sched.c 220.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

207 208
static inline int rt_bandwidth_enabled(void);

209 210 211 212
static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

213
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

240 241 242 243 244 245
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

246
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
247

248 249
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
250 251
struct cfs_rq;

P
Peter Zijlstra 已提交
252 253
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
254
/* task group related information */
255
struct task_group {
256
#ifdef CONFIG_CGROUP_SCHED
257 258
	struct cgroup_subsys_state css;
#endif
259 260

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
261 262 263 264 265
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
266 267 268 269 270 271
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

272
	struct rt_bandwidth rt_bandwidth;
273
#endif
274

275
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
276
	struct list_head list;
P
Peter Zijlstra 已提交
277 278 279 280

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
281 282
};

D
Dhaval Giani 已提交
283
#ifdef CONFIG_USER_SCHED
284 285 286 287 288 289 290 291

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295 296
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
315
#else /* !CONFIG_USER_SCHED */
316
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
317
#endif /* CONFIG_USER_SCHED */
318

319
/*
320 321 322 323
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
324 325 326
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
327
#define MIN_SHARES	2
328
#define MAX_SHARES	(1UL << 18)
329

330 331 332
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
333
/* Default task group.
I
Ingo Molnar 已提交
334
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
335
 */
336
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
337 338

/* return group to which a task belongs */
339
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
340
{
341
	struct task_group *tg;
342

343
#ifdef CONFIG_USER_SCHED
344
	tg = p->user->tg;
345
#elif defined(CONFIG_CGROUP_SCHED)
346 347
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
348
#else
I
Ingo Molnar 已提交
349
	tg = &init_task_group;
350
#endif
351
	return tg;
S
Srivatsa Vaddagiri 已提交
352 353 354
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
355
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
356
{
357
#ifdef CONFIG_FAIR_GROUP_SCHED
358 359
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
360
#endif
P
Peter Zijlstra 已提交
361

362
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
363 364
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
365
#endif
S
Srivatsa Vaddagiri 已提交
366 367 368 369
}

#else

P
Peter Zijlstra 已提交
370
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
371 372 373 374
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
375

376
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
377

I
Ingo Molnar 已提交
378 379 380 381 382 383
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
384
	u64 min_vruntime;
385
	u64 pair_start;
I
Ingo Molnar 已提交
386 387 388

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
389 390 391 392 393 394

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
395 396
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
397
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
398 399 400

	unsigned long nr_spread_over;

401
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
402 403
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
404 405
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
406 407 408 409 410 411
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
412 413
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
414 415 416

#ifdef CONFIG_SMP
	/*
417
	 * the part of load.weight contributed by tasks
418
	 */
419
	unsigned long task_weight;
420

421 422 423 424 425 426 427
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
428

429 430 431 432
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
433 434 435 436 437

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
438
#endif
I
Ingo Molnar 已提交
439 440
#endif
};
L
Linus Torvalds 已提交
441

I
Ingo Molnar 已提交
442 443 444
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
445
	unsigned long rt_nr_running;
446
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
447 448
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
449
#ifdef CONFIG_SMP
450
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
451
	int overloaded;
P
Peter Zijlstra 已提交
452
#endif
P
Peter Zijlstra 已提交
453
	int rt_throttled;
P
Peter Zijlstra 已提交
454
	u64 rt_time;
P
Peter Zijlstra 已提交
455
	u64 rt_runtime;
I
Ingo Molnar 已提交
456
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
457
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
458

459
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
460 461
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
462 463 464 465 466
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
467 468
};

G
Gregory Haskins 已提交
469 470 471 472
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
473 474
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
475 476 477 478 479 480 481 482
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
483

I
Ingo Molnar 已提交
484
	/*
485 486 487 488
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
489
	atomic_t rto_count;
490 491 492
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
493 494
};

495 496 497 498
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
499 500 501 502
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
503 504 505 506 507 508 509
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
510
struct rq {
511 512
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
513 514 515 516 517 518

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
519 520
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
521
	unsigned char idle_at_tick;
522
#ifdef CONFIG_NO_HZ
523
	unsigned long last_tick_seen;
524 525
	unsigned char in_nohz_recently;
#endif
526 527
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
528 529 530 531
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
532 533
	struct rt_rq rt;

I
Ingo Molnar 已提交
534
#ifdef CONFIG_FAIR_GROUP_SCHED
535 536
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
537 538
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
539
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
540 541 542 543 544 545 546 547 548 549
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

550
	struct task_struct *curr, *idle;
551
	unsigned long next_balance;
L
Linus Torvalds 已提交
552
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
553

554
	u64 clock;
I
Ingo Molnar 已提交
555

L
Linus Torvalds 已提交
556 557 558
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
559
	struct root_domain *rd;
L
Linus Torvalds 已提交
560 561 562 563 564
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
565 566
	/* cpu of this runqueue: */
	int cpu;
567
	int online;
L
Linus Torvalds 已提交
568

569
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
570

571
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
572 573 574
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
575
#ifdef CONFIG_SCHED_HRTICK
576 577 578 579
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
580 581 582
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
583 584 585 586 587
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
588 589 590 591
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
592 593

	/* schedule() stats */
594 595 596
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
597 598

	/* try_to_wake_up() stats */
599 600
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
601 602

	/* BKL stats */
603
	unsigned int bkl_count;
L
Linus Torvalds 已提交
604 605 606
#endif
};

607
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
608

I
Ingo Molnar 已提交
609 610 611 612 613
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

614 615 616 617 618 619 620 621 622
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
623 624
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
625
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
626 627 628 629
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
630 631
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
632 633 634 635 636 637

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

638 639 640 641 642
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
643 644 645 646 647 648 649 650 651
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
670 671 672
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
673 674 675 676

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
677
enum {
P
Peter Zijlstra 已提交
678
#include "sched_features.h"
I
Ingo Molnar 已提交
679 680
};

P
Peter Zijlstra 已提交
681 682 683 684 685
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
686
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
687 688 689 690 691 692 693 694 695
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

696
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
697 698 699 700 701 702
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

703
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
731
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
761
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
804

805 806 807 808 809 810
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
811 812
/*
 * ratelimit for updating the group shares.
813
 * default: 0.25ms
P
Peter Zijlstra 已提交
814
 */
815
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
816

P
Peter Zijlstra 已提交
817
/*
P
Peter Zijlstra 已提交
818
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
819 820
 * default: 1s
 */
P
Peter Zijlstra 已提交
821
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
822

823 824
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
825 826 827 828 829
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
830

831 832 833 834 835 836 837
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
838
	if (sysctl_sched_rt_runtime < 0)
839 840 841 842
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
843

844 845 846 847 848
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
}

L
Linus Torvalds 已提交
849
#ifndef prepare_arch_switch
850 851 852 853 854 855
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

856 857 858 859 860
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

861
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
862
static inline int task_running(struct rq *rq, struct task_struct *p)
863
{
864
	return task_current(rq, p);
865 866
}

867
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
868 869 870
{
}

871
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
872
{
873 874 875 876
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
877 878 879 880 881 882 883
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

884 885 886 887
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
888
static inline int task_running(struct rq *rq, struct task_struct *p)
889 890 891 892
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
893
	return task_current(rq, p);
894 895 896
#endif
}

897
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

914
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915 916 917 918 919 920 921 922 923 924 925 926
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
927
#endif
928 929
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
930

931 932 933 934
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
935
static inline struct rq *__task_rq_lock(struct task_struct *p)
936 937
	__acquires(rq->lock)
{
938 939 940 941 942
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
943 944 945 946
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
947 948
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
949
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
950 951
 * explicitly disabling preemption.
 */
952
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
953 954
	__acquires(rq->lock)
{
955
	struct rq *rq;
L
Linus Torvalds 已提交
956

957 958 959 960 961 962
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
963 964 965 966
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
967
static void __task_rq_unlock(struct rq *rq)
968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

973
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
974 975 976 977 978 979
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
980
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
981
 */
A
Alexey Dobriyan 已提交
982
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
983 984
	__acquires(rq->lock)
{
985
	struct rq *rq;
L
Linus Torvalds 已提交
986 987 988 989 990 991 992 993

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1015
	if (!cpu_active(cpu_of(rq)))
1016
		return 0;
P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1037
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1038 1039 1040 1041 1042 1043
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1044
#ifdef CONFIG_SMP
1045 1046 1047 1048
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1049
{
1050
	struct rq *rq = arg;
1051

1052 1053 1054 1055
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1056 1057
}

1058 1059 1060 1061 1062 1063
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1064
{
1065 1066
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1067

1068 1069 1070 1071 1072 1073 1074 1075
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1090
		hrtick_clear(cpu_rq(cpu));
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1111

1112
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1113 1114
{
}
1115
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1116

1117
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1118
{
1119 1120
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1121

1122 1123 1124 1125
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1126

1127 1128 1129
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1140 1141 1142
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1143 1144
#endif

I
Ingo Molnar 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1158
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1159 1160 1161 1162 1163
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1164
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1165 1166
		return;

1167
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1230
#endif /* CONFIG_NO_HZ */
1231

1232
#else /* !CONFIG_SMP */
1233
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1234 1235
{
	assert_spin_locked(&task_rq(p)->lock);
1236
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1237
}
1238
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1239

1240 1241 1242 1243 1244 1245 1246 1247
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1248 1249 1250
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1251
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1252

1253 1254 1255
/*
 * delta *= weight / lw
 */
1256
static unsigned long
1257 1258 1259 1260 1261
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1262 1263 1264 1265 1266 1267 1268
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1269 1270 1271 1272 1273

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1274
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1275
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1276 1277
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1278
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1279

1280
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1281 1282
}

1283
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1284 1285
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1286
	lw->inv_weight = 0;
1287 1288
}

1289
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1290 1291
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1292
	lw->inv_weight = 0;
1293 1294
}

1295 1296 1297 1298
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1299
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1300 1301 1302 1303
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1315 1316 1317
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1318 1319
 */
static const int prio_to_weight[40] = {
1320 1321 1322 1323 1324 1325 1326 1327
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1328 1329
};

1330 1331 1332 1333 1334 1335 1336
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1337
static const u32 prio_to_wmult[40] = {
1338 1339 1340 1341 1342 1343 1344 1345
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1346
};
1347

I
Ingo Molnar 已提交
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1373

1374 1375 1376 1377 1378 1379
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

P
Peter Zijlstra 已提交
1390
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(SCHED_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1391
typedef int (*tg_visitor)(struct task_group *, void *);
1392 1393 1394 1395 1396

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1397
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1398 1399
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1400
	int ret;
1401 1402 1403 1404

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1405 1406 1407
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1408 1409 1410 1411 1412 1413 1414
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1415 1416 1417
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1418 1419 1420 1421 1422

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1423
out_unlock:
1424
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1425 1426 1427 1428 1429 1430 1431

	return ret;
}

static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1432
}
P
Peter Zijlstra 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1451 1452 1453 1454 1455 1456 1457

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1458
__update_group_shares_cpu(struct task_group *tg, int cpu,
1459
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1460
{
1461 1462 1463 1464
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1465
	if (!tg->se[cpu])
1466 1467
		return;

1468
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1480 1481 1482
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1483 1484 1485 1486 1487 1488
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1489
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1490 1491 1492 1493

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1494
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1495
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1496 1497 1498 1499 1500 1501

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1502
	__set_se_shares(tg->se[cpu], shares);
1503
}
1504 1505

/*
1506 1507 1508
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1509
 */
P
Peter Zijlstra 已提交
1510
static int tg_shares_up(struct task_group *tg, void *data)
1511
{
1512 1513
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1514
	struct sched_domain *sd = data;
1515
	int i;
1516

1517 1518 1519
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1520 1521
	}

1522 1523 1524 1525 1526
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1527

P
Peter Zijlstra 已提交
1528 1529 1530
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1531 1532 1533 1534 1535
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1536
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1537 1538
		spin_unlock_irqrestore(&rq->lock, flags);
	}
P
Peter Zijlstra 已提交
1539 1540

	return 0;
1541 1542 1543
}

/*
1544 1545 1546
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1547
 */
P
Peter Zijlstra 已提交
1548
static int tg_load_down(struct task_group *tg, void *data)
1549
{
1550
	unsigned long load;
P
Peter Zijlstra 已提交
1551
	long cpu = (long)data;
1552

1553 1554 1555 1556 1557 1558 1559
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1560

1561
	tg->cfs_rq[cpu]->h_load = load;
1562

P
Peter Zijlstra 已提交
1563
	return 0;
1564 1565
}

1566
static void update_shares(struct sched_domain *sd)
1567
{
P
Peter Zijlstra 已提交
1568 1569 1570 1571 1572
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1573
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1574
	}
1575 1576
}

1577 1578 1579 1580 1581 1582 1583
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1584
static void update_h_load(long cpu)
1585
{
P
Peter Zijlstra 已提交
1586
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1587 1588 1589 1590
}

#else

1591
static inline void update_shares(struct sched_domain *sd)
1592 1593 1594
{
}

1595 1596 1597 1598
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1599 1600 1601 1602
#endif

#endif

V
Vegard Nossum 已提交
1603
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1604 1605
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1606
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1607 1608 1609
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1610
#endif
1611

I
Ingo Molnar 已提交
1612 1613
#include "sched_stats.h"
#include "sched_idletask.c"
1614 1615
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1616 1617 1618 1619 1620
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1621 1622
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1623

1624
static void inc_nr_running(struct rq *rq)
1625 1626 1627 1628
{
	rq->nr_running++;
}

1629
static void dec_nr_running(struct rq *rq)
1630 1631 1632 1633
{
	rq->nr_running--;
}

1634 1635 1636
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1637 1638 1639 1640
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1641

I
Ingo Molnar 已提交
1642 1643 1644 1645 1646 1647 1648 1649
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1650

I
Ingo Molnar 已提交
1651 1652
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1653 1654
}

1655 1656 1657 1658 1659 1660
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1661
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1662
{
I
Ingo Molnar 已提交
1663
	sched_info_queued(p);
1664
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1665
	p->se.on_rq = 1;
1666 1667
}

1668
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1669
{
1670 1671 1672 1673 1674 1675
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1676
	sched_info_dequeued(p);
1677
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1678
	p->se.on_rq = 0;
1679 1680
}

1681
/*
I
Ingo Molnar 已提交
1682
 * __normal_prio - return the priority that is based on the static prio
1683 1684 1685
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1686
	return p->static_prio;
1687 1688
}

1689 1690 1691 1692 1693 1694 1695
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1696
static inline int normal_prio(struct task_struct *p)
1697 1698 1699
{
	int prio;

1700
	if (task_has_rt_policy(p))
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1714
static int effective_prio(struct task_struct *p)
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1727
/*
I
Ingo Molnar 已提交
1728
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1729
 */
I
Ingo Molnar 已提交
1730
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1731
{
1732
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1733
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1734

1735
	enqueue_task(rq, p, wakeup);
1736
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1742
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1743
{
1744
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1745 1746
		rq->nr_uninterruptible++;

1747
	dequeue_task(rq, p, sleep);
1748
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1749 1750 1751 1752 1753 1754
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1755
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1756 1757 1758 1759
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1760 1761
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1762
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1763
#ifdef CONFIG_SMP
1764 1765 1766 1767 1768 1769
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1770 1771
	task_thread_info(p)->cpu = cpu;
#endif
1772 1773
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1786
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1787

1788 1789 1790 1791 1792 1793
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1794 1795 1796
/*
 * Is this task likely cache-hot:
 */
1797
static int
1798 1799 1800 1801
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1802 1803 1804
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1805
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1806 1807
		return 1;

1808 1809 1810
	if (p->sched_class != &fair_sched_class)
		return 0;

1811 1812 1813 1814 1815
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1816 1817 1818 1819 1820 1821
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1822
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1823
{
I
Ingo Molnar 已提交
1824 1825
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1826 1827
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1828
	u64 clock_offset;
I
Ingo Molnar 已提交
1829 1830

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1831 1832 1833 1834

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1835 1836 1837 1838
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1839 1840 1841 1842 1843
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1844
#endif
1845 1846
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1847 1848

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1849 1850
}

1851
struct migration_req {
L
Linus Torvalds 已提交
1852 1853
	struct list_head list;

1854
	struct task_struct *task;
L
Linus Torvalds 已提交
1855 1856 1857
	int dest_cpu;

	struct completion done;
1858
};
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1864
static int
1865
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1866
{
1867
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1873
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878 1879 1880 1881
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1882

L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1889 1890 1891 1892 1893 1894 1895
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1896 1897 1898 1899 1900 1901
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1902
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1903 1904
{
	unsigned long flags;
I
Ingo Molnar 已提交
1905
	int running, on_rq;
R
Roland McGrath 已提交
1906
	unsigned long ncsw;
1907
	struct rq *rq;
L
Linus Torvalds 已提交
1908

1909 1910 1911 1912 1913 1914 1915 1916
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1917

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1929 1930 1931
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1932
			cpu_relax();
R
Roland McGrath 已提交
1933
		}
1934

1935 1936 1937 1938 1939 1940 1941 1942
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1943 1944 1945 1946 1947 1948
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1949
		task_rq_unlock(rq, &flags);
1950

R
Roland McGrath 已提交
1951 1952 1953 1954 1955 1956
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1981

1982 1983 1984 1985 1986 1987 1988
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1989 1990

	return ncsw;
L
Linus Torvalds 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2006
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2018 2019
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2020 2021 2022 2023
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2024
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2025
{
2026
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2027
	unsigned long total = weighted_cpuload(cpu);
2028

2029
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2030
		return total;
2031

I
Ingo Molnar 已提交
2032
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2033 2034 2035
}

/*
2036 2037
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2038
 */
A
Alexey Dobriyan 已提交
2039
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2040
{
2041
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2042
	unsigned long total = weighted_cpuload(cpu);
2043

2044
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2045
		return total;
2046

I
Ingo Molnar 已提交
2047
	return max(rq->cpu_load[type-1], total);
2048 2049
}

N
Nick Piggin 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2067 2068
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2069
			continue;
2070

N
Nick Piggin 已提交
2071 2072 2073 2074 2075
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2076
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2087 2088
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2089 2090 2091 2092 2093 2094 2095 2096

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2097
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2098 2099 2100 2101 2102 2103 2104

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2105
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2106
 */
I
Ingo Molnar 已提交
2107
static int
2108 2109
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2110 2111 2112 2113 2114
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2115
	/* Traverse only the allowed CPUs */
2116
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2117

2118
	for_each_cpu_mask_nr(i, *tmp) {
2119
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2145

2146
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2147 2148 2149
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2150 2151
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2152 2153
		if (tmp->flags & flag)
			sd = tmp;
2154
	}
N
Nick Piggin 已提交
2155

2156 2157 2158
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2159
	while (sd) {
2160
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2161
		struct sched_group *group;
2162 2163 2164 2165 2166 2167
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2168 2169 2170

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2171 2172 2173 2174
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2175

2176
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2177 2178 2179 2180 2181
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2182

2183
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2215
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2216
{
2217
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2218 2219
	unsigned long flags;
	long old_state;
2220
	struct rq *rq;
L
Linus Torvalds 已提交
2221

2222 2223 2224
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2241
	smp_wmb();
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2247
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2248 2249 2250
		goto out_running;

	cpu = task_cpu(p);
2251
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2258 2259 2260
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2261 2262 2263 2264 2265 2266
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2267
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2287
#endif /* CONFIG_SCHEDSTATS */
2288

L
Linus Torvalds 已提交
2289 2290
out_activate:
#endif /* CONFIG_SMP */
2291 2292 2293 2294 2295 2296 2297 2298 2299
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2300
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2301
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2302 2303 2304
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2305 2306 2307
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2308 2309
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2310
	p->state = TASK_RUNNING;
2311 2312 2313 2314
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2315
out:
2316 2317
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2318 2319 2320 2321 2322
	task_rq_unlock(rq, &flags);

	return success;
}

2323
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2324
{
2325
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2326 2327 2328
}
EXPORT_SYMBOL(wake_up_process);

2329
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2330 2331 2332 2333 2334 2335 2336
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2337 2338 2339 2340 2341 2342 2343
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2344
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2345 2346
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2347 2348 2349

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2350 2351 2352 2353 2354 2355
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2356
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2357
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2358
#endif
N
Nick Piggin 已提交
2359

P
Peter Zijlstra 已提交
2360
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2361
	p->se.on_rq = 0;
2362
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2363

2364 2365 2366 2367
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2389
	set_task_cpu(p, cpu);
2390 2391 2392 2393 2394

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2395 2396
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2397

2398
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2399
	if (likely(sched_info_on()))
2400
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2401
#endif
2402
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2403 2404
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2405
#ifdef CONFIG_PREEMPT
2406
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2407
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2408
#endif
N
Nick Piggin 已提交
2409
	put_cpu();
L
Linus Torvalds 已提交
2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2419
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2420 2421
{
	unsigned long flags;
I
Ingo Molnar 已提交
2422
	struct rq *rq;
L
Linus Torvalds 已提交
2423 2424

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2425
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2426
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2427 2428 2429

	p->prio = effective_prio(p);

2430
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2431
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2432 2433
	} else {
		/*
I
Ingo Molnar 已提交
2434 2435
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2436
		 */
2437
		p->sched_class->task_new(rq, p);
2438
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2439
	}
M
Mathieu Desnoyers 已提交
2440 2441 2442
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2443
	check_preempt_curr(rq, p);
2444 2445 2446 2447
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2448
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2449 2450
}

2451 2452 2453
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2454 2455
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2456 2457 2458 2459 2460 2461 2462 2463 2464
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2465
 * @notifier: notifier struct to unregister
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2495
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2507
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2508

2509 2510 2511
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2512
 * @prev: the current task that is being switched out
2513 2514 2515 2516 2517 2518 2519 2520 2521
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2522 2523 2524
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2525
{
2526
	fire_sched_out_preempt_notifiers(prev, next);
2527 2528 2529 2530
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2531 2532
/**
 * finish_task_switch - clean up after a task-switch
2533
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2534 2535
 * @prev: the thread we just switched away from.
 *
2536 2537 2538 2539
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2540 2541
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2542
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2543 2544 2545
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2546
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2547 2548 2549
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2550
	long prev_state;
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2556
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2557 2558
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2559
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2560 2561 2562 2563 2564
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2565
	prev_state = prev->state;
2566 2567
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2568 2569 2570 2571
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2572

2573
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2574 2575
	if (mm)
		mmdrop(mm);
2576
	if (unlikely(prev_state == TASK_DEAD)) {
2577 2578 2579
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2580
		 */
2581
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2582
		put_task_struct(prev);
2583
	}
L
Linus Torvalds 已提交
2584 2585 2586 2587 2588 2589
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2590
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2591 2592
	__releases(rq->lock)
{
2593 2594
	struct rq *rq = this_rq();

2595 2596 2597 2598 2599
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2600
	if (current->set_child_tid)
2601
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2608
static inline void
2609
context_switch(struct rq *rq, struct task_struct *prev,
2610
	       struct task_struct *next)
L
Linus Torvalds 已提交
2611
{
I
Ingo Molnar 已提交
2612
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2613

2614
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2615 2616 2617 2618 2619
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2620 2621
	mm = next->mm;
	oldmm = prev->active_mm;
2622 2623 2624 2625 2626 2627 2628
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2629
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2636
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2637 2638 2639
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2640 2641 2642 2643 2644 2645 2646
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2647
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2648
#endif
L
Linus Torvalds 已提交
2649 2650 2651 2652

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2653 2654 2655 2656 2657 2658 2659
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2683
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2698 2699
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2700

2701
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2702 2703 2704 2705 2706 2707 2708 2709 2710
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2711
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2732
/*
I
Ingo Molnar 已提交
2733 2734
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2735
 */
I
Ingo Molnar 已提交
2736
static void update_cpu_load(struct rq *this_rq)
2737
{
2738
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2751 2752 2753 2754 2755 2756 2757
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2758 2759
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2760 2761
}

I
Ingo Molnar 已提交
2762 2763
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2764 2765 2766 2767 2768 2769
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2770
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2771 2772 2773
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2774
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2775 2776 2777 2778
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2779
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2780
			spin_lock(&rq1->lock);
2781
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2782 2783
		} else {
			spin_lock(&rq2->lock);
2784
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2785 2786
		}
	}
2787 2788
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794 2795 2796
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2797
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2811
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2812 2813 2814 2815
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2816 2817
	int ret = 0;

2818 2819 2820 2821 2822
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2823
	if (unlikely(!spin_trylock(&busiest->lock))) {
2824
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2825 2826
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2827
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2828
			ret = 1;
L
Linus Torvalds 已提交
2829
		} else
2830
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2831
	}
S
Steven Rostedt 已提交
2832
	return ret;
L
Linus Torvalds 已提交
2833 2834
}

2835 2836 2837 2838 2839 2840 2841
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2842 2843 2844
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2845
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2846 2847
 * the cpu_allowed mask is restored.
 */
2848
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2849
{
2850
	struct migration_req req;
L
Linus Torvalds 已提交
2851
	unsigned long flags;
2852
	struct rq *rq;
L
Linus Torvalds 已提交
2853 2854 2855

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2856
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2863

L
Linus Torvalds 已提交
2864 2865 2866 2867 2868
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2869

L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2877 2878
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2879 2880 2881 2882
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2883
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2884
	put_cpu();
N
Nick Piggin 已提交
2885 2886
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2893 2894
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2895
{
2896
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2897
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2898
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2899 2900 2901 2902
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2903
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2909
static
2910
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2911
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2912
		     int *all_pinned)
L
Linus Torvalds 已提交
2913 2914 2915 2916 2917 2918 2919
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2920 2921
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2922
		return 0;
2923
	}
2924 2925
	*all_pinned = 0;

2926 2927
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2928
		return 0;
2929
	}
L
Linus Torvalds 已提交
2930

2931 2932 2933 2934 2935 2936
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2937 2938
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2939
#ifdef CONFIG_SCHEDSTATS
2940
		if (task_hot(p, rq->clock, sd)) {
2941
			schedstat_inc(sd, lb_hot_gained[idle]);
2942 2943
			schedstat_inc(p, se.nr_forced_migrations);
		}
2944 2945 2946 2947
#endif
		return 1;
	}

2948 2949
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2950
		return 0;
2951
	}
L
Linus Torvalds 已提交
2952 2953 2954
	return 1;
}

2955 2956 2957 2958 2959
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2960
{
2961
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2962 2963
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2964

2965
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2966 2967
		goto out;

2968 2969
	pinned = 1;

L
Linus Torvalds 已提交
2970
	/*
I
Ingo Molnar 已提交
2971
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2972
	 */
I
Ingo Molnar 已提交
2973 2974
	p = iterator->start(iterator->arg);
next:
2975
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2976
		goto out;
2977 2978

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2979 2980 2981
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2982 2983
	}

I
Ingo Molnar 已提交
2984
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2985
	pulled++;
I
Ingo Molnar 已提交
2986
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2987

2988
	/*
2989
	 * We only want to steal up to the prescribed amount of weighted load.
2990
	 */
2991
	if (rem_load_move > 0) {
2992 2993
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2994 2995
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2996 2997 2998
	}
out:
	/*
2999
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3000 3001 3002 3003
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3004 3005 3006

	if (all_pinned)
		*all_pinned = pinned;
3007 3008

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3009 3010
}

I
Ingo Molnar 已提交
3011
/*
P
Peter Williams 已提交
3012 3013 3014
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3015 3016 3017 3018
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3019
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3020 3021 3022
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3023
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3024
	unsigned long total_load_moved = 0;
3025
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3026 3027

	do {
P
Peter Williams 已提交
3028 3029
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3030
				max_load_move - total_load_moved,
3031
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3032
		class = class->next;
3033 3034 3035 3036

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3037
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3038

P
Peter Williams 已提交
3039 3040 3041
	return total_load_moved > 0;
}

3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3078
	const struct sched_class *class;
P
Peter Williams 已提交
3079 3080

	for (class = sched_class_highest; class; class = class->next)
3081
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3082 3083 3084
			return 1;

	return 0;
I
Ingo Molnar 已提交
3085 3086
}

L
Linus Torvalds 已提交
3087 3088
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3089 3090
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3091 3092 3093
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3094
		   unsigned long *imbalance, enum cpu_idle_type idle,
3095
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3096 3097 3098
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3099
	unsigned long max_pull;
3100 3101
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3102
	int load_idx, group_imb = 0;
3103 3104 3105 3106 3107 3108
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3109 3110

	max_load = this_load = total_load = total_pwr = 0;
3111 3112
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3113

I
Ingo Molnar 已提交
3114
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3115
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3116
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3117 3118 3119
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3120 3121

	do {
3122
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3123 3124
		int local_group;
		int i;
3125
		int __group_imb = 0;
3126
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3127
		unsigned long sum_nr_running, sum_weighted_load;
3128 3129
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3130 3131 3132

		local_group = cpu_isset(this_cpu, group->cpumask);

3133 3134 3135
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3136
		/* Tally up the load of all CPUs in the group */
3137
		sum_weighted_load = sum_nr_running = avg_load = 0;
3138 3139
		sum_avg_load_per_task = avg_load_per_task = 0;

3140 3141
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3142

3143
		for_each_cpu_mask_nr(i, group->cpumask) {
3144 3145 3146 3147 3148 3149
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3150

3151
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3152 3153
				*sd_idle = 0;

L
Linus Torvalds 已提交
3154
			/* Bias balancing toward cpus of our domain */
3155 3156 3157 3158 3159 3160
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3161
				load = target_load(i, load_idx);
3162
			} else {
N
Nick Piggin 已提交
3163
				load = source_load(i, load_idx);
3164 3165 3166 3167 3168
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3169 3170

			avg_load += load;
3171
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3172
			sum_weighted_load += weighted_cpuload(i);
3173 3174

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3175 3176
		}

3177 3178 3179
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3180 3181
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3182
		 */
3183 3184
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3185 3186 3187 3188
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3189
		total_load += avg_load;
3190
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3191 3192

		/* Adjust by relative CPU power of the group */
3193 3194
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3195

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3210 3211
			__group_imb = 1;

3212
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3213

L
Linus Torvalds 已提交
3214 3215 3216
		if (local_group) {
			this_load = avg_load;
			this = group;
3217 3218 3219
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3220
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3221 3222
			max_load = avg_load;
			busiest = group;
3223 3224
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3225
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3226
		}
3227 3228 3229 3230 3231 3232

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3233 3234 3235
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3236 3237 3238 3239 3240 3241 3242 3243 3244

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3245
		/*
3246 3247
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3248 3249
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3250
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3251
			goto group_next;
3252

I
Ingo Molnar 已提交
3253
		/*
3254
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3255 3256 3257 3258 3259
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3260 3261
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3262 3263
			group_min = group;
			min_nr_running = sum_nr_running;
3264 3265
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3266
		}
3267

I
Ingo Molnar 已提交
3268
		/*
3269
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3281
		}
3282 3283
group_next:
#endif
L
Linus Torvalds 已提交
3284 3285 3286
		group = group->next;
	} while (group != sd->groups);

3287
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3288 3289 3290 3291 3292 3293 3294 3295
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3296
	busiest_load_per_task /= busiest_nr_running;
3297 3298 3299
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3300 3301 3302 3303 3304 3305 3306 3307
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3308
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3309 3310
	 * appear as very large values with unsigned longs.
	 */
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3323 3324

	/* Don't want to pull so many tasks that a group would go idle */
3325
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3326

L
Linus Torvalds 已提交
3327
	/* How much load to actually move to equalise the imbalance */
3328 3329
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3330 3331
			/ SCHED_LOAD_SCALE;

3332 3333 3334 3335 3336 3337
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3338
	if (*imbalance < busiest_load_per_task) {
3339
		unsigned long tmp, pwr_now, pwr_move;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3350
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3351

3352
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3353
					busiest_load_per_task * imbn) {
3354
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3355 3356 3357 3358 3359 3360 3361 3362 3363
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3364 3365 3366 3367
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3368 3369 3370
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3371 3372
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3373
		if (max_load > tmp)
3374
			pwr_move += busiest->__cpu_power *
3375
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3376 3377

		/* Amount of load we'd add */
3378
		if (max_load * busiest->__cpu_power <
3379
				busiest_load_per_task * SCHED_LOAD_SCALE)
3380 3381
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3382
		else
3383 3384 3385 3386
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3387 3388 3389
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3390 3391
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3392 3393 3394 3395 3396
	}

	return busiest;

out_balanced:
3397
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3398
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3399
		goto ret;
L
Linus Torvalds 已提交
3400

3401 3402 3403 3404 3405
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3406
ret:
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412 3413
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3414
static struct rq *
I
Ingo Molnar 已提交
3415
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3416
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3417
{
3418
	struct rq *busiest = NULL, *rq;
3419
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3420 3421
	int i;

3422
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3423
		unsigned long wl;
3424 3425 3426 3427

		if (!cpu_isset(i, *cpus))
			continue;

3428
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3429
		wl = weighted_cpuload(i);
3430

I
Ingo Molnar 已提交
3431
		if (rq->nr_running == 1 && wl > imbalance)
3432
			continue;
L
Linus Torvalds 已提交
3433

I
Ingo Molnar 已提交
3434 3435
		if (wl > max_load) {
			max_load = wl;
3436
			busiest = rq;
L
Linus Torvalds 已提交
3437 3438 3439 3440 3441 3442
		}
	}

	return busiest;
}

3443 3444 3445 3446 3447 3448
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3449 3450 3451 3452
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3453
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3454
			struct sched_domain *sd, enum cpu_idle_type idle,
3455
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3456
{
P
Peter Williams 已提交
3457
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3458 3459
	struct sched_group *group;
	unsigned long imbalance;
3460
	struct rq *busiest;
3461
	unsigned long flags;
N
Nick Piggin 已提交
3462

3463 3464
	cpus_setall(*cpus);

3465 3466 3467
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3468
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3469
	 * portraying it as CPU_NOT_IDLE.
3470
	 */
I
Ingo Molnar 已提交
3471
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3472
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3473
		sd_idle = 1;
L
Linus Torvalds 已提交
3474

3475
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3476

3477
redo:
3478
	update_shares(sd);
3479
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3480
				   cpus, balance);
3481

3482
	if (*balance == 0)
3483 3484
		goto out_balanced;

L
Linus Torvalds 已提交
3485 3486 3487 3488 3489
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3490
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3491 3492 3493 3494 3495
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3496
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3497 3498 3499

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3500
	ld_moved = 0;
L
Linus Torvalds 已提交
3501 3502 3503 3504
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3505
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3506 3507
		 * correctly treated as an imbalance.
		 */
3508
		local_irq_save(flags);
N
Nick Piggin 已提交
3509
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3510
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3511
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3512
		double_rq_unlock(this_rq, busiest);
3513
		local_irq_restore(flags);
3514

3515 3516 3517
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3518
		if (ld_moved && this_cpu != smp_processor_id())
3519 3520
			resched_cpu(this_cpu);

3521
		/* All tasks on this runqueue were pinned by CPU affinity */
3522
		if (unlikely(all_pinned)) {
3523 3524
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3525
				goto redo;
3526
			goto out_balanced;
3527
		}
L
Linus Torvalds 已提交
3528
	}
3529

P
Peter Williams 已提交
3530
	if (!ld_moved) {
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3536
			spin_lock_irqsave(&busiest->lock, flags);
3537 3538 3539 3540 3541

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3542
				spin_unlock_irqrestore(&busiest->lock, flags);
3543 3544 3545 3546
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3547 3548 3549
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3550
				active_balance = 1;
L
Linus Torvalds 已提交
3551
			}
3552
			spin_unlock_irqrestore(&busiest->lock, flags);
3553
			if (active_balance)
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3560
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3561
		}
3562
	} else
L
Linus Torvalds 已提交
3563 3564
		sd->nr_balance_failed = 0;

3565
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3566 3567
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3577 3578
	}

P
Peter Williams 已提交
3579
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 3582 3583
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3584 3585 3586 3587

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3588
	sd->nr_balance_failed = 0;
3589 3590

out_one_pinned:
L
Linus Torvalds 已提交
3591
	/* tune up the balancing interval */
3592 3593
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3594 3595
		sd->balance_interval *= 2;

3596
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 3599 3600 3601
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3602 3603
	if (ld_moved)
		update_shares(sd);
3604
	return ld_moved;
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3611
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3612 3613
 * this_rq is locked.
 */
3614
static int
3615 3616
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3617 3618
{
	struct sched_group *group;
3619
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3620
	unsigned long imbalance;
P
Peter Williams 已提交
3621
	int ld_moved = 0;
N
Nick Piggin 已提交
3622
	int sd_idle = 0;
3623
	int all_pinned = 0;
3624 3625

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3626

3627 3628 3629 3630
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3631
	 * portraying it as CPU_NOT_IDLE.
3632 3633 3634
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3635
		sd_idle = 1;
L
Linus Torvalds 已提交
3636

3637
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638
redo:
3639
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3640
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3642
	if (!group) {
I
Ingo Molnar 已提交
3643
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644
		goto out_balanced;
L
Linus Torvalds 已提交
3645 3646
	}

3647
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3648
	if (!busiest) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650
		goto out_balanced;
L
Linus Torvalds 已提交
3651 3652
	}

N
Nick Piggin 已提交
3653 3654
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3655
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656

P
Peter Williams 已提交
3657
	ld_moved = 0;
3658 3659 3660
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3661 3662
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3663
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 3665
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3666
		double_unlock_balance(this_rq, busiest);
3667

3668
		if (unlikely(all_pinned)) {
3669 3670
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3671 3672
				goto redo;
		}
3673 3674
	}

P
Peter Williams 已提交
3675
	if (!ld_moved) {
I
Ingo Molnar 已提交
3676
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3677 3678
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3679 3680
			return -1;
	} else
3681
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3682

3683
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3684
	return ld_moved;
3685 3686

out_balanced:
I
Ingo Molnar 已提交
3687
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3688
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3689
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3690
		return -1;
3691
	sd->nr_balance_failed = 0;
3692

3693
	return 0;
L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3700
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3701 3702
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3703 3704
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3705
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3706 3707

	for_each_domain(this_cpu, sd) {
3708 3709 3710 3711 3712 3713
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3714
			/* If we've pulled tasks over stop searching: */
3715 3716
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3717 3718 3719 3720 3721 3722

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3723
	}
I
Ingo Molnar 已提交
3724
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3725 3726 3727 3728 3729
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3730
	}
L
Linus Torvalds 已提交
3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3741
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3742
{
3743
	int target_cpu = busiest_rq->push_cpu;
3744 3745
	struct sched_domain *sd;
	struct rq *target_rq;
3746

3747
	/* Is there any task to move? */
3748 3749 3750 3751
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3752 3753

	/*
3754
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3755
	 * we need to fix it. Originally reported by
3756
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3757
	 */
3758
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3759

3760 3761
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3762 3763
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3764 3765

	/* Search for an sd spanning us and the target CPU. */
3766
	for_each_domain(target_cpu, sd) {
3767
		if ((sd->flags & SD_LOAD_BALANCE) &&
3768
		    cpu_isset(busiest_cpu, sd->span))
3769
				break;
3770
	}
3771

3772
	if (likely(sd)) {
3773
		schedstat_inc(sd, alb_count);
3774

P
Peter Williams 已提交
3775 3776
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3777 3778 3779 3780
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3781
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3782 3783
}

3784 3785 3786
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3787
	cpumask_t cpu_mask;
3788 3789 3790 3791 3792
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3793
/*
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3804
 *
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3824
		if (!cpu_active(cpu) &&
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3861 3862 3863 3864 3865
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3866
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3867
{
3868 3869
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3870 3871
	unsigned long interval;
	struct sched_domain *sd;
3872
	/* Earliest time when we have to do rebalance again */
3873
	unsigned long next_balance = jiffies + 60*HZ;
3874
	int update_next_balance = 0;
3875
	int need_serialize;
3876
	cpumask_t tmp;
L
Linus Torvalds 已提交
3877

3878
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3879 3880 3881 3882
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3883
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3884 3885 3886 3887 3888 3889
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3890 3891 3892
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3893
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3894

3895
		if (need_serialize) {
3896 3897 3898 3899
			if (!spin_trylock(&balancing))
				goto out;
		}

3900
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3901
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3902 3903
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3904 3905 3906
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3907
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3908
			}
3909
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3910
		}
3911
		if (need_serialize)
3912 3913
			spin_unlock(&balancing);
out:
3914
		if (time_after(next_balance, sd->last_balance + interval)) {
3915
			next_balance = sd->last_balance + interval;
3916 3917
			update_next_balance = 1;
		}
3918 3919 3920 3921 3922 3923 3924 3925

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3926
	}
3927 3928 3929 3930 3931 3932 3933 3934

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3935 3936 3937 3938 3939 3940 3941 3942 3943
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3944 3945 3946 3947
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3948

I
Ingo Molnar 已提交
3949
	rebalance_domains(this_cpu, idle);
3950 3951 3952 3953 3954 3955 3956

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3957 3958
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3959 3960 3961 3962
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3963
		cpu_clear(this_cpu, cpus);
3964
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3965 3966 3967 3968 3969 3970 3971 3972
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3973
			rebalance_domains(balance_cpu, CPU_IDLE);
3974 3975

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3976 3977
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3990
static inline void trigger_load_balance(struct rq *rq, int cpu)
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4017
			if (ilb < nr_cpu_ids)
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4042
}
I
Ingo Molnar 已提交
4043 4044 4045

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4046 4047 4048
/*
 * on UP we do not need to balance between CPUs:
 */
4049
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4050 4051
{
}
I
Ingo Molnar 已提交
4052

L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4060 4061
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4062
 */
4063
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4064 4065
{
	unsigned long flags;
4066 4067
	u64 ns, delta_exec;
	struct rq *rq;
4068

4069 4070
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4071
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4072 4073
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4074 4075 4076 4077
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4078

L
Linus Torvalds 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4100 4101
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4102 4103
}

4104 4105 4106 4107 4108
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4109
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4143
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4144 4145
	cputime64_t tmp;

4146 4147 4148 4149
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4150

L
Linus Torvalds 已提交
4151 4152 4153 4154 4155 4156 4157 4158
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4159
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4160
		cpustat->system = cputime64_add(cpustat->system, tmp);
4161
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4189
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195 4196

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4197
	} else
L
Linus Torvalds 已提交
4198 4199 4200
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4212
	struct task_struct *curr = rq->curr;
4213 4214

	sched_clock_tick();
I
Ingo Molnar 已提交
4215 4216

	spin_lock(&rq->lock);
4217
	update_rq_clock(rq);
4218
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4219
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4220
	spin_unlock(&rq->lock);
4221

4222
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4223 4224
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4225
#endif
L
Linus Torvalds 已提交
4226 4227
}

4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4240

4241
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4242
{
4243
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4244 4245 4246
	/*
	 * Underflow?
	 */
4247 4248
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4249
#endif
L
Linus Torvalds 已提交
4250
	preempt_count() += val;
4251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4252 4253 4254
	/*
	 * Spinlock count overflowing soon?
	 */
4255 4256
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4257 4258 4259
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4260 4261 4262
}
EXPORT_SYMBOL(add_preempt_count);

4263
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4264
{
4265
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4266 4267 4268
	/*
	 * Underflow?
	 */
4269 4270
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4271 4272 4273
	/*
	 * Is the spinlock portion underflowing?
	 */
4274 4275 4276
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4277
#endif
4278

4279 4280
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4281 4282 4283 4284 4285 4286 4287
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4288
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4289
 */
I
Ingo Molnar 已提交
4290
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4291
{
4292 4293 4294 4295 4296
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4297
	debug_show_held_locks(prev);
4298
	print_modules();
I
Ingo Molnar 已提交
4299 4300
	if (irqs_disabled())
		print_irqtrace_events(prev);
4301 4302 4303 4304 4305

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4306
}
L
Linus Torvalds 已提交
4307

I
Ingo Molnar 已提交
4308 4309 4310 4311 4312
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4313
	/*
I
Ingo Molnar 已提交
4314
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4315 4316 4317
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4318
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4319 4320
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4321 4322
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4323
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4324 4325
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4326 4327
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4328 4329
	}
#endif
I
Ingo Molnar 已提交
4330 4331 4332 4333 4334 4335
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4336
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4337
{
4338
	const struct sched_class *class;
I
Ingo Molnar 已提交
4339
	struct task_struct *p;
L
Linus Torvalds 已提交
4340 4341

	/*
I
Ingo Molnar 已提交
4342 4343
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4344
	 */
I
Ingo Molnar 已提交
4345
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4346
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4347 4348
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4349 4350
	}

I
Ingo Molnar 已提交
4351 4352
	class = sched_class_highest;
	for ( ; ; ) {
4353
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4363

I
Ingo Molnar 已提交
4364 4365 4366 4367 4368 4369
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4370
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4371
	struct rq *rq;
4372
	int cpu;
I
Ingo Molnar 已提交
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4386

4387
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4388
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4389

4390 4391 4392 4393
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4394
	update_rq_clock(rq);
4395 4396
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4397 4398

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4399
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4400
			prev->state = TASK_RUNNING;
4401
		else
4402
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4403
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4404 4405
	}

4406 4407 4408 4409
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4410

I
Ingo Molnar 已提交
4411
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4412 4413
		idle_balance(cpu, rq);

4414
	prev->sched_class->put_prev_task(rq, prev);
4415
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4416 4417

	if (likely(prev != next)) {
4418 4419
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4420 4421 4422 4423
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4424
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4425 4426 4427 4428 4429 4430
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4431 4432 4433
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4434
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4435
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4436

L
Linus Torvalds 已提交
4437 4438 4439 4440 4441 4442 4443 4444
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4445
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4446
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4452

L
Linus Torvalds 已提交
4453 4454
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4455
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4456
	 */
N
Nick Piggin 已提交
4457
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4458 4459
		return;

4460 4461 4462 4463
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4464

4465 4466 4467 4468 4469 4470
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4471 4472 4473 4474
}
EXPORT_SYMBOL(preempt_schedule);

/*
4475
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4483

4484
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4485 4486
	BUG_ON(ti->preempt_count || !irqs_disabled());

4487 4488 4489 4490 4491 4492
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4493

4494 4495 4496 4497 4498 4499
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4500 4501 4502 4503
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4504 4505
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4506
{
4507
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4508 4509 4510 4511
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4512 4513
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4514 4515 4516
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4517
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4518 4519 4520 4521 4522
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4523
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4524

4525
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4526 4527
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4528
		if (curr->func(curr, mode, sync, key) &&
4529
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4530 4531 4532 4533 4534 4535 4536 4537 4538
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4539
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4540
 */
4541
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4542
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4555
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4556 4557 4558 4559 4560
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4561
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4573
void
I
Ingo Molnar 已提交
4574
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4591
void complete(struct completion *x)
L
Linus Torvalds 已提交
4592 4593 4594 4595 4596
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4597
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4598 4599 4600 4601
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4602
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4603 4604 4605 4606 4607
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4608
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4609 4610 4611 4612
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4613 4614
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4622 4623 4624 4625
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4626 4627
				timeout = -ERESTARTSYS;
				break;
4628 4629
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4630 4631 4632
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4633
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4634
		__remove_wait_queue(&x->wait, &wait);
4635 4636
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4637 4638
	}
	x->done--;
4639
	return timeout ?: 1;
L
Linus Torvalds 已提交
4640 4641
}

4642 4643
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4644 4645 4646 4647
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4648
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4649
	spin_unlock_irq(&x->wait.lock);
4650 4651
	return timeout;
}
L
Linus Torvalds 已提交
4652

4653
void __sched wait_for_completion(struct completion *x)
4654 4655
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4656
}
4657
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4658

4659
unsigned long __sched
4660
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4661
{
4662
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4663
}
4664
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4665

4666
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4667
{
4668 4669 4670 4671
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4672
}
4673
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4674

4675
unsigned long __sched
4676 4677
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4678
{
4679
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4680
}
4681
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4682

M
Matthew Wilcox 已提交
4683 4684 4685 4686 4687 4688 4689 4690 4691
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4738 4739
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4740
{
I
Ingo Molnar 已提交
4741 4742 4743 4744
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4745

4746
	__set_current_state(state);
L
Linus Torvalds 已提交
4747

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4762 4763 4764
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4765
long __sched
I
Ingo Molnar 已提交
4766
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4767
{
4768
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4769 4770 4771
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4772
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4773
{
4774
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4775 4776 4777
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4778
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4779
{
4780
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4781 4782 4783
}
EXPORT_SYMBOL(sleep_on_timeout);

4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4796
void rt_mutex_setprio(struct task_struct *p, int prio)
4797 4798
{
	unsigned long flags;
4799
	int oldprio, on_rq, running;
4800
	struct rq *rq;
4801
	const struct sched_class *prev_class = p->sched_class;
4802 4803 4804 4805

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4806
	update_rq_clock(rq);
4807

4808
	oldprio = p->prio;
I
Ingo Molnar 已提交
4809
	on_rq = p->se.on_rq;
4810
	running = task_current(rq, p);
4811
	if (on_rq)
4812
		dequeue_task(rq, p, 0);
4813 4814
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4815 4816 4817 4818 4819 4820

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4821 4822
	p->prio = prio;

4823 4824
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4825
	if (on_rq) {
4826
		enqueue_task(rq, p, 0);
4827 4828

		check_class_changed(rq, p, prev_class, oldprio, running);
4829 4830 4831 4832 4833 4834
	}
	task_rq_unlock(rq, &flags);
}

#endif

4835
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4836
{
I
Ingo Molnar 已提交
4837
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4838
	unsigned long flags;
4839
	struct rq *rq;
L
Linus Torvalds 已提交
4840 4841 4842 4843 4844 4845 4846 4847

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4848
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4849 4850 4851 4852
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4853
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4854
	 */
4855
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4856 4857 4858
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4859
	on_rq = p->se.on_rq;
4860
	if (on_rq)
4861
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4862 4863

	p->static_prio = NICE_TO_PRIO(nice);
4864
	set_load_weight(p);
4865 4866 4867
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4868

I
Ingo Molnar 已提交
4869
	if (on_rq) {
4870
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4871
		/*
4872 4873
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4874
		 */
4875
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4876 4877 4878 4879 4880 4881 4882
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4883 4884 4885 4886 4887
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4888
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4889
{
4890 4891
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4892

M
Matt Mackall 已提交
4893 4894 4895 4896
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4908
	long nice, retval;
L
Linus Torvalds 已提交
4909 4910 4911 4912 4913 4914

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4915 4916
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923 4924 4925
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4926 4927 4928
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4947
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954 4955
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4956
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4957 4958 4959
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4960
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4975
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4976 4977 4978 4979 4980 4981 4982 4983
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4984
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4985
{
4986
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4987 4988 4989
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4990 4991
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4992
{
I
Ingo Molnar 已提交
4993
	BUG_ON(p->se.on_rq);
4994

L
Linus Torvalds 已提交
4995
	p->policy = policy;
I
Ingo Molnar 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5008
	p->rt_priority = prio;
5009 5010 5011
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5012
	set_load_weight(p);
L
Linus Torvalds 已提交
5013 5014
}

5015 5016
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5017
{
5018
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5019
	unsigned long flags;
5020
	const struct sched_class *prev_class = p->sched_class;
5021
	struct rq *rq;
L
Linus Torvalds 已提交
5022

5023 5024
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5030 5031
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5032
		return -EINVAL;
L
Linus Torvalds 已提交
5033 5034
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5035 5036
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5037 5038
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5039
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5040
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5041
		return -EINVAL;
5042
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5043 5044
		return -EINVAL;

5045 5046 5047
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5048
	if (user && !capable(CAP_SYS_NICE)) {
5049
		if (rt_policy(policy)) {
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5066 5067 5068 5069 5070 5071
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5072

5073 5074 5075 5076 5077
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5078

5079
	if (user) {
5080
#ifdef CONFIG_RT_GROUP_SCHED
5081 5082 5083 5084
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5085 5086
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5087
			return -EPERM;
5088 5089
#endif

5090 5091 5092 5093 5094
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5095 5096 5097 5098 5099
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5100 5101 5102 5103
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5104
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5105 5106 5107
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5108 5109
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5110 5111
		goto recheck;
	}
I
Ingo Molnar 已提交
5112
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5113
	on_rq = p->se.on_rq;
5114
	running = task_current(rq, p);
5115
	if (on_rq)
5116
		deactivate_task(rq, p, 0);
5117 5118
	if (running)
		p->sched_class->put_prev_task(rq, p);
5119

L
Linus Torvalds 已提交
5120
	oldprio = p->prio;
I
Ingo Molnar 已提交
5121
	__setscheduler(rq, p, policy, param->sched_priority);
5122

5123 5124
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5125 5126
	if (on_rq) {
		activate_task(rq, p, 0);
5127 5128

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5129
	}
5130 5131 5132
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5133 5134
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5135 5136
	return 0;
}
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5151 5152
EXPORT_SYMBOL_GPL(sched_setscheduler);

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5170 5171
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5172 5173 5174
{
	struct sched_param lparam;
	struct task_struct *p;
5175
	int retval;
L
Linus Torvalds 已提交
5176 5177 5178 5179 5180

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5181 5182 5183

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5184
	p = find_process_by_pid(pid);
5185 5186 5187
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5188

L
Linus Torvalds 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5198 5199
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5200
{
5201 5202 5203 5204
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5224
	struct task_struct *p;
5225
	int retval;
L
Linus Torvalds 已提交
5226 5227

	if (pid < 0)
5228
		return -EINVAL;
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5250
	struct task_struct *p;
5251
	int retval;
L
Linus Torvalds 已提交
5252 5253

	if (!param || pid < 0)
5254
		return -EINVAL;
L
Linus Torvalds 已提交
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5281
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5282 5283
{
	cpumask_t cpus_allowed;
5284
	cpumask_t new_mask = *in_mask;
5285 5286
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5287

5288
	get_online_cpus();
L
Linus Torvalds 已提交
5289 5290 5291 5292 5293
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5294
		put_online_cpus();
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5300
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5311 5312 5313 5314
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5315
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5316
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5317
 again:
5318
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5319

P
Paul Menage 已提交
5320
	if (!retval) {
5321
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5332 5333
out_unlock:
	put_task_struct(p);
5334
	put_online_cpus();
L
Linus Torvalds 已提交
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5365
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5366 5367 5368 5369
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5370
	struct task_struct *p;
L
Linus Torvalds 已提交
5371 5372
	int retval;

5373
	get_online_cpus();
L
Linus Torvalds 已提交
5374 5375 5376 5377 5378 5379 5380
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5381 5382 5383 5384
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5385
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5386 5387 5388

out_unlock:
	read_unlock(&tasklist_lock);
5389
	put_online_cpus();
L
Linus Torvalds 已提交
5390

5391
	return retval;
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5422 5423
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5424 5425 5426
 */
asmlinkage long sys_sched_yield(void)
{
5427
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5428

5429
	schedstat_inc(rq, yld_count);
5430
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435 5436

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5437
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5438 5439 5440 5441 5442 5443 5444 5445
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5446
static void __cond_resched(void)
L
Linus Torvalds 已提交
5447
{
5448 5449 5450
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5451 5452 5453 5454 5455
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460 5461 5462
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5463
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5464
{
5465 5466
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5467 5468 5469 5470 5471
		__cond_resched();
		return 1;
	}
	return 0;
}
5472
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5473 5474 5475 5476 5477

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5478
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5479 5480 5481
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5482
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5483
{
N
Nick Piggin 已提交
5484
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5485 5486
	int ret = 0;

N
Nick Piggin 已提交
5487
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5488
		spin_unlock(lock);
N
Nick Piggin 已提交
5489 5490 5491 5492
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5493
		ret = 1;
L
Linus Torvalds 已提交
5494 5495
		spin_lock(lock);
	}
J
Jan Kara 已提交
5496
	return ret;
L
Linus Torvalds 已提交
5497 5498 5499 5500 5501 5502 5503
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5504
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5505
		local_bh_enable();
L
Linus Torvalds 已提交
5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5517
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5528
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5529 5530 5531 5532 5533 5534 5535
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5536
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5537

5538
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5539 5540 5541
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5542
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5543 5544 5545 5546 5547
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5548
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5549 5550
	long ret;

5551
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5552 5553 5554
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5555
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5576
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5577
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5601
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5602
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5619
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5620
	unsigned int time_slice;
5621
	int retval;
L
Linus Torvalds 已提交
5622 5623 5624
	struct timespec t;

	if (pid < 0)
5625
		return -EINVAL;
L
Linus Torvalds 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5637 5638 5639 5640 5641 5642
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5643
		time_slice = DEF_TIMESLICE;
5644
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5645 5646 5647 5648 5649
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5650 5651
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5652 5653
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5654
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5655
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5656 5657
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5658

L
Linus Torvalds 已提交
5659 5660 5661 5662 5663
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5664
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5665

5666
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5667 5668
{
	unsigned long free = 0;
5669
	unsigned state;
L
Linus Torvalds 已提交
5670 5671

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5672
	printk(KERN_INFO "%-13.13s %c", p->comm,
5673
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5674
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5675
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5676
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5677
	else
I
Ingo Molnar 已提交
5678
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5679 5680
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5681
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5682
	else
I
Ingo Molnar 已提交
5683
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5684 5685 5686
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5687
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5688 5689
		while (!*n)
			n++;
5690
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5691 5692
	}
#endif
5693
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5694
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5695

5696
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5697 5698
}

I
Ingo Molnar 已提交
5699
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5700
{
5701
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5702

5703 5704 5705
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5706
#else
5707 5708
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5709 5710 5711 5712 5713 5714 5715 5716
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5717
		if (!state_filter || (p->state & state_filter))
5718
			sched_show_task(p);
L
Linus Torvalds 已提交
5719 5720
	} while_each_thread(g, p);

5721 5722
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5723 5724 5725
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5726
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5727 5728 5729 5730 5731
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5732 5733
}

I
Ingo Molnar 已提交
5734 5735
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5736
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5737 5738
}

5739 5740 5741 5742 5743 5744 5745 5746
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5747
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5748
{
5749
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5750 5751
	unsigned long flags;

I
Ingo Molnar 已提交
5752 5753 5754
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5755
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5756
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5757
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5758 5759 5760

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5761 5762 5763
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5764 5765 5766
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5767 5768 5769
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5770
	task_thread_info(idle)->preempt_count = 0;
5771
#endif
I
Ingo Molnar 已提交
5772 5773 5774 5775
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5810 5811

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5812 5813
}

L
Linus Torvalds 已提交
5814 5815 5816 5817
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5818
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5837
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5838 5839
 * call is not atomic; no spinlocks may be held.
 */
5840
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5841
{
5842
	struct migration_req req;
L
Linus Torvalds 已提交
5843
	unsigned long flags;
5844
	struct rq *rq;
5845
	int ret = 0;
L
Linus Torvalds 已提交
5846 5847

	rq = task_rq_lock(p, &flags);
5848
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5849 5850 5851 5852
		ret = -EINVAL;
		goto out;
	}

5853 5854 5855 5856 5857 5858
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5859
	if (p->sched_class->set_cpus_allowed)
5860
		p->sched_class->set_cpus_allowed(p, new_mask);
5861
	else {
5862 5863
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5864 5865
	}

L
Linus Torvalds 已提交
5866
	/* Can the task run on the task's current CPU? If so, we're done */
5867
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5868 5869
		goto out;

5870
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5871 5872 5873 5874 5875 5876 5877 5878 5879
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5880

L
Linus Torvalds 已提交
5881 5882
	return ret;
}
5883
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5884 5885

/*
I
Ingo Molnar 已提交
5886
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5887 5888 5889 5890 5891 5892
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5893 5894
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5895
 */
5896
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5897
{
5898
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5899
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5900

5901
	if (unlikely(!cpu_active(dest_cpu)))
5902
		return ret;
L
Linus Torvalds 已提交
5903 5904 5905 5906 5907 5908 5909

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5910
		goto done;
L
Linus Torvalds 已提交
5911 5912
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5913
		goto fail;
L
Linus Torvalds 已提交
5914

I
Ingo Molnar 已提交
5915
	on_rq = p->se.on_rq;
5916
	if (on_rq)
5917
		deactivate_task(rq_src, p, 0);
5918

L
Linus Torvalds 已提交
5919
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5920 5921 5922
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5923
	}
L
Linus Torvalds 已提交
5924
done:
5925
	ret = 1;
L
Linus Torvalds 已提交
5926
fail:
L
Linus Torvalds 已提交
5927
	double_rq_unlock(rq_src, rq_dest);
5928
	return ret;
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5936
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5937 5938
{
	int cpu = (long)data;
5939
	struct rq *rq;
L
Linus Torvalds 已提交
5940 5941 5942 5943 5944 5945

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5946
		struct migration_req *req;
L
Linus Torvalds 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5969
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5970 5971
		list_del_init(head->next);

N
Nick Piggin 已提交
5972 5973 5974
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6004
/*
6005
 * Figure out where task on dead CPU should go, use force if necessary.
6006 6007
 * NOTE: interrupts should be disabled by the caller
 */
6008
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6009
{
6010
	unsigned long flags;
L
Linus Torvalds 已提交
6011
	cpumask_t mask;
6012 6013
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6014

6015 6016 6017 6018 6019 6020 6021
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6022
		if (dest_cpu >= nr_cpu_ids)
6023 6024 6025
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6026
		if (dest_cpu >= nr_cpu_ids) {
6027 6028 6029
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6030 6031 6032 6033
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6034
			 * cpuset_cpus_allowed() will not block. It must be
6035 6036
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6037
			rq = task_rq_lock(p, &flags);
6038
			p->cpus_allowed = cpus_allowed;
6039 6040
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6041

6042 6043 6044 6045 6046
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6047
			if (p->mm && printk_ratelimit()) {
6048 6049
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6050 6051
					task_pid_nr(p), p->comm, dead_cpu);
			}
6052
		}
6053
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6054 6055 6056 6057 6058 6059 6060 6061 6062
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6063
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6064
{
6065
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6079
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6080

6081
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6082

6083 6084
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6085 6086
			continue;

6087 6088 6089
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6090

6091
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6092 6093
}

I
Ingo Molnar 已提交
6094 6095
/*
 * Schedules idle task to be the next runnable task on current CPU.
6096 6097
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6098 6099 6100
 */
void sched_idle_next(void)
{
6101
	int this_cpu = smp_processor_id();
6102
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6103 6104 6105 6106
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6107
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6108

6109 6110 6111
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6112 6113 6114
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6115
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6116

6117 6118
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6119 6120 6121 6122

	spin_unlock_irqrestore(&rq->lock, flags);
}

6123 6124
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6138
/* called under rq->lock with disabled interrupts */
6139
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6140
{
6141
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6142 6143

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6144
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6145 6146

	/* Cannot have done final schedule yet: would have vanished. */
6147
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6148

6149
	get_task_struct(p);
L
Linus Torvalds 已提交
6150 6151 6152

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6153
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6154 6155
	 * fine.
	 */
6156
	spin_unlock_irq(&rq->lock);
6157
	move_task_off_dead_cpu(dead_cpu, p);
6158
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6159

6160
	put_task_struct(p);
L
Linus Torvalds 已提交
6161 6162 6163 6164 6165
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6166
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6167
	struct task_struct *next;
6168

I
Ingo Molnar 已提交
6169 6170 6171
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6172
		update_rq_clock(rq);
6173
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6174 6175
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6176
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6177
		migrate_dead(dead_cpu, next);
6178

L
Linus Torvalds 已提交
6179 6180 6181 6182
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6183 6184 6185
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6186 6187
	{
		.procname	= "sched_domain",
6188
		.mode		= 0555,
6189
	},
I
Ingo Molnar 已提交
6190
	{0, },
6191 6192 6193
};

static struct ctl_table sd_ctl_root[] = {
6194
	{
6195
		.ctl_name	= CTL_KERN,
6196
		.procname	= "kernel",
6197
		.mode		= 0555,
6198 6199
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6200
	{0, },
6201 6202 6203 6204 6205
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6206
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6207 6208 6209 6210

	return entry;
}

6211 6212
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6213
	struct ctl_table *entry;
6214

6215 6216 6217
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6218
	 * will always be set. In the lowest directory the names are
6219 6220 6221
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6222 6223
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6224 6225 6226
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6227 6228 6229 6230 6231

	kfree(*tablep);
	*tablep = NULL;
}

6232
static void
6233
set_table_entry(struct ctl_table *entry,
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6247
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6248

6249 6250 6251
	if (table == NULL)
		return NULL;

6252
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6253
		sizeof(long), 0644, proc_doulongvec_minmax);
6254
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6255
		sizeof(long), 0644, proc_doulongvec_minmax);
6256
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6257
		sizeof(int), 0644, proc_dointvec_minmax);
6258
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6259
		sizeof(int), 0644, proc_dointvec_minmax);
6260
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6261
		sizeof(int), 0644, proc_dointvec_minmax);
6262
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6263
		sizeof(int), 0644, proc_dointvec_minmax);
6264
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6265
		sizeof(int), 0644, proc_dointvec_minmax);
6266
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6267
		sizeof(int), 0644, proc_dointvec_minmax);
6268
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6269
		sizeof(int), 0644, proc_dointvec_minmax);
6270
	set_table_entry(&table[9], "cache_nice_tries",
6271 6272
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6273
	set_table_entry(&table[10], "flags", &sd->flags,
6274
		sizeof(int), 0644, proc_dointvec_minmax);
6275
	/* &table[11] is terminator */
6276 6277 6278 6279

	return table;
}

6280
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6281 6282 6283 6284 6285 6286 6287 6288 6289
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6290 6291
	if (table == NULL)
		return NULL;
6292 6293 6294 6295 6296

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6297
		entry->mode = 0555;
6298 6299 6300 6301 6302 6303 6304 6305
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6306
static void register_sched_domain_sysctl(void)
6307 6308 6309 6310 6311
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6312 6313 6314
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6315 6316 6317
	if (entry == NULL)
		return;

6318
	for_each_online_cpu(i) {
6319 6320
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6321
		entry->mode = 0555;
6322
		entry->child = sd_alloc_ctl_cpu_table(i);
6323
		entry++;
6324
	}
6325 6326

	WARN_ON(sd_sysctl_header);
6327 6328
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6329

6330
/* may be called multiple times per register */
6331 6332
static void unregister_sched_domain_sysctl(void)
{
6333 6334
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6335
	sd_sysctl_header = NULL;
6336 6337
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6338
}
6339
#else
6340 6341 6342 6343
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6344 6345 6346 6347
{
}
#endif

6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6378 6379 6380 6381
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6382 6383
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6384 6385
{
	struct task_struct *p;
6386
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6387
	unsigned long flags;
6388
	struct rq *rq;
L
Linus Torvalds 已提交
6389 6390

	switch (action) {
6391

L
Linus Torvalds 已提交
6392
	case CPU_UP_PREPARE:
6393
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6394
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6395 6396 6397 6398 6399
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6400
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6401 6402 6403
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6404

L
Linus Torvalds 已提交
6405
	case CPU_ONLINE:
6406
	case CPU_ONLINE_FROZEN:
6407
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6408
		wake_up_process(cpu_rq(cpu)->migration_thread);
6409 6410 6411 6412 6413 6414

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6415 6416

			set_rq_online(rq);
6417 6418
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6419
		break;
6420

L
Linus Torvalds 已提交
6421 6422
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6423
	case CPU_UP_CANCELED_FROZEN:
6424 6425
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6426
		/* Unbind it from offline cpu so it can run. Fall thru. */
6427 6428
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6429 6430 6431
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6432

L
Linus Torvalds 已提交
6433
	case CPU_DEAD:
6434
	case CPU_DEAD_FROZEN:
6435
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6436 6437 6438 6439 6440
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6441
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6442
		update_rq_clock(rq);
6443
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6444
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6445 6446
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6447
		migrate_dead_tasks(cpu);
6448
		spin_unlock_irq(&rq->lock);
6449
		cpuset_unlock();
L
Linus Torvalds 已提交
6450 6451 6452
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6453 6454 6455 6456 6457
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6458 6459
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6460 6461
			struct migration_req *req;

L
Linus Torvalds 已提交
6462
			req = list_entry(rq->migration_queue.next,
6463
					 struct migration_req, list);
L
Linus Torvalds 已提交
6464 6465 6466 6467 6468
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6469

6470 6471
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6472 6473 6474 6475 6476
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6477
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6478 6479 6480
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6481 6482 6483 6484 6485 6486 6487 6488
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6489
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6490 6491 6492 6493
	.notifier_call = migration_call,
	.priority = 10
};

6494
static int __init migration_init(void)
L
Linus Torvalds 已提交
6495 6496
{
	void *cpu = (void *)(long)smp_processor_id();
6497
	int err;
6498 6499

	/* Start one for the boot CPU: */
6500 6501
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6502 6503
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6504 6505

	return err;
L
Linus Torvalds 已提交
6506
}
6507
early_initcall(migration_init);
L
Linus Torvalds 已提交
6508 6509 6510
#endif

#ifdef CONFIG_SMP
6511

6512
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6513

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6536 6537
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6538
{
I
Ingo Molnar 已提交
6539
	struct sched_group *group = sd->groups;
6540
	char str[256];
L
Linus Torvalds 已提交
6541

6542
	cpulist_scnprintf(str, sizeof(str), sd->span);
6543
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6553 6554
	}

6555 6556
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6566

I
Ingo Molnar 已提交
6567
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6568
	do {
I
Ingo Molnar 已提交
6569 6570 6571
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6572 6573 6574
			break;
		}

I
Ingo Molnar 已提交
6575 6576 6577 6578 6579 6580
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6581

I
Ingo Molnar 已提交
6582 6583 6584 6585 6586
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6587

6588
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6589 6590 6591 6592
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6593

6594
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6595

6596
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6597
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6598

I
Ingo Molnar 已提交
6599 6600 6601
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6602

6603
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6604
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6605

6606
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6607 6608 6609 6610
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6611

I
Ingo Molnar 已提交
6612 6613
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6614
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6615
	int level = 0;
L
Linus Torvalds 已提交
6616

I
Ingo Molnar 已提交
6617 6618 6619 6620
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6621

I
Ingo Molnar 已提交
6622 6623
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6624 6625 6626 6627 6628 6629
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6630
	for (;;) {
6631
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6632
			break;
L
Linus Torvalds 已提交
6633 6634
		level++;
		sd = sd->parent;
6635
		if (!sd)
I
Ingo Molnar 已提交
6636 6637
			break;
	}
6638
	kfree(groupmask);
L
Linus Torvalds 已提交
6639
}
6640
#else /* !CONFIG_SCHED_DEBUG */
6641
# define sched_domain_debug(sd, cpu) do { } while (0)
6642
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6643

6644
static int sd_degenerate(struct sched_domain *sd)
6645 6646 6647 6648 6649 6650 6651 6652
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6653 6654 6655
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6669 6670
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6689 6690 6691
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6692 6693 6694 6695 6696 6697 6698
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6708 6709
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6710

6711 6712
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6713 6714 6715 6716 6717 6718 6719
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6720
	cpu_set(rq->cpu, rd->span);
6721
	if (cpu_isset(rq->cpu, cpu_online_map))
6722
		set_rq_online(rq);
G
Gregory Haskins 已提交
6723 6724 6725 6726

	spin_unlock_irqrestore(&rq->lock, flags);
}

6727
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6728 6729 6730
{
	memset(rd, 0, sizeof(*rd));

6731 6732
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6733 6734

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6735 6736 6737 6738
}

static void init_defrootdomain(void)
{
6739
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6740 6741 6742
	atomic_set(&def_root_domain.refcount, 1);
}

6743
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6744 6745 6746 6747 6748 6749 6750
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6751
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6752 6753 6754 6755

	return rd;
}

L
Linus Torvalds 已提交
6756
/*
I
Ingo Molnar 已提交
6757
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6758 6759
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6760 6761
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6762
{
6763
	struct rq *rq = cpu_rq(cpu);
6764 6765 6766 6767 6768 6769 6770
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6771
		if (sd_parent_degenerate(tmp, parent)) {
6772
			tmp->parent = parent->parent;
6773 6774 6775
			if (parent->parent)
				parent->parent->child = tmp;
		}
6776 6777
	}

6778
	if (sd && sd_degenerate(sd)) {
6779
		sd = sd->parent;
6780 6781 6782
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6783 6784 6785

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6786
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6787
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6788 6789 6790
}

/* cpus with isolated domains */
6791
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6792 6793 6794 6795

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6796 6797
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6798 6799 6800 6801 6802 6803 6804 6805 6806

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6807
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6808 6809

/*
6810 6811 6812 6813
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6814 6815 6816 6817 6818
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6819
static void
6820
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6821
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6822 6823 6824
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6825 6826 6827 6828
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6829 6830
	cpus_clear(*covered);

6831
	for_each_cpu_mask_nr(i, *span) {
6832
		struct sched_group *sg;
6833
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6834 6835
		int j;

6836
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6837 6838
			continue;

6839
		cpus_clear(sg->cpumask);
6840
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6841

6842
		for_each_cpu_mask_nr(j, *span) {
6843
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6844 6845
				continue;

6846
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6858
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6859

6860
#ifdef CONFIG_NUMA
6861

6862 6863 6864 6865 6866
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6867
 * Find the next node to include in a given scheduling domain. Simply
6868 6869 6870 6871
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6872
static int find_next_best_node(int node, nodemask_t *used_nodes)
6873 6874 6875 6876 6877
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6878
	for (i = 0; i < nr_node_ids; i++) {
6879
		/* Start at @node */
6880
		n = (node + i) % nr_node_ids;
6881 6882 6883 6884 6885

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6886
		if (node_isset(n, *used_nodes))
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6898
	node_set(best_node, *used_nodes);
6899 6900 6901 6902 6903 6904
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6905
 * @span: resulting cpumask
6906
 *
I
Ingo Molnar 已提交
6907
 * Given a node, construct a good cpumask for its sched_domain to span. It
6908 6909 6910
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6911
static void sched_domain_node_span(int node, cpumask_t *span)
6912
{
6913 6914
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6915
	int i;
6916

6917
	cpus_clear(*span);
6918
	nodes_clear(used_nodes);
6919

6920
	cpus_or(*span, *span, *nodemask);
6921
	node_set(node, used_nodes);
6922 6923

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6924
		int next_node = find_next_best_node(node, &used_nodes);
6925

6926
		node_to_cpumask_ptr_next(nodemask, next_node);
6927
		cpus_or(*span, *span, *nodemask);
6928 6929
	}
}
6930
#endif /* CONFIG_NUMA */
6931

6932
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6933

6934
/*
6935
 * SMT sched-domains:
6936
 */
L
Linus Torvalds 已提交
6937 6938
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6939
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6940

I
Ingo Molnar 已提交
6941
static int
6942 6943
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6944
{
6945 6946
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6947 6948
	return cpu;
}
6949
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6950

6951 6952 6953
/*
 * multi-core sched-domains:
 */
6954 6955
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6956
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6957
#endif /* CONFIG_SCHED_MC */
6958 6959

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6960
static int
6961 6962
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6963
{
6964
	int group;
6965 6966 6967 6968

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6969 6970 6971
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6972 6973
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6974
static int
6975 6976
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6977
{
6978 6979
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6980 6981 6982 6983
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6984
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6985
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6986

I
Ingo Molnar 已提交
6987
static int
6988 6989
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6990
{
6991
	int group;
6992
#ifdef CONFIG_SCHED_MC
6993 6994 6995
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6996
#elif defined(CONFIG_SCHED_SMT)
6997 6998 6999
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7000
#else
7001
	group = cpu;
L
Linus Torvalds 已提交
7002
#endif
7003 7004 7005
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7006 7007 7008 7009
}

#ifdef CONFIG_NUMA
/*
7010 7011 7012
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7013
 */
7014
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7015
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7016

7017
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7018
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7019

7020
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7021
				 struct sched_group **sg, cpumask_t *nodemask)
7022
{
7023 7024
	int group;

7025 7026 7027
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7028 7029 7030 7031

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7032
}
7033

7034 7035 7036 7037 7038 7039 7040
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7041
	do {
7042
		for_each_cpu_mask_nr(j, sg->cpumask) {
7043
			struct sched_domain *sd;
7044

7045 7046 7047 7048 7049 7050 7051 7052
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7053

7054 7055 7056 7057
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7058
}
7059
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7060

7061
#ifdef CONFIG_NUMA
7062
/* Free memory allocated for various sched_group structures */
7063
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7064
{
7065
	int cpu, i;
7066

7067
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7068 7069 7070 7071 7072 7073
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7074
		for (i = 0; i < nr_node_ids; i++) {
7075 7076
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7077 7078 7079
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7096
#else /* !CONFIG_NUMA */
7097
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7098 7099
{
}
7100
#endif /* CONFIG_NUMA */
7101

7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7128 7129
	sd->groups->__cpu_power = 0;

7130 7131 7132 7133 7134 7135 7136 7137 7138 7139
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7140
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7141 7142 7143 7144 7145 7146 7147 7148
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7149
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7150 7151 7152 7153
		group = group->next;
	} while (group != child->groups);
}

7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7165
	sd->level = SD_LV_##type;				\
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7214 7215 7216 7217
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7218 7219 7220 7221 7222 7223
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7249
/*
7250 7251
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7252
 */
7253 7254
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7255 7256
{
	int i;
G
Gregory Haskins 已提交
7257
	struct root_domain *rd;
7258 7259
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7260 7261
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7262
	int sd_allnodes = 0;
7263 7264 7265 7266

	/*
	 * Allocate the per-node list of sched groups
	 */
7267
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7268
				    GFP_KERNEL);
7269 7270
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7271
		return -ENOMEM;
7272 7273
	}
#endif
L
Linus Torvalds 已提交
7274

7275
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7276 7277
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7278 7279 7280
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7281 7282 7283
		return -ENOMEM;
	}

7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7303
	/*
7304
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7305
	 */
7306
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7307
		struct sched_domain *sd = NULL, *p;
7308
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7309

7310 7311
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7312 7313

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7314
		if (cpus_weight(*cpu_map) >
7315
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7316
			sd = &per_cpu(allnodes_domains, i);
7317
			SD_INIT(sd, ALLNODES);
7318
			set_domain_attribute(sd, attr);
7319
			sd->span = *cpu_map;
7320
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7321
			p = sd;
7322
			sd_allnodes = 1;
7323 7324 7325
		} else
			p = NULL;

L
Linus Torvalds 已提交
7326
		sd = &per_cpu(node_domains, i);
7327
		SD_INIT(sd, NODE);
7328
		set_domain_attribute(sd, attr);
7329
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7330
		sd->parent = p;
7331 7332
		if (p)
			p->child = sd;
7333
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7334 7335 7336 7337
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7338
		SD_INIT(sd, CPU);
7339
		set_domain_attribute(sd, attr);
7340
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7341
		sd->parent = p;
7342 7343
		if (p)
			p->child = sd;
7344
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7345

7346 7347 7348
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7349
		SD_INIT(sd, MC);
7350
		set_domain_attribute(sd, attr);
7351 7352 7353
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7354
		p->child = sd;
7355
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7356 7357
#endif

L
Linus Torvalds 已提交
7358 7359 7360
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7361
		SD_INIT(sd, SIBLING);
7362
		set_domain_attribute(sd, attr);
7363
		sd->span = per_cpu(cpu_sibling_map, i);
7364
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7365
		sd->parent = p;
7366
		p->child = sd;
7367
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7368 7369 7370 7371 7372
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7373
	for_each_cpu_mask_nr(i, *cpu_map) {
7374 7375 7376 7377 7378 7379
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7380 7381
			continue;

I
Ingo Molnar 已提交
7382
		init_sched_build_groups(this_sibling_map, cpu_map,
7383 7384
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7385 7386 7387
	}
#endif

7388 7389
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7390
	for_each_cpu_mask_nr(i, *cpu_map) {
7391 7392 7393 7394 7395 7396
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7397
			continue;
7398

I
Ingo Molnar 已提交
7399
		init_sched_build_groups(this_core_map, cpu_map,
7400 7401
					&cpu_to_core_group,
					send_covered, tmpmask);
7402 7403 7404
	}
#endif

L
Linus Torvalds 已提交
7405
	/* Set up physical groups */
7406
	for (i = 0; i < nr_node_ids; i++) {
7407 7408
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7409

7410 7411 7412
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7413 7414
			continue;

7415 7416 7417
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7418 7419 7420 7421
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7422 7423 7424 7425 7426 7427 7428
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7429

7430
	for (i = 0; i < nr_node_ids; i++) {
7431 7432
		/* Set up node groups */
		struct sched_group *sg, *prev;
7433 7434 7435
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7436 7437
		int j;

7438 7439 7440 7441 7442
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7443
			sched_group_nodes[i] = NULL;
7444
			continue;
7445
		}
7446

7447
		sched_domain_node_span(i, domainspan);
7448
		cpus_and(*domainspan, *domainspan, *cpu_map);
7449

7450
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7451 7452 7453 7454 7455
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7456
		sched_group_nodes[i] = sg;
7457
		for_each_cpu_mask_nr(j, *nodemask) {
7458
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7459

7460 7461 7462
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7463
		sg->__cpu_power = 0;
7464
		sg->cpumask = *nodemask;
7465
		sg->next = sg;
7466
		cpus_or(*covered, *covered, *nodemask);
7467 7468
		prev = sg;

7469
		for (j = 0; j < nr_node_ids; j++) {
7470
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7471
			int n = (i + j) % nr_node_ids;
7472
			node_to_cpumask_ptr(pnodemask, n);
7473

7474 7475 7476 7477
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7478 7479
				break;

7480 7481
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7482 7483
				continue;

7484 7485
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7486 7487 7488
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7489
				goto error;
7490
			}
7491
			sg->__cpu_power = 0;
7492
			sg->cpumask = *tmpmask;
7493
			sg->next = prev->next;
7494
			cpus_or(*covered, *covered, *tmpmask);
7495 7496 7497 7498
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7499 7500 7501
#endif

	/* Calculate CPU power for physical packages and nodes */
7502
#ifdef CONFIG_SCHED_SMT
7503
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7504 7505
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7506
		init_sched_groups_power(i, sd);
7507
	}
L
Linus Torvalds 已提交
7508
#endif
7509
#ifdef CONFIG_SCHED_MC
7510
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7511 7512
		struct sched_domain *sd = &per_cpu(core_domains, i);

7513
		init_sched_groups_power(i, sd);
7514 7515
	}
#endif
7516

7517
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7518 7519
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7520
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7521 7522
	}

7523
#ifdef CONFIG_NUMA
7524
	for (i = 0; i < nr_node_ids; i++)
7525
		init_numa_sched_groups_power(sched_group_nodes[i]);
7526

7527 7528
	if (sd_allnodes) {
		struct sched_group *sg;
7529

7530 7531
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7532 7533
		init_numa_sched_groups_power(sg);
	}
7534 7535
#endif

L
Linus Torvalds 已提交
7536
	/* Attach the domains */
7537
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7538 7539 7540
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7541 7542
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7543 7544 7545
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7546
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7547
	}
7548

7549
	SCHED_CPUMASK_FREE((void *)allmasks);
7550 7551
	return 0;

7552
#ifdef CONFIG_NUMA
7553
error:
7554 7555
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7556
	return -ENOMEM;
7557
#endif
L
Linus Torvalds 已提交
7558
}
P
Paul Jackson 已提交
7559

7560 7561 7562 7563 7564
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7565 7566
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7567 7568
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7569 7570 7571 7572 7573 7574 7575 7576

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7577 7578 7579 7580
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7581
/*
I
Ingo Molnar 已提交
7582
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7583 7584
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7585
 */
7586
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7587
{
7588 7589
	int err;

7590
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7591 7592 7593 7594 7595
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7596
	dattr_cur = NULL;
7597
	err = build_sched_domains(doms_cur);
7598
	register_sched_domain_sysctl();
7599 7600

	return err;
7601 7602
}

7603 7604
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7605
{
7606
	free_sched_groups(cpu_map, tmpmask);
7607
}
L
Linus Torvalds 已提交
7608

7609 7610 7611 7612
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7613
static void detach_destroy_domains(const cpumask_t *cpu_map)
7614
{
7615
	cpumask_t tmpmask;
7616 7617
	int i;

7618 7619
	unregister_sched_domain_sysctl();

7620
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7621
		cpu_attach_domain(NULL, &def_root_domain, i);
7622
	synchronize_sched();
7623
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7624 7625
}

7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7642 7643
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7644
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7645 7646 7647 7648
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7649 7650 7651
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7652 7653 7654
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7655 7656
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7657 7658
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7659
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7660 7661 7662
 *
 * Call with hotplug lock held
 */
7663 7664
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7665 7666 7667
{
	int i, j;

7668
	mutex_lock(&sched_domains_mutex);
7669

7670 7671 7672
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7673 7674
	if (doms_new == NULL)
		ndoms_new = 0;
P
Paul Jackson 已提交
7675 7676 7677 7678

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7679 7680
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7681 7682 7683 7684 7685 7686 7687 7688
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7689 7690 7691 7692 7693 7694 7695 7696
	if (doms_new == NULL) {
		ndoms_cur = 0;
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7697 7698 7699
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7700 7701
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7702 7703 7704
				goto match2;
		}
		/* no match - add a new doms_new */
7705 7706
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7707 7708 7709 7710 7711 7712 7713
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7714
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7715
	doms_cur = doms_new;
7716
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7717
	ndoms_cur = ndoms_new;
7718 7719

	register_sched_domain_sysctl();
7720

7721
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7722 7723
}

7724
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7725
int arch_reinit_sched_domains(void)
7726
{
7727
	get_online_cpus();
7728
	rebuild_sched_domains();
7729
	put_online_cpus();
7730
	return 0;
7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7751 7752
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7753 7754 7755
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7756
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7757
					    const char *buf, size_t count)
7758 7759 7760
{
	return sched_power_savings_store(buf, count, 0);
}
7761 7762 7763
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7764 7765 7766
#endif

#ifdef CONFIG_SCHED_SMT
7767 7768
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7769 7770 7771
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7772
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7773
					     const char *buf, size_t count)
7774 7775 7776
{
	return sched_power_savings_store(buf, count, 1);
}
7777 7778
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7798
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7799

7800
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7801
/*
7802 7803
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7804 7805 7806
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		partition_sched_domains(0, NULL, NULL);
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7824
{
P
Peter Zijlstra 已提交
7825 7826
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7827 7828
	switch (action) {
	case CPU_DOWN_PREPARE:
7829
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7830
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7831 7832 7833
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7834
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7835
	case CPU_ONLINE:
7836
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7837
		enable_runtime(cpu_rq(cpu));
7838 7839
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7840 7841 7842 7843 7844 7845 7846
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7847 7848
	cpumask_t non_isolated_cpus;

7849 7850 7851 7852 7853
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7854
	get_online_cpus();
7855
	mutex_lock(&sched_domains_mutex);
7856
	arch_init_sched_domains(&cpu_online_map);
7857
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7858 7859
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7860
	mutex_unlock(&sched_domains_mutex);
7861
	put_online_cpus();
7862 7863

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7864 7865
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7866 7867 7868 7869 7870
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7871
	init_hrtick();
7872 7873

	/* Move init over to a non-isolated CPU */
7874
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7875
		BUG();
I
Ingo Molnar 已提交
7876
	sched_init_granularity();
L
Linus Torvalds 已提交
7877 7878 7879 7880
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7881
	sched_init_granularity();
L
Linus Torvalds 已提交
7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7892
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7893 7894
{
	cfs_rq->tasks_timeline = RB_ROOT;
7895
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7896 7897 7898
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7899
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7900 7901
}

P
Peter Zijlstra 已提交
7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7915
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7916 7917
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7918 7919 7920 7921 7922 7923 7924
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7925 7926
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7927

7928
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7929
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7930 7931
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7932 7933
}

P
Peter Zijlstra 已提交
7934
#ifdef CONFIG_FAIR_GROUP_SCHED
7935 7936 7937
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7938
{
7939
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7940 7941 7942 7943 7944 7945 7946
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7947 7948 7949 7950
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7951 7952 7953 7954 7955
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7956 7957
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7958
	se->load.inv_weight = 0;
7959
	se->parent = parent;
P
Peter Zijlstra 已提交
7960
}
7961
#endif
P
Peter Zijlstra 已提交
7962

7963
#ifdef CONFIG_RT_GROUP_SCHED
7964 7965 7966
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7967
{
7968 7969
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7970 7971 7972 7973
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7974
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7975 7976 7977 7978
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7979 7980 7981
	if (!rt_se)
		return;

7982 7983 7984 7985 7986
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7987
	rt_se->my_q = rt_rq;
7988
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7989 7990 7991 7992
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7993 7994
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7995
	int i, j;
7996 7997 7998 7999 8000 8001 8002
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8003 8004 8005
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8006 8007 8008 8009 8010 8011
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8012
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8013 8014 8015 8016 8017 8018 8019

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8020 8021 8022 8023 8024 8025 8026

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8027 8028
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8029 8030 8031 8032 8033
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8034 8035 8036 8037 8038 8039 8040 8041
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8042 8043
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8044
	}
I
Ingo Molnar 已提交
8045

G
Gregory Haskins 已提交
8046 8047 8048 8049
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8050 8051 8052 8053 8054 8055
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8056 8057 8058
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8059 8060
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8061

8062
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8063
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8064 8065 8066 8067 8068 8069
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8070 8071
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8072

8073
	for_each_possible_cpu(i) {
8074
		struct rq *rq;
L
Linus Torvalds 已提交
8075 8076 8077

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8078
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8079
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8080
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8081
#ifdef CONFIG_FAIR_GROUP_SCHED
8082
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8083
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8104
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8105
#elif defined CONFIG_USER_SCHED
8106 8107
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8119
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8120
				&per_cpu(init_cfs_rq, i),
8121 8122
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8123

8124
#endif
D
Dhaval Giani 已提交
8125 8126 8127
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8128
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8129
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8130
#ifdef CONFIG_CGROUP_SCHED
8131
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8132
#elif defined CONFIG_USER_SCHED
8133
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8134
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8135
				&per_cpu(init_rt_rq, i),
8136 8137
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8138
#endif
I
Ingo Molnar 已提交
8139
#endif
L
Linus Torvalds 已提交
8140

I
Ingo Molnar 已提交
8141 8142
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8143
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8144
		rq->sd = NULL;
G
Gregory Haskins 已提交
8145
		rq->rd = NULL;
L
Linus Torvalds 已提交
8146
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8147
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8148
		rq->push_cpu = 0;
8149
		rq->cpu = i;
8150
		rq->online = 0;
L
Linus Torvalds 已提交
8151 8152
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8153
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8154
#endif
P
Peter Zijlstra 已提交
8155
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8156 8157 8158
		atomic_set(&rq->nr_iowait, 0);
	}

8159
	set_load_weight(&init_task);
8160

8161 8162 8163 8164
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8165
#ifdef CONFIG_SMP
8166
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8167 8168
#endif

8169 8170 8171 8172
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8186 8187 8188 8189
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8190 8191

	scheduler_running = 1;
L
Linus Torvalds 已提交
8192 8193 8194 8195 8196
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8197
#ifdef in_atomic
L
Linus Torvalds 已提交
8198 8199 8200 8201 8202 8203 8204
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8205
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8206 8207 8208
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8209
		debug_show_held_locks(current);
8210 8211
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8212 8213 8214 8215 8216 8217 8218 8219
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8220 8221 8222
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8223

8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8235 8236
void normalize_rt_tasks(void)
{
8237
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8238
	unsigned long flags;
8239
	struct rq *rq;
L
Linus Torvalds 已提交
8240

8241
	read_lock_irqsave(&tasklist_lock, flags);
8242
	do_each_thread(g, p) {
8243 8244 8245 8246 8247 8248
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8249 8250
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8251 8252 8253
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8254
#endif
I
Ingo Molnar 已提交
8255 8256 8257 8258 8259 8260 8261 8262

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8263
			continue;
I
Ingo Molnar 已提交
8264
		}
L
Linus Torvalds 已提交
8265

8266
		spin_lock(&p->pi_lock);
8267
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8268

8269
		normalize_task(rq, p);
8270

8271
		__task_rq_unlock(rq);
8272
		spin_unlock(&p->pi_lock);
8273 8274
	} while_each_thread(g, p);

8275
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8276 8277 8278
}

#endif /* CONFIG_MAGIC_SYSRQ */
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8297
struct task_struct *curr_task(int cpu)
8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8308 8309
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8310 8311 8312 8313 8314 8315 8316
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8317
void set_curr_task(int cpu, struct task_struct *p)
8318 8319 8320 8321 8322
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8323

8324 8325
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8340 8341
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8342 8343
{
	struct cfs_rq *cfs_rq;
8344
	struct sched_entity *se, *parent_se;
8345
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8346 8347
	int i;

8348
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8349 8350
	if (!tg->cfs_rq)
		goto err;
8351
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8352 8353
	if (!tg->se)
		goto err;
8354 8355

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8356 8357

	for_each_possible_cpu(i) {
8358
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8359

P
Peter Zijlstra 已提交
8360 8361
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8362 8363 8364
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8365 8366
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8367 8368 8369
		if (!se)
			goto err;

8370 8371
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8390
#else /* !CONFG_FAIR_GROUP_SCHED */
8391 8392 8393 8394
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8395 8396
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8408
#endif /* CONFIG_FAIR_GROUP_SCHED */
8409 8410

#ifdef CONFIG_RT_GROUP_SCHED
8411 8412 8413 8414
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8415 8416
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8428 8429
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8430 8431
{
	struct rt_rq *rt_rq;
8432
	struct sched_rt_entity *rt_se, *parent_se;
8433 8434 8435
	struct rq *rq;
	int i;

8436
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8437 8438
	if (!tg->rt_rq)
		goto err;
8439
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8440 8441 8442
	if (!tg->rt_se)
		goto err;

8443 8444
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8445 8446 8447 8448

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8449 8450 8451 8452
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8453

P
Peter Zijlstra 已提交
8454 8455 8456 8457
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8458

8459 8460
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8461 8462
	}

8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8479
#else /* !CONFIG_RT_GROUP_SCHED */
8480 8481 8482 8483
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8484 8485
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8497
#endif /* CONFIG_RT_GROUP_SCHED */
8498

8499
#ifdef CONFIG_GROUP_SCHED
8500 8501 8502 8503 8504 8505 8506 8507
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8508
struct task_group *sched_create_group(struct task_group *parent)
8509 8510 8511 8512 8513 8514 8515 8516 8517
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8518
	if (!alloc_fair_sched_group(tg, parent))
8519 8520
		goto err;

8521
	if (!alloc_rt_sched_group(tg, parent))
8522 8523
		goto err;

8524
	spin_lock_irqsave(&task_group_lock, flags);
8525
	for_each_possible_cpu(i) {
8526 8527
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8528
	}
P
Peter Zijlstra 已提交
8529
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8530 8531 8532 8533 8534

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8535
	list_add_rcu(&tg->siblings, &parent->children);
8536
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8537

8538
	return tg;
S
Srivatsa Vaddagiri 已提交
8539 8540

err:
P
Peter Zijlstra 已提交
8541
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8542 8543 8544
	return ERR_PTR(-ENOMEM);
}

8545
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8546
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8547 8548
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8549
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8550 8551
}

8552
/* Destroy runqueue etc associated with a task group */
8553
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8554
{
8555
	unsigned long flags;
8556
	int i;
S
Srivatsa Vaddagiri 已提交
8557

8558
	spin_lock_irqsave(&task_group_lock, flags);
8559
	for_each_possible_cpu(i) {
8560 8561
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8562
	}
P
Peter Zijlstra 已提交
8563
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8564
	list_del_rcu(&tg->siblings);
8565
	spin_unlock_irqrestore(&task_group_lock, flags);
8566 8567

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8568
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8569 8570
}

8571
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8572 8573 8574
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8575 8576
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8577 8578 8579 8580 8581 8582 8583 8584 8585
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8586
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8587 8588
	on_rq = tsk->se.on_rq;

8589
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8590
		dequeue_task(rq, tsk, 0);
8591 8592
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8593

P
Peter Zijlstra 已提交
8594
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8595

P
Peter Zijlstra 已提交
8596 8597 8598 8599 8600
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8601 8602 8603
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8604
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8605 8606 8607

	task_rq_unlock(rq, &flags);
}
8608
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8609

8610
#ifdef CONFIG_FAIR_GROUP_SCHED
8611
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8612 8613 8614 8615 8616
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8617
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8618 8619 8620
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8621
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8622

8623
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8624
		enqueue_entity(cfs_rq, se, 0);
8625
}
8626

8627 8628 8629 8630 8631 8632 8633 8634 8635
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8636 8637
}

8638 8639
static DEFINE_MUTEX(shares_mutex);

8640
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8641 8642
{
	int i;
8643
	unsigned long flags;
8644

8645 8646 8647 8648 8649 8650
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8651 8652
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8653 8654
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8655

8656
	mutex_lock(&shares_mutex);
8657
	if (tg->shares == shares)
8658
		goto done;
S
Srivatsa Vaddagiri 已提交
8659

8660
	spin_lock_irqsave(&task_group_lock, flags);
8661 8662
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8663
	list_del_rcu(&tg->siblings);
8664
	spin_unlock_irqrestore(&task_group_lock, flags);
8665 8666 8667 8668 8669 8670 8671 8672

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8673
	tg->shares = shares;
8674 8675 8676 8677 8678
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8679
		set_se_shares(tg->se[i], shares);
8680
	}
S
Srivatsa Vaddagiri 已提交
8681

8682 8683 8684 8685
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8686
	spin_lock_irqsave(&task_group_lock, flags);
8687 8688
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8689
	list_add_rcu(&tg->siblings, &tg->parent->children);
8690
	spin_unlock_irqrestore(&task_group_lock, flags);
8691
done:
8692
	mutex_unlock(&shares_mutex);
8693
	return 0;
S
Srivatsa Vaddagiri 已提交
8694 8695
}

8696 8697 8698 8699
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8700
#endif
8701

8702
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8703
/*
P
Peter Zijlstra 已提交
8704
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8705
 */
P
Peter Zijlstra 已提交
8706 8707 8708 8709 8710
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8711
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8712

P
Peter Zijlstra 已提交
8713
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8714 8715
}

P
Peter Zijlstra 已提交
8716 8717
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8718
{
P
Peter Zijlstra 已提交
8719
	struct task_struct *g, *p;
8720

P
Peter Zijlstra 已提交
8721 8722 8723 8724
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8725

P
Peter Zijlstra 已提交
8726 8727
	return 0;
}
8728

P
Peter Zijlstra 已提交
8729 8730 8731 8732 8733
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8734

P
Peter Zijlstra 已提交
8735 8736 8737 8738 8739 8740
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8741

P
Peter Zijlstra 已提交
8742 8743 8744 8745 8746 8747
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;

	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8748 8749
	}

P
Peter Zijlstra 已提交
8750 8751
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8752

P
Peter Zijlstra 已提交
8753 8754 8755 8756 8757
	total = to_ratio(period, runtime);

	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8758

P
Peter Zijlstra 已提交
8759 8760 8761 8762 8763 8764
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}

		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8765
	}
P
Peter Zijlstra 已提交
8766

P
Peter Zijlstra 已提交
8767 8768 8769 8770
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8771 8772
}

P
Peter Zijlstra 已提交
8773
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8774
{
P
Peter Zijlstra 已提交
8775 8776 8777 8778 8779 8780 8781
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8782 8783
}

8784 8785
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8786
{
P
Peter Zijlstra 已提交
8787
	int i, err = 0;
P
Peter Zijlstra 已提交
8788 8789

	mutex_lock(&rt_constraints_mutex);
8790
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8791 8792
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8793
		goto unlock;
P
Peter Zijlstra 已提交
8794 8795

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8796 8797
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8798 8799 8800 8801 8802 8803 8804 8805 8806

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8807
 unlock:
8808
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8809 8810 8811
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8812 8813
}

8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8826 8827 8828 8829
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8830
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8831 8832
		return -1;

8833
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8834 8835 8836
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8837 8838 8839 8840 8841 8842 8843 8844

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8845 8846 8847
	if (rt_period == 0)
		return -EINVAL;

8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8862 8863
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8864 8865
	int ret = 0;

8866 8867 8868
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8869
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
8870 8871 8872
	read_lock(&tasklist_lock);
	ret = __rt_schedulable(tg, rt_period, rt_runtime);
	read_unlock(&tasklist_lock);
8873 8874 8875 8876
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8877
#else /* !CONFIG_RT_GROUP_SCHED */
8878 8879
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8893 8894
	return 0;
}
8895
#endif /* CONFIG_RT_GROUP_SCHED */
8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8926

8927
#ifdef CONFIG_CGROUP_SCHED
8928 8929

/* return corresponding task_group object of a cgroup */
8930
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8931
{
8932 8933
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8934 8935 8936
}

static struct cgroup_subsys_state *
8937
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8938
{
8939
	struct task_group *tg, *parent;
8940

8941
	if (!cgrp->parent) {
8942
		/* This is early initialization for the top cgroup */
8943
		init_task_group.css.cgroup = cgrp;
8944 8945 8946
		return &init_task_group.css;
	}

8947 8948
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8949 8950 8951 8952
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8953
	tg->css.cgroup = cgrp;
8954 8955 8956 8957

	return &tg->css;
}

I
Ingo Molnar 已提交
8958 8959
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8960
{
8961
	struct task_group *tg = cgroup_tg(cgrp);
8962 8963 8964 8965

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8966 8967 8968
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8969
{
8970 8971
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8972
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8973 8974
		return -EINVAL;
#else
8975 8976 8977
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8978
#endif
8979 8980 8981 8982 8983

	return 0;
}

static void
8984
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8985 8986 8987 8988 8989
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8990
#ifdef CONFIG_FAIR_GROUP_SCHED
8991
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8992
				u64 shareval)
8993
{
8994
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8995 8996
}

8997
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8998
{
8999
	struct task_group *tg = cgroup_tg(cgrp);
9000 9001 9002

	return (u64) tg->shares;
}
9003
#endif /* CONFIG_FAIR_GROUP_SCHED */
9004

9005
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9006
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9007
				s64 val)
P
Peter Zijlstra 已提交
9008
{
9009
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9010 9011
}

9012
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9013
{
9014
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9015
}
9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9027
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9028

9029
static struct cftype cpu_files[] = {
9030
#ifdef CONFIG_FAIR_GROUP_SCHED
9031 9032
	{
		.name = "shares",
9033 9034
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9035
	},
9036 9037
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9038
	{
P
Peter Zijlstra 已提交
9039
		.name = "rt_runtime_us",
9040 9041
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9042
	},
9043 9044
	{
		.name = "rt_period_us",
9045 9046
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9047
	},
9048
#endif
9049 9050 9051 9052
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9053
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9054 9055 9056
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9057 9058 9059 9060 9061 9062 9063
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9064 9065 9066
	.early_init	= 1,
};

9067
#endif	/* CONFIG_CGROUP_SCHED */
9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9088
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9089
{
9090
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9103
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9120
static void
9121
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9122
{
9123
	struct cpuacct *ca = cgroup_ca(cgrp);
9124 9125 9126 9127 9128 9129

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9130
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9131
{
9132
	struct cpuacct *ca = cgroup_ca(cgrp);
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9174 9175 9176
static struct cftype files[] = {
	{
		.name = "usage",
9177 9178
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9179 9180 9181
	},
};

9182
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9183
{
9184
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */