra 已提交
1666
static int tg_load_down(struct task_group *tg, void *data)
1667
{
1668
	unsigned long load;
P
Peter Zijlstra 已提交
1669
	long cpu = (long)data;
1670

1671 1672 1673 1674 1675 1676 1677
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1678

1679
	tg->cfs_rq[cpu]->h_load = load;
1680

P
Peter Zijlstra 已提交
1681
	return 0;
1682 1683
}

1684
static void update_shares(struct sched_domain *sd)
1685
{
1686 1687 1688 1689 1690 1691 1692 1693
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1694 1695 1696

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1697
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1698
	}
1699 1700
}

1701 1702
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1703 1704 1705
	if (root_task_group_empty())
		return;

1706 1707 1708 1709 1710
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1711
static void update_h_load(long cpu)
1712
{
1713 1714 1715
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1716
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1717 1718 1719 1720
}

#else

1721
static inline void update_shares(struct sched_domain *sd)
1722 1723 1724
{
}

1725 1726 1727 1728
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1729 1730
#endif

1731 1732
#ifdef CONFIG_PREEMPT

1733 1734
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1735
/*
1736 1737 1738 1739 1740 1741
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1742
 */
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1797 1798 1799 1800 1801 1802
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1803 1804
#endif

V
Vegard Nossum 已提交
1805
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1806 1807
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1808
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1809 1810 1811
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1812
#endif
1813

1814 1815
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1816 1817
#include "sched_stats.h"
#include "sched_idletask.c"
1818 1819
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1820 1821 1822 1823 1824
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1825 1826
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1827

1828
static void inc_nr_running(struct rq *rq)
1829 1830 1831 1832
{
	rq->nr_running++;
}

1833
static void dec_nr_running(struct rq *rq)
1834 1835 1836 1837
{
	rq->nr_running--;
}

1838 1839 1840
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1841 1842 1843 1844
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1845

I
Ingo Molnar 已提交
1846 1847 1848 1849 1850 1851 1852 1853
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1854

I
Ingo Molnar 已提交
1855 1856
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1857 1858
}

1859 1860 1861 1862 1863 1864
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1865
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1866
{
P
Peter Zijlstra 已提交
1867 1868 1869
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1870
	sched_info_queued(p);
1871
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1872
	p->se.on_rq = 1;
1873 1874
}

1875
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1876
{
P
Peter Zijlstra 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1886 1887
	}

1888
	sched_info_dequeued(p);
1889
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1890
	p->se.on_rq = 0;
1891 1892
}

1893
/*
I
Ingo Molnar 已提交
1894
 * __normal_prio - return the priority that is based on the static prio
1895 1896 1897
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1898
	return p->static_prio;
1899 1900
}

1901 1902 1903 1904 1905 1906 1907
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1908
static inline int normal_prio(struct task_struct *p)
1909 1910 1911
{
	int prio;

1912
	if (task_has_rt_policy(p))
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1926
static int effective_prio(struct task_struct *p)
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1939
/*
I
Ingo Molnar 已提交
1940
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1941
 */
I
Ingo Molnar 已提交
1942
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1943
{
1944
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1945
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1946

1947
	enqueue_task(rq, p, wakeup);
1948
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1949 1950 1951 1952 1953
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1954
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1955
{
1956
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1957 1958
		rq->nr_uninterruptible++;

1959
	dequeue_task(rq, p, sleep);
1960
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1967
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1968 1969 1970 1971
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1972 1973
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1974
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1975
#ifdef CONFIG_SMP
1976 1977 1978 1979 1980 1981
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1982 1983
	task_thread_info(p)->cpu = cpu;
#endif
1984 1985
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1998
#ifdef CONFIG_SMP
1999 2000 2001
/*
 * Is this task likely cache-hot:
 */
2002
static int
2003 2004 2005 2006
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2007 2008 2009
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2010 2011 2012
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2013 2014
		return 1;

2015 2016 2017
	if (p->sched_class != &fair_sched_class)
		return 0;

2018 2019 2020 2021 2022
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2023 2024 2025 2026 2027 2028
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2029
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2030
{
I
Ingo Molnar 已提交
2031 2032
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2033 2034
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2035
	u64 clock_offset;
I
Ingo Molnar 已提交
2036 2037

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2038

2039
	trace_sched_migrate_task(p, new_cpu);
2040

I
Ingo Molnar 已提交
2041 2042 2043
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2044 2045 2046 2047
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2048
#endif
2049
	if (old_cpu != new_cpu) {
2050
		p->se.nr_migrations++;
2051
		new_rq->nr_migrations_in++;
2052
#ifdef CONFIG_SCHEDSTATS
2053 2054
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2055
#endif
2056 2057
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2058
	}
2059 2060
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2061 2062

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2063 2064
}

2065
struct migration_req {
L
Linus Torvalds 已提交
2066 2067
	struct list_head list;

2068
	struct task_struct *task;
L
Linus Torvalds 已提交
2069 2070 2071
	int dest_cpu;

	struct completion done;
2072
};
L
Linus Torvalds 已提交
2073 2074 2075 2076 2077

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2078
static int
2079
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2080
{
2081
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2082 2083 2084 2085 2086

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2087
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093 2094 2095
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2096

L
Linus Torvalds 已提交
2097 2098 2099
	return 1;
}

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2143 2144 2145
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2146 2147 2148 2149 2150 2151 2152
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2153 2154 2155 2156 2157 2158
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2159
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2160 2161
{
	unsigned long flags;
I
Ingo Molnar 已提交
2162
	int running, on_rq;
R
Roland McGrath 已提交
2163
	unsigned long ncsw;
2164
	struct rq *rq;
L
Linus Torvalds 已提交
2165

2166 2167 2168 2169 2170 2171 2172 2173
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2174

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2186 2187 2188
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2189
			cpu_relax();
R
Roland McGrath 已提交
2190
		}
2191

2192 2193 2194 2195 2196 2197
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2198
		trace_sched_wait_task(rq, p);
2199 2200
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2201
		ncsw = 0;
2202
		if (!match_state || p->state == match_state)
2203
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204
		task_rq_unlock(rq, &flags);
2205

R
Roland McGrath 已提交
2206 2207 2208 2209 2210 2211
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2222

2223 2224 2225 2226 2227
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2228
		 * So if it was still runnable (but just not actively
2229 2230 2231 2232 2233 2234 2235
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2236

2237 2238 2239 2240 2241 2242 2243
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2244 2245

	return ncsw;
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2261
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2271
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2272
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2273

T
Thomas Gleixner 已提交
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2309
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2310
{
2311
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2312
	unsigned long flags;
2313
	struct rq *rq;
L
Linus Torvalds 已提交
2314

2315 2316 2317
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2318
#ifdef CONFIG_SMP
2319
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2326
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2327 2328 2329 2330 2331 2332 2333
				update_shares(sd);
				break;
			}
		}
	}
#endif

P
Peter Zijlstra 已提交
2334 2335
	this_cpu = get_cpu();

2336
	smp_wmb();
L
Linus Torvalds 已提交
2337
	rq = task_rq_lock(p, &flags);
2338
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2339
	if (!(p->state & state))
L
Linus Torvalds 已提交
2340 2341
		goto out;

I
Ingo Molnar 已提交
2342
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2343 2344 2345
		goto out_running;

	cpu = task_cpu(p);
2346
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2347 2348 2349 2350 2351

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2352 2353 2354 2355 2356 2357 2358
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
	 */
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

2359
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, sync);
P
Peter Zijlstra 已提交
2360
	if (cpu != orig_cpu)
2361
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2362

P
Peter Zijlstra 已提交
2363 2364 2365
	rq = task_rq_lock(p, &flags);
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2366

2367 2368 2369 2370 2371 2372 2373
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2374
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2375 2376 2377 2378 2379
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2380
#endif /* CONFIG_SCHEDSTATS */
2381

L
Linus Torvalds 已提交
2382 2383
out_activate:
#endif /* CONFIG_SMP */
2384 2385 2386 2387 2388 2389 2390 2391 2392
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2393
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2394 2395
	success = 1;

P
Peter Zijlstra 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2412
out_running:
2413
	trace_sched_wakeup(rq, p, success);
2414
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2415

L
Linus Torvalds 已提交
2416
	p->state = TASK_RUNNING;
2417 2418 2419 2420
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2421 2422
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2423
	put_cpu();
L
Linus Torvalds 已提交
2424 2425 2426 2427

	return success;
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2439
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2440
{
2441
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2442 2443 2444
}
EXPORT_SYMBOL(wake_up_process);

2445
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2446 2447 2448 2449 2450 2451 2452
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2453 2454 2455 2456 2457 2458 2459
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2460
	p->se.prev_sum_exec_runtime	= 0;
2461
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2462 2463
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2464 2465
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2466 2467

#ifdef CONFIG_SCHEDSTATS
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2499
#endif
N
Nick Piggin 已提交
2500

P
Peter Zijlstra 已提交
2501
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2502
	p->se.on_rq = 0;
2503
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2504

2505 2506 2507 2508
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2527
	/*
2528
	 * Make sure we do not leak PI boosting priority to the child.
2529 2530
	 */
	p->prio = current->normal_prio;
2531

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2542 2543 2544 2545 2546
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2547 2548 2549 2550 2551 2552
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2553

H
Hiroshi Shimamoto 已提交
2554 2555
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2556

2557 2558 2559 2560 2561
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2562
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2563
	if (likely(sched_info_on()))
2564
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2565
#endif
2566
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2567 2568
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2569
#ifdef CONFIG_PREEMPT
2570
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2571
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2572
#endif
2573 2574
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2575
	put_cpu();
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2585
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2586 2587
{
	unsigned long flags;
I
Ingo Molnar 已提交
2588
	struct rq *rq;
L
Linus Torvalds 已提交
2589 2590

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2591
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2592
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2593 2594 2595

	p->prio = effective_prio(p);

2596
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2597
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2598 2599
	} else {
		/*
I
Ingo Molnar 已提交
2600 2601
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2602
		 */
2603
		p->sched_class->task_new(rq, p);
2604
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2605
	}
2606
	trace_sched_wakeup_new(rq, p, 1);
2607
	check_preempt_curr(rq, p, 0);
2608 2609 2610 2611
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2612
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2613 2614
}

2615 2616 2617
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2618
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2619
 * @notifier: notifier struct to register
2620 2621 2622 2623 2624 2625 2626 2627 2628
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2629
 * @notifier: notifier struct to unregister
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2659
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2671
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2672

2673 2674 2675
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2676
 * @prev: the current task that is being switched out
2677 2678 2679 2680 2681 2682 2683 2684 2685
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2686 2687 2688
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2689
{
2690
	fire_sched_out_preempt_notifiers(prev, next);
2691 2692 2693 2694
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2695 2696
/**
 * finish_task_switch - clean up after a task-switch
2697
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2698 2699
 * @prev: the thread we just switched away from.
 *
2700 2701 2702 2703
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2704 2705
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2706
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2707 2708 2709
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2710
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2711 2712 2713
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2714
	long prev_state;
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2720
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2721 2722
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2723
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2724 2725 2726 2727 2728
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2729
	prev_state = prev->state;
2730
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2731
	perf_counter_task_sched_in(current, cpu_of(rq));
2732
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2733

2734
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2735 2736
	if (mm)
		mmdrop(mm);
2737
	if (unlikely(prev_state == TASK_DEAD)) {
2738 2739 2740
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2741
		 */
2742
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2743
		put_task_struct(prev);
2744
	}
L
Linus Torvalds 已提交
2745 2746
}

2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2772

2773 2774 2775 2776 2777 2778
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2779 2780
}

2781 2782
#endif

L
Linus Torvalds 已提交
2783 2784 2785 2786
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2787
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2788 2789
	__releases(rq->lock)
{
2790 2791
	struct rq *rq = this_rq();

2792
	finish_task_switch(rq, prev);
2793

2794 2795 2796 2797 2798
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2799

2800 2801 2802 2803
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2804
	if (current->set_child_tid)
2805
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2806 2807 2808 2809 2810 2811
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2812
static inline void
2813
context_switch(struct rq *rq, struct task_struct *prev,
2814
	       struct task_struct *next)
L
Linus Torvalds 已提交
2815
{
I
Ingo Molnar 已提交
2816
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2817

2818
	prepare_task_switch(rq, prev, next);
2819
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2820 2821
	mm = next->mm;
	oldmm = prev->active_mm;
2822 2823 2824 2825 2826
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2827
	arch_start_context_switch(prev);
2828

I
Ingo Molnar 已提交
2829
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2836
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2837 2838 2839
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2840 2841 2842 2843 2844 2845 2846
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2847
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2848
#endif
L
Linus Torvalds 已提交
2849 2850 2851 2852

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2853 2854 2855 2856 2857 2858 2859
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2883
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2898 2899
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2900

2901
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2911
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2917 2918 2919 2920 2921 2922
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2938 2939
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2940
{
2941 2942 2943 2944
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2945

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2957

2958 2959
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2983 2984
}

2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2994
/*
I
Ingo Molnar 已提交
2995 2996
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2997
 */
I
Ingo Molnar 已提交
2998
static void update_cpu_load(struct rq *this_rq)
2999
{
3000
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3013 3014 3015 3016 3017 3018 3019
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3020 3021
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3022 3023 3024 3025 3026

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3027 3028
}

I
Ingo Molnar 已提交
3029 3030
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3031 3032 3033 3034 3035 3036
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3037
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3038 3039 3040
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3041
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3042 3043 3044 3045
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3046
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3047
			spin_lock(&rq1->lock);
3048
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3049 3050
		} else {
			spin_lock(&rq2->lock);
3051
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3052 3053
		}
	}
3054 3055
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062 3063
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3064
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3078
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3079 3080
 * the cpu_allowed mask is restored.
 */
3081
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3082
{
3083
	struct migration_req req;
L
Linus Torvalds 已提交
3084
	unsigned long flags;
3085
	struct rq *rq;
L
Linus Torvalds 已提交
3086 3087

	rq = task_rq_lock(p, &flags);
3088
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3089
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3090 3091 3092 3093 3094 3095
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3096

L
Linus Torvalds 已提交
3097 3098 3099 3100 3101
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3102

L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3110 3111
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3112 3113 3114 3115
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3116
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3117
	put_cpu();
N
Nick Piggin 已提交
3118 3119
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3120 3121 3122 3123 3124 3125
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3126 3127
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3128
{
3129
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3130
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3131
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3132 3133 3134 3135
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3136
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3137 3138 3139 3140 3141
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3142
static
3143
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3144
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3145
		     int *all_pinned)
L
Linus Torvalds 已提交
3146
{
3147
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3154
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3155
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3156
		return 0;
3157
	}
3158 3159
	*all_pinned = 0;

3160 3161
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3162
		return 0;
3163
	}
L
Linus Torvalds 已提交
3164

3165 3166 3167 3168 3169 3170
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3171 3172 3173
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3174
#ifdef CONFIG_SCHEDSTATS
3175
		if (tsk_cache_hot) {
3176
			schedstat_inc(sd, lb_hot_gained[idle]);
3177 3178
			schedstat_inc(p, se.nr_forced_migrations);
		}
3179 3180 3181 3182
#endif
		return 1;
	}

3183
	if (tsk_cache_hot) {
3184
		schedstat_inc(p, se.nr_failed_migrations_hot);
3185
		return 0;
3186
	}
L
Linus Torvalds 已提交
3187 3188 3189
	return 1;
}

3190 3191 3192 3193 3194
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3195
{
3196
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3197 3198
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3199

3200
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3201 3202
		goto out;

3203 3204
	pinned = 1;

L
Linus Torvalds 已提交
3205
	/*
I
Ingo Molnar 已提交
3206
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3207
	 */
I
Ingo Molnar 已提交
3208 3209
	p = iterator->start(iterator->arg);
next:
3210
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3211
		goto out;
3212 3213

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3214 3215 3216
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3217 3218
	}

I
Ingo Molnar 已提交
3219
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3220
	pulled++;
I
Ingo Molnar 已提交
3221
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3222

3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3233
	/*
3234
	 * We only want to steal up to the prescribed amount of weighted load.
3235
	 */
3236
	if (rem_load_move > 0) {
3237 3238
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3239 3240
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3241 3242 3243
	}
out:
	/*
3244
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3245 3246 3247 3248
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3249 3250 3251

	if (all_pinned)
		*all_pinned = pinned;
3252 3253

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3254 3255
}

I
Ingo Molnar 已提交
3256
/*
P
Peter Williams 已提交
3257 3258 3259
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3260 3261 3262 3263
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3264
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3265 3266 3267
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3268
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3269
	unsigned long total_load_moved = 0;
3270
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3271 3272

	do {
P
Peter Williams 已提交
3273 3274
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3275
				max_load_move - total_load_moved,
3276
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3277
		class = class->next;
3278

3279 3280 3281 3282 3283 3284
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3285 3286
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3287
#endif
P
Peter Williams 已提交
3288
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3289

P
Peter Williams 已提交
3290 3291 3292
	return total_load_moved > 0;
}

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3329
	const struct sched_class *class;
P
Peter Williams 已提交
3330

3331
	for_each_class(class) {
3332
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3333
			return 1;
3334
	}
P
Peter Williams 已提交
3335 3336

	return 0;
I
Ingo Molnar 已提交
3337
}
3338
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3339
/*
3340 3341
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3342
 */
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3361
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3362 3363 3364 3365 3366 3367
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3368
#endif
3369
};
L
Linus Torvalds 已提交
3370

3371
/*
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3404
		load_idx = sd->busy_idx;
3405 3406 3407
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3408
		load_idx = sd->newidle_idx;
3409 3410
		break;
	default:
N
Nick Piggin 已提交
3411
		load_idx = sd->idle_idx;
3412 3413
		break;
	}
L
Linus Torvalds 已提交
3414

3415 3416
	return load_idx;
}
L
Linus Torvalds 已提交
3417 3418


3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3443

3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3457

3458 3459
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3460

3461 3462 3463 3464 3465 3466 3467
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3468

3469 3470 3471 3472 3473 3474 3475 3476
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3491

3492 3493 3494 3495 3496
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3497
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3498
		return;
L
Linus Torvalds 已提交
3499

3500 3501 3502 3503 3504 3505 3506
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3507

3508
/**
3509
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3510 3511 3512 3513 3514
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3515 3516 3517 3518 3519
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3520 3521 3522 3523 3524 3525 3526 3527
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3528

3529 3530 3531
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3532

3533 3534
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3535

3536 3537 3538 3539 3540 3541
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3542

3543 3544 3545 3546 3547 3548 3549
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3550

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3564
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3565 3566 3567 3568 3569 3570 3571 3572 3573
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3592 3593 3594 3595 3596 3597 3598 3599 3600
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

	/* here we could scale based on cpufreq */

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3601
		power *= arch_scale_smt_power(sd, cpu);
3602 3603 3604
		power >>= SCHED_LOAD_SHIFT;
	}

3605 3606 3607 3608 3609
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3610

3611
	sdg->cpu_power = power;
3612 3613 3614
}

static void update_group_power(struct sched_domain *sd, int cpu)
3615 3616 3617
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3618
	unsigned long power;
3619 3620

	if (!child) {
3621
		update_cpu_power(sd, cpu);
3622 3623 3624
		return;
	}

3625
	power = 0;
3626 3627 3628

	group = child->groups;
	do {
3629
		power += group->cpu_power;
3630 3631
		group = group->next;
	} while (group != child->groups);
3632 3633

	sdg->cpu_power = power;
3634
}
3635

3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3648 3649
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3660
	if (local_group) {
3661
		balance_cpu = group_first_cpu(group);
3662
		if (balance_cpu == this_cpu)
3663
			update_group_power(sd, this_cpu);
3664
	}
3665 3666 3667 3668 3669

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3670

3671 3672
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3673

3674 3675
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3676

3677
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3678
		if (local_group) {
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3691
		}
3692

3693 3694 3695
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3696

3697 3698
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3699

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3711

3712
	/* Adjust by relative CPU power of the group */
3713
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3714

3715 3716 3717 3718 3719 3720 3721 3722 3723 3724

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3725 3726
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3727 3728 3729 3730

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3731
	sgs->group_capacity =
3732
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3733
}
I
Ingo Molnar 已提交
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3744
 */
3745 3746 3747 3748
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3749
{
P
Peter Zijlstra 已提交
3750
	struct sched_domain *child = sd->child;
3751
	struct sched_group *group = sd->groups;
3752
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3753 3754 3755 3756
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3757

3758
	init_sd_power_savings_stats(sd, sds, idle);
3759
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3760 3761 3762 3763

	do {
		int local_group;

3764 3765
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3766
		memset(&sgs, 0, sizeof(sgs));
3767
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3768
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3769

3770 3771
		if (local_group && balance && !(*balance))
			return;
3772

3773
		sds->total_load += sgs.group_load;
3774
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3775

P
Peter Zijlstra 已提交
3776 3777 3778 3779 3780 3781
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3782
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3783 3784

		if (local_group) {
3785 3786 3787 3788 3789
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3790 3791
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3792 3793 3794 3795 3796
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3797
		}
3798

3799
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3800 3801
		group = group->next;
	} while (group != sd->groups);
3802
}
L
Linus Torvalds 已提交
3803

3804 3805
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3806 3807
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3826

3827 3828 3829 3830 3831
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3832

L
Linus Torvalds 已提交
3833
	/*
3834 3835 3836
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3837
	 */
3838

3839
	pwr_now += sds->busiest->cpu_power *
3840
			min(sds->busiest_load_per_task, sds->max_load);
3841
	pwr_now += sds->this->cpu_power *
3842 3843 3844 3845
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3846 3847
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3848
	if (sds->max_load > tmp)
3849
		pwr_move += sds->busiest->cpu_power *
3850 3851 3852
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3853
	if (sds->max_load * sds->busiest->cpu_power <
3854
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3855 3856
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3857
	else
3858 3859 3860
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3861 3862 3863 3864 3865 3866 3867
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3880 3881 3882 3883 3884
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3885
	if (sds->max_load < sds->avg_load) {
3886
		*imbalance = 0;
3887
		return fix_small_imbalance(sds, this_cpu, imbalance);
3888
	}
3889 3890

	/* Don't want to pull so many tasks that a group would go idle */
3891 3892
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3893

L
Linus Torvalds 已提交
3894
	/* How much load to actually move to equalise the imbalance */
3895 3896
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3897 3898
			/ SCHED_LOAD_SCALE;

3899 3900 3901 3902 3903 3904
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3905 3906
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3907

3908
}
3909
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3935 3936 3937 3938 3939 3940 3941
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3942

3943
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3944

3945 3946 3947 3948 3949 3950 3951
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3962 3963
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3964

3965 3966
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3967

3968
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3969 3970
		goto out_balanced;

3971
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3972

3973 3974 3975 3976
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3977 3978
		goto out_balanced;

3979 3980 3981 3982
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3983

L
Linus Torvalds 已提交
3984 3985 3986 3987 3988 3989 3990 3991
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3992
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3993 3994
	 * appear as very large values with unsigned longs.
	 */
3995
	if (sds.max_load <= sds.busiest_load_per_task)
3996 3997
		goto out_balanced;

3998 3999
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4000
	return sds.busiest;
L
Linus Torvalds 已提交
4001 4002

out_balanced:
4003 4004 4005 4006 4007 4008
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4009
ret:
L
Linus Torvalds 已提交
4010 4011 4012 4013
	*imbalance = 0;
	return NULL;
}

4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

4031
	return group->cpu_power;
4032 4033
}

L
Linus Torvalds 已提交
4034 4035 4036
/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4037
static struct rq *
I
Ingo Molnar 已提交
4038
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4039
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4040
{
4041
	struct rq *busiest = NULL, *rq;
4042
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4043 4044
	int i;

4045
	for_each_cpu(i, sched_group_cpus(group)) {
4046 4047
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4048
		unsigned long wl;
4049

4050
		if (!cpumask_test_cpu(i, cpus))
4051 4052
			continue;

4053
		rq = cpu_rq(i);
4054 4055
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4056

4057
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4058
			continue;
L
Linus Torvalds 已提交
4059

I
Ingo Molnar 已提交
4060 4061
		if (wl > max_load) {
			max_load = wl;
4062
			busiest = rq;
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068
		}
	}

	return busiest;
}

4069 4070 4071 4072 4073 4074
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4075 4076 4077
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4078 4079 4080 4081
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4082
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4083
			struct sched_domain *sd, enum cpu_idle_type idle,
4084
			int *balance)
L
Linus Torvalds 已提交
4085
{
P
Peter Williams 已提交
4086
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4087 4088
	struct sched_group *group;
	unsigned long imbalance;
4089
	struct rq *busiest;
4090
	unsigned long flags;
4091
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4092

4093
	cpumask_setall(cpus);
4094

4095 4096 4097
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4098
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4099
	 * portraying it as CPU_NOT_IDLE.
4100
	 */
I
Ingo Molnar 已提交
4101
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4102
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4103
		sd_idle = 1;
L
Linus Torvalds 已提交
4104

4105
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4106

4107
redo:
4108
	update_shares(sd);
4109
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4110
				   cpus, balance);
4111

4112
	if (*balance == 0)
4113 4114
		goto out_balanced;

L
Linus Torvalds 已提交
4115 4116 4117 4118 4119
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4120
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4126
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4127 4128 4129

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4130
	ld_moved = 0;
L
Linus Torvalds 已提交
4131 4132 4133 4134
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4135
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4136 4137
		 * correctly treated as an imbalance.
		 */
4138
		local_irq_save(flags);
N
Nick Piggin 已提交
4139
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4140
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4141
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4142
		double_rq_unlock(this_rq, busiest);
4143
		local_irq_restore(flags);
4144

4145 4146 4147
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4148
		if (ld_moved && this_cpu != smp_processor_id())
4149 4150
			resched_cpu(this_cpu);

4151
		/* All tasks on this runqueue were pinned by CPU affinity */
4152
		if (unlikely(all_pinned)) {
4153 4154
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4155
				goto redo;
4156
			goto out_balanced;
4157
		}
L
Linus Torvalds 已提交
4158
	}
4159

P
Peter Williams 已提交
4160
	if (!ld_moved) {
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4166
			spin_lock_irqsave(&busiest->lock, flags);
4167 4168 4169 4170

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4171 4172
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4173
				spin_unlock_irqrestore(&busiest->lock, flags);
4174 4175 4176 4177
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4178 4179 4180
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4181
				active_balance = 1;
L
Linus Torvalds 已提交
4182
			}
4183
			spin_unlock_irqrestore(&busiest->lock, flags);
4184
			if (active_balance)
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189 4190
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4191
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4192
		}
4193
	} else
L
Linus Torvalds 已提交
4194 4195
		sd->nr_balance_failed = 0;

4196
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4197 4198
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4199 4200 4201 4202 4203 4204 4205 4206 4207
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4208 4209
	}

P
Peter Williams 已提交
4210
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4211
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4212 4213 4214
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4215 4216 4217 4218

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4219
	sd->nr_balance_failed = 0;
4220 4221

out_one_pinned:
L
Linus Torvalds 已提交
4222
	/* tune up the balancing interval */
4223 4224
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4225 4226
		sd->balance_interval *= 2;

4227
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4228
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4229 4230 4231 4232
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4233 4234
	if (ld_moved)
		update_shares(sd);
4235
	return ld_moved;
L
Linus Torvalds 已提交
4236 4237 4238 4239 4240 4241
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4242
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4243 4244
 * this_rq is locked.
 */
4245
static int
4246
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4247 4248
{
	struct sched_group *group;
4249
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4250
	unsigned long imbalance;
P
Peter Williams 已提交
4251
	int ld_moved = 0;
N
Nick Piggin 已提交
4252
	int sd_idle = 0;
4253
	int all_pinned = 0;
4254
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4255

4256
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4257

4258 4259 4260 4261
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4262
	 * portraying it as CPU_NOT_IDLE.
4263 4264 4265
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4266
		sd_idle = 1;
L
Linus Torvalds 已提交
4267

4268
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4269
redo:
4270
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4271
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4272
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4273
	if (!group) {
I
Ingo Molnar 已提交
4274
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4275
		goto out_balanced;
L
Linus Torvalds 已提交
4276 4277
	}

4278
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4279
	if (!busiest) {
I
Ingo Molnar 已提交
4280
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4281
		goto out_balanced;
L
Linus Torvalds 已提交
4282 4283
	}

N
Nick Piggin 已提交
4284 4285
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4286
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4287

P
Peter Williams 已提交
4288
	ld_moved = 0;
4289 4290 4291
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4292 4293
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4294
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4295 4296
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4297
		double_unlock_balance(this_rq, busiest);
4298

4299
		if (unlikely(all_pinned)) {
4300 4301
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4302 4303
				goto redo;
		}
4304 4305
	}

P
Peter Williams 已提交
4306
	if (!ld_moved) {
4307
		int active_balance = 0;
4308

I
Ingo Molnar 已提交
4309
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4310 4311
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4312
			return -1;
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4349
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4362 4363 4364 4365
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4366 4367
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4368
		spin_lock(&this_rq->lock);
4369

N
Nick Piggin 已提交
4370
	} else
4371
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4372

4373
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4374
	return ld_moved;
4375 4376

out_balanced:
I
Ingo Molnar 已提交
4377
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4378
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4379
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4380
		return -1;
4381
	sd->nr_balance_failed = 0;
4382

4383
	return 0;
L
Linus Torvalds 已提交
4384 4385 4386 4387 4388 4389
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4390
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4391 4392
{
	struct sched_domain *sd;
4393
	int pulled_task = 0;
I
Ingo Molnar 已提交
4394
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4395 4396

	for_each_domain(this_cpu, sd) {
4397 4398 4399 4400 4401 4402
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4403
			/* If we've pulled tasks over stop searching: */
4404
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4405
							   sd);
4406 4407 4408 4409 4410 4411

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4412
	}
I
Ingo Molnar 已提交
4413
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4414 4415 4416 4417 4418
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4419
	}
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4430
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4431
{
4432
	int target_cpu = busiest_rq->push_cpu;
4433 4434
	struct sched_domain *sd;
	struct rq *target_rq;
4435

4436
	/* Is there any task to move? */
4437 4438 4439 4440
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4441 4442

	/*
4443
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4444
	 * we need to fix it. Originally reported by
4445
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4446
	 */
4447
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4448

4449 4450
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4451 4452
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4453 4454

	/* Search for an sd spanning us and the target CPU. */
4455
	for_each_domain(target_cpu, sd) {
4456
		if ((sd->flags & SD_LOAD_BALANCE) &&
4457
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4458
				break;
4459
	}
4460

4461
	if (likely(sd)) {
4462
		schedstat_inc(sd, alb_count);
4463

P
Peter Williams 已提交
4464 4465
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4466 4467 4468 4469
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4470
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4471 4472
}

4473 4474 4475
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4476
	cpumask_var_t cpu_mask;
4477
	cpumask_var_t ilb_grp_nohz_mask;
4478 4479 4480 4481
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4482 4483 4484 4485 4486
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4598
	return cpumask_first(nohz.cpu_mask);
4599 4600 4601
}
#endif

4602
/*
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4613
 *
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4629 4630 4631 4632 4633 4634 4635 4636
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4637 4638
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4639

4640 4641 4642
			return 0;
		}

4643 4644
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4645
		/* time for ilb owner also to sleep */
4646
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4647 4648 4649 4650 4651 4652 4653 4654 4655
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4672
			return 1;
4673
		}
4674
	} else {
4675
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4676 4677
			return 0;

4678
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4691 4692 4693 4694 4695
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4696
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4697
{
4698 4699
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4700 4701
	unsigned long interval;
	struct sched_domain *sd;
4702
	/* Earliest time when we have to do rebalance again */
4703
	unsigned long next_balance = jiffies + 60*HZ;
4704
	int update_next_balance = 0;
4705
	int need_serialize;
L
Linus Torvalds 已提交
4706

4707
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4708 4709 4710 4711
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4712
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4719 4720 4721
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4722
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4723

4724
		if (need_serialize) {
4725 4726 4727 4728
			if (!spin_trylock(&balancing))
				goto out;
		}

4729
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4730
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4731 4732
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4733 4734 4735
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4736
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4737
			}
4738
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4739
		}
4740
		if (need_serialize)
4741 4742
			spin_unlock(&balancing);
out:
4743
		if (time_after(next_balance, sd->last_balance + interval)) {
4744
			next_balance = sd->last_balance + interval;
4745 4746
			update_next_balance = 1;
		}
4747 4748 4749 4750 4751 4752 4753 4754

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4755
	}
4756 4757 4758 4759 4760 4761 4762 4763

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4764 4765 4766 4767 4768 4769 4770 4771 4772
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4773 4774 4775 4776
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4777

I
Ingo Molnar 已提交
4778
	rebalance_domains(this_cpu, idle);
4779 4780 4781 4782 4783 4784 4785

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4786 4787
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4788 4789 4790
		struct rq *rq;
		int balance_cpu;

4791 4792 4793 4794
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4795 4796 4797 4798 4799 4800 4801 4802
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4803
			rebalance_domains(balance_cpu, CPU_IDLE);
4804 4805

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4806 4807
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4808 4809 4810 4811 4812
		}
	}
#endif
}

4813 4814 4815 4816 4817
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4818 4819 4820 4821 4822 4823 4824
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4825
static inline void trigger_load_balance(struct rq *rq, int cpu)
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4837
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4838 4839 4840 4841
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4842
			int ilb = find_new_ilb(cpu);
4843

4844
			if (ilb < nr_cpu_ids)
4845 4846 4847 4848 4849 4850 4851 4852 4853
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4854
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4855 4856 4857 4858 4859 4860 4861 4862 4863
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4864
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4865 4866
		return;
#endif
4867 4868 4869
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4870
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4871
}
I
Ingo Molnar 已提交
4872 4873 4874

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4875 4876 4877
/*
 * on UP we do not need to balance between CPUs:
 */
4878
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4879 4880
{
}
I
Ingo Molnar 已提交
4881

L
Linus Torvalds 已提交
4882 4883 4884 4885 4886 4887 4888
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4889
 * Return any ns on the sched_clock that have not yet been accounted in
4890
 * @p in case that task is currently running.
4891 4892
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4893
 */
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4908
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4909 4910
{
	unsigned long flags;
4911
	struct rq *rq;
4912
	u64 ns = 0;
4913

4914
	rq = task_rq_lock(p, &flags);
4915 4916
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4917

4918 4919
	return ns;
}
4920

4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4938

4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4958
	task_rq_unlock(rq, &flags);
4959

L
Linus Torvalds 已提交
4960 4961 4962 4963 4964 4965 4966
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4967
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4968
 */
4969 4970
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4971 4972 4973 4974
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4975
	/* Add user time to process. */
L
Linus Torvalds 已提交
4976
	p->utime = cputime_add(p->utime, cputime);
4977
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4978
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4979 4980 4981 4982 4983 4984 4985

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4986 4987

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4988 4989
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4990 4991
}

4992 4993 4994 4995
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4996
 * @cputime_scaled: cputime scaled by cpu frequency
4997
 */
4998 4999
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5000 5001 5002 5003 5004 5005
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5006
	/* Add guest time to process. */
5007
	p->utime = cputime_add(p->utime, cputime);
5008
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5009
	account_group_user_time(p, cputime);
5010 5011
	p->gtime = cputime_add(p->gtime, cputime);

5012
	/* Add guest time to cpustat. */
5013 5014 5015 5016
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5017 5018 5019 5020 5021
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5022
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5023 5024
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5025
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5026 5027 5028 5029
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5030
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5031
		account_guest_time(p, cputime, cputime_scaled);
5032 5033
		return;
	}
5034

5035
	/* Add system time to process. */
L
Linus Torvalds 已提交
5036
	p->stime = cputime_add(p->stime, cputime);
5037
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5038
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5047 5048
		cpustat->system = cputime64_add(cpustat->system, tmp);

5049 5050
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5051 5052 5053 5054
	/* Account for system time used */
	acct_update_integrals(p);
}

5055
/*
L
Linus Torvalds 已提交
5056 5057
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5058
 */
5059
void account_steal_time(cputime_t cputime)
5060
{
5061 5062 5063 5064
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5065 5066
}

L
Linus Torvalds 已提交
5067
/*
5068 5069
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5070
 */
5071
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5072 5073
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5074
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5075
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5076

5077 5078 5079 5080
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5081 5082
}

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5098
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5122 5123
}

5124 5125
#endif

5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5196
	struct task_struct *curr = rq->curr;
5197 5198

	sched_clock_tick();
I
Ingo Molnar 已提交
5199 5200

	spin_lock(&rq->lock);
5201
	update_rq_clock(rq);
5202
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5203
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5204
	spin_unlock(&rq->lock);
5205

5206 5207
	perf_counter_task_tick(curr, cpu);

5208
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5209 5210
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5211
#endif
L
Linus Torvalds 已提交
5212 5213
}

5214
notrace unsigned long get_parent_ip(unsigned long addr)
5215 5216 5217 5218 5219 5220 5221 5222
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5223

5224 5225 5226
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5227
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5228
{
5229
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5230 5231 5232
	/*
	 * Underflow?
	 */
5233 5234
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5235
#endif
L
Linus Torvalds 已提交
5236
	preempt_count() += val;
5237
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5238 5239 5240
	/*
	 * Spinlock count overflowing soon?
	 */
5241 5242
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5243 5244 5245
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5246 5247 5248
}
EXPORT_SYMBOL(add_preempt_count);

5249
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5250
{
5251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5252 5253 5254
	/*
	 * Underflow?
	 */
5255
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5256
		return;
L
Linus Torvalds 已提交
5257 5258 5259
	/*
	 * Is the spinlock portion underflowing?
	 */
5260 5261 5262
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5263
#endif
5264

5265 5266
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5274
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5275
 */
I
Ingo Molnar 已提交
5276
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5277
{
5278 5279 5280 5281 5282
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5283
	debug_show_held_locks(prev);
5284
	print_modules();
I
Ingo Molnar 已提交
5285 5286
	if (irqs_disabled())
		print_irqtrace_events(prev);
5287 5288 5289 5290 5291

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5292
}
L
Linus Torvalds 已提交
5293

I
Ingo Molnar 已提交
5294 5295 5296 5297 5298
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5299
	/*
I
Ingo Molnar 已提交
5300
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5301 5302 5303
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5304
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5305 5306
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5307 5308
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5309
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5310 5311
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5312 5313
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5314 5315
	}
#endif
I
Ingo Molnar 已提交
5316 5317
}

M
Mike Galbraith 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5340 5341 5342 5343
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5344
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5345
{
5346
	const struct sched_class *class;
I
Ingo Molnar 已提交
5347
	struct task_struct *p;
L
Linus Torvalds 已提交
5348 5349

	/*
I
Ingo Molnar 已提交
5350 5351
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5352
	 */
I
Ingo Molnar 已提交
5353
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5354
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5355 5356
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5357 5358
	}

I
Ingo Molnar 已提交
5359 5360
	class = sched_class_highest;
	for ( ; ; ) {
5361
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5362 5363 5364 5365 5366 5367 5368 5369 5370
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5371

I
Ingo Molnar 已提交
5372 5373 5374
/*
 * schedule() is the main scheduler function.
 */
5375
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5376 5377
{
	struct task_struct *prev, *next;
5378
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5379
	struct rq *rq;
5380
	int cpu;
I
Ingo Molnar 已提交
5381

5382 5383
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5384 5385
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5386
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5387 5388 5389 5390 5391 5392 5393
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5394

5395
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5396
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5397

5398
	spin_lock_irq(&rq->lock);
5399
	update_rq_clock(rq);
5400
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5401 5402

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5403
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5404
			prev->state = TASK_RUNNING;
5405
		else
5406
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5407
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5408 5409
	}

5410
	pre_schedule(rq, prev);
5411

I
Ingo Molnar 已提交
5412
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5413 5414
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5415
	put_prev_task(rq, prev);
5416
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5417 5418

	if (likely(prev != next)) {
5419
		sched_info_switch(prev, next);
5420
		perf_counter_task_sched_out(prev, next, cpu);
5421

L
Linus Torvalds 已提交
5422 5423 5424 5425
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5426
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5427 5428 5429 5430 5431 5432
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5433 5434 5435
	} else
		spin_unlock_irq(&rq->lock);

5436
	post_schedule(rq);
L
Linus Torvalds 已提交
5437

P
Peter Zijlstra 已提交
5438
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5439
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5440

L
Linus Torvalds 已提交
5441
	preempt_enable_no_resched();
5442
	if (need_resched())
L
Linus Torvalds 已提交
5443 5444 5445 5446
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5508 5509
#ifdef CONFIG_PREEMPT
/*
5510
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5511
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5517

L
Linus Torvalds 已提交
5518 5519
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5520
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5521
	 */
N
Nick Piggin 已提交
5522
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5523 5524
		return;

5525 5526 5527 5528
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5529

5530 5531 5532 5533 5534
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5535
	} while (need_resched());
L
Linus Torvalds 已提交
5536 5537 5538 5539
}
EXPORT_SYMBOL(preempt_schedule);

/*
5540
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5541 5542 5543 5544 5545 5546 5547
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5548

5549
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5550 5551
	BUG_ON(ti->preempt_count || !irqs_disabled());

5552 5553 5554 5555 5556 5557
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5558

5559 5560 5561 5562 5563
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5564
	} while (need_resched());
L
Linus Torvalds 已提交
5565 5566 5567 5568
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5569 5570
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5571
{
5572
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5573 5574 5575 5576
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5577 5578
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5579 5580 5581
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5582
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5583 5584
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5585
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5586
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5587
{
5588
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5589

5590
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5591 5592
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5593
		if (curr->func(curr, mode, sync, key) &&
5594
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5604
 * @key: is directly passed to the wakeup function
5605 5606 5607
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5608
 */
5609
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5610
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5623
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5624 5625 5626 5627
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5628 5629 5630 5631 5632
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5633
/**
5634
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5635 5636 5637
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5638
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5639 5640 5641 5642 5643 5644 5645
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5646 5647 5648
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5649
 */
5650 5651
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5663
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5664 5665
	spin_unlock_irqrestore(&q->lock, flags);
}
5666 5667 5668 5669 5670 5671 5672 5673 5674
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5675 5676
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5677 5678 5679 5680 5681 5682 5683 5684
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5685 5686 5687
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5688
 */
5689
void complete(struct completion *x)
L
Linus Torvalds 已提交
5690 5691 5692 5693 5694
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5695
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5696 5697 5698 5699
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5700 5701 5702 5703 5704
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5705 5706 5707
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5708
 */
5709
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5710 5711 5712 5713 5714
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5715
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5716 5717 5718 5719
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5720 5721
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5722 5723 5724 5725 5726 5727 5728
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5729
			if (signal_pending_state(state, current)) {
5730 5731
				timeout = -ERESTARTSYS;
				break;
5732 5733
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5734 5735 5736
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5737
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5738
		__remove_wait_queue(&x->wait, &wait);
5739 5740
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5741 5742
	}
	x->done--;
5743
	return timeout ?: 1;
L
Linus Torvalds 已提交
5744 5745
}

5746 5747
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5748 5749 5750 5751
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5752
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5753
	spin_unlock_irq(&x->wait.lock);
5754 5755
	return timeout;
}
L
Linus Torvalds 已提交
5756

5757 5758 5759 5760 5761 5762 5763 5764 5765 5766
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5767
void __sched wait_for_completion(struct completion *x)
5768 5769
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5770
}
5771
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5772

5773 5774 5775 5776 5777 5778 5779 5780 5781
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5782
unsigned long __sched
5783
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5784
{
5785
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5786
}
5787
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5788

5789 5790 5791 5792 5793 5794 5795
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5796
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5797
{
5798 5799 5800 5801
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5802
}
5803
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5804

5805 5806 5807 5808 5809 5810 5811 5812
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5813
unsigned long __sched
5814 5815
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5816
{
5817
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5818
}
5819
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5820

5821 5822 5823 5824 5825 5826 5827
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5883 5884
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5885
{
I
Ingo Molnar 已提交
5886 5887 5888 5889
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5890

5891
	__set_current_state(state);
L
Linus Torvalds 已提交
5892

5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5907 5908 5909
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5910
long __sched
I
Ingo Molnar 已提交
5911
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5912
{
5913
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5914 5915 5916
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5917
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5918
{
5919
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5920 5921 5922
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5923
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5924
{
5925
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5926 5927 5928
}
EXPORT_SYMBOL(sleep_on_timeout);

5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5941
void rt_mutex_setprio(struct task_struct *p, int prio)
5942 5943
{
	unsigned long flags;
5944
	int oldprio, on_rq, running;
5945
	struct rq *rq;
5946
	const struct sched_class *prev_class = p->sched_class;
5947 5948 5949 5950

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5951
	update_rq_clock(rq);
5952

5953
	oldprio = p->prio;
I
Ingo Molnar 已提交
5954
	on_rq = p->se.on_rq;
5955
	running = task_current(rq, p);
5956
	if (on_rq)
5957
		dequeue_task(rq, p, 0);
5958 5959
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5960 5961 5962 5963 5964 5965

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5966 5967
	p->prio = prio;

5968 5969
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5970
	if (on_rq) {
5971
		enqueue_task(rq, p, 0);
5972 5973

		check_class_changed(rq, p, prev_class, oldprio, running);
5974 5975 5976 5977 5978 5979
	}
	task_rq_unlock(rq, &flags);
}

#endif

5980
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5981
{
I
Ingo Molnar 已提交
5982
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5983
	unsigned long flags;
5984
	struct rq *rq;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5993
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5994 5995 5996 5997
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5998
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5999
	 */
6000
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6001 6002 6003
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6004
	on_rq = p->se.on_rq;
6005
	if (on_rq)
6006
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6007 6008

	p->static_prio = NICE_TO_PRIO(nice);
6009
	set_load_weight(p);
6010 6011 6012
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6013

I
Ingo Molnar 已提交
6014
	if (on_rq) {
6015
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6016
		/*
6017 6018
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6019
		 */
6020
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026 6027
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6028 6029 6030 6031 6032
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6033
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6034
{
6035 6036
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6037

M
Matt Mackall 已提交
6038 6039 6040 6041
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6042 6043 6044 6045 6046 6047 6048 6049 6050
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6051
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6052
{
6053
	long nice, retval;
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6060 6061
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6062 6063 6064
	if (increment > 40)
		increment = 40;

6065
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6066 6067 6068 6069 6070
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6071 6072 6073
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6092
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6093 6094 6095 6096 6097 6098 6099 6100
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6101
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6102 6103 6104
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6105
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6120
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6121 6122 6123 6124 6125 6126 6127 6128
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6129
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6130
{
6131
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6132 6133 6134
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6135 6136
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6137
{
I
Ingo Molnar 已提交
6138
	BUG_ON(p->se.on_rq);
6139

L
Linus Torvalds 已提交
6140
	p->policy = policy;
I
Ingo Molnar 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6153
	p->rt_priority = prio;
6154 6155 6156
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6157
	set_load_weight(p);
L
Linus Torvalds 已提交
6158 6159
}

6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6176 6177
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6178
{
6179
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6180
	unsigned long flags;
6181
	const struct sched_class *prev_class = p->sched_class;
6182
	struct rq *rq;
6183
	int reset_on_fork;
L
Linus Torvalds 已提交
6184

6185 6186
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6187 6188
recheck:
	/* double check policy once rq lock held */
6189 6190
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6191
		policy = oldpolicy = p->policy;
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6202 6203
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6204 6205
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6206 6207
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6208
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6209
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6210
		return -EINVAL;
6211
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6212 6213
		return -EINVAL;

6214 6215 6216
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6217
	if (user && !capable(CAP_SYS_NICE)) {
6218
		if (rt_policy(policy)) {
6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6235 6236 6237 6238 6239 6240
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6241

6242
		/* can't change other user's priorities */
6243
		if (!check_same_owner(p))
6244
			return -EPERM;
6245 6246 6247 6248

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6249
	}
L
Linus Torvalds 已提交
6250

6251
	if (user) {
6252
#ifdef CONFIG_RT_GROUP_SCHED
6253 6254 6255 6256
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6257 6258
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6259
			return -EPERM;
6260 6261
#endif

6262 6263 6264 6265 6266
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6267 6268 6269 6270 6271
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6272 6273 6274 6275
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6276
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6277 6278 6279
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6280 6281
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6282 6283
		goto recheck;
	}
I
Ingo Molnar 已提交
6284
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6285
	on_rq = p->se.on_rq;
6286
	running = task_current(rq, p);
6287
	if (on_rq)
6288
		deactivate_task(rq, p, 0);
6289 6290
	if (running)
		p->sched_class->put_prev_task(rq, p);
6291

6292 6293
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6294
	oldprio = p->prio;
I
Ingo Molnar 已提交
6295
	__setscheduler(rq, p, policy, param->sched_priority);
6296

6297 6298
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6299 6300
	if (on_rq) {
		activate_task(rq, p, 0);
6301 6302

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6303
	}
6304 6305 6306
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6307 6308
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6309 6310
	return 0;
}
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6325 6326
EXPORT_SYMBOL_GPL(sched_setscheduler);

6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6344 6345
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6346 6347 6348
{
	struct sched_param lparam;
	struct task_struct *p;
6349
	int retval;
L
Linus Torvalds 已提交
6350 6351 6352 6353 6354

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6355 6356 6357

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6358
	p = find_process_by_pid(pid);
6359 6360 6361
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6362

L
Linus Torvalds 已提交
6363 6364 6365 6366 6367 6368 6369 6370 6371
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6372 6373
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6374
{
6375 6376 6377 6378
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6379 6380 6381 6382 6383 6384 6385 6386
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6387
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6388 6389 6390 6391 6392 6393 6394 6395
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6396
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6397
{
6398
	struct task_struct *p;
6399
	int retval;
L
Linus Torvalds 已提交
6400 6401

	if (pid < 0)
6402
		return -EINVAL;
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408 6409

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6410 6411
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6412 6413 6414 6415 6416 6417
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6418
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6419 6420 6421
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6422
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6423 6424
{
	struct sched_param lp;
6425
	struct task_struct *p;
6426
	int retval;
L
Linus Torvalds 已提交
6427 6428

	if (!param || pid < 0)
6429
		return -EINVAL;
L
Linus Torvalds 已提交
6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6456
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6457
{
6458
	cpumask_var_t cpus_allowed, new_mask;
6459 6460
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6461

6462
	get_online_cpus();
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6468
		put_online_cpus();
L
Linus Torvalds 已提交
6469 6470 6471 6472 6473
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6474
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6475 6476 6477 6478 6479
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6480 6481 6482 6483 6484 6485 6486 6487
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6488
	retval = -EPERM;
6489
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6490 6491
		goto out_unlock;

6492 6493 6494 6495
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6496 6497
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6498
 again:
6499
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6500

P
Paul Menage 已提交
6501
	if (!retval) {
6502 6503
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6504 6505 6506 6507 6508
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6509
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6510 6511 6512
			goto again;
		}
	}
L
Linus Torvalds 已提交
6513
out_unlock:
6514 6515 6516 6517
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6518
	put_task_struct(p);
6519
	put_online_cpus();
L
Linus Torvalds 已提交
6520 6521 6522 6523
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6524
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6525
{
6526 6527 6528 6529 6530
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6531 6532 6533 6534 6535 6536 6537 6538 6539
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6540 6541
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6542
{
6543
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6544 6545
	int retval;

6546 6547
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6548

6549 6550 6551 6552 6553
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6554 6555
}

6556
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6557
{
6558
	struct task_struct *p;
L
Linus Torvalds 已提交
6559 6560
	int retval;

6561
	get_online_cpus();
L
Linus Torvalds 已提交
6562 6563 6564 6565 6566 6567 6568
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6569 6570 6571 6572
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6573
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6574 6575 6576

out_unlock:
	read_unlock(&tasklist_lock);
6577
	put_online_cpus();
L
Linus Torvalds 已提交
6578

6579
	return retval;
L
Linus Torvalds 已提交
6580 6581 6582 6583 6584 6585 6586 6587
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6588 6589
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6590 6591
{
	int ret;
6592
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6593

6594
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6595 6596
		return -EINVAL;

6597 6598
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6599

6600 6601 6602 6603 6604 6605 6606 6607
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6608

6609
	return ret;
L
Linus Torvalds 已提交
6610 6611 6612 6613 6614
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6615 6616
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6617
 */
6618
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6619
{
6620
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6621

6622
	schedstat_inc(rq, yld_count);
6623
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6624 6625 6626 6627 6628 6629

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6630
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635 6636 6637 6638
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6639 6640 6641 6642 6643
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6644
static void __cond_resched(void)
L
Linus Torvalds 已提交
6645
{
6646 6647 6648
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6649 6650
}

6651
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6652
{
P
Peter Zijlstra 已提交
6653
	if (should_resched()) {
L
Linus Torvalds 已提交
6654 6655 6656 6657 6658
		__cond_resched();
		return 1;
	}
	return 0;
}
6659
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6660 6661

/*
6662
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6663 6664
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6665
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6666 6667 6668
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6669
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6670
{
P
Peter Zijlstra 已提交
6671
	int resched = should_resched();
J
Jan Kara 已提交
6672 6673
	int ret = 0;

6674 6675
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6676
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6677
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6678
		if (resched)
N
Nick Piggin 已提交
6679 6680 6681
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6682
		ret = 1;
L
Linus Torvalds 已提交
6683 6684
		spin_lock(lock);
	}
J
Jan Kara 已提交
6685
	return ret;
L
Linus Torvalds 已提交
6686
}
6687
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6688

6689
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6690 6691 6692
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6693
	if (should_resched()) {
6694
		local_bh_enable();
L
Linus Torvalds 已提交
6695 6696 6697 6698 6699 6700
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6701
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6702 6703 6704 6705

/**
 * yield - yield the current processor to other threads.
 *
6706
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6717
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6718 6719 6720 6721 6722 6723 6724
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6725
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6726

6727
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6728
	atomic_inc(&rq->nr_iowait);
6729
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6730
	schedule();
6731
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6732
	atomic_dec(&rq->nr_iowait);
6733
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6734 6735 6736 6737 6738
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6739
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6740 6741
	long ret;

6742
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6743
	atomic_inc(&rq->nr_iowait);
6744
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6745
	ret = schedule_timeout(timeout);
6746
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6747
	atomic_dec(&rq->nr_iowait);
6748
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6759
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6760 6761 6762 6763 6764 6765 6766 6767 6768
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6769
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6770
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6784
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6785 6786 6787 6788 6789 6790 6791 6792 6793
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6794
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6795
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6809
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6810
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6811
{
6812
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6813
	unsigned int time_slice;
6814
	int retval;
L
Linus Torvalds 已提交
6815 6816 6817
	struct timespec t;

	if (pid < 0)
6818
		return -EINVAL;
L
Linus Torvalds 已提交
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6830 6831 6832 6833 6834 6835
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6836
		time_slice = DEF_TIMESLICE;
6837
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6838 6839 6840 6841 6842
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6843 6844
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6845 6846
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6847
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6848
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6849 6850
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6851

L
Linus Torvalds 已提交
6852 6853 6854 6855 6856
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6857
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6858

6859
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6860 6861
{
	unsigned long free = 0;
6862
	unsigned state;
L
Linus Torvalds 已提交
6863 6864

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6865
	printk(KERN_INFO "%-13.13s %c", p->comm,
6866
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6867
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6868
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6869
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6870
	else
I
Ingo Molnar 已提交
6871
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6872 6873
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6874
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6875
	else
I
Ingo Molnar 已提交
6876
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6877 6878
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6879
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6880
#endif
6881 6882 6883
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6884

6885
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6886 6887
}

I
Ingo Molnar 已提交
6888
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6889
{
6890
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6891

6892 6893 6894
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6895
#else
6896 6897
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6898 6899 6900 6901 6902 6903 6904 6905
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6906
		if (!state_filter || (p->state & state_filter))
6907
			sched_show_task(p);
L
Linus Torvalds 已提交
6908 6909
	} while_each_thread(g, p);

6910 6911
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6912 6913 6914
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6915
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6916 6917 6918 6919 6920
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6921 6922
}

I
Ingo Molnar 已提交
6923 6924
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6925
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6926 6927
}

6928 6929 6930 6931 6932 6933 6934 6935
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6936
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6937
{
6938
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6939 6940
	unsigned long flags;

6941 6942
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6943 6944 6945
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6946
	idle->prio = idle->normal_prio = MAX_PRIO;
6947
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6948
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6949 6950

	rq->curr = rq->idle = idle;
6951 6952 6953
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6954 6955 6956
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6957 6958 6959
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6960
	task_thread_info(idle)->preempt_count = 0;
6961
#endif
I
Ingo Molnar 已提交
6962 6963 6964 6965
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6966
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6967 6968 6969 6970 6971 6972 6973
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6974
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6975
 */
6976
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6977

I
Ingo Molnar 已提交
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7001 7002

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7003 7004
}

L
Linus Torvalds 已提交
7005 7006 7007 7008
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7009
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7028
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7029 7030
 * call is not atomic; no spinlocks may be held.
 */
7031
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7032
{
7033
	struct migration_req req;
L
Linus Torvalds 已提交
7034
	unsigned long flags;
7035
	struct rq *rq;
7036
	int ret = 0;
L
Linus Torvalds 已提交
7037 7038

	rq = task_rq_lock(p, &flags);
7039
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7040 7041 7042 7043
		ret = -EINVAL;
		goto out;
	}

7044
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7045
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7046 7047 7048 7049
		ret = -EINVAL;
		goto out;
	}

7050
	if (p->sched_class->set_cpus_allowed)
7051
		p->sched_class->set_cpus_allowed(p, new_mask);
7052
	else {
7053 7054
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7055 7056
	}

L
Linus Torvalds 已提交
7057
	/* Can the task run on the task's current CPU? If so, we're done */
7058
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7059 7060
		goto out;

R
Rusty Russell 已提交
7061
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7062
		/* Need help from migration thread: drop lock and wait. */
7063 7064 7065
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7066 7067
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7068
		put_task_struct(mt);
L
Linus Torvalds 已提交
7069 7070 7071 7072 7073 7074
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7075

L
Linus Torvalds 已提交
7076 7077
	return ret;
}
7078
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7079 7080

/*
I
Ingo Molnar 已提交
7081
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7082 7083 7084 7085 7086 7087
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7088 7089
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7090
 */
7091
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7092
{
7093
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7094
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7095

7096
	if (unlikely(!cpu_active(dest_cpu)))
7097
		return ret;
L
Linus Torvalds 已提交
7098 7099 7100 7101 7102 7103 7104

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7105
		goto done;
L
Linus Torvalds 已提交
7106
	/* Affinity changed (again). */
7107
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7108
		goto fail;
L
Linus Torvalds 已提交
7109

I
Ingo Molnar 已提交
7110
	on_rq = p->se.on_rq;
7111
	if (on_rq)
7112
		deactivate_task(rq_src, p, 0);
7113

L
Linus Torvalds 已提交
7114
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7115 7116
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7117
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7118
	}
L
Linus Torvalds 已提交
7119
done:
7120
	ret = 1;
L
Linus Torvalds 已提交
7121
fail:
L
Linus Torvalds 已提交
7122
	double_rq_unlock(rq_src, rq_dest);
7123
	return ret;
L
Linus Torvalds 已提交
7124 7125
}

7126 7127 7128 7129 7130
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7131 7132 7133 7134 7135
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7136
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7137
{
7138
	int badcpu;
L
Linus Torvalds 已提交
7139
	int cpu = (long)data;
7140
	struct rq *rq;
L
Linus Torvalds 已提交
7141 7142 7143 7144 7145 7146

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7147
		struct migration_req *req;
L
Linus Torvalds 已提交
7148 7149 7150 7151 7152 7153
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7154
			break;
L
Linus Torvalds 已提交
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7170
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7171 7172
		list_del_init(head->next);

7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7184
		local_irq_enable();
L
Linus Torvalds 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7205
/*
7206
 * Figure out where task on dead CPU should go, use force if necessary.
7207
 */
7208
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7209
{
7210
	int dest_cpu;
7211
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7228

7229 7230 7231 7232 7233 7234 7235 7236 7237
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7238
		}
7239 7240 7241 7242 7243 7244
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7254
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7255
{
R
Rusty Russell 已提交
7256
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7270
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7271

7272
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7273

7274 7275
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7276 7277
			continue;

7278 7279 7280
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7281

7282
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7283 7284
}

I
Ingo Molnar 已提交
7285 7286
/*
 * Schedules idle task to be the next runnable task on current CPU.
7287 7288
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7289 7290 7291
 */
void sched_idle_next(void)
{
7292
	int this_cpu = smp_processor_id();
7293
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7294 7295 7296 7297
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7298
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7299

7300 7301 7302
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7303 7304 7305
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7306
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7307

7308 7309
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7310 7311 7312 7313

	spin_unlock_irqrestore(&rq->lock, flags);
}

7314 7315
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7329
/* called under rq->lock with disabled interrupts */
7330
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7331
{
7332
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7333 7334

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7335
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7336 7337

	/* Cannot have done final schedule yet: would have vanished. */
7338
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7339

7340
	get_task_struct(p);
L
Linus Torvalds 已提交
7341 7342 7343

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7344
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7345 7346
	 * fine.
	 */
7347
	spin_unlock_irq(&rq->lock);
7348
	move_task_off_dead_cpu(dead_cpu, p);
7349
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7350

7351
	put_task_struct(p);
L
Linus Torvalds 已提交
7352 7353 7354 7355 7356
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7357
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7358
	struct task_struct *next;
7359

I
Ingo Molnar 已提交
7360 7361 7362
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7363
		update_rq_clock(rq);
7364
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7365 7366
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7367
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7368
		migrate_dead(dead_cpu, next);
7369

L
Linus Torvalds 已提交
7370 7371
	}
}
7372 7373 7374 7375 7376 7377 7378

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7379
	rq->calc_load_active = 0;
7380
}
L
Linus Torvalds 已提交
7381 7382
#endif /* CONFIG_HOTPLUG_CPU */

7383 7384 7385
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7386 7387
	{
		.procname	= "sched_domain",
7388
		.mode		= 0555,
7389
	},
I
Ingo Molnar 已提交
7390
	{0, },
7391 7392 7393
};

static struct ctl_table sd_ctl_root[] = {
7394
	{
7395
		.ctl_name	= CTL_KERN,
7396
		.procname	= "kernel",
7397
		.mode		= 0555,
7398 7399
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7400
	{0, },
7401 7402 7403 7404 7405
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7406
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7407 7408 7409 7410

	return entry;
}

7411 7412
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7413
	struct ctl_table *entry;
7414

7415 7416 7417
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7418
	 * will always be set. In the lowest directory the names are
7419 7420 7421
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7422 7423
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7424 7425 7426
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7427 7428 7429 7430 7431

	kfree(*tablep);
	*tablep = NULL;
}

7432
static void
7433
set_table_entry(struct ctl_table *entry,
7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7447
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7448

7449 7450 7451
	if (table == NULL)
		return NULL;

7452
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7453
		sizeof(long), 0644, proc_doulongvec_minmax);
7454
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7455
		sizeof(long), 0644, proc_doulongvec_minmax);
7456
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7457
		sizeof(int), 0644, proc_dointvec_minmax);
7458
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7459
		sizeof(int), 0644, proc_dointvec_minmax);
7460
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7461
		sizeof(int), 0644, proc_dointvec_minmax);
7462
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7463
		sizeof(int), 0644, proc_dointvec_minmax);
7464
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7465
		sizeof(int), 0644, proc_dointvec_minmax);
7466
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7467
		sizeof(int), 0644, proc_dointvec_minmax);
7468
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7469
		sizeof(int), 0644, proc_dointvec_minmax);
7470
	set_table_entry(&table[9], "cache_nice_tries",
7471 7472
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7473
	set_table_entry(&table[10], "flags", &sd->flags,
7474
		sizeof(int), 0644, proc_dointvec_minmax);
7475 7476 7477
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7478 7479 7480 7481

	return table;
}

7482
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7483 7484 7485 7486 7487 7488 7489 7490 7491
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7492 7493
	if (table == NULL)
		return NULL;
7494 7495 7496 7497 7498

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7499
		entry->mode = 0555;
7500 7501 7502 7503 7504 7505 7506 7507
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7508
static void register_sched_domain_sysctl(void)
7509 7510 7511 7512 7513
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7514 7515 7516
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7517 7518 7519
	if (entry == NULL)
		return;

7520
	for_each_online_cpu(i) {
7521 7522
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7523
		entry->mode = 0555;
7524
		entry->child = sd_alloc_ctl_cpu_table(i);
7525
		entry++;
7526
	}
7527 7528

	WARN_ON(sd_sysctl_header);
7529 7530
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7531

7532
/* may be called multiple times per register */
7533 7534
static void unregister_sched_domain_sysctl(void)
{
7535 7536
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7537
	sd_sysctl_header = NULL;
7538 7539
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7540
}
7541
#else
7542 7543 7544 7545
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7546 7547 7548 7549
{
}
#endif

7550 7551 7552 7553 7554
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7555
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7575
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7576 7577 7578 7579
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7580 7581 7582 7583
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7584 7585
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7586 7587
{
	struct task_struct *p;
7588
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7589
	unsigned long flags;
7590
	struct rq *rq;
L
Linus Torvalds 已提交
7591 7592

	switch (action) {
7593

L
Linus Torvalds 已提交
7594
	case CPU_UP_PREPARE:
7595
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7596
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7597 7598 7599 7600 7601
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7602
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7603
		task_rq_unlock(rq, &flags);
7604
		get_task_struct(p);
L
Linus Torvalds 已提交
7605
		cpu_rq(cpu)->migration_thread = p;
7606
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7607
		break;
7608

L
Linus Torvalds 已提交
7609
	case CPU_ONLINE:
7610
	case CPU_ONLINE_FROZEN:
7611
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7612
		wake_up_process(cpu_rq(cpu)->migration_thread);
7613 7614 7615 7616 7617

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7618
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7619 7620

			set_rq_online(rq);
7621 7622
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7623
		break;
7624

L
Linus Torvalds 已提交
7625 7626
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7627
	case CPU_UP_CANCELED_FROZEN:
7628 7629
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7630
		/* Unbind it from offline cpu so it can run. Fall thru. */
7631
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7632
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7633
		kthread_stop(cpu_rq(cpu)->migration_thread);
7634
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7635 7636
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7637

L
Linus Torvalds 已提交
7638
	case CPU_DEAD:
7639
	case CPU_DEAD_FROZEN:
7640
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7641 7642 7643
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7644
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7645 7646
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7647
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7648
		update_rq_clock(rq);
7649
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7650
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7651 7652
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7653
		migrate_dead_tasks(cpu);
7654
		spin_unlock_irq(&rq->lock);
7655
		cpuset_unlock();
L
Linus Torvalds 已提交
7656 7657
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7658
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7659 7660 7661 7662 7663
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7664 7665
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7666 7667
			struct migration_req *req;

L
Linus Torvalds 已提交
7668
			req = list_entry(rq->migration_queue.next,
7669
					 struct migration_req, list);
L
Linus Torvalds 已提交
7670
			list_del_init(&req->list);
B
Brian King 已提交
7671
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7672
			complete(&req->done);
B
Brian King 已提交
7673
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7674 7675 7676
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7677

7678 7679
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7680 7681 7682 7683
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7684
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7685
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7686 7687 7688
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7689 7690 7691 7692 7693
#endif
	}
	return NOTIFY_OK;
}

7694 7695 7696 7697
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7698
 */
7699
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7700 7701 7702 7703
	.notifier_call = migration_call,
	.priority = 10
};

7704
static int __init migration_init(void)
L
Linus Torvalds 已提交
7705 7706
{
	void *cpu = (void *)(long)smp_processor_id();
7707
	int err;
7708 7709

	/* Start one for the boot CPU: */
7710 7711
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7712 7713
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7714

7715
	return 0;
L
Linus Torvalds 已提交
7716
}
7717
early_initcall(migration_init);
L
Linus Torvalds 已提交
7718 7719 7720
#endif

#ifdef CONFIG_SMP
7721

7722
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7723

7724
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7725
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7726
{
I
Ingo Molnar 已提交
7727
	struct sched_group *group = sd->groups;
7728
	char str[256];
L
Linus Torvalds 已提交
7729

R
Rusty Russell 已提交
7730
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7731
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7732 7733 7734 7735 7736 7737 7738 7739 7740

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7741 7742
	}

7743
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7744

7745
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7746 7747 7748
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7749
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7750 7751 7752
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7753

I
Ingo Molnar 已提交
7754
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7755
	do {
I
Ingo Molnar 已提交
7756 7757 7758
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7759 7760 7761
			break;
		}

7762
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7763 7764 7765 7766 7767
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7768

7769
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7770 7771 7772 7773
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7774

7775
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7776 7777 7778 7779
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7780

7781
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7782

R
Rusty Russell 已提交
7783
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7784 7785

		printk(KERN_CONT " %s", str);
7786 7787 7788
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7789
		}
L
Linus Torvalds 已提交
7790

I
Ingo Molnar 已提交
7791 7792 7793
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7794

7795
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7796
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7797

7798 7799
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7800 7801 7802 7803
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7804

I
Ingo Molnar 已提交
7805 7806
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7807
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7808
	int level = 0;
L
Linus Torvalds 已提交
7809

I
Ingo Molnar 已提交
7810 7811 7812 7813
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7814

I
Ingo Molnar 已提交
7815 7816
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7817
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7818 7819 7820 7821
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7822
	for (;;) {
7823
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7824
			break;
L
Linus Torvalds 已提交
7825 7826
		level++;
		sd = sd->parent;
7827
		if (!sd)
I
Ingo Molnar 已提交
7828 7829
			break;
	}
7830
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7831
}
7832
#else /* !CONFIG_SCHED_DEBUG */
7833
# define sched_domain_debug(sd, cpu) do { } while (0)
7834
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7835

7836
static int sd_degenerate(struct sched_domain *sd)
7837
{
7838
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7839 7840 7841 7842 7843 7844
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7845 7846 7847
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7861 7862
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7863 7864 7865 7866 7867 7868
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7869
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7881 7882 7883
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7884 7885
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7886 7887 7888 7889 7890 7891 7892
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7893 7894
static void free_rootdomain(struct root_domain *rd)
{
7895 7896
	cpupri_cleanup(&rd->cpupri);

7897 7898 7899 7900 7901 7902
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7903 7904
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7905
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7906 7907 7908 7909 7910
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7911
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7912

7913
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7914
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7915

7916
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7917

I
Ingo Molnar 已提交
7918 7919 7920 7921 7922 7923 7924
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7925 7926 7927 7928 7929
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7930
	cpumask_set_cpu(rq->cpu, rd->span);
7931
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7932
		set_rq_online(rq);
G
Gregory Haskins 已提交
7933 7934

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7935 7936 7937

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7938 7939
}

L
Li Zefan 已提交
7940
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7941
{
7942 7943
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7944 7945
	memset(rd, 0, sizeof(*rd));

7946 7947
	if (bootmem)
		gfp = GFP_NOWAIT;
7948

7949
	if (!alloc_cpumask_var(&rd->span, gfp))
7950
		goto out;
7951
	if (!alloc_cpumask_var(&rd->online, gfp))
7952
		goto free_span;
7953
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7954
		goto free_online;
7955

P
Pekka Enberg 已提交
7956
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7957
		goto free_rto_mask;
7958
	return 0;
7959

7960 7961
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7962 7963 7964 7965
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7966
out:
7967
	return -ENOMEM;
G
Gregory Haskins 已提交
7968 7969 7970 7971
}

static void init_defrootdomain(void)
{
7972 7973
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7974 7975 7976
	atomic_set(&def_root_domain.refcount, 1);
}

7977
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7978 7979 7980 7981 7982 7983 7984
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7985 7986 7987 7988
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7989 7990 7991 7992

	return rd;
}

L
Linus Torvalds 已提交
7993
/*
I
Ingo Molnar 已提交
7994
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7995 7996
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7997 7998
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7999
{
8000
	struct rq *rq = cpu_rq(cpu);
8001 8002 8003
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8004
	for (tmp = sd; tmp; ) {
8005 8006 8007
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8008

8009
		if (sd_parent_degenerate(tmp, parent)) {
8010
			tmp->parent = parent->parent;
8011 8012
			if (parent->parent)
				parent->parent->child = tmp;
8013 8014
		} else
			tmp = tmp->parent;
8015 8016
	}

8017
	if (sd && sd_degenerate(sd)) {
8018
		sd = sd->parent;
8019 8020 8021
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8022 8023 8024

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8025
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8026
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8027 8028 8029
}

/* cpus with isolated domains */
8030
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8031 8032 8033 8034

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8035
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8036 8037 8038
	return 1;
}

I
Ingo Molnar 已提交
8039
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8040 8041

/*
8042 8043
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8044 8045
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8046 8047 8048 8049 8050
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8051
static void
8052 8053 8054
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8055
					struct sched_group **sg,
8056 8057
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8058 8059 8060 8061
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8062
	cpumask_clear(covered);
8063

8064
	for_each_cpu(i, span) {
8065
		struct sched_group *sg;
8066
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8067 8068
		int j;

8069
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8070 8071
			continue;

8072
		cpumask_clear(sched_group_cpus(sg));
8073
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8074

8075
		for_each_cpu(j, span) {
8076
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8077 8078
				continue;

8079
			cpumask_set_cpu(j, covered);
8080
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8091
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8092

8093
#ifdef CONFIG_NUMA
8094

8095 8096 8097 8098 8099
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8100
 * Find the next node to include in a given scheduling domain. Simply
8101 8102 8103 8104
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8105
static int find_next_best_node(int node, nodemask_t *used_nodes)
8106 8107 8108 8109 8110
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8111
	for (i = 0; i < nr_node_ids; i++) {
8112
		/* Start at @node */
8113
		n = (node + i) % nr_node_ids;
8114 8115 8116 8117 8118

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8119
		if (node_isset(n, *used_nodes))
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8131
	node_set(best_node, *used_nodes);
8132 8133 8134 8135 8136 8137
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8138
 * @span: resulting cpumask
8139
 *
I
Ingo Molnar 已提交
8140
 * Given a node, construct a good cpumask for its sched_domain to span. It
8141 8142 8143
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8144
static void sched_domain_node_span(int node, struct cpumask *span)
8145
{
8146
	nodemask_t used_nodes;
8147
	int i;
8148

8149
	cpumask_clear(span);
8150
	nodes_clear(used_nodes);
8151

8152
	cpumask_or(span, span, cpumask_of_node(node));
8153
	node_set(node, used_nodes);
8154 8155

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8156
		int next_node = find_next_best_node(node, &used_nodes);
8157

8158
		cpumask_or(span, span, cpumask_of_node(next_node));
8159 8160
	}
}
8161
#endif /* CONFIG_NUMA */
8162

8163
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8164

8165 8166
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8167 8168 8169
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8214
/*
8215
 * SMT sched-domains:
8216
 */
L
Linus Torvalds 已提交
8217
#ifdef CONFIG_SCHED_SMT
8218 8219
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8220

I
Ingo Molnar 已提交
8221
static int
8222 8223
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8224
{
8225
	if (sg)
8226
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8227 8228
	return cpu;
}
8229
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8230

8231 8232 8233
/*
 * multi-core sched-domains:
 */
8234
#ifdef CONFIG_SCHED_MC
8235 8236
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8237
#endif /* CONFIG_SCHED_MC */
8238 8239

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8240
static int
8241 8242
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8243
{
8244
	int group;
8245

8246
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8247
	group = cpumask_first(mask);
8248
	if (sg)
8249
		*sg = &per_cpu(sched_group_core, group).sg;
8250
	return group;
8251 8252
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8253
static int
8254 8255
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8256
{
8257
	if (sg)
8258
		*sg = &per_cpu(sched_group_core, cpu).sg;
8259 8260 8261 8262
	return cpu;
}
#endif

8263 8264
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8265

I
Ingo Molnar 已提交
8266
static int
8267 8268
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8269
{
8270
	int group;
8271
#ifdef CONFIG_SCHED_MC
8272
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8273
	group = cpumask_first(mask);
8274
#elif defined(CONFIG_SCHED_SMT)
8275
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8276
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8277
#else
8278
	group = cpu;
L
Linus Torvalds 已提交
8279
#endif
8280
	if (sg)
8281
		*sg = &per_cpu(sched_group_phys, group).sg;
8282
	return group;
L
Linus Torvalds 已提交
8283 8284 8285 8286
}

#ifdef CONFIG_NUMA
/*
8287 8288 8289
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8290
 */
8291
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8292
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8293

8294
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8295
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8296

8297 8298 8299
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8300
{
8301 8302
	int group;

8303
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8304
	group = cpumask_first(nodemask);
8305 8306

	if (sg)
8307
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8308
	return group;
L
Linus Torvalds 已提交
8309
}
8310

8311 8312 8313 8314 8315 8316 8317
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8318
	do {
8319
		for_each_cpu(j, sched_group_cpus(sg)) {
8320
			struct sched_domain *sd;
8321

8322
			sd = &per_cpu(phys_domains, j).sd;
8323
			if (j != group_first_cpu(sd->groups)) {
8324 8325 8326 8327 8328 8329
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8330

8331
			sg->cpu_power += sd->groups->cpu_power;
8332 8333 8334
		}
		sg = sg->next;
	} while (sg != group_head);
8335
}
8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8368
	sg->cpu_power = 0;
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8391
		sg->cpu_power = 0;
8392 8393 8394 8395 8396 8397 8398 8399 8400
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8401
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8402

8403
#ifdef CONFIG_NUMA
8404
/* Free memory allocated for various sched_group structures */
8405 8406
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8407
{
8408
	int cpu, i;
8409

8410
	for_each_cpu(cpu, cpu_map) {
8411 8412 8413 8414 8415 8416
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8417
		for (i = 0; i < nr_node_ids; i++) {
8418 8419
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8420
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8421
			if (cpumask_empty(nodemask))
8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8438
#else /* !CONFIG_NUMA */
8439 8440
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8441 8442
{
}
8443
#endif /* CONFIG_NUMA */
8444

8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8459 8460
	long power;
	int weight;
8461 8462 8463

	WARN_ON(!sd || !sd->groups);

8464
	if (cpu != group_first_cpu(sd->groups))
8465 8466 8467 8468
		return;

	child = sd->child;

8469
	sd->groups->cpu_power = 0;
8470

8471 8472 8473 8474 8475
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8476 8477 8478
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8479
		 */
P
Peter Zijlstra 已提交
8480 8481
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8482
			power /= weight;
P
Peter Zijlstra 已提交
8483 8484
			power >>= SCHED_LOAD_SHIFT;
		}
8485
		sd->groups->cpu_power += power;
8486 8487 8488 8489
		return;
	}

	/*
8490
	 * Add cpu_power of each child group to this groups cpu_power.
8491 8492 8493
	 */
	group = child->groups;
	do {
8494
		sd->groups->cpu_power += group->cpu_power;
8495 8496 8497 8498
		group = group->next;
	} while (group != child->groups);
}

8499 8500 8501 8502 8503
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8504 8505 8506 8507 8508 8509
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8510
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8511

8512 8513 8514 8515 8516
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8517
	sd->level = SD_LV_##type;				\
8518
	SD_INIT_NAME(sd, type);					\
8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8533 8534 8535 8536
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8537 8538 8539 8540 8541 8542
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8588
#ifdef CONFIG_NUMA
8589 8590 8591 8592 8593 8594 8595
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8596
#endif
8597 8598 8599 8600
	case sa_none:
		break;
	}
}
8601

8602 8603 8604
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8605
#ifdef CONFIG_NUMA
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8616
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8617
		return sa_notcovered;
8618
	}
8619
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8620
#endif
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8633
		printk(KERN_WARNING "Cannot alloc root domain\n");
8634
		return sa_tmpmask;
G
Gregory Haskins 已提交
8635
	}
8636 8637
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8638

8639 8640 8641 8642
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8643
#ifdef CONFIG_NUMA
8644
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8645

8646 8647 8648 8649 8650
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8651
		set_domain_attribute(sd, attr);
8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8666
#endif
8667 8668
	return sd;
}
L
Linus Torvalds 已提交
8669

8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8685

8686 8687 8688 8689 8690
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8691
#ifdef CONFIG_SCHED_MC
8692 8693 8694 8695 8696 8697 8698
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8699
#endif
8700 8701
	return sd;
}
8702

8703 8704 8705 8706 8707
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8708
#ifdef CONFIG_SCHED_SMT
8709 8710 8711 8712 8713 8714 8715
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8716
#endif
8717 8718
	return sd;
}
L
Linus Torvalds 已提交
8719

8720 8721 8722 8723
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8724
#ifdef CONFIG_SCHED_SMT
8725 8726 8727 8728 8729 8730 8731 8732
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8733
#endif
8734
#ifdef CONFIG_SCHED_MC
8735 8736 8737 8738 8739 8740 8741
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8742
#endif
8743 8744 8745 8746 8747 8748 8749
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8750
#ifdef CONFIG_NUMA
8751 8752 8753 8754 8755
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8756 8757
	default:
		break;
8758
	}
8759
}
8760

8761 8762 8763 8764 8765 8766 8767 8768 8769
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8770
	struct sched_domain *sd;
8771
	int i;
8772
#ifdef CONFIG_NUMA
8773
	d.sd_allnodes = 0;
8774
#endif
8775

8776 8777 8778 8779
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8780

L
Linus Torvalds 已提交
8781
	/*
8782
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8783
	 */
8784
	for_each_cpu(i, cpu_map) {
8785 8786
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8787

8788
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8789
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8790
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8791
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8792
	}
8793

8794
	for_each_cpu(i, cpu_map) {
8795
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8796
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8797
	}
8798

L
Linus Torvalds 已提交
8799
	/* Set up physical groups */
8800 8801
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8802

L
Linus Torvalds 已提交
8803 8804
#ifdef CONFIG_NUMA
	/* Set up node groups */
8805 8806
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8807

8808 8809
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8810
			goto error;
L
Linus Torvalds 已提交
8811 8812 8813
#endif

	/* Calculate CPU power for physical packages and nodes */
8814
#ifdef CONFIG_SCHED_SMT
8815
	for_each_cpu(i, cpu_map) {
8816
		sd = &per_cpu(cpu_domains, i).sd;
8817
		init_sched_groups_power(i, sd);
8818
	}
L
Linus Torvalds 已提交
8819
#endif
8820
#ifdef CONFIG_SCHED_MC
8821
	for_each_cpu(i, cpu_map) {
8822
		sd = &per_cpu(core_domains, i).sd;
8823
		init_sched_groups_power(i, sd);
8824 8825
	}
#endif
8826

8827
	for_each_cpu(i, cpu_map) {
8828
		sd = &per_cpu(phys_domains, i).sd;
8829
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8830 8831
	}

8832
#ifdef CONFIG_NUMA
8833
	for (i = 0; i < nr_node_ids; i++)
8834
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8835

8836
	if (d.sd_allnodes) {
8837
		struct sched_group *sg;
8838

8839
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8840
								d.tmpmask);
8841 8842
		init_numa_sched_groups_power(sg);
	}
8843 8844
#endif

L
Linus Torvalds 已提交
8845
	/* Attach the domains */
8846
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8847
#ifdef CONFIG_SCHED_SMT
8848
		sd = &per_cpu(cpu_domains, i).sd;
8849
#elif defined(CONFIG_SCHED_MC)
8850
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8851
#else
8852
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8853
#endif
8854
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8855
	}
8856

8857 8858 8859
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8860 8861

error:
8862 8863
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8864
}
P
Paul Jackson 已提交
8865

8866
static int build_sched_domains(const struct cpumask *cpu_map)
8867 8868 8869 8870
{
	return __build_sched_domains(cpu_map, NULL);
}

8871
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8872
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8873 8874
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8875 8876 8877

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8878 8879
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8880
 */
8881
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8882

8883 8884 8885 8886 8887 8888
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8889
{
8890
	return 0;
8891 8892
}

8893
/*
I
Ingo Molnar 已提交
8894
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8895 8896
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8897
 */
8898
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8899
{
8900 8901
	int err;

8902
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8903
	ndoms_cur = 1;
8904
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8905
	if (!doms_cur)
8906
		doms_cur = fallback_doms;
8907
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8908
	dattr_cur = NULL;
8909
	err = build_sched_domains(doms_cur);
8910
	register_sched_domain_sysctl();
8911 8912

	return err;
8913 8914
}

8915 8916
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8917
{
8918
	free_sched_groups(cpu_map, tmpmask);
8919
}
L
Linus Torvalds 已提交
8920

8921 8922 8923 8924
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8925
static void detach_destroy_domains(const struct cpumask *cpu_map)
8926
{
8927 8928
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8929 8930
	int i;

8931
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8932
		cpu_attach_domain(NULL, &def_root_domain, i);
8933
	synchronize_sched();
8934
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8935 8936
}

8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8953 8954
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8955
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8956 8957 8958
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8959
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8960 8961 8962
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8963 8964 8965
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8966 8967
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8968 8969 8970 8971
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8972
 *
8973
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8974 8975
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8976
 *
P
Paul Jackson 已提交
8977 8978
 * Call with hotplug lock held
 */
8979 8980
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8981
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8982
{
8983
	int i, j, n;
8984
	int new_topology;
P
Paul Jackson 已提交
8985

8986
	mutex_lock(&sched_domains_mutex);
8987

8988 8989 8990
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8991 8992 8993
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8994
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8995 8996 8997

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8998
		for (j = 0; j < n && !new_topology; j++) {
8999
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9000
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9001 9002 9003 9004 9005 9006 9007 9008
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9009 9010
	if (doms_new == NULL) {
		ndoms_cur = 0;
9011
		doms_new = fallback_doms;
9012
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9013
		WARN_ON_ONCE(dattr_new);
9014 9015
	}

P
Paul Jackson 已提交
9016 9017
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9018
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9019
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9020
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9021 9022 9023
				goto match2;
		}
		/* no match - add a new doms_new */
9024 9025
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9026 9027 9028 9029 9030
match2:
		;
	}

	/* Remember the new sched domains */
9031
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9032
		kfree(doms_cur);
9033
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9034
	doms_cur = doms_new;
9035
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9036
	ndoms_cur = ndoms_new;
9037 9038

	register_sched_domain_sysctl();
9039

9040
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9041 9042
}

9043
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9044
static void arch_reinit_sched_domains(void)
9045
{
9046
	get_online_cpus();
9047 9048 9049 9050

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9051
	rebuild_sched_domains();
9052
	put_online_cpus();
9053 9054 9055 9056
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9057
	unsigned int level = 0;
9058

9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9070 9071 9072
		return -EINVAL;

	if (smt)
9073
		sched_smt_power_savings = level;
9074
	else
9075
		sched_mc_power_savings = level;
9076

9077
	arch_reinit_sched_domains();
9078

9079
	return count;
9080 9081 9082
}

#ifdef CONFIG_SCHED_MC
9083 9084
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9085 9086 9087
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9088
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9089
					    const char *buf, size_t count)
9090 9091 9092
{
	return sched_power_savings_store(buf, count, 0);
}
9093 9094 9095
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9096 9097 9098
#endif

#ifdef CONFIG_SCHED_SMT
9099 9100
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9101 9102 9103
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9104
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9105
					     const char *buf, size_t count)
9106 9107 9108
{
	return sched_power_savings_store(buf, count, 1);
}
9109 9110
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9111 9112 9113
		   sched_smt_power_savings_store);
#endif

9114
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9130
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9131

9132
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9133
/*
9134 9135
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9136 9137 9138
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9139 9140 9141 9142 9143 9144
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9145
		partition_sched_domains(1, NULL, NULL);
9146 9147 9148 9149 9150 9151 9152 9153 9154 9155
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9156
{
P
Peter Zijlstra 已提交
9157 9158
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9159 9160
	switch (action) {
	case CPU_DOWN_PREPARE:
9161
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9162
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9163 9164 9165
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9166
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9167
	case CPU_ONLINE:
9168
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9169
		enable_runtime(cpu_rq(cpu));
9170 9171
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9172 9173 9174 9175 9176 9177 9178
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9179 9180 9181
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9182

9183 9184 9185 9186 9187
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9188
	get_online_cpus();
9189
	mutex_lock(&sched_domains_mutex);
9190 9191 9192 9193
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9194
	mutex_unlock(&sched_domains_mutex);
9195
	put_online_cpus();
9196 9197

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9198 9199
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9200 9201 9202 9203 9204
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9205
	init_hrtick();
9206 9207

	/* Move init over to a non-isolated CPU */
9208
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9209
		BUG();
I
Ingo Molnar 已提交
9210
	sched_init_granularity();
9211
	free_cpumask_var(non_isolated_cpus);
9212 9213

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9214
	init_sched_rt_class();
L
Linus Torvalds 已提交
9215 9216 9217 9218
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9219
	sched_init_granularity();
L
Linus Torvalds 已提交
9220 9221 9222
}
#endif /* CONFIG_SMP */

9223 9224
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9225 9226 9227 9228 9229 9230 9231
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9232
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9233 9234
{
	cfs_rq->tasks_timeline = RB_ROOT;
9235
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9236 9237 9238
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9239
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9240 9241
}

P
Peter Zijlstra 已提交
9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9255
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9256
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9257
#ifdef CONFIG_SMP
9258
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9259 9260
#endif
#endif
P
Peter Zijlstra 已提交
9261 9262 9263
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9264
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9265 9266 9267 9268
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9269 9270
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9271

9272
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9273
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9274 9275
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9276 9277
}

P
Peter Zijlstra 已提交
9278
#ifdef CONFIG_FAIR_GROUP_SCHED
9279 9280 9281
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9282
{
9283
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9284 9285 9286 9287 9288 9289 9290
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9291 9292 9293 9294
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9295 9296 9297 9298 9299
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9300 9301
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9302
	se->load.inv_weight = 0;
9303
	se->parent = parent;
P
Peter Zijlstra 已提交
9304
}
9305
#endif
P
Peter Zijlstra 已提交
9306

9307
#ifdef CONFIG_RT_GROUP_SCHED
9308 9309 9310
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9311
{
9312 9313
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9314 9315 9316 9317
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9318
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9319 9320 9321 9322
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9323 9324 9325
	if (!rt_se)
		return;

9326 9327 9328 9329 9330
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9331
	rt_se->my_q = rt_rq;
9332
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9333 9334 9335 9336
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9337 9338
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9339
	int i, j;
9340 9341 9342 9343 9344 9345 9346
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9347 9348 9349
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9350 9351
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9352
	alloc_size += num_possible_cpus() * cpumask_size();
9353 9354 9355 9356 9357 9358
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9359
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9360 9361 9362 9363 9364 9365 9366

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9367 9368 9369 9370 9371 9372 9373

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9374 9375
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9376 9377 9378 9379 9380
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9381 9382 9383 9384 9385 9386 9387 9388
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9389 9390
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9391 9392 9393 9394 9395 9396
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9397
	}
I
Ingo Molnar 已提交
9398

G
Gregory Haskins 已提交
9399 9400 9401 9402
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9403 9404 9405 9406 9407 9408
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9409 9410 9411
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9412 9413
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9414

9415
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9416
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9417 9418 9419 9420 9421 9422
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9423 9424
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9425

9426
	for_each_possible_cpu(i) {
9427
		struct rq *rq;
L
Linus Torvalds 已提交
9428 9429 9430

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9431
		rq->nr_running = 0;
9432 9433
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9434
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9435
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9436
#ifdef CONFIG_FAIR_GROUP_SCHED
9437
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9438
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9454
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9455 9456 9457 9458
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9459
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9460
#elif defined CONFIG_USER_SCHED
9461 9462
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9463 9464 9465 9466 9467 9468 9469 9470
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9471
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9472 9473
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9474
		init_tg_cfs_entry(&init_task_group,
9475
				&per_cpu(init_tg_cfs_rq, i),
9476 9477
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9478

9479
#endif
D
Dhaval Giani 已提交
9480 9481 9482
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9483
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9484
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9485
#ifdef CONFIG_CGROUP_SCHED
9486
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9487
#elif defined CONFIG_USER_SCHED
9488
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9489
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9490
				&per_cpu(init_rt_rq, i),
9491 9492
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9493
#endif
I
Ingo Molnar 已提交
9494
#endif
L
Linus Torvalds 已提交
9495

I
Ingo Molnar 已提交
9496 9497
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9498
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9499
		rq->sd = NULL;
G
Gregory Haskins 已提交
9500
		rq->rd = NULL;
9501
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9502
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9503
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9504
		rq->push_cpu = 0;
9505
		rq->cpu = i;
9506
		rq->online = 0;
L
Linus Torvalds 已提交
9507 9508
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9509
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9510
#endif
P
Peter Zijlstra 已提交
9511
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9512 9513 9514
		atomic_set(&rq->nr_iowait, 0);
	}

9515
	set_load_weight(&init_task);
9516

9517 9518 9519 9520
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9521
#ifdef CONFIG_SMP
9522
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9523 9524
#endif

9525 9526 9527 9528
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9542 9543 9544

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9545 9546 9547 9548
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9549

9550
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9551
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9552
#ifdef CONFIG_SMP
9553
#ifdef CONFIG_NO_HZ
9554 9555
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9556
#endif
9557
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9558
#endif /* SMP */
9559

9560 9561
	perf_counter_init();

9562
	scheduler_running = 1;
L
Linus Torvalds 已提交
9563 9564 9565
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9566 9567 9568 9569 9570 9571 9572 9573
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9574
{
9575
#ifdef in_atomic
L
Linus Torvalds 已提交
9576 9577
	static unsigned long prev_jiffy;	/* ratelimiting */

9578 9579
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9597 9598 9599 9600 9601 9602
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9603 9604 9605
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9606

9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9618 9619
void normalize_rt_tasks(void)
{
9620
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9621
	unsigned long flags;
9622
	struct rq *rq;
L
Linus Torvalds 已提交
9623

9624
	read_lock_irqsave(&tasklist_lock, flags);
9625
	do_each_thread(g, p) {
9626 9627 9628 9629 9630 9631
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9632 9633
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9634 9635 9636
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9637
#endif
I
Ingo Molnar 已提交
9638 9639 9640 9641 9642 9643 9644 9645

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9646
			continue;
I
Ingo Molnar 已提交
9647
		}
L
Linus Torvalds 已提交
9648

9649
		spin_lock(&p->pi_lock);
9650
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9651

9652
		normalize_task(rq, p);
9653

9654
		__task_rq_unlock(rq);
9655
		spin_unlock(&p->pi_lock);
9656 9657
	} while_each_thread(g, p);

9658
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9659 9660 9661
}

#endif /* CONFIG_MAGIC_SYSRQ */
9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9680
struct task_struct *curr_task(int cpu)
9681 9682 9683 9684 9685 9686 9687 9688 9689 9690
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9691 9692
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9693 9694 9695 9696 9697 9698 9699
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9700
void set_curr_task(int cpu, struct task_struct *p)
9701 9702 9703 9704 9705
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9706

9707 9708
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9723 9724
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9725 9726
{
	struct cfs_rq *cfs_rq;
9727
	struct sched_entity *se;
9728
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9729 9730
	int i;

9731
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9732 9733
	if (!tg->cfs_rq)
		goto err;
9734
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9735 9736
	if (!tg->se)
		goto err;
9737 9738

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9739 9740

	for_each_possible_cpu(i) {
9741
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9742

9743 9744
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9745 9746 9747
		if (!cfs_rq)
			goto err;

9748 9749
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9750 9751 9752
		if (!se)
			goto err;

9753
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9772
#else /* !CONFG_FAIR_GROUP_SCHED */
9773 9774 9775 9776
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9777 9778
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9790
#endif /* CONFIG_FAIR_GROUP_SCHED */
9791 9792

#ifdef CONFIG_RT_GROUP_SCHED
9793 9794 9795 9796
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9797 9798
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9810 9811
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9812 9813
{
	struct rt_rq *rt_rq;
9814
	struct sched_rt_entity *rt_se;
9815 9816 9817
	struct rq *rq;
	int i;

9818
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9819 9820
	if (!tg->rt_rq)
		goto err;
9821
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9822 9823 9824
	if (!tg->rt_se)
		goto err;

9825 9826
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9827 9828 9829 9830

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9831 9832
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9833 9834
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9835

9836 9837
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9838 9839
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9840

9841
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9842 9843
	}

9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9860
#else /* !CONFIG_RT_GROUP_SCHED */
9861 9862 9863 9864
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9865 9866
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9878
#endif /* CONFIG_RT_GROUP_SCHED */
9879

9880
#ifdef CONFIG_GROUP_SCHED
9881 9882 9883 9884 9885 9886 9887 9888
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9889
struct task_group *sched_create_group(struct task_group *parent)
9890 9891 9892 9893 9894 9895 9896 9897 9898
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9899
	if (!alloc_fair_sched_group(tg, parent))
9900 9901
		goto err;

9902
	if (!alloc_rt_sched_group(tg, parent))
9903 9904
		goto err;

9905
	spin_lock_irqsave(&task_group_lock, flags);
9906
	for_each_possible_cpu(i) {
9907 9908
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9909
	}
P
Peter Zijlstra 已提交
9910
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9911 9912 9913 9914 9915

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9916
	list_add_rcu(&tg->siblings, &parent->children);
9917
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9918

9919
	return tg;
S
Srivatsa Vaddagiri 已提交
9920 9921

err:
P
Peter Zijlstra 已提交
9922
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9923 9924 9925
	return ERR_PTR(-ENOMEM);
}

9926
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9927
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9928 9929
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9930
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9931 9932
}

9933
/* Destroy runqueue etc associated with a task group */
9934
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9935
{
9936
	unsigned long flags;
9937
	int i;
S
Srivatsa Vaddagiri 已提交
9938

9939
	spin_lock_irqsave(&task_group_lock, flags);
9940
	for_each_possible_cpu(i) {
9941 9942
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9943
	}
P
Peter Zijlstra 已提交
9944
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9945
	list_del_rcu(&tg->siblings);
9946
	spin_unlock_irqrestore(&task_group_lock, flags);
9947 9948

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9949
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9950 9951
}

9952
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9953 9954 9955
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9956 9957
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9958 9959 9960 9961 9962 9963 9964 9965 9966
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9967
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9968 9969
	on_rq = tsk->se.on_rq;

9970
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9971
		dequeue_task(rq, tsk, 0);
9972 9973
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9974

P
Peter Zijlstra 已提交
9975
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9976

P
Peter Zijlstra 已提交
9977 9978 9979 9980 9981
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9982 9983 9984
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9985
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9986 9987 9988

	task_rq_unlock(rq, &flags);
}
9989
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9990

9991
#ifdef CONFIG_FAIR_GROUP_SCHED
9992
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9993 9994 9995 9996 9997
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9998
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9999 10000 10001
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10002
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10003

10004
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10005
		enqueue_entity(cfs_rq, se, 0);
10006
}
10007

10008 10009 10010 10011 10012 10013 10014 10015 10016
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10017 10018
}

10019 10020
static DEFINE_MUTEX(shares_mutex);

10021
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10022 10023
{
	int i;
10024
	unsigned long flags;
10025

10026 10027 10028 10029 10030 10031
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10032 10033
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10034 10035
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10036

10037
	mutex_lock(&shares_mutex);
10038
	if (tg->shares == shares)
10039
		goto done;
S
Srivatsa Vaddagiri 已提交
10040

10041
	spin_lock_irqsave(&task_group_lock, flags);
10042 10043
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10044
	list_del_rcu(&tg->siblings);
10045
	spin_unlock_irqrestore(&task_group_lock, flags);
10046 10047 10048 10049 10050 10051 10052 10053

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10054
	tg->shares = shares;
10055 10056 10057 10058 10059
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10060
		set_se_shares(tg->se[i], shares);
10061
	}
S
Srivatsa Vaddagiri 已提交
10062

10063 10064 10065 10066
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10067
	spin_lock_irqsave(&task_group_lock, flags);
10068 10069
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10070
	list_add_rcu(&tg->siblings, &tg->parent->children);
10071
	spin_unlock_irqrestore(&task_group_lock, flags);
10072
done:
10073
	mutex_unlock(&shares_mutex);
10074
	return 0;
S
Srivatsa Vaddagiri 已提交
10075 10076
}

10077 10078 10079 10080
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10081
#endif
10082

10083
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10084
/*
P
Peter Zijlstra 已提交
10085
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10086
 */
P
Peter Zijlstra 已提交
10087 10088 10089 10090 10091
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10092
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10093

P
Peter Zijlstra 已提交
10094
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10095 10096
}

P
Peter Zijlstra 已提交
10097 10098
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10099
{
P
Peter Zijlstra 已提交
10100
	struct task_struct *g, *p;
10101

P
Peter Zijlstra 已提交
10102 10103 10104 10105
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10106

P
Peter Zijlstra 已提交
10107 10108
	return 0;
}
10109

P
Peter Zijlstra 已提交
10110 10111 10112 10113 10114
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10115

P
Peter Zijlstra 已提交
10116 10117 10118 10119 10120 10121
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10122

P
Peter Zijlstra 已提交
10123 10124
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10125

P
Peter Zijlstra 已提交
10126 10127 10128
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10129 10130
	}

10131 10132 10133 10134 10135 10136 10137
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10138 10139 10140 10141 10142
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10143

10144 10145 10146
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10147 10148
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10149

P
Peter Zijlstra 已提交
10150
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10151

10152 10153 10154 10155 10156
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10157

10158 10159 10160
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10161 10162 10163
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10164

P
Peter Zijlstra 已提交
10165 10166 10167 10168
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10169

P
Peter Zijlstra 已提交
10170
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10171
	}
P
Peter Zijlstra 已提交
10172

P
Peter Zijlstra 已提交
10173 10174 10175 10176
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10177 10178
}

P
Peter Zijlstra 已提交
10179
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10180
{
P
Peter Zijlstra 已提交
10181 10182 10183 10184 10185 10186 10187
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10188 10189
}

10190 10191
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10192
{
P
Peter Zijlstra 已提交
10193
	int i, err = 0;
P
Peter Zijlstra 已提交
10194 10195

	mutex_lock(&rt_constraints_mutex);
10196
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10197 10198
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10199
		goto unlock;
P
Peter Zijlstra 已提交
10200 10201

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10202 10203
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10204 10205 10206 10207 10208 10209 10210 10211 10212

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10213
 unlock:
10214
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10215 10216 10217
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10218 10219
}

10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10232 10233 10234 10235
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10236
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10237 10238
		return -1;

10239
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10240 10241 10242
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10243 10244 10245 10246 10247 10248 10249 10250

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10251 10252 10253
	if (rt_period == 0)
		return -EINVAL;

10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10268
	u64 runtime, period;
10269 10270
	int ret = 0;

10271 10272 10273
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10274 10275 10276 10277 10278 10279 10280 10281
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10282

10283
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10284
	read_lock(&tasklist_lock);
10285
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10286
	read_unlock(&tasklist_lock);
10287 10288 10289 10290
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10291 10292 10293 10294 10295 10296 10297 10298 10299 10300

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10301
#else /* !CONFIG_RT_GROUP_SCHED */
10302 10303
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10304 10305 10306
	unsigned long flags;
	int i;

10307 10308 10309
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10310 10311 10312 10313 10314 10315 10316
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10317 10318 10319 10320 10321 10322 10323 10324 10325 10326
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10327 10328
	return 0;
}
10329
#endif /* CONFIG_RT_GROUP_SCHED */
10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10360

10361
#ifdef CONFIG_CGROUP_SCHED
10362 10363

/* return corresponding task_group object of a cgroup */
10364
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10365
{
10366 10367
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10368 10369 10370
}

static struct cgroup_subsys_state *
10371
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10372
{
10373
	struct task_group *tg, *parent;
10374

10375
	if (!cgrp->parent) {
10376 10377 10378 10379
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10380 10381
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10382 10383 10384 10385 10386 10387
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10388 10389
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10390
{
10391
	struct task_group *tg = cgroup_tg(cgrp);
10392 10393 10394 10395

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10396 10397 10398
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10399
{
10400
#ifdef CONFIG_RT_GROUP_SCHED
10401
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10402 10403
		return -EINVAL;
#else
10404 10405 10406
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10407
#endif
10408 10409 10410 10411 10412

	return 0;
}

static void
10413
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10414 10415 10416 10417 10418
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10419
#ifdef CONFIG_FAIR_GROUP_SCHED
10420
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10421
				u64 shareval)
10422
{
10423
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10424 10425
}

10426
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10427
{
10428
	struct task_group *tg = cgroup_tg(cgrp);
10429 10430 10431

	return (u64) tg->shares;
}
10432
#endif /* CONFIG_FAIR_GROUP_SCHED */
10433

10434
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10435
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10436
				s64 val)
P
Peter Zijlstra 已提交
10437
{
10438
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10439 10440
}

10441
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10442
{
10443
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10444
}
10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10456
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10457

10458
static struct cftype cpu_files[] = {
10459
#ifdef CONFIG_FAIR_GROUP_SCHED
10460 10461
	{
		.name = "shares",
10462 10463
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10464
	},
10465 10466
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10467
	{
P
Peter Zijlstra 已提交
10468
		.name = "rt_runtime_us",
10469 10470
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10471
	},
10472 10473
	{
		.name = "rt_period_us",
10474 10475
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10476
	},
10477
#endif
10478 10479 10480 10481
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10482
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10483 10484 10485
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10486 10487 10488 10489 10490 10491 10492
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10493 10494 10495
	.early_init	= 1,
};

10496
#endif	/* CONFIG_CGROUP_SCHED */
10497 10498 10499 10500 10501 10502 10503 10504 10505 10506

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10507
/* track cpu usage of a group of tasks and its child groups */
10508 10509 10510 10511
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10512
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10513
	struct cpuacct *parent;
10514 10515 10516 10517 10518
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10519
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10520
{
10521
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10534
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10535 10536
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10537
	int i;
10538 10539

	if (!ca)
10540
		goto out;
10541 10542

	ca->cpuusage = alloc_percpu(u64);
10543 10544 10545 10546 10547 10548
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10549

10550 10551 10552
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10553
	return &ca->css;
10554 10555 10556 10557 10558 10559 10560 10561 10562

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10563 10564 10565
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10566
static void
10567
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10568
{
10569
	struct cpuacct *ca = cgroup_ca(cgrp);
10570
	int i;
10571

10572 10573
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10574 10575 10576 10577
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10578 10579
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10580
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10599
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10613
/* return total cpu usage (in nanoseconds) of a group */
10614
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10615
{
10616
	struct cpuacct *ca = cgroup_ca(cgrp);
10617 10618 10619
	u64 totalcpuusage = 0;
	int i;

10620 10621
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10622 10623 10624 10625

	return totalcpuusage;
}

10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10638 10639
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10640 10641 10642 10643 10644

out:
	return err;
}

10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10679 10680 10681
static struct cftype files[] = {
	{
		.name = "usage",
10682 10683
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10684
	},
10685 10686 10687 10688
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10689 10690 10691 10692
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10693 10694
};

10695
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10696
{
10697
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10698 10699 10700 10701 10702 10703 10704 10705 10706 10707
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10708
	int cpu;
10709

L
Li Zefan 已提交
10710
	if (unlikely(!cpuacct_subsys.active))
10711 10712
		return;

10713
	cpu = task_cpu(tsk);
10714 10715 10716

	rcu_read_lock();

10717 10718
	ca = task_ca(tsk);

10719
	for (; ca; ca = ca->parent) {
10720
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10721 10722
		*cpuusage += cputime;
	}
10723 10724

	rcu_read_unlock();
10725 10726
}

10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10748 10749 10750 10751 10752 10753 10754 10755
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */