sched.c 176.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
55
#include <linux/cpu_acct.h>
L
Linus Torvalds 已提交
56 57
#include <linux/kthread.h>
#include <linux/seq_file.h>
58
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
59 60
#include <linux/syscalls.h>
#include <linux/times.h>
61
#include <linux/tsacct_kern.h>
62
#include <linux/kprobes.h>
63
#include <linux/delayacct.h>
64
#include <linux/reciprocal_div.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
67

68
#include <asm/tlb.h>
69
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
70

71 72 73 74 75 76 77 78 79 80
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
103 104
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

137 138 139 140 141 142 143 144 145 146 147 148
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
149
/*
I
Ingo Molnar 已提交
150
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
151
 */
I
Ingo Molnar 已提交
152 153 154 155 156
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

159 160
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
161 162 163
struct cfs_rq;

/* task group related information */
164
struct task_group {
165 166 167
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
168 169 170 171 172
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
173 174
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
194
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
195
#else
I
Ingo Molnar 已提交
196
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
212
	tg  = &init_task_group;
213
#endif
214 215

	return tg;
S
Srivatsa Vaddagiri 已提交
216 217 218 219 220
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
221 222
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
223 224 225 226 227 228 229 230
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
231 232 233 234 235 236
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
237
	u64 min_vruntime;
I
Ingo Molnar 已提交
238 239 240 241 242 243 244 245

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
246 247 248

	unsigned long nr_spread_over;

249
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
250 251 252 253 254 255 256 257 258 259
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
260
	struct task_group *tg;    /* group that "owns" this runqueue */
261
	struct rcu_head rcu;
I
Ingo Molnar 已提交
262 263
#endif
};
L
Linus Torvalds 已提交
264

I
Ingo Molnar 已提交
265 266 267 268 269 270 271
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
272 273 274 275 276 277 278
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
279
struct rq {
280 281
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
282 283 284 285 286 287

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
288 289
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
290
	unsigned char idle_at_tick;
291 292 293
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
294 295
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
296 297 298 299 300
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
301 302
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
303
#endif
I
Ingo Molnar 已提交
304
	struct rt_rq  rt;
L
Linus Torvalds 已提交
305 306 307 308 309 310 311 312 313

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

314
	struct task_struct *curr, *idle;
315
	unsigned long next_balance;
L
Linus Torvalds 已提交
316
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
317 318 319 320 321

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
322 323
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
324
	u64 tick_timestamp;
I
Ingo Molnar 已提交
325

L
Linus Torvalds 已提交
326 327 328 329 330 331 332 333
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
334 335
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
336

337
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
346 347 348 349
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
350 351

	/* schedule() stats */
352 353 354
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
355 356

	/* try_to_wake_up() stats */
357 358
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
359 360

	/* BKL stats */
361
	unsigned int bkl_count;
L
Linus Torvalds 已提交
362
#endif
363
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
364 365
};

366
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
367
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

374 375 376 377 378 379 380 381 382
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
383
/*
I
Ingo Molnar 已提交
384 385
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
386
 */
I
Ingo Molnar 已提交
387
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
388 389 390 391 392 393
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
394 395 396
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
397 398 399 400 401 402 403 404 405 406
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
407 408 409 410 411
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
412 413 414 415 416 417 418 419 420 421
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
422
}
I
Ingo Molnar 已提交
423

I
Ingo Molnar 已提交
424 425 426 427
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
428 429
}

N
Nick Piggin 已提交
430 431
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
432
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
433 434 435 436
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
437 438
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
439 440 441 442 443 444

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
458 459
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
460
	SCHED_FEAT_TREE_AVG             = 4,
461
	SCHED_FEAT_APPROX_AVG           = 8,
462
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
463
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
464 465 466
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
467 468 469 470 471 472
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
		SCHED_FEAT_PREEMPT_RESTRICT	* 1;
I
Ingo Molnar 已提交
473 474 475

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

476 477 478 479 480 481 482 483
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
484
	struct rq *rq;
485

486
	local_irq_save(flags);
I
Ingo Molnar 已提交
487 488 489
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
490
	local_irq_restore(flags);
491 492 493

	return now;
}
P
Paul E. McKenney 已提交
494
EXPORT_SYMBOL_GPL(cpu_clock);
495

L
Linus Torvalds 已提交
496
#ifndef prepare_arch_switch
497 498 499 500 501 502 503
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
504
static inline int task_running(struct rq *rq, struct task_struct *p)
505 506 507 508
{
	return rq->curr == p;
}

509
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
510 511 512
{
}

513
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
514
{
515 516 517 518
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
519 520 521 522 523 524 525
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

526 527 528 529
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
530
static inline int task_running(struct rq *rq, struct task_struct *p)
531 532 533 534 535 536 537 538
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

539
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

556
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
557 558 559 560 561 562 563 564 565 566 567 568
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
569
#endif
570 571
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
572

573 574 575 576
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
577
static inline struct rq *__task_rq_lock(struct task_struct *p)
578 579
	__acquires(rq->lock)
{
580 581 582 583 584
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
585 586 587 588
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
589 590 591 592 593
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
594
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
595 596
	__acquires(rq->lock)
{
597
	struct rq *rq;
L
Linus Torvalds 已提交
598

599 600 601 602 603 604
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
605 606 607 608
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
609
static void __task_rq_unlock(struct rq *rq)
610 611 612 613 614
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

615
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
616 617 618 619 620 621
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
622
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
623
 */
A
Alexey Dobriyan 已提交
624
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
625 626
	__acquires(rq->lock)
{
627
	struct rq *rq;
L
Linus Torvalds 已提交
628 629 630 631 632 633 634 635

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

636
/*
637
 * We are going deep-idle (irqs are disabled):
638
 */
639
void sched_clock_idle_sleep_event(void)
640
{
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
657

658 659 660 661 662 663 664 665 666 667 668
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
669
}
670
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
671

I
Ingo Molnar 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

724 725 726 727 728 729 730 731
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
732 733 734
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
735
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
736

737
static unsigned long
738 739 740 741 742 743
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
744
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
745 746 747 748 749

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
750
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
751
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
752 753
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
754
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
755

756
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
757 758 759 760 761 762 763 764
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

765
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
766 767 768 769
{
	lw->weight += inc;
}

770
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
771 772 773 774
{
	lw->weight -= dec;
}

775 776 777 778 779 780 781 782 783
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
784 785 786 787 788 789 790 791 792 793 794
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
795 796 797
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
798 799
 */
static const int prio_to_weight[40] = {
800 801 802 803 804 805 806 807
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
808 809
};

810 811 812 813 814 815 816
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
817
static const u32 prio_to_wmult[40] = {
818 819 820 821 822 823 824 825
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
826
};
827

I
Ingo Molnar 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
845
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
846 847 848

#include "sched_stats.h"
#include "sched_idletask.c"
849 850
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
851 852 853 854 855 856
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

857 858 859 860
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
861
 * total load (rq->load.weight) on the runqueue, while
862 863 864 865 866 867 868
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
869
 * This function is called /before/ updating rq->load
870 871
 * and when switching tasks.
 */
872
static inline void inc_load(struct rq *rq, const struct task_struct *p)
873
{
874
	update_load_add(&rq->load, p->se.load.weight);
875 876
}

877
static inline void dec_load(struct rq *rq, const struct task_struct *p)
878
{
879
	update_load_sub(&rq->load, p->se.load.weight);
880 881
}

882
static void inc_nr_running(struct task_struct *p, struct rq *rq)
883 884
{
	rq->nr_running++;
885
	inc_load(rq, p);
886 887
}

888
static void dec_nr_running(struct task_struct *p, struct rq *rq)
889 890
{
	rq->nr_running--;
891
	dec_load(rq, p);
892 893
}

894 895 896
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
897 898 899 900
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
901

I
Ingo Molnar 已提交
902 903 904 905 906 907 908 909
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
910

I
Ingo Molnar 已提交
911 912
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
913 914
}

915
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
916
{
I
Ingo Molnar 已提交
917
	sched_info_queued(p);
918
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
919
	p->se.on_rq = 1;
920 921
}

922
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
923
{
924
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
925
	p->se.on_rq = 0;
926 927
}

928
/*
I
Ingo Molnar 已提交
929
 * __normal_prio - return the priority that is based on the static prio
930 931 932
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
933
	return p->static_prio;
934 935
}

936 937 938 939 940 941 942
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
943
static inline int normal_prio(struct task_struct *p)
944 945 946
{
	int prio;

947
	if (task_has_rt_policy(p))
948 949 950 951 952 953 954 955 956 957 958 959 960
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
961
static int effective_prio(struct task_struct *p)
962 963 964 965 966 967 968 969 970 971 972 973
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
974
/*
I
Ingo Molnar 已提交
975
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
976
 */
I
Ingo Molnar 已提交
977
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
978
{
I
Ingo Molnar 已提交
979 980
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
981

982
	enqueue_task(rq, p, wakeup);
983
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
984 985 986 987 988
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
989
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
990
{
I
Ingo Molnar 已提交
991 992 993
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

994
	dequeue_task(rq, p, sleep);
995
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
996 997 998 999 1000 1001
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1002
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1003 1004 1005 1006
{
	return cpu_curr(task_cpu(p)) == p;
}

1007 1008 1009
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1010
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1011 1012 1013 1014 1015 1016 1017
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1018
	set_task_cfs_rq(p);
1019 1020
}

L
Linus Torvalds 已提交
1021
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1022

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1034 1035 1036 1037 1038
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1039 1040 1041 1042 1043 1044
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1045
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1046
{
I
Ingo Molnar 已提交
1047 1048
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1049 1050
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1051
	u64 clock_offset;
I
Ingo Molnar 已提交
1052 1053

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1054 1055 1056 1057

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1058 1059 1060 1061
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1062 1063 1064 1065 1066
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1067
#endif
1068 1069
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1070 1071

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1072 1073
}

1074
struct migration_req {
L
Linus Torvalds 已提交
1075 1076
	struct list_head list;

1077
	struct task_struct *task;
L
Linus Torvalds 已提交
1078 1079 1080
	int dest_cpu;

	struct completion done;
1081
};
L
Linus Torvalds 已提交
1082 1083 1084 1085 1086

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1087
static int
1088
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1089
{
1090
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1096
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1097 1098 1099 1100 1101 1102 1103 1104
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1105

L
Linus Torvalds 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1118
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1119 1120
{
	unsigned long flags;
I
Ingo Molnar 已提交
1121
	int running, on_rq;
1122
	struct rq *rq;
L
Linus Torvalds 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1181

1182 1183 1184 1185 1186 1187 1188
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1204
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1216 1217
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1218 1219 1220 1221
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1222
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1223
{
1224
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1225
	unsigned long total = weighted_cpuload(cpu);
1226

1227
	if (type == 0)
I
Ingo Molnar 已提交
1228
		return total;
1229

I
Ingo Molnar 已提交
1230
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1231 1232 1233
}

/*
1234 1235
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1236
 */
A
Alexey Dobriyan 已提交
1237
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1238
{
1239
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1240
	unsigned long total = weighted_cpuload(cpu);
1241

N
Nick Piggin 已提交
1242
	if (type == 0)
I
Ingo Molnar 已提交
1243
		return total;
1244

I
Ingo Molnar 已提交
1245
	return max(rq->cpu_load[type-1], total);
1246 1247 1248 1249 1250 1251 1252
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1253
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1254
	unsigned long total = weighted_cpuload(cpu);
1255 1256
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1257
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1258 1259
}

N
Nick Piggin 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1277 1278
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1279
			continue;
1280

N
Nick Piggin 已提交
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1297 1298
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1299 1300 1301 1302 1303 1304 1305 1306

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1307
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1308 1309 1310 1311 1312 1313 1314

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1315
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1316
 */
I
Ingo Molnar 已提交
1317 1318
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1319
{
1320
	cpumask_t tmp;
N
Nick Piggin 已提交
1321 1322 1323 1324
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1325 1326 1327 1328
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1329
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1355

1356
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1357 1358 1359
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1360 1361
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1362 1363
		if (tmp->flags & flag)
			sd = tmp;
1364
	}
N
Nick Piggin 已提交
1365 1366 1367 1368

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1369 1370 1371 1372 1373 1374
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1375 1376 1377

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1378 1379 1380 1381
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1382

1383
		new_cpu = find_idlest_cpu(group, t, cpu);
1384 1385 1386 1387 1388
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1389

1390
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1417
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1418 1419 1420 1421 1422
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1433 1434 1435 1436
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1437
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1438
			for_each_cpu_mask(i, tmp) {
1439 1440 1441 1442 1443
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1444
					return i;
1445
				}
L
Linus Torvalds 已提交
1446
			}
I
Ingo Molnar 已提交
1447
		} else {
N
Nick Piggin 已提交
1448
			break;
I
Ingo Molnar 已提交
1449
		}
L
Linus Torvalds 已提交
1450 1451 1452 1453
	}
	return cpu;
}
#else
1454
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1474
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1475
{
1476
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1477 1478
	unsigned long flags;
	long old_state;
1479
	struct rq *rq;
L
Linus Torvalds 已提交
1480
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1481
	struct sched_domain *sd, *this_sd = NULL;
1482
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487 1488 1489 1490
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1491
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1492 1493 1494
		goto out_running;

	cpu = task_cpu(p);
1495
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500 1501
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1502 1503
	new_cpu = cpu;

1504
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1505 1506
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1507 1508 1509 1510 1511 1512 1513 1514
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1515 1516 1517
		}
	}

N
Nick Piggin 已提交
1518
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1519 1520 1521
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1522
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1523
	 */
N
Nick Piggin 已提交
1524 1525 1526
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1527

1528 1529
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1530 1531
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1532

N
Nick Piggin 已提交
1533 1534
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1535 1536
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1537 1538
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1539 1540 1541 1542 1543 1544
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1545
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1546
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1547

L
Linus Torvalds 已提交
1548
			/*
1549 1550 1551
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1552
			 */
1553
			if (sync)
I
Ingo Molnar 已提交
1554
				tl -= current->se.load.weight;
1555 1556

			if ((tl <= load &&
1557
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1558
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1559 1560 1561 1562 1563 1564
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1565
				schedstat_inc(p, se.nr_wakeups_affine);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1577
				schedstat_inc(p, se.nr_wakeups_passive);
1578 1579
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1594
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1595 1596 1597 1598 1599 1600 1601 1602
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1603 1604 1605 1606 1607 1608 1609 1610 1611
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1612
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1613
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1614
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1625
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1632
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1633 1634 1635 1636 1637 1638 1639
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1640 1641 1642 1643 1644 1645 1646
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1647
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1648 1649 1650

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1651 1652 1653 1654 1655 1656
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1657
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1658
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1659
#endif
N
Nick Piggin 已提交
1660

I
Ingo Molnar 已提交
1661 1662
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1663

1664 1665 1666 1667
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1668 1669 1670 1671 1672 1673 1674
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1689
	set_task_cpu(p, cpu);
1690 1691 1692 1693 1694

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1695 1696
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1697

1698
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1699
	if (likely(sched_info_on()))
1700
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1701
#endif
1702
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1703 1704
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1705
#ifdef CONFIG_PREEMPT
1706
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1707
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1708
#endif
N
Nick Piggin 已提交
1709
	put_cpu();
L
Linus Torvalds 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1719
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1720 1721
{
	unsigned long flags;
I
Ingo Molnar 已提交
1722
	struct rq *rq;
L
Linus Torvalds 已提交
1723 1724

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1725
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1726
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1727 1728 1729

	p->prio = effective_prio(p);

1730
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1731
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1732 1733
	} else {
		/*
I
Ingo Molnar 已提交
1734 1735
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1736
		 */
1737
		p->sched_class->task_new(rq, p);
1738
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1739
	}
I
Ingo Molnar 已提交
1740 1741
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1742 1743
}

1744 1745 1746
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1747 1748
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1749 1750 1751 1752 1753 1754 1755 1756 1757
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1758
 * @notifier: notifier struct to unregister
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1802 1803 1804
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1805
 * @prev: the current task that is being switched out
1806 1807 1808 1809 1810 1811 1812 1813 1814
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1815 1816 1817
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1818
{
1819
	fire_sched_out_preempt_notifiers(prev, next);
1820 1821 1822 1823
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1824 1825
/**
 * finish_task_switch - clean up after a task-switch
1826
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1827 1828
 * @prev: the thread we just switched away from.
 *
1829 1830 1831 1832
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1839
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1840 1841 1842
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1843
	long prev_state;
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1849
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1850 1851
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1852
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1858
	prev_state = prev->state;
1859 1860
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1861
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1862 1863
	if (mm)
		mmdrop(mm);
1864
	if (unlikely(prev_state == TASK_DEAD)) {
1865 1866 1867
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1868
		 */
1869
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1870
		put_task_struct(prev);
1871
	}
L
Linus Torvalds 已提交
1872 1873 1874 1875 1876 1877
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1878
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1879 1880
	__releases(rq->lock)
{
1881 1882
	struct rq *rq = this_rq();

1883 1884 1885 1886 1887
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1888
	if (current->set_child_tid)
1889
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1896
static inline void
1897
context_switch(struct rq *rq, struct task_struct *prev,
1898
	       struct task_struct *next)
L
Linus Torvalds 已提交
1899
{
I
Ingo Molnar 已提交
1900
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1901

1902
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1903 1904
	mm = next->mm;
	oldmm = prev->active_mm;
1905 1906 1907 1908 1909 1910 1911
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1912
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1919
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1920 1921 1922
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1923 1924 1925 1926 1927 1928 1929
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1930
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1931
#endif
L
Linus Torvalds 已提交
1932 1933 1934 1935

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1936 1937 1938 1939 1940 1941 1942
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1966
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1981 1982
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1983

1984
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1994
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2015
/*
I
Ingo Molnar 已提交
2016 2017
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2018
 */
I
Ingo Molnar 已提交
2019
static void update_cpu_load(struct rq *this_rq)
2020
{
2021
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2034 2035 2036 2037 2038 2039 2040
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2041 2042
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2043 2044
}

I
Ingo Molnar 已提交
2045 2046
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2047 2048 2049 2050 2051 2052
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2053
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2054 2055 2056
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2057
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2058 2059 2060 2061
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2062
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2063 2064 2065 2066 2067 2068 2069
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2070 2071
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077 2078 2079
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2080
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2094
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2095 2096 2097 2098
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2099 2100 2101 2102 2103
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2104
	if (unlikely(!spin_trylock(&busiest->lock))) {
2105
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2120
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2121
{
2122
	struct migration_req req;
L
Linus Torvalds 已提交
2123
	unsigned long flags;
2124
	struct rq *rq;
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2135

L
Linus Torvalds 已提交
2136 2137 2138 2139 2140
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2141

L
Linus Torvalds 已提交
2142 2143 2144 2145 2146 2147 2148
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2149 2150
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2151 2152 2153 2154
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2155
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2156
	put_cpu();
N
Nick Piggin 已提交
2157 2158
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2165 2166
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2167
{
2168
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2169
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2170
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2171 2172 2173 2174
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2175
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2181
static
2182
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2183
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2184
		     int *all_pinned)
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189 2190 2191
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2192 2193
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2194
		return 0;
2195
	}
2196 2197
	*all_pinned = 0;

2198 2199
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2200
		return 0;
2201
	}
L
Linus Torvalds 已提交
2202

2203 2204 2205 2206 2207 2208
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2209 2210
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2211
#ifdef CONFIG_SCHEDSTATS
2212
		if (task_hot(p, rq->clock, sd)) {
2213
			schedstat_inc(sd, lb_hot_gained[idle]);
2214 2215
			schedstat_inc(p, se.nr_forced_migrations);
		}
2216 2217 2218 2219
#endif
		return 1;
	}

2220 2221
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2222
		return 0;
2223
	}
L
Linus Torvalds 已提交
2224 2225 2226
	return 1;
}

I
Ingo Molnar 已提交
2227
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2228
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2229
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2230
		      int *all_pinned, unsigned long *load_moved,
2231
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2232
{
I
Ingo Molnar 已提交
2233 2234 2235
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2236

2237
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2238 2239
		goto out;

2240 2241
	pinned = 1;

L
Linus Torvalds 已提交
2242
	/*
I
Ingo Molnar 已提交
2243
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2244
	 */
I
Ingo Molnar 已提交
2245 2246 2247
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2248
		goto out;
2249 2250 2251 2252 2253
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2254 2255
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2256
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2257 2258 2259
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2260 2261
	}

I
Ingo Molnar 已提交
2262
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2263
	pulled++;
I
Ingo Molnar 已提交
2264
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2265

2266 2267 2268 2269 2270
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2271 2272
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2273 2274
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2283 2284 2285

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2286
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2287 2288 2289
	return pulled;
}

I
Ingo Molnar 已提交
2290
/*
P
Peter Williams 已提交
2291 2292 2293
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2294 2295 2296 2297
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2298
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2299 2300 2301
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2302
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2303
	unsigned long total_load_moved = 0;
2304
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2305 2306

	do {
P
Peter Williams 已提交
2307 2308 2309
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2310
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2311
		class = class->next;
P
Peter Williams 已提交
2312
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2313

P
Peter Williams 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2327
	const struct sched_class *class;
2328
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2329 2330 2331

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2332 2333
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2334 2335 2336
			return 1;

	return 0;
I
Ingo Molnar 已提交
2337 2338
}

L
Linus Torvalds 已提交
2339 2340
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2341 2342
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2343 2344 2345
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2346 2347
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2348 2349 2350
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2351
	unsigned long max_pull;
2352 2353
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2354
	int load_idx, group_imb = 0;
2355 2356 2357 2358 2359 2360
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2361 2362

	max_load = this_load = total_load = total_pwr = 0;
2363 2364
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2365
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2366
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2367
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2368 2369 2370
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2371 2372

	do {
2373
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2374 2375
		int local_group;
		int i;
2376
		int __group_imb = 0;
2377
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2378
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2379 2380 2381

		local_group = cpu_isset(this_cpu, group->cpumask);

2382 2383 2384
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2385
		/* Tally up the load of all CPUs in the group */
2386
		sum_weighted_load = sum_nr_running = avg_load = 0;
2387 2388
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2389 2390

		for_each_cpu_mask(i, group->cpumask) {
2391 2392 2393 2394 2395 2396
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2397

2398
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2399 2400
				*sd_idle = 0;

L
Linus Torvalds 已提交
2401
			/* Bias balancing toward cpus of our domain */
2402 2403 2404 2405 2406 2407
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2408
				load = target_load(i, load_idx);
2409
			} else {
N
Nick Piggin 已提交
2410
				load = source_load(i, load_idx);
2411 2412 2413 2414 2415
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2416 2417

			avg_load += load;
2418
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2419
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2420 2421
		}

2422 2423 2424
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2425 2426
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2427
		 */
2428 2429
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2430 2431 2432 2433
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2434
		total_load += avg_load;
2435
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2436 2437

		/* Adjust by relative CPU power of the group */
2438 2439
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2440

2441 2442 2443
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2444
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2445

L
Linus Torvalds 已提交
2446 2447 2448
		if (local_group) {
			this_load = avg_load;
			this = group;
2449 2450 2451
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2452
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2453 2454
			max_load = avg_load;
			busiest = group;
2455 2456
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2457
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2458
		}
2459 2460 2461 2462 2463 2464

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2465 2466 2467
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2468 2469 2470 2471 2472 2473 2474 2475 2476

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2477
		/*
2478 2479
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2480 2481
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2482
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2483
			goto group_next;
2484

I
Ingo Molnar 已提交
2485
		/*
2486
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2487 2488 2489 2490 2491
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2492 2493
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2494 2495
			group_min = group;
			min_nr_running = sum_nr_running;
2496 2497
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2498
		}
2499

I
Ingo Molnar 已提交
2500
		/*
2501
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2513
		}
2514 2515
group_next:
#endif
L
Linus Torvalds 已提交
2516 2517 2518
		group = group->next;
	} while (group != sd->groups);

2519
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524 2525 2526 2527
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2528
	busiest_load_per_task /= busiest_nr_running;
2529 2530 2531
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2555 2556

	/* Don't want to pull so many tasks that a group would go idle */
2557
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2558

L
Linus Torvalds 已提交
2559
	/* How much load to actually move to equalise the imbalance */
2560 2561
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2562 2563
			/ SCHED_LOAD_SCALE;

2564 2565 2566 2567 2568 2569
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2570
	if (*imbalance < busiest_load_per_task) {
2571
		unsigned long tmp, pwr_now, pwr_move;
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2583

I
Ingo Molnar 已提交
2584 2585
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2586
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591 2592 2593 2594 2595
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2596 2597 2598 2599
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2600 2601 2602
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2603 2604
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2605
		if (max_load > tmp)
2606
			pwr_move += busiest->__cpu_power *
2607
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2608 2609

		/* Amount of load we'd add */
2610
		if (max_load * busiest->__cpu_power <
2611
				busiest_load_per_task * SCHED_LOAD_SCALE)
2612 2613
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2614
		else
2615 2616 2617 2618
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2619 2620 2621
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2622 2623
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628
	}

	return busiest;

out_balanced:
2629
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2630
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2631
		goto ret;
L
Linus Torvalds 已提交
2632

2633 2634 2635 2636 2637
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2638
ret:
L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644 2645
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2646
static struct rq *
I
Ingo Molnar 已提交
2647
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2648
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2649
{
2650
	struct rq *busiest = NULL, *rq;
2651
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2652 2653 2654
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2655
		unsigned long wl;
2656 2657 2658 2659

		if (!cpu_isset(i, *cpus))
			continue;

2660
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2661
		wl = weighted_cpuload(i);
2662

I
Ingo Molnar 已提交
2663
		if (rq->nr_running == 1 && wl > imbalance)
2664
			continue;
L
Linus Torvalds 已提交
2665

I
Ingo Molnar 已提交
2666 2667
		if (wl > max_load) {
			max_load = wl;
2668
			busiest = rq;
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674
		}
	}

	return busiest;
}

2675 2676 2677 2678 2679 2680
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2681 2682 2683 2684
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2685
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2686
			struct sched_domain *sd, enum cpu_idle_type idle,
2687
			int *balance)
L
Linus Torvalds 已提交
2688
{
P
Peter Williams 已提交
2689
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2690 2691
	struct sched_group *group;
	unsigned long imbalance;
2692
	struct rq *busiest;
2693
	cpumask_t cpus = CPU_MASK_ALL;
2694
	unsigned long flags;
N
Nick Piggin 已提交
2695

2696 2697 2698
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2699
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2700
	 * portraying it as CPU_NOT_IDLE.
2701
	 */
I
Ingo Molnar 已提交
2702
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2703
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2704
		sd_idle = 1;
L
Linus Torvalds 已提交
2705

2706
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2707

2708 2709
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2710 2711
				   &cpus, balance);

2712
	if (*balance == 0)
2713 2714
		goto out_balanced;

L
Linus Torvalds 已提交
2715 2716 2717 2718 2719
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2720
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2726
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2727 2728 2729

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2730
	ld_moved = 0;
L
Linus Torvalds 已提交
2731 2732 2733 2734
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2735
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2736 2737
		 * correctly treated as an imbalance.
		 */
2738
		local_irq_save(flags);
N
Nick Piggin 已提交
2739
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2740
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2741
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2742
		double_rq_unlock(this_rq, busiest);
2743
		local_irq_restore(flags);
2744

2745 2746 2747
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2748
		if (ld_moved && this_cpu != smp_processor_id())
2749 2750
			resched_cpu(this_cpu);

2751
		/* All tasks on this runqueue were pinned by CPU affinity */
2752 2753 2754 2755
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2756
			goto out_balanced;
2757
		}
L
Linus Torvalds 已提交
2758
	}
2759

P
Peter Williams 已提交
2760
	if (!ld_moved) {
L
Linus Torvalds 已提交
2761 2762 2763 2764 2765
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2766
			spin_lock_irqsave(&busiest->lock, flags);
2767 2768 2769 2770 2771

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2772
				spin_unlock_irqrestore(&busiest->lock, flags);
2773 2774 2775 2776
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2777 2778 2779
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2780
				active_balance = 1;
L
Linus Torvalds 已提交
2781
			}
2782
			spin_unlock_irqrestore(&busiest->lock, flags);
2783
			if (active_balance)
L
Linus Torvalds 已提交
2784 2785 2786 2787 2788 2789
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2790
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2791
		}
2792
	} else
L
Linus Torvalds 已提交
2793 2794
		sd->nr_balance_failed = 0;

2795
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2796 2797
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2798 2799 2800 2801 2802 2803 2804 2805 2806
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2807 2808
	}

P
Peter Williams 已提交
2809
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2810
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2811
		return -1;
P
Peter Williams 已提交
2812
	return ld_moved;
L
Linus Torvalds 已提交
2813 2814 2815 2816

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2817
	sd->nr_balance_failed = 0;
2818 2819

out_one_pinned:
L
Linus Torvalds 已提交
2820
	/* tune up the balancing interval */
2821 2822
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2823 2824
		sd->balance_interval *= 2;

2825
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2826
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2827
		return -1;
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832 2833 2834
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2835
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2836 2837
 * this_rq is locked.
 */
2838
static int
2839
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2840 2841
{
	struct sched_group *group;
2842
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2843
	unsigned long imbalance;
P
Peter Williams 已提交
2844
	int ld_moved = 0;
N
Nick Piggin 已提交
2845
	int sd_idle = 0;
2846
	int all_pinned = 0;
2847
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2848

2849 2850 2851 2852
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2853
	 * portraying it as CPU_NOT_IDLE.
2854 2855 2856
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2857
		sd_idle = 1;
L
Linus Torvalds 已提交
2858

2859
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2860
redo:
I
Ingo Molnar 已提交
2861
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2862
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2863
	if (!group) {
I
Ingo Molnar 已提交
2864
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2865
		goto out_balanced;
L
Linus Torvalds 已提交
2866 2867
	}

I
Ingo Molnar 已提交
2868
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2869
				&cpus);
N
Nick Piggin 已提交
2870
	if (!busiest) {
I
Ingo Molnar 已提交
2871
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2872
		goto out_balanced;
L
Linus Torvalds 已提交
2873 2874
	}

N
Nick Piggin 已提交
2875 2876
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2877
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2878

P
Peter Williams 已提交
2879
	ld_moved = 0;
2880 2881 2882
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2883 2884
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2885
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2886 2887
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2888
		spin_unlock(&busiest->lock);
2889

2890
		if (unlikely(all_pinned)) {
2891 2892 2893 2894
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2895 2896
	}

P
Peter Williams 已提交
2897
	if (!ld_moved) {
I
Ingo Molnar 已提交
2898
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2899 2900
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2901 2902
			return -1;
	} else
2903
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2904

P
Peter Williams 已提交
2905
	return ld_moved;
2906 2907

out_balanced:
I
Ingo Molnar 已提交
2908
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2909
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2910
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2911
		return -1;
2912
	sd->nr_balance_failed = 0;
2913

2914
	return 0;
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2921
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2922 2923
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2924 2925
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2926 2927

	for_each_domain(this_cpu, sd) {
2928 2929 2930 2931 2932 2933
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2934
			/* If we've pulled tasks over stop searching: */
2935
			pulled_task = load_balance_newidle(this_cpu,
2936 2937 2938 2939 2940 2941 2942
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2943
	}
I
Ingo Molnar 已提交
2944
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2945 2946 2947 2948 2949
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2950
	}
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2961
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2962
{
2963
	int target_cpu = busiest_rq->push_cpu;
2964 2965
	struct sched_domain *sd;
	struct rq *target_rq;
2966

2967
	/* Is there any task to move? */
2968 2969 2970 2971
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2972 2973

	/*
2974 2975 2976
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2977
	 */
2978
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2979

2980 2981
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2982 2983
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2984 2985

	/* Search for an sd spanning us and the target CPU. */
2986
	for_each_domain(target_cpu, sd) {
2987
		if ((sd->flags & SD_LOAD_BALANCE) &&
2988
		    cpu_isset(busiest_cpu, sd->span))
2989
				break;
2990
	}
2991

2992
	if (likely(sd)) {
2993
		schedstat_inc(sd, alb_count);
2994

P
Peter Williams 已提交
2995 2996
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2997 2998 2999 3000
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3001
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3002 3003
}

3004 3005 3006 3007 3008 3009 3010 3011 3012
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3013
/*
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3024
 *
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3081 3082 3083 3084 3085
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3086
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3087
{
3088 3089
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3090 3091
	unsigned long interval;
	struct sched_domain *sd;
3092
	/* Earliest time when we have to do rebalance again */
3093
	unsigned long next_balance = jiffies + 60*HZ;
3094
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3095

3096
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3097 3098 3099 3100
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3101
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3108 3109 3110
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3111

3112 3113 3114 3115 3116
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3117
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3118
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3119 3120
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3121 3122 3123
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3124
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3125
			}
3126
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3127
		}
3128 3129 3130
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3131
		if (time_after(next_balance, sd->last_balance + interval)) {
3132
			next_balance = sd->last_balance + interval;
3133 3134
			update_next_balance = 1;
		}
3135 3136 3137 3138 3139 3140 3141 3142

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3143
	}
3144 3145 3146 3147 3148 3149 3150 3151

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3152 3153 3154 3155 3156 3157 3158 3159 3160
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3161 3162 3163 3164
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3165

I
Ingo Molnar 已提交
3166
	rebalance_domains(this_cpu, idle);
3167 3168 3169 3170 3171 3172 3173

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3174 3175
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3176 3177 3178 3179
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3180
		cpu_clear(this_cpu, cpus);
3181 3182 3183 3184 3185 3186 3187 3188 3189
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3190
			rebalance_domains(balance_cpu, CPU_IDLE);
3191 3192

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3193 3194
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3207
static inline void trigger_load_balance(struct rq *rq, int cpu)
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3259
}
I
Ingo Molnar 已提交
3260 3261 3262

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3263 3264 3265
/*
 * on UP we do not need to balance between CPUs:
 */
3266
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3267 3268
{
}
I
Ingo Molnar 已提交
3269 3270 3271 3272 3273 3274

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3275
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3276 3277 3278 3279 3280 3281
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3282 3283 3284 3285 3286 3287 3288
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3289 3290
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3291
 */
3292
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3293 3294
{
	unsigned long flags;
3295 3296
	u64 ns, delta_exec;
	struct rq *rq;
3297

3298 3299 3300
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3301 3302
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3303 3304 3305 3306
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3307

L
Linus Torvalds 已提交
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;
3320
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3321 3322 3323

	p->utime = cputime_add(p->utime, cputime);

3324 3325 3326
	if (p != rq->idle)
		cpuacct_charge(p, cputime);

L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332 3333 3334
	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3374
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3375 3376
	cputime64_t tmp;

3377 3378 3379 3380 3381
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		return;
	}

L
Linus Torvalds 已提交
3382 3383 3384 3385 3386 3387 3388 3389
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3390
	else if (p != rq->idle) {
L
Linus Torvalds 已提交
3391
		cpustat->system = cputime64_add(cpustat->system, tmp);
3392 3393
		cpuacct_charge(p, cputime);
	} else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3394 3395 3396 3397 3398 3399 3400
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3412 3413 3414 3415 3416 3417 3418 3419 3420
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3421
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3422 3423 3424 3425 3426 3427 3428

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3429
	} else {
L
Linus Torvalds 已提交
3430
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
3431 3432
		cpuacct_charge(p, -tmp);
	}
L
Linus Torvalds 已提交
3433 3434
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3446
	struct task_struct *curr = rq->curr;
3447
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3448 3449

	spin_lock(&rq->lock);
3450
	__update_rq_clock(rq);
3451 3452 3453 3454 3455 3456
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3457
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3458 3459 3460
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3461

3462
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3463 3464
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3465
#endif
L
Linus Torvalds 已提交
3466 3467 3468 3469 3470 3471 3472 3473 3474
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3475 3476
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3477 3478 3479 3480
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3481 3482
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3483 3484 3485 3486 3487 3488 3489 3490
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3491 3492
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3493 3494 3495
	/*
	 * Is the spinlock portion underflowing?
	 */
3496 3497 3498 3499
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3507
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3508
 */
I
Ingo Molnar 已提交
3509
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3510
{
3511 3512 3513 3514 3515
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3516 3517 3518
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3519 3520 3521 3522 3523

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3524
}
L
Linus Torvalds 已提交
3525

I
Ingo Molnar 已提交
3526 3527 3528 3529 3530
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3536 3537 3538
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3539 3540
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3541
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3542 3543
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3544 3545
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3546 3547
	}
#endif
I
Ingo Molnar 已提交
3548 3549 3550 3551 3552 3553
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3554
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3555
{
3556
	const struct sched_class *class;
I
Ingo Molnar 已提交
3557
	struct task_struct *p;
L
Linus Torvalds 已提交
3558 3559

	/*
I
Ingo Molnar 已提交
3560 3561
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3562
	 */
I
Ingo Molnar 已提交
3563
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3564
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3565 3566
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3567 3568
	}

I
Ingo Molnar 已提交
3569 3570
	class = sched_class_highest;
	for ( ; ; ) {
3571
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3572 3573 3574 3575 3576 3577 3578 3579 3580
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3581

I
Ingo Molnar 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3604

3605 3606 3607 3608
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3609
	__update_rq_clock(rq);
3610 3611
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3612 3613 3614

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3615
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3616
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3617
		} else {
3618
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3619
		}
I
Ingo Molnar 已提交
3620
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3621 3622
	}

I
Ingo Molnar 已提交
3623
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3624 3625
		idle_balance(cpu, rq);

3626
	prev->sched_class->put_prev_task(rq, prev);
3627
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3628 3629

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3630

L
Linus Torvalds 已提交
3631 3632 3633 3634 3635
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3636
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3637 3638 3639
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3640 3641 3642
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3643
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3644
	}
L
Linus Torvalds 已提交
3645 3646 3647 3648 3649 3650 3651 3652
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3653
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3668
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3669 3670
		return;

3671 3672 3673 3674 3675 3676 3677 3678
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3679
#ifdef CONFIG_PREEMPT_BKL
3680 3681
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3682
#endif
3683
		schedule();
L
Linus Torvalds 已提交
3684
#ifdef CONFIG_PREEMPT_BKL
3685
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3686
#endif
3687
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3688

3689 3690 3691 3692 3693 3694
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3695 3696 3697 3698
}
EXPORT_SYMBOL(preempt_schedule);

/*
3699
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3711
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3712 3713
	BUG_ON(ti->preempt_count || !irqs_disabled());

3714 3715 3716 3717 3718 3719 3720 3721
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3722
#ifdef CONFIG_PREEMPT_BKL
3723 3724
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3725
#endif
3726 3727 3728
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3729
#ifdef CONFIG_PREEMPT_BKL
3730
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3731
#endif
3732
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3733

3734 3735 3736 3737 3738 3739
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3740 3741 3742 3743
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3744 3745
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3746
{
3747
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3763
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3764

3765
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3766 3767
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3768
		if (curr->func(curr, mode, sync, key) &&
3769
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3779
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3780 3781
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3782
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3801
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3813 3814
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3831
void complete(struct completion *x)
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3843
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3855 3856
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3857 3858 3859 3860 3861 3862 3863
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3864 3865 3866 3867 3868 3869
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3870 3871 3872 3873 3874
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3875
				return timeout;
L
Linus Torvalds 已提交
3876 3877 3878 3879 3880 3881 3882 3883
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3884 3885
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3886 3887 3888 3889
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3890
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3891
	spin_unlock_irq(&x->wait.lock);
3892 3893
	return timeout;
}
L
Linus Torvalds 已提交
3894

3895
void __sched wait_for_completion(struct completion *x)
3896 3897
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3898
}
3899
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3900

3901
unsigned long __sched
3902
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3903
{
3904
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3905
}
3906
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3907

3908
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3909
{
3910 3911 3912 3913
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3914
}
3915
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3916

3917
unsigned long __sched
3918 3919
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3920
{
3921
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3922
}
3923
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3924

3925 3926
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3927
{
I
Ingo Molnar 已提交
3928 3929 3930 3931
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3932

3933
	__set_current_state(state);
L
Linus Torvalds 已提交
3934

3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3949 3950 3951
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3952
long __sched
I
Ingo Molnar 已提交
3953
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3954
{
3955
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3956 3957 3958
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3959
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3960
{
3961
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3962 3963 3964
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3965
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3966
{
3967
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3968 3969 3970
}
EXPORT_SYMBOL(sleep_on_timeout);

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3983
void rt_mutex_setprio(struct task_struct *p, int prio)
3984 3985
{
	unsigned long flags;
3986
	int oldprio, on_rq, running;
3987
	struct rq *rq;
3988 3989 3990 3991

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3992
	update_rq_clock(rq);
3993

3994
	oldprio = p->prio;
I
Ingo Molnar 已提交
3995
	on_rq = p->se.on_rq;
3996 3997
	running = task_running(rq, p);
	if (on_rq) {
3998
		dequeue_task(rq, p, 0);
3999 4000 4001
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4002 4003 4004 4005 4006 4007

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4008 4009
	p->prio = prio;

I
Ingo Molnar 已提交
4010
	if (on_rq) {
4011 4012
		if (running)
			p->sched_class->set_curr_task(rq);
4013
		enqueue_task(rq, p, 0);
4014 4015
		/*
		 * Reschedule if we are currently running on this runqueue and
4016 4017
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4018
		 */
4019
		if (running) {
4020 4021
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4022 4023 4024
		} else {
			check_preempt_curr(rq, p);
		}
4025 4026 4027 4028 4029 4030
	}
	task_rq_unlock(rq, &flags);
}

#endif

4031
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4032
{
I
Ingo Molnar 已提交
4033
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4034
	unsigned long flags;
4035
	struct rq *rq;
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4044
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4045 4046 4047 4048
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4049
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4050
	 */
4051
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4052 4053 4054
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4055 4056
	on_rq = p->se.on_rq;
	if (on_rq) {
4057
		dequeue_task(rq, p, 0);
4058
		dec_load(rq, p);
4059
	}
L
Linus Torvalds 已提交
4060 4061

	p->static_prio = NICE_TO_PRIO(nice);
4062
	set_load_weight(p);
4063 4064 4065
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4066

I
Ingo Molnar 已提交
4067
	if (on_rq) {
4068
		enqueue_task(rq, p, 0);
4069
		inc_load(rq, p);
L
Linus Torvalds 已提交
4070
		/*
4071 4072
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4073
		 */
4074
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080 4081
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4082 4083 4084 4085 4086
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4087
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4088
{
4089 4090
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4091

M
Matt Mackall 已提交
4092 4093 4094 4095
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4107
	long nice, retval;
L
Linus Torvalds 已提交
4108 4109 4110 4111 4112 4113

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4114 4115
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4125 4126 4127
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4146
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4155
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4174
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181 4182
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4183
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4184
{
4185
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4186 4187 4188
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4189 4190
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4191
{
I
Ingo Molnar 已提交
4192
	BUG_ON(p->se.on_rq);
4193

L
Linus Torvalds 已提交
4194
	p->policy = policy;
I
Ingo Molnar 已提交
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4207
	p->rt_priority = prio;
4208 4209 4210
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4211
	set_load_weight(p);
L
Linus Torvalds 已提交
4212 4213 4214
}

/**
4215
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4216 4217 4218
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4219
 *
4220
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4221
 */
I
Ingo Molnar 已提交
4222 4223
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4224
{
4225
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4226
	unsigned long flags;
4227
	struct rq *rq;
L
Linus Torvalds 已提交
4228

4229 4230
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4231 4232 4233 4234 4235
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4236 4237
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4238
		return -EINVAL;
L
Linus Torvalds 已提交
4239 4240
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4241 4242
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4243 4244
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4245
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4246
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4247
		return -EINVAL;
4248
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4249 4250
		return -EINVAL;

4251 4252 4253 4254
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4255
		if (rt_policy(policy)) {
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4272 4273 4274 4275 4276 4277
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4278

4279 4280 4281 4282 4283
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4284 4285 4286 4287

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4288 4289 4290 4291 4292
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4293 4294 4295 4296
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4297
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4298 4299 4300
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4301 4302
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4303 4304
		goto recheck;
	}
I
Ingo Molnar 已提交
4305
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4306
	on_rq = p->se.on_rq;
4307 4308
	running = task_running(rq, p);
	if (on_rq) {
4309
		deactivate_task(rq, p, 0);
4310 4311 4312
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4313

L
Linus Torvalds 已提交
4314
	oldprio = p->prio;
I
Ingo Molnar 已提交
4315
	__setscheduler(rq, p, policy, param->sched_priority);
4316

I
Ingo Molnar 已提交
4317
	if (on_rq) {
4318 4319
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4320
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4321 4322
		/*
		 * Reschedule if we are currently running on this runqueue and
4323 4324
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4325
		 */
4326
		if (running) {
4327 4328
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4329 4330 4331
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4332
	}
4333 4334 4335
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4336 4337
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4338 4339 4340 4341
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4342 4343
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4344 4345 4346
{
	struct sched_param lparam;
	struct task_struct *p;
4347
	int retval;
L
Linus Torvalds 已提交
4348 4349 4350 4351 4352

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4353 4354 4355

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4356
	p = find_process_by_pid(pid);
4357 4358 4359
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4360

L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4373 4374 4375 4376
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4396
	struct task_struct *p;
4397
	int retval;
L
Linus Torvalds 已提交
4398 4399

	if (pid < 0)
4400
		return -EINVAL;
L
Linus Torvalds 已提交
4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4422
	struct task_struct *p;
4423
	int retval;
L
Linus Torvalds 已提交
4424 4425

	if (!param || pid < 0)
4426
		return -EINVAL;
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4456 4457
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4458

4459
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4465
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4482 4483 4484 4485
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4486 4487
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4488
 again:
L
Linus Torvalds 已提交
4489 4490
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4503 4504
out_unlock:
	put_task_struct(p);
4505
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4546
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4547 4548 4549
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4550
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4551 4552
EXPORT_SYMBOL(cpu_online_map);

4553
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4554
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4555 4556 4557 4558
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4559
	struct task_struct *p;
L
Linus Torvalds 已提交
4560 4561
	int retval;

4562
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568 4569
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4570 4571 4572 4573
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4574
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4575 4576 4577

out_unlock:
	read_unlock(&tasklist_lock);
4578
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4579

4580
	return retval;
L
Linus Torvalds 已提交
4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4611 4612
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4613 4614 4615
 */
asmlinkage long sys_sched_yield(void)
{
4616
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4617

4618
	schedstat_inc(rq, yld_count);
4619
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4620 4621 4622 4623 4624 4625

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4626
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633 4634
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4635
static void __cond_resched(void)
L
Linus Torvalds 已提交
4636
{
4637 4638 4639
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4640 4641 4642 4643 4644
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4654 4655
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4671
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4672
{
J
Jan Kara 已提交
4673 4674
	int ret = 0;

L
Linus Torvalds 已提交
4675 4676 4677
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4678
		ret = 1;
L
Linus Torvalds 已提交
4679 4680
		spin_lock(lock);
	}
4681
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4682
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4683 4684 4685
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4686
		ret = 1;
L
Linus Torvalds 已提交
4687 4688
		spin_lock(lock);
	}
J
Jan Kara 已提交
4689
	return ret;
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4697
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4698
		local_bh_enable();
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4710
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4729
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4730

4731
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4732 4733 4734
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4735
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4741
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4742 4743
	long ret;

4744
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4745 4746 4747
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4748
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4769
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4770
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4794
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4795
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4812
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4813
	unsigned int time_slice;
4814
	int retval;
L
Linus Torvalds 已提交
4815 4816 4817
	struct timespec t;

	if (pid < 0)
4818
		return -EINVAL;
L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4843
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4844
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4845 4846
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4847

L
Linus Torvalds 已提交
4848 4849 4850 4851 4852
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4853
static const char stat_nam[] = "RSDTtZX";
4854 4855

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4856 4857
{
	unsigned long free = 0;
4858
	unsigned state;
L
Linus Torvalds 已提交
4859 4860

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4861
	printk(KERN_INFO "%-13.13s %c", p->comm,
4862
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4863
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4864
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4865
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4866
	else
I
Ingo Molnar 已提交
4867
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4868 4869
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4870
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4871
	else
I
Ingo Molnar 已提交
4872
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4873 4874 4875
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4876
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4877 4878
		while (!*n)
			n++;
4879
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4880 4881
	}
#endif
4882 4883
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4889
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4890
{
4891
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4892

4893 4894 4895
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4896
#else
4897 4898
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4899 4900 4901 4902 4903 4904 4905 4906
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4907
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4908
			show_task(p);
L
Linus Torvalds 已提交
4909 4910
	} while_each_thread(g, p);

4911 4912
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4913 4914 4915
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4916
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4917 4918 4919 4920 4921
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4922 4923
}

I
Ingo Molnar 已提交
4924 4925
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4926
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4927 4928
}

4929 4930 4931 4932 4933 4934 4935 4936
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4937
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4938
{
4939
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4940 4941
	unsigned long flags;

I
Ingo Molnar 已提交
4942 4943 4944
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4945
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4946
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4947
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4948 4949 4950

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4951 4952 4953
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4954 4955 4956 4957
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4958
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4959
#else
A
Al Viro 已提交
4960
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4961
#endif
I
Ingo Molnar 已提交
4962 4963 4964 4965
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4981
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
5003
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5004
{
5005
	struct migration_req req;
L
Linus Torvalds 已提交
5006
	unsigned long flags;
5007
	struct rq *rq;
5008
	int ret = 0;
L
Linus Torvalds 已提交
5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5031

L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5044 5045
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5046
 */
5047
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5048
{
5049
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5050
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5051 5052

	if (unlikely(cpu_is_offline(dest_cpu)))
5053
		return ret;
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5066
	on_rq = p->se.on_rq;
5067
	if (on_rq)
5068
		deactivate_task(rq_src, p, 0);
5069

L
Linus Torvalds 已提交
5070
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5071 5072 5073
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5074
	}
5075
	ret = 1;
L
Linus Torvalds 已提交
5076 5077
out:
	double_rq_unlock(rq_src, rq_dest);
5078
	return ret;
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5086
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5087 5088
{
	int cpu = (long)data;
5089
	struct rq *rq;
L
Linus Torvalds 已提交
5090 5091 5092 5093 5094 5095

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5096
		struct migration_req *req;
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5119
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5120 5121
		list_del_init(head->next);

N
Nick Piggin 已提交
5122 5123 5124
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5154
/*
5155
 * Figure out where task on dead CPU should go, use force if necessary.
5156 5157
 * NOTE: interrupts should be disabled by the caller
 */
5158
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5159
{
5160
	unsigned long flags;
L
Linus Torvalds 已提交
5161
	cpumask_t mask;
5162 5163
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5164

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5177 5178 5179 5180 5181 5182 5183 5184
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
			 * cpuset_cpus_allowed() will not block.  It must be
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5185
			rq = task_rq_lock(p, &flags);
5186
			p->cpus_allowed = cpus_allowed;
5187 5188
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5189

5190 5191 5192 5193 5194 5195 5196 5197
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
5198
			       task_pid_nr(p), p->comm, dead_cpu);
5199
		}
5200
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5201 5202 5203 5204 5205 5206 5207 5208 5209
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5210
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5211
{
5212
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5226
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5227

5228
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5229

5230 5231
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5232 5233
			continue;

5234 5235 5236
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5237

5238
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5239 5240
}

A
Alexey Dobriyan 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5255 5256
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5257
 * It does so by boosting its priority to highest possible and adding it to
5258
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5259 5260 5261
 */
void sched_idle_next(void)
{
5262
	int this_cpu = smp_processor_id();
5263
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5264 5265 5266 5267
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5268
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5269

5270 5271 5272
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5273 5274 5275
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5276
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5277 5278

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5279
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5280 5281 5282 5283

	spin_unlock_irqrestore(&rq->lock, flags);
}

5284 5285
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5299
/* called under rq->lock with disabled interrupts */
5300
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5301
{
5302
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5303 5304

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5305
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5306 5307

	/* Cannot have done final schedule yet: would have vanished. */
5308
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5309

5310
	get_task_struct(p);
L
Linus Torvalds 已提交
5311 5312 5313 5314 5315 5316

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5317
	spin_unlock_irq(&rq->lock);
5318
	move_task_off_dead_cpu(dead_cpu, p);
5319
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5320

5321
	put_task_struct(p);
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5327
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5328
	struct task_struct *next;
5329

I
Ingo Molnar 已提交
5330 5331 5332
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5333
		update_rq_clock(rq);
5334
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5335 5336 5337
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5338

L
Linus Torvalds 已提交
5339 5340 5341 5342
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5343 5344 5345
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5346 5347
	{
		.procname	= "sched_domain",
5348
		.mode		= 0555,
5349
	},
5350 5351 5352 5353
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5354
	{
5355
		.ctl_name	= CTL_KERN,
5356
		.procname	= "kernel",
5357
		.mode		= 0555,
5358 5359
		.child		= sd_ctl_dir,
	},
5360 5361 5362 5363 5364 5365
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5366
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5367 5368 5369 5370

	return entry;
}

5371 5372
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5373
	struct ctl_table *entry;
5374

5375 5376 5377 5378 5379 5380 5381
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5382 5383
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5384 5385 5386
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5387 5388 5389 5390 5391

	kfree(*tablep);
	*tablep = NULL;
}

5392
static void
5393
set_table_entry(struct ctl_table *entry,
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5407
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5408

5409 5410 5411
	if (table == NULL)
		return NULL;

5412
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5413
		sizeof(long), 0644, proc_doulongvec_minmax);
5414
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5415
		sizeof(long), 0644, proc_doulongvec_minmax);
5416
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5417
		sizeof(int), 0644, proc_dointvec_minmax);
5418
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5419
		sizeof(int), 0644, proc_dointvec_minmax);
5420
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5421
		sizeof(int), 0644, proc_dointvec_minmax);
5422
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5423
		sizeof(int), 0644, proc_dointvec_minmax);
5424
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5425
		sizeof(int), 0644, proc_dointvec_minmax);
5426
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5427
		sizeof(int), 0644, proc_dointvec_minmax);
5428
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5429
		sizeof(int), 0644, proc_dointvec_minmax);
5430
	set_table_entry(&table[9], "cache_nice_tries",
5431 5432
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5433
	set_table_entry(&table[10], "flags", &sd->flags,
5434
		sizeof(int), 0644, proc_dointvec_minmax);
5435
	/* &table[11] is terminator */
5436 5437 5438 5439

	return table;
}

I
Ingo Molnar 已提交
5440
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5441 5442 5443 5444 5445 5446 5447 5448 5449
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5450 5451
	if (table == NULL)
		return NULL;
5452 5453 5454 5455 5456

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5457
		entry->mode = 0555;
5458 5459 5460 5461 5462 5463 5464 5465
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5466
static void register_sched_domain_sysctl(void)
5467 5468 5469 5470 5471
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5472 5473 5474
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5475 5476 5477
	if (entry == NULL)
		return;

5478
	for_each_online_cpu(i) {
5479 5480
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5481
		entry->mode = 0555;
5482
		entry->child = sd_alloc_ctl_cpu_table(i);
5483
		entry++;
5484
	}
5485 5486

	WARN_ON(sd_sysctl_header);
5487 5488
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5489

5490
/* may be called multiple times per register */
5491 5492
static void unregister_sched_domain_sysctl(void)
{
5493 5494
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5495
	sd_sysctl_header = NULL;
5496 5497
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5498
}
5499
#else
5500 5501 5502 5503
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5504 5505 5506 5507
{
}
#endif

L
Linus Torvalds 已提交
5508 5509 5510 5511
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5512 5513
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5514 5515
{
	struct task_struct *p;
5516
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5517
	unsigned long flags;
5518
	struct rq *rq;
L
Linus Torvalds 已提交
5519 5520

	switch (action) {
5521 5522 5523 5524
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5525
	case CPU_UP_PREPARE:
5526
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5527
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5528 5529 5530 5531 5532
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5533
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5534 5535 5536
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5537

L
Linus Torvalds 已提交
5538
	case CPU_ONLINE:
5539
	case CPU_ONLINE_FROZEN:
5540
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5541 5542
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5543

L
Linus Torvalds 已提交
5544 5545
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5546
	case CPU_UP_CANCELED_FROZEN:
5547 5548
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5549
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5550 5551
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5552 5553 5554
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5555

L
Linus Torvalds 已提交
5556
	case CPU_DEAD:
5557
	case CPU_DEAD_FROZEN:
5558
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5559 5560 5561 5562 5563
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5564
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5565
		update_rq_clock(rq);
5566
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5567
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5568 5569
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5570
		migrate_dead_tasks(cpu);
5571
		spin_unlock_irq(&rq->lock);
5572
		cpuset_unlock();
L
Linus Torvalds 已提交
5573 5574 5575 5576
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5577
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5578 5579 5580
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5581 5582
			struct migration_req *req;

L
Linus Torvalds 已提交
5583
			req = list_entry(rq->migration_queue.next,
5584
					 struct migration_req, list);
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5591 5592 5593
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5601
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606 5607 5608
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5609
	int err;
5610 5611

	/* Start one for the boot CPU: */
5612 5613
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5614 5615
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5616

L
Linus Torvalds 已提交
5617 5618 5619 5620 5621
	return 0;
}
#endif

#ifdef CONFIG_SMP
5622 5623 5624 5625 5626

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5627
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5628 5629

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5630
{
I
Ingo Molnar 已提交
5631 5632 5633
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5634

I
Ingo Molnar 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5646 5647
	}

I
Ingo Molnar 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5658

I
Ingo Molnar 已提交
5659
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5660
	do {
I
Ingo Molnar 已提交
5661 5662 5663
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5664 5665 5666
			break;
		}

I
Ingo Molnar 已提交
5667 5668 5669 5670 5671 5672
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5673

I
Ingo Molnar 已提交
5674 5675 5676 5677 5678
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5679

I
Ingo Molnar 已提交
5680 5681 5682 5683 5684
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5685

I
Ingo Molnar 已提交
5686
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5687

I
Ingo Molnar 已提交
5688 5689
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5690

I
Ingo Molnar 已提交
5691 5692 5693
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5694

I
Ingo Molnar 已提交
5695 5696
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5697

I
Ingo Molnar 已提交
5698 5699 5700 5701 5702
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5703

I
Ingo Molnar 已提交
5704 5705 5706
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5707

I
Ingo Molnar 已提交
5708 5709 5710 5711
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5712

I
Ingo Molnar 已提交
5713 5714 5715 5716 5717
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5718 5719
		level++;
		sd = sd->parent;
5720
		if (!sd)
I
Ingo Molnar 已提交
5721 5722
			break;
	}
L
Linus Torvalds 已提交
5723 5724
}
#else
5725
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5726 5727
#endif

5728
static int sd_degenerate(struct sched_domain *sd)
5729 5730 5731 5732 5733 5734 5735 5736
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5737 5738 5739
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5753 5754
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5773 5774 5775
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5776 5777 5778 5779 5780 5781 5782
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5783 5784 5785 5786
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5787
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5788
{
5789
	struct rq *rq = cpu_rq(cpu);
5790 5791 5792 5793 5794 5795 5796
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5797
		if (sd_parent_degenerate(tmp, parent)) {
5798
			tmp->parent = parent->parent;
5799 5800 5801
			if (parent->parent)
				parent->parent->child = tmp;
		}
5802 5803
	}

5804
	if (sd && sd_degenerate(sd)) {
5805
		sd = sd->parent;
5806 5807 5808
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5809 5810 5811

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5812
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5813 5814 5815
}

/* cpus with isolated domains */
5816
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5831
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5832 5833

/*
5834 5835 5836 5837
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5838 5839 5840 5841 5842
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5843
static void
5844 5845 5846
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5847 5848 5849 5850 5851 5852
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5853 5854
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5855 5856 5857 5858 5859 5860
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5861
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5862 5863

		for_each_cpu_mask(j, span) {
5864
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5879
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5880

5881
#ifdef CONFIG_NUMA
5882

5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5935 5936
	cpumask_t span, nodemask;
	int i;
5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5947

5948 5949 5950 5951 5952 5953 5954 5955
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5956
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5957

5958
/*
5959
 * SMT sched-domains:
5960
 */
L
Linus Torvalds 已提交
5961 5962
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5963
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5964

5965 5966
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5967
{
5968 5969
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5970 5971 5972 5973
	return cpu;
}
#endif

5974 5975 5976
/*
 * multi-core sched-domains:
 */
5977 5978
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5979
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5980 5981 5982
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5983 5984
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5985
{
5986
	int group;
5987
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5988
	cpus_and(mask, mask, *cpu_map);
5989 5990 5991 5992
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5993 5994
}
#elif defined(CONFIG_SCHED_MC)
5995 5996
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5997
{
5998 5999
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6000 6001 6002 6003
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6004
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6005
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6006

6007 6008
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
6009
{
6010
	int group;
6011
#ifdef CONFIG_SCHED_MC
6012
	cpumask_t mask = cpu_coregroup_map(cpu);
6013
	cpus_and(mask, mask, *cpu_map);
6014
	group = first_cpu(mask);
6015
#elif defined(CONFIG_SCHED_SMT)
6016
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6017
	cpus_and(mask, mask, *cpu_map);
6018
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6019
#else
6020
	group = cpu;
L
Linus Torvalds 已提交
6021
#endif
6022 6023 6024
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6025 6026 6027 6028
}

#ifdef CONFIG_NUMA
/*
6029 6030 6031
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6032
 */
6033
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6034
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6035

6036
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6037
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6038

6039 6040
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6041
{
6042 6043 6044 6045 6046 6047 6048 6049 6050
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6051
}
6052

6053 6054 6055 6056 6057 6058 6059
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6060 6061 6062
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6063

6064 6065 6066 6067 6068 6069 6070 6071
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6072

6073 6074 6075 6076
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6077
}
L
Linus Torvalds 已提交
6078 6079
#endif

6080
#ifdef CONFIG_NUMA
6081 6082 6083
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6084
	int cpu, i;
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6115 6116 6117 6118 6119
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6120

6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6147 6148
	sd->groups->__cpu_power = 0;

6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6159
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6160 6161 6162 6163 6164 6165 6166 6167
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6168
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6169 6170 6171 6172
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6173
/*
6174 6175
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6176
 */
6177
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6178 6179
{
	int i;
6180 6181
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6182
	int sd_allnodes = 0;
6183 6184 6185 6186

	/*
	 * Allocate the per-node list of sched groups
	 */
6187
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6188
					   GFP_KERNEL);
6189 6190
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6191
		return -ENOMEM;
6192 6193 6194
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6195 6196

	/*
6197
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6198
	 */
6199
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6200 6201 6202
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6203
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6204 6205

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6206 6207
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6208 6209 6210
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6211
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6212
			p = sd;
6213
			sd_allnodes = 1;
6214 6215 6216
		} else
			p = NULL;

L
Linus Torvalds 已提交
6217 6218
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6219 6220
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6221 6222
		if (p)
			p->child = sd;
6223
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6224 6225 6226 6227 6228 6229 6230
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6231 6232
		if (p)
			p->child = sd;
6233
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6234

6235 6236 6237 6238 6239 6240 6241
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6242
		p->child = sd;
6243
		cpu_to_core_group(i, cpu_map, &sd->groups);
6244 6245
#endif

L
Linus Torvalds 已提交
6246 6247 6248 6249
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6250
		sd->span = per_cpu(cpu_sibling_map, i);
6251
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6252
		sd->parent = p;
6253
		p->child = sd;
6254
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6260
	for_each_cpu_mask(i, *cpu_map) {
6261
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6262
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6263 6264 6265
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6266 6267
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6268 6269 6270
	}
#endif

6271 6272 6273 6274 6275 6276 6277
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6278 6279
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6280 6281 6282
	}
#endif

L
Linus Torvalds 已提交
6283 6284 6285 6286
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6287
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6288 6289 6290
		if (cpus_empty(nodemask))
			continue;

6291
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6292 6293 6294 6295
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6296
	if (sd_allnodes)
I
Ingo Molnar 已提交
6297 6298
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6309 6310
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6311
			continue;
6312
		}
6313 6314 6315 6316

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6317
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6318 6319 6320 6321 6322
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6323 6324 6325
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6326

6327 6328 6329
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6330
		sg->__cpu_power = 0;
6331
		sg->cpumask = nodemask;
6332
		sg->next = sg;
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6351 6352
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6353 6354 6355
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6356
				goto error;
6357
			}
6358
			sg->__cpu_power = 0;
6359
			sg->cpumask = tmp;
6360
			sg->next = prev->next;
6361 6362 6363 6364 6365
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6366 6367 6368
#endif

	/* Calculate CPU power for physical packages and nodes */
6369
#ifdef CONFIG_SCHED_SMT
6370
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6371 6372
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6373
		init_sched_groups_power(i, sd);
6374
	}
L
Linus Torvalds 已提交
6375
#endif
6376
#ifdef CONFIG_SCHED_MC
6377
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6378 6379
		struct sched_domain *sd = &per_cpu(core_domains, i);

6380
		init_sched_groups_power(i, sd);
6381 6382
	}
#endif
6383

6384
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6385 6386
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6387
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6388 6389
	}

6390
#ifdef CONFIG_NUMA
6391 6392
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6393

6394 6395
	if (sd_allnodes) {
		struct sched_group *sg;
6396

6397
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6398 6399
		init_numa_sched_groups_power(sg);
	}
6400 6401
#endif

L
Linus Torvalds 已提交
6402
	/* Attach the domains */
6403
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6404 6405 6406
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6407 6408
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6409 6410 6411 6412 6413
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6414 6415 6416

	return 0;

6417
#ifdef CONFIG_NUMA
6418 6419 6420
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6421
#endif
L
Linus Torvalds 已提交
6422
}
P
Paul Jackson 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6434 6435
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6436 6437
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6438
 */
6439
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6440
{
6441 6442
	int err;

P
Paul Jackson 已提交
6443 6444 6445 6446 6447
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6448
	err = build_sched_domains(doms_cur);
6449
	register_sched_domain_sysctl();
6450 6451

	return err;
6452 6453 6454
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6455
{
6456
	free_sched_groups(cpu_map);
6457
}
L
Linus Torvalds 已提交
6458

6459 6460 6461 6462
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6463
static void detach_destroy_domains(const cpumask_t *cpu_map)
6464 6465 6466
{
	int i;

6467 6468
	unregister_sched_domain_sysctl();

6469 6470 6471 6472 6473 6474
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
/*
 * Partition sched domains as specified by the 'ndoms_new'
 * cpumasks in the array doms_new[] of cpumasks.  This compares
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
 * The masks don't intersect (don't overlap.)  We should setup one
 * sched domain for each mask.  CPUs not in any of the cpumasks will
 * not be load balanced.  If the same cpumask appears both in the
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
 * The passed in 'doms_new' should be kmalloc'd.  This routine takes
 * ownership of it and will kfree it when done with it.  If the caller
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6500 6501 6502
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6538 6539

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6540 6541
}

6542
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6543
static int arch_reinit_sched_domains(void)
6544 6545 6546
{
	int err;

6547
	mutex_lock(&sched_hotcpu_mutex);
6548 6549
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6550
	mutex_unlock(&sched_hotcpu_mutex);
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6577 6578
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6579 6580 6581
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6582 6583
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6584 6585 6586 6587 6588 6589 6590
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6591 6592
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6593 6594 6595
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6616 6617
#endif

L
Linus Torvalds 已提交
6618 6619 6620
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6621
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6629
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6630
	case CPU_DOWN_PREPARE:
6631
	case CPU_DOWN_PREPARE_FROZEN:
6632
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6633 6634 6635
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6636
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6637
	case CPU_DOWN_FAILED:
6638
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6639
	case CPU_ONLINE:
6640
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6641
	case CPU_DEAD:
6642
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6643 6644 6645 6646 6647 6648 6649 6650 6651
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6652
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657 6658

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6659 6660
	cpumask_t non_isolated_cpus;

6661
	mutex_lock(&sched_hotcpu_mutex);
6662
	arch_init_sched_domains(&cpu_online_map);
6663
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6664 6665
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6666
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6667 6668
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6669 6670 6671 6672

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6684

L
Linus Torvalds 已提交
6685 6686 6687 6688 6689
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6690
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6691 6692 6693 6694 6695
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6696
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6697 6698
}

L
Linus Torvalds 已提交
6699 6700
void __init sched_init(void)
{
6701
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6702 6703
	int i, j;

6704
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6705
		struct rt_prio_array *array;
6706
		struct rq *rq;
L
Linus Torvalds 已提交
6707 6708 6709

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6710
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6711
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6712 6713 6714 6715
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6716 6717 6718 6719 6720 6721 6722
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6723
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6724
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6725 6726
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6727 6728 6729
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6730
			se->load.weight = init_task_group_load;
6731
			se->load.inv_weight =
6732
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6733 6734
			se->parent = NULL;
		}
6735
		init_task_group.shares = init_task_group_load;
6736
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6737
#endif
L
Linus Torvalds 已提交
6738

I
Ingo Molnar 已提交
6739 6740
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6741
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6742
		rq->sd = NULL;
L
Linus Torvalds 已提交
6743
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6744
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6745
		rq->push_cpu = 0;
6746
		rq->cpu = i;
L
Linus Torvalds 已提交
6747 6748 6749 6750 6751
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6752 6753 6754 6755
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6756
		}
6757
		highest_cpu = i;
I
Ingo Molnar 已提交
6758 6759
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6760 6761
	}

6762
	set_load_weight(&init_task);
6763

6764 6765 6766 6767
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6768
#ifdef CONFIG_SMP
6769
	nr_cpu_ids = highest_cpu + 1;
6770 6771 6772
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6773 6774 6775 6776
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6790 6791 6792 6793
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6794 6795 6796 6797 6798
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6799
#ifdef in_atomic
L
Linus Torvalds 已提交
6800 6801 6802 6803 6804 6805 6806
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6807
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6808 6809 6810
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6811
		debug_show_held_locks(current);
6812 6813
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6814 6815 6816 6817 6818 6819 6820 6821
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6836 6837
void normalize_rt_tasks(void)
{
6838
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6839
	unsigned long flags;
6840
	struct rq *rq;
L
Linus Torvalds 已提交
6841 6842

	read_lock_irq(&tasklist_lock);
6843
	do_each_thread(g, p) {
6844 6845 6846 6847 6848 6849
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6850 6851
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6852 6853 6854
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6855
#endif
I
Ingo Molnar 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6865
			continue;
I
Ingo Molnar 已提交
6866
		}
L
Linus Torvalds 已提交
6867

6868 6869
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6870

6871
		normalize_task(rq, p);
6872

6873 6874
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6875 6876
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6877 6878 6879 6880
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6899
struct task_struct *curr_task(int cpu)
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6919
void set_curr_task(int cpu, struct task_struct *p)
6920 6921 6922 6923 6924
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6925 6926 6927 6928

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6929
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6930
{
6931
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6932 6933
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6934
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6935 6936 6937 6938 6939 6940
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6941
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6942 6943
	if (!tg->cfs_rq)
		goto err;
6944
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6945 6946 6947 6948
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6949
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6976 6977 6978 6979 6980
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6981

6982
	tg->shares = NICE_0_LOAD;
6983
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6984

6985
	return tg;
S
Srivatsa Vaddagiri 已提交
6986 6987 6988

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6989
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6990
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6991
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6992 6993
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6994 6995 6996
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6997 6998 6999 7000

	return ERR_PTR(-ENOMEM);
}

7001 7002
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7003
{
7004
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
7005
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7023
/* Destroy runqueue etc associated with a task group */
7024
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7025
{
7026 7027
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
7028

7029 7030 7031 7032 7033 7034 7035 7036 7037
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7038 7039
}

7040
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7041 7042 7043
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7044 7045
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7061
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7062
		dequeue_task(rq, tsk, 0);
7063 7064 7065
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7066 7067 7068

	set_task_cfs_rq(tsk);

7069 7070 7071
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7072
		enqueue_task(rq, tsk, 0);
7073
	}
S
Srivatsa Vaddagiri 已提交
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7100
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7101 7102 7103
{
	int i;

7104
	spin_lock(&tg->lock);
7105
	if (tg->shares == shares)
7106
		goto done;
S
Srivatsa Vaddagiri 已提交
7107

7108
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7109
	for_each_possible_cpu(i)
7110
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7111

7112 7113
done:
	spin_unlock(&tg->lock);
7114
	return 0;
S
Srivatsa Vaddagiri 已提交
7115 7116
}

7117 7118 7119 7120 7121
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7122
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7123 7124 7125 7126

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7127
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7128
{
7129 7130
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7131 7132 7133
}

static struct cgroup_subsys_state *
7134
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7135 7136 7137
{
	struct task_group *tg;

7138
	if (!cgrp->parent) {
7139
		/* This is early initialization for the top cgroup */
7140
		init_task_group.css.cgroup = cgrp;
7141 7142 7143 7144
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7145
	if (cgrp->parent->parent)
7146 7147 7148 7149 7150 7151 7152
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7153
	tg->css.cgroup = cgrp;
7154 7155 7156 7157 7158

	return &tg->css;
}

static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7159
			       struct cgroup *cgrp)
7160
{
7161
	struct task_group *tg = cgroup_tg(cgrp);
7162 7163 7164 7165 7166

	sched_destroy_group(tg);
}

static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7167
			     struct cgroup *cgrp, struct task_struct *tsk)
7168 7169 7170 7171 7172 7173 7174 7175 7176
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7177
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7178 7179 7180 7181 7182
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7183 7184
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7185
{
7186
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7187 7188
}

7189
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7190
{
7191
	struct task_group *tg = cgroup_tg(cgrp);
7192 7193 7194 7195 7196 7197 7198

	return (u64) tg->shares;
}

static struct cftype cpu_shares = {
	.name = "shares",
	.read_uint = cpu_shares_read_uint,
7199
	.write_uint = cpu_shares_write_uint,
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_file(cont, ss, &cpu_shares);
}

struct cgroup_subsys cpu_cgroup_subsys = {
	.name 	    	= "cpu",
	.create	    	= cpu_cgroup_create,
	.destroy    	= cpu_cgroup_destroy,
	.can_attach 	= cpu_cgroup_can_attach,
	.attach     	= cpu_cgroup_attach,
	.populate   	= cpu_cgroup_populate,
	.subsys_id  	= cpu_cgroup_subsys_id,
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */