sched.c 230.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
212
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 214
}

215 216 217
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
218 219 220 221 222 223
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

224
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 226 227 228 229 230 231 232 233 234 235 236
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 238
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
239 240 241 242 243 244 245 246 247 248 249
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

250 251 252 253 254 255
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

256
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257

258 259
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
260 261
struct cfs_rq;

P
Peter Zijlstra 已提交
262 263
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
264
/* task group related information */
265
struct task_group {
266
#ifdef CONFIG_CGROUP_SCHED
267 268
	struct cgroup_subsys_state css;
#endif
269

270 271 272 273
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

274
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
275 276 277 278 279
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
280 281 282 283 284 285
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

286
	struct rt_bandwidth rt_bandwidth;
287
#endif
288

289
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
290
	struct list_head list;
P
Peter Zijlstra 已提交
291 292 293 294

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
295 296
};

D
Dhaval Giani 已提交
297
#ifdef CONFIG_USER_SCHED
298

299 300 301 302 303 304
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

305 306 307 308 309 310 311
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

312
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
313 314 315 316
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
317
#endif /* CONFIG_FAIR_GROUP_SCHED */
318 319 320 321

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
323
#else /* !CONFIG_USER_SCHED */
324
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
325
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
326

327
/* task_group_lock serializes add/remove of task groups and also changes to
328 329
 * a task group's cpu shares.
 */
330
static DEFINE_SPINLOCK(task_group_lock);
331

332 333 334
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
335
#else /* !CONFIG_USER_SCHED */
336
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
337
#endif /* CONFIG_USER_SCHED */
338

339
/*
340 341 342 343
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
344 345 346
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
347
#define MIN_SHARES	2
348
#define MAX_SHARES	(1UL << 18)
349

350 351 352
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
353
/* Default task group.
I
Ingo Molnar 已提交
354
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
355
 */
356
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
357 358

/* return group to which a task belongs */
359
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
360
{
361
	struct task_group *tg;
362

363
#ifdef CONFIG_USER_SCHED
364
	tg = p->user->tg;
365
#elif defined(CONFIG_CGROUP_SCHED)
366 367
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
368
#else
I
Ingo Molnar 已提交
369
	tg = &init_task_group;
370
#endif
371
	return tg;
S
Srivatsa Vaddagiri 已提交
372 373 374
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
375
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
376
{
377
#ifdef CONFIG_FAIR_GROUP_SCHED
378 379
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
380
#endif
P
Peter Zijlstra 已提交
381

382
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
383 384
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
385
#endif
S
Srivatsa Vaddagiri 已提交
386 387 388 389
}

#else

P
Peter Zijlstra 已提交
390
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
391 392 393 394
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
395

396
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
397

I
Ingo Molnar 已提交
398 399 400 401 402 403
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
404
	u64 min_vruntime;
I
Ingo Molnar 已提交
405 406 407

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
408 409 410 411 412 413

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
414 415
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
416
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
417

P
Peter Zijlstra 已提交
418
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
419

420
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
421 422
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
423 424
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
425 426 427 428 429 430
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
431 432
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
433 434 435

#ifdef CONFIG_SMP
	/*
436
	 * the part of load.weight contributed by tasks
437
	 */
438
	unsigned long task_weight;
439

440 441 442 443 444 445 446
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
447

448 449 450 451
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
452 453 454 455 456

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
457
#endif
I
Ingo Molnar 已提交
458 459
#endif
};
L
Linus Torvalds 已提交
460

I
Ingo Molnar 已提交
461 462 463
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
464
	unsigned long rt_nr_running;
465
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
466 467 468 469
	struct {
		int curr; /* highest queued rt task prio */
		int next; /* next highest */
	} highest_prio;
P
Peter Zijlstra 已提交
470
#endif
P
Peter Zijlstra 已提交
471
#ifdef CONFIG_SMP
472
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
473
	int overloaded;
P
Peter Zijlstra 已提交
474
#endif
P
Peter Zijlstra 已提交
475
	int rt_throttled;
P
Peter Zijlstra 已提交
476
	u64 rt_time;
P
Peter Zijlstra 已提交
477
	u64 rt_runtime;
I
Ingo Molnar 已提交
478
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
479
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
480

481
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
482 483
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
484 485 486 487 488
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
489 490
};

G
Gregory Haskins 已提交
491 492 493 494
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
495 496
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
497 498 499 500 501 502
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
503 504
	cpumask_var_t span;
	cpumask_var_t online;
505

I
Ingo Molnar 已提交
506
	/*
507 508 509
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
510
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
511
	atomic_t rto_count;
512 513 514
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
515 516 517 518 519 520 521 522
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
523 524
};

525 526 527 528
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
529 530 531 532
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
533 534 535 536 537 538 539
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
540
struct rq {
541 542
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
543 544 545 546 547 548

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
549 550
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
551
	unsigned char idle_at_tick;
552
#ifdef CONFIG_NO_HZ
553
	unsigned long last_tick_seen;
554 555
	unsigned char in_nohz_recently;
#endif
556 557
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
558 559 560 561
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
562 563
	struct rt_rq rt;

I
Ingo Molnar 已提交
564
#ifdef CONFIG_FAIR_GROUP_SCHED
565 566
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
567 568
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
569
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
570 571 572 573 574 575 576 577 578 579
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

580
	struct task_struct *curr, *idle;
581
	unsigned long next_balance;
L
Linus Torvalds 已提交
582
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
583

584
	u64 clock;
I
Ingo Molnar 已提交
585

L
Linus Torvalds 已提交
586 587 588
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
589
	struct root_domain *rd;
L
Linus Torvalds 已提交
590 591 592 593 594
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
595 596
	/* cpu of this runqueue: */
	int cpu;
597
	int online;
L
Linus Torvalds 已提交
598

599
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
600

601
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
602 603 604
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
605
#ifdef CONFIG_SCHED_HRTICK
606 607 608 609
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
610 611 612
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
613 614 615 616 617
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
618 619 620 621
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
622 623

	/* schedule() stats */
624 625 626
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
627 628

	/* try_to_wake_up() stats */
629 630
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
631 632

	/* BKL stats */
633
	unsigned int bkl_count;
L
Linus Torvalds 已提交
634 635 636
#endif
};

637
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
638

639
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
640
{
641
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
642 643
}

644 645 646 647 648 649 650 651 652
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
653 654
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
655
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
656 657 658 659
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
660 661
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
662 663 664 665 666 667

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

668 669 670 671 672
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
673 674 675 676 677 678 679 680 681
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
700 701 702
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
703 704 705 706

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
707
enum {
P
Peter Zijlstra 已提交
708
#include "sched_features.h"
I
Ingo Molnar 已提交
709 710
};

P
Peter Zijlstra 已提交
711 712 713 714 715
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
716
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
717 718 719 720 721 722 723 724 725
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

726
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
727 728 729 730 731 732
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
733
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
734 735 736 737
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
738 739 740
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
741
	}
L
Li Zefan 已提交
742
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
743

L
Li Zefan 已提交
744
	return 0;
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
789 790 791 792 793
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
794
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
795 796 797 798 799
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
814

815 816 817 818 819 820
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
821 822
/*
 * ratelimit for updating the group shares.
823
 * default: 0.25ms
P
Peter Zijlstra 已提交
824
 */
825
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
826

827 828 829 830 831 832 833
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896 897 898 899
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951 952 953 954
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
955 956 957 958
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971 972 973 974
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
975 976 977 978
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

979 980 981 982 983 984 985 986
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995 996 997 998 999
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072 1073 1074 1075
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092 1093 1094 1095

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1131

A
Andrew Morton 已提交
1132
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1133 1134
{
}
1135
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1136

1137
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1138
{
1139 1140
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1141

1142 1143 1144 1145
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1146

1147 1148
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1149
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181 1182 1183
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1184
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252
#else /* !CONFIG_SMP */
1253
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1254 1255
{
	assert_spin_locked(&task_rq(p)->lock);
1256
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1257
}
1258
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1259

1260 1261 1262 1263 1264 1265 1266 1267
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1268 1269 1270
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1271
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1272

1273 1274 1275
/*
 * delta *= weight / lw
 */
1276
static unsigned long
1277 1278 1279 1280 1281
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1282 1283 1284 1285 1286 1287 1288
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1289 1290 1291 1292 1293

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1294
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1295
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1296 1297
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1298
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1299

1300
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1301 1302
}

1303
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1304 1305
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1306
	lw->inv_weight = 0;
1307 1308
}

1309
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1310 1311
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1312
	lw->inv_weight = 0;
1313 1314
}

1315 1316 1317 1318
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1319
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1320 1321 1322 1323
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1335 1336 1337
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1338 1339
 */
static const int prio_to_weight[40] = {
1340 1341 1342 1343 1344 1345 1346 1347
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1348 1349
};

1350 1351 1352 1353 1354 1355 1356
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1357
static const u32 prio_to_wmult[40] = {
1358 1359 1360 1361 1362 1363 1364 1365
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1366
};
1367

I
Ingo Molnar 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1393

1394 1395 1396 1397 1398 1399
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1410
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1411
typedef int (*tg_visitor)(struct task_group *, void *);
1412 1413 1414 1415 1416

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1417
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1418 1419
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1420
	int ret;
1421 1422 1423 1424

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1425 1426 1427
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1428 1429 1430 1431 1432 1433 1434
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1435 1436 1437
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1438 1439 1440 1441 1442

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1443
out_unlock:
1444
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1445 1446

	return ret;
1447 1448
}

P
Peter Zijlstra 已提交
1449 1450 1451
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1452
}
P
Peter Zijlstra 已提交
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1463
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1464

1465 1466
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1467 1468
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1469 1470 1471 1472 1473

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1474 1475 1476 1477 1478 1479 1480

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1481 1482
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1483
{
1484 1485 1486
	unsigned long shares;
	unsigned long rq_weight;

1487
	if (!tg->se[cpu])
1488 1489
		return;

1490
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1491

1492 1493 1494 1495 1496 1497
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1498
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1499
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1500

1501 1502 1503 1504
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1505

1506
		spin_lock_irqsave(&rq->lock, flags);
1507
		tg->cfs_rq[cpu]->shares = shares;
1508

1509 1510 1511
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1512
}
1513 1514

/*
1515 1516 1517
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1518
 */
P
Peter Zijlstra 已提交
1519
static int tg_shares_up(struct task_group *tg, void *data)
1520
{
1521
	unsigned long weight, rq_weight = 0;
1522
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1523
	struct sched_domain *sd = data;
1524
	int i;
1525

1526
	for_each_cpu(i, sched_domain_span(sd)) {
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1538
		shares += tg->cfs_rq[i]->shares;
1539 1540
	}

1541 1542 1543 1544 1545
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1546

1547
	for_each_cpu(i, sched_domain_span(sd))
1548
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1549 1550

	return 0;
1551 1552 1553
}

/*
1554 1555 1556
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1557
 */
P
Peter Zijlstra 已提交
1558
static int tg_load_down(struct task_group *tg, void *data)
1559
{
1560
	unsigned long load;
P
Peter Zijlstra 已提交
1561
	long cpu = (long)data;
1562

1563 1564 1565 1566 1567 1568 1569
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1570

1571
	tg->cfs_rq[cpu]->h_load = load;
1572

P
Peter Zijlstra 已提交
1573
	return 0;
1574 1575
}

1576
static void update_shares(struct sched_domain *sd)
1577
{
P
Peter Zijlstra 已提交
1578 1579 1580 1581 1582
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1583
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1584
	}
1585 1586
}

1587 1588 1589 1590 1591 1592 1593
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1594
static void update_h_load(long cpu)
1595
{
P
Peter Zijlstra 已提交
1596
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1597 1598 1599 1600
}

#else

1601
static inline void update_shares(struct sched_domain *sd)
1602 1603 1604
{
}

1605 1606 1607 1608
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1609 1610
#endif

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1644 1645
#endif

V
Vegard Nossum 已提交
1646
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1647 1648
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1649
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1650 1651 1652
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1653
#endif
1654

I
Ingo Molnar 已提交
1655 1656
#include "sched_stats.h"
#include "sched_idletask.c"
1657 1658
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1659 1660 1661 1662 1663
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1664 1665
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1666

1667
static void inc_nr_running(struct rq *rq)
1668 1669 1670 1671
{
	rq->nr_running++;
}

1672
static void dec_nr_running(struct rq *rq)
1673 1674 1675 1676
{
	rq->nr_running--;
}

1677 1678 1679
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1680 1681 1682 1683
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1684

I
Ingo Molnar 已提交
1685 1686 1687 1688 1689 1690 1691 1692
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1693

I
Ingo Molnar 已提交
1694 1695
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1696 1697
}

1698 1699 1700 1701 1702 1703
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1704
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1705
{
I
Ingo Molnar 已提交
1706
	sched_info_queued(p);
1707
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1708
	p->se.on_rq = 1;
1709 1710
}

1711
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1712
{
1713 1714 1715 1716 1717 1718
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1719
	sched_info_dequeued(p);
1720
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1721
	p->se.on_rq = 0;
1722 1723
}

1724
/*
I
Ingo Molnar 已提交
1725
 * __normal_prio - return the priority that is based on the static prio
1726 1727 1728
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1729
	return p->static_prio;
1730 1731
}

1732 1733 1734 1735 1736 1737 1738
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1739
static inline int normal_prio(struct task_struct *p)
1740 1741 1742
{
	int prio;

1743
	if (task_has_rt_policy(p))
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1757
static int effective_prio(struct task_struct *p)
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1770
/*
I
Ingo Molnar 已提交
1771
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1772
 */
I
Ingo Molnar 已提交
1773
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1774
{
1775
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1776
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1777

1778
	enqueue_task(rq, p, wakeup);
1779
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1780 1781 1782 1783 1784
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1785
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1786
{
1787
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1788 1789
		rq->nr_uninterruptible++;

1790
	dequeue_task(rq, p, sleep);
1791
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1792 1793 1794 1795 1796 1797
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1798
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1799 1800 1801 1802
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1803 1804
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1805
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1806
#ifdef CONFIG_SMP
1807 1808 1809 1810 1811 1812
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1813 1814
	task_thread_info(p)->cpu = cpu;
#endif
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1829
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1830

1831 1832 1833 1834 1835 1836
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1837 1838 1839
/*
 * Is this task likely cache-hot:
 */
1840
static int
1841 1842 1843 1844
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1845 1846 1847
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1848 1849 1850
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1851 1852
		return 1;

1853 1854 1855
	if (p->sched_class != &fair_sched_class)
		return 0;

1856 1857 1858 1859 1860
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1861 1862 1863 1864 1865 1866
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1867
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1868
{
I
Ingo Molnar 已提交
1869 1870
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1871 1872
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1873
	u64 clock_offset;
I
Ingo Molnar 已提交
1874 1875

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1876 1877 1878 1879

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1880 1881 1882 1883
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1884 1885 1886 1887 1888
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1889
#endif
1890 1891
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1892 1893

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1894 1895
}

1896
struct migration_req {
L
Linus Torvalds 已提交
1897 1898
	struct list_head list;

1899
	struct task_struct *task;
L
Linus Torvalds 已提交
1900 1901 1902
	int dest_cpu;

	struct completion done;
1903
};
L
Linus Torvalds 已提交
1904 1905 1906 1907 1908

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1909
static int
1910
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1911
{
1912
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1913 1914 1915 1916 1917

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1918
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1927

L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1934 1935 1936 1937 1938 1939 1940
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1941 1942 1943 1944 1945 1946
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1947
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1948 1949
{
	unsigned long flags;
I
Ingo Molnar 已提交
1950
	int running, on_rq;
R
Roland McGrath 已提交
1951
	unsigned long ncsw;
1952
	struct rq *rq;
L
Linus Torvalds 已提交
1953

1954 1955 1956 1957 1958 1959 1960 1961
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1962

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1974 1975 1976
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1977
			cpu_relax();
R
Roland McGrath 已提交
1978
		}
1979

1980 1981 1982 1983 1984 1985
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1986
		trace_sched_wait_task(rq, p);
1987 1988
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1989
		ncsw = 0;
1990
		if (!match_state || p->state == match_state)
1991
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1992
		task_rq_unlock(rq, &flags);
1993

R
Roland McGrath 已提交
1994 1995 1996 1997 1998 1999
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2024

2025 2026 2027 2028 2029 2030 2031
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2032 2033

	return ncsw;
L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2049
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2061 2062
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2063 2064 2065 2066
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2067
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2068
{
2069
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2070
	unsigned long total = weighted_cpuload(cpu);
2071

2072
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2073
		return total;
2074

I
Ingo Molnar 已提交
2075
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2076 2077 2078
}

/*
2079 2080
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2081
 */
A
Alexey Dobriyan 已提交
2082
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2083
{
2084
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2085
	unsigned long total = weighted_cpuload(cpu);
2086

2087
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2088
		return total;
2089

I
Ingo Molnar 已提交
2090
	return max(rq->cpu_load[type-1], total);
2091 2092
}

N
Nick Piggin 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2110
		/* Skip over this group if it has no CPUs allowed */
2111 2112
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2113
			continue;
2114

2115 2116
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2117 2118 2119 2120

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2121
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2132 2133
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2134 2135 2136 2137 2138 2139 2140 2141

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2142
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2143 2144 2145 2146 2147 2148 2149

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2150
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2151
 */
I
Ingo Molnar 已提交
2152
static int
2153
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2154 2155 2156 2157 2158
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2159
	/* Traverse only the allowed CPUs */
2160
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2161
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2187

2188
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2189 2190 2191
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2192 2193
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2194 2195
		if (tmp->flags & flag)
			sd = tmp;
2196
	}
N
Nick Piggin 已提交
2197

2198 2199 2200
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2201 2202
	while (sd) {
		struct sched_group *group;
2203 2204 2205 2206 2207 2208
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2209 2210

		group = find_idlest_group(sd, t, cpu);
2211 2212 2213 2214
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2215

2216
		new_cpu = find_idlest_cpu(group, t, cpu);
2217 2218 2219 2220 2221
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2222

2223
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2224
		cpu = new_cpu;
2225
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2226 2227
		sd = NULL;
		for_each_domain(cpu, tmp) {
2228
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2255
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2256
{
2257
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2258 2259
	unsigned long flags;
	long old_state;
2260
	struct rq *rq;
L
Linus Torvalds 已提交
2261

2262 2263 2264
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2265 2266 2267 2268 2269 2270 2271 2272
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2273
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2274 2275 2276 2277 2278 2279 2280
				update_shares(sd);
				break;
			}
		}
	}
#endif

2281
	smp_wmb();
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2287
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2288 2289 2290
		goto out_running;

	cpu = task_cpu(p);
2291
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2292 2293 2294 2295 2296 2297
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2298 2299 2300
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2307
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2314 2315 2316 2317 2318 2319 2320
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2321
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2322 2323 2324 2325 2326
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2327
#endif /* CONFIG_SCHEDSTATS */
2328

L
Linus Torvalds 已提交
2329 2330
out_activate:
#endif /* CONFIG_SMP */
2331 2332 2333 2334 2335 2336 2337 2338 2339
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2340
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2341
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2342 2343 2344
	success = 1;

out_running:
2345
	trace_sched_wakeup(rq, p);
2346
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2347

L
Linus Torvalds 已提交
2348
	p->state = TASK_RUNNING;
2349 2350 2351 2352
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2353
out:
2354 2355
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2356 2357 2358 2359 2360
	task_rq_unlock(rq, &flags);

	return success;
}

2361
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2362
{
2363
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2364 2365 2366
}
EXPORT_SYMBOL(wake_up_process);

2367
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2375 2376 2377 2378 2379 2380 2381
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2382
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2383 2384
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2385 2386 2387

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2388 2389 2390 2391 2392 2393
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2394
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2395
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2396
#endif
N
Nick Piggin 已提交
2397

P
Peter Zijlstra 已提交
2398
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2399
	p->se.on_rq = 0;
2400
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2401

2402 2403 2404 2405
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2406 2407 2408 2409 2410 2411 2412
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2427
	set_task_cpu(p, cpu);
2428 2429 2430 2431 2432

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2433 2434
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2435

2436
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2437
	if (likely(sched_info_on()))
2438
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2439
#endif
2440
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2441 2442
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2443
#ifdef CONFIG_PREEMPT
2444
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2445
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2446
#endif
N
Nick Piggin 已提交
2447
	put_cpu();
L
Linus Torvalds 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2457
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2458 2459
{
	unsigned long flags;
I
Ingo Molnar 已提交
2460
	struct rq *rq;
L
Linus Torvalds 已提交
2461 2462

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2463
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2464
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2465 2466 2467

	p->prio = effective_prio(p);

2468
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2469
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2470 2471
	} else {
		/*
I
Ingo Molnar 已提交
2472 2473
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2474
		 */
2475
		p->sched_class->task_new(rq, p);
2476
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2477
	}
2478
	trace_sched_wakeup_new(rq, p);
2479
	check_preempt_curr(rq, p, 0);
2480 2481 2482 2483
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2484
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2485 2486
}

2487 2488 2489
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2490 2491
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2492 2493 2494 2495 2496 2497 2498 2499 2500
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2501
 * @notifier: notifier struct to unregister
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2531
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2543
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2544

2545 2546 2547
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2548
 * @prev: the current task that is being switched out
2549 2550 2551 2552 2553 2554 2555 2556 2557
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2558 2559 2560
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2561
{
2562
	fire_sched_out_preempt_notifiers(prev, next);
2563 2564 2565 2566
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2567 2568
/**
 * finish_task_switch - clean up after a task-switch
2569
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2570 2571
 * @prev: the thread we just switched away from.
 *
2572 2573 2574 2575
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2576 2577
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2578
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2579 2580 2581
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2582
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2583 2584 2585
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2586
	long prev_state;
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2592
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2593 2594
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2595
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2601
	prev_state = prev->state;
2602 2603
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2604 2605 2606 2607
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2608

2609
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2610 2611
	if (mm)
		mmdrop(mm);
2612
	if (unlikely(prev_state == TASK_DEAD)) {
2613 2614 2615
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2616
		 */
2617
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2618
		put_task_struct(prev);
2619
	}
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2626
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2627 2628
	__releases(rq->lock)
{
2629 2630
	struct rq *rq = this_rq();

2631 2632 2633 2634 2635
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2636
	if (current->set_child_tid)
2637
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2638 2639 2640 2641 2642 2643
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2644
static inline void
2645
context_switch(struct rq *rq, struct task_struct *prev,
2646
	       struct task_struct *next)
L
Linus Torvalds 已提交
2647
{
I
Ingo Molnar 已提交
2648
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2649

2650
	prepare_task_switch(rq, prev, next);
2651
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2652 2653
	mm = next->mm;
	oldmm = prev->active_mm;
2654 2655 2656 2657 2658 2659 2660
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2661
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666 2667
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2668
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2669 2670 2671
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2672 2673 2674 2675 2676 2677 2678
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2679
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2680
#endif
L
Linus Torvalds 已提交
2681 2682 2683 2684

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2685 2686 2687 2688 2689 2690 2691
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2715
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2730 2731
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2732

2733
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741 2742
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2743
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2744 2745 2746 2747 2748
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2764
/*
I
Ingo Molnar 已提交
2765 2766
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2767
 */
I
Ingo Molnar 已提交
2768
static void update_cpu_load(struct rq *this_rq)
2769
{
2770
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2783 2784 2785 2786 2787 2788 2789
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2790 2791
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2792 2793
}

I
Ingo Molnar 已提交
2794 2795
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2796 2797 2798 2799 2800 2801
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2802
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2803 2804 2805
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2806
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2807 2808 2809 2810
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2811
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2812
			spin_lock(&rq1->lock);
2813
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2814 2815
		} else {
			spin_lock(&rq2->lock);
2816
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2817 2818
		}
	}
2819 2820
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826 2827 2828
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2829
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2843
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2844 2845
 * the cpu_allowed mask is restored.
 */
2846
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2847
{
2848
	struct migration_req req;
L
Linus Torvalds 已提交
2849
	unsigned long flags;
2850
	struct rq *rq;
L
Linus Torvalds 已提交
2851 2852

	rq = task_rq_lock(p, &flags);
2853
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2854
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2855 2856
		goto out;

2857
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2858 2859 2860 2861
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2862

L
Linus Torvalds 已提交
2863 2864 2865 2866 2867
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2868

L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2876 2877
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2878 2879 2880 2881
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2882
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2883
	put_cpu();
N
Nick Piggin 已提交
2884 2885
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2892 2893
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2894
{
2895
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2896
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2897
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2898 2899 2900 2901
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2902
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2908
static
2909
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2910
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2911
		     int *all_pinned)
L
Linus Torvalds 已提交
2912 2913 2914 2915 2916 2917 2918
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2919
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2920
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2921
		return 0;
2922
	}
2923 2924
	*all_pinned = 0;

2925 2926
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2927
		return 0;
2928
	}
L
Linus Torvalds 已提交
2929

2930 2931 2932 2933 2934 2935
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2936 2937
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2938
#ifdef CONFIG_SCHEDSTATS
2939
		if (task_hot(p, rq->clock, sd)) {
2940
			schedstat_inc(sd, lb_hot_gained[idle]);
2941 2942
			schedstat_inc(p, se.nr_forced_migrations);
		}
2943 2944 2945 2946
#endif
		return 1;
	}

2947 2948
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2949
		return 0;
2950
	}
L
Linus Torvalds 已提交
2951 2952 2953
	return 1;
}

2954 2955 2956 2957 2958
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2959
{
2960
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2961 2962
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2963

2964
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2965 2966
		goto out;

2967 2968
	pinned = 1;

L
Linus Torvalds 已提交
2969
	/*
I
Ingo Molnar 已提交
2970
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2971
	 */
I
Ingo Molnar 已提交
2972 2973
	p = iterator->start(iterator->arg);
next:
2974
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2975
		goto out;
2976 2977

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2978 2979 2980
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2981 2982
	}

I
Ingo Molnar 已提交
2983
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2984
	pulled++;
I
Ingo Molnar 已提交
2985
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2986

2987
	/*
2988
	 * We only want to steal up to the prescribed amount of weighted load.
2989
	 */
2990
	if (rem_load_move > 0) {
2991 2992
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2993 2994
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2995 2996 2997
	}
out:
	/*
2998
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2999 3000 3001 3002
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3003 3004 3005

	if (all_pinned)
		*all_pinned = pinned;
3006 3007

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3008 3009
}

I
Ingo Molnar 已提交
3010
/*
P
Peter Williams 已提交
3011 3012 3013
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3014 3015 3016 3017
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3018
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3019 3020 3021
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3022
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3023
	unsigned long total_load_moved = 0;
3024
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3025 3026

	do {
P
Peter Williams 已提交
3027 3028
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3029
				max_load_move - total_load_moved,
3030
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3031
		class = class->next;
3032 3033 3034 3035

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3036
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3037

P
Peter Williams 已提交
3038 3039 3040
	return total_load_moved > 0;
}

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3077
	const struct sched_class *class;
P
Peter Williams 已提交
3078 3079

	for (class = sched_class_highest; class; class = class->next)
3080
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3081 3082 3083
			return 1;

	return 0;
I
Ingo Molnar 已提交
3084 3085
}

L
Linus Torvalds 已提交
3086 3087
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3088 3089
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3090 3091 3092
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3093
		   unsigned long *imbalance, enum cpu_idle_type idle,
3094
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3095 3096 3097
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3098
	unsigned long max_pull;
3099 3100
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3101
	int load_idx, group_imb = 0;
3102 3103 3104 3105 3106 3107
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3108 3109

	max_load = this_load = total_load = total_pwr = 0;
3110 3111
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3112

I
Ingo Molnar 已提交
3113
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3114
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3115
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3116 3117 3118
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3119 3120

	do {
3121
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3122 3123
		int local_group;
		int i;
3124
		int __group_imb = 0;
3125
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3126
		unsigned long sum_nr_running, sum_weighted_load;
3127 3128
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3129

3130 3131
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3132

3133
		if (local_group)
3134
			balance_cpu = cpumask_first(sched_group_cpus(group));
3135

L
Linus Torvalds 已提交
3136
		/* Tally up the load of all CPUs in the group */
3137
		sum_weighted_load = sum_nr_running = avg_load = 0;
3138 3139
		sum_avg_load_per_task = avg_load_per_task = 0;

3140 3141
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3142

3143 3144
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3145

3146
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3147 3148
				*sd_idle = 0;

L
Linus Torvalds 已提交
3149
			/* Bias balancing toward cpus of our domain */
3150 3151 3152 3153 3154 3155
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3156
				load = target_load(i, load_idx);
3157
			} else {
N
Nick Piggin 已提交
3158
				load = source_load(i, load_idx);
3159 3160 3161 3162 3163
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3164 3165

			avg_load += load;
3166
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3167
			sum_weighted_load += weighted_cpuload(i);
3168 3169

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3170 3171
		}

3172 3173 3174
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3175 3176
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3177
		 */
3178 3179
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3180 3181 3182 3183
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3184
		total_load += avg_load;
3185
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3186 3187

		/* Adjust by relative CPU power of the group */
3188 3189
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3190

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3205 3206
			__group_imb = 1;

3207
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3208

L
Linus Torvalds 已提交
3209 3210 3211
		if (local_group) {
			this_load = avg_load;
			this = group;
3212 3213 3214
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3215
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3216 3217
			max_load = avg_load;
			busiest = group;
3218 3219
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3220
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3221
		}
3222 3223 3224 3225 3226 3227

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3228 3229 3230
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3231 3232 3233 3234 3235 3236 3237 3238 3239

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3240
		/*
3241 3242
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3243 3244
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3245
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3246
			goto group_next;
3247

I
Ingo Molnar 已提交
3248
		/*
3249
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3250 3251 3252 3253 3254
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3255
		     cpumask_first(sched_group_cpus(group)) >
3256
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3257 3258
			group_min = group;
			min_nr_running = sum_nr_running;
3259 3260
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3261
		}
3262

I
Ingo Molnar 已提交
3263
		/*
3264
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3271
			     cpumask_first(sched_group_cpus(group)) <
3272
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3273 3274 3275
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3276
		}
3277 3278
group_next:
#endif
L
Linus Torvalds 已提交
3279 3280 3281
		group = group->next;
	} while (group != sd->groups);

3282
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289 3290
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3291
	busiest_load_per_task /= busiest_nr_running;
3292 3293 3294
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3303
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3304 3305
	 * appear as very large values with unsigned longs.
	 */
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3318 3319

	/* Don't want to pull so many tasks that a group would go idle */
3320
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3321

L
Linus Torvalds 已提交
3322
	/* How much load to actually move to equalise the imbalance */
3323 3324
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3325 3326
			/ SCHED_LOAD_SCALE;

3327 3328 3329 3330 3331 3332
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3333
	if (*imbalance < busiest_load_per_task) {
3334
		unsigned long tmp, pwr_now, pwr_move;
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3345
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3346

3347
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3348
					busiest_load_per_task * imbn) {
3349
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3350 3351 3352 3353 3354 3355 3356 3357 3358
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3359 3360 3361 3362
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3363 3364 3365
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3366 3367
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3368
		if (max_load > tmp)
3369
			pwr_move += busiest->__cpu_power *
3370
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3371 3372

		/* Amount of load we'd add */
3373
		if (max_load * busiest->__cpu_power <
3374
				busiest_load_per_task * SCHED_LOAD_SCALE)
3375 3376
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3377
		else
3378 3379 3380 3381
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3382 3383 3384
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3385 3386
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391
	}

	return busiest;

out_balanced:
3392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3393
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3394
		goto ret;
L
Linus Torvalds 已提交
3395

3396 3397
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3398 3399
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3400
				cpumask_first(sched_group_cpus(group_leader));
3401
		}
3402 3403 3404
		return group_min;
	}
#endif
3405
ret:
L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411 3412
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3413
static struct rq *
I
Ingo Molnar 已提交
3414
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3415
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3416
{
3417
	struct rq *busiest = NULL, *rq;
3418
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3419 3420
	int i;

3421
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3422
		unsigned long wl;
3423

3424
		if (!cpumask_test_cpu(i, cpus))
3425 3426
			continue;

3427
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3428
		wl = weighted_cpuload(i);
3429

I
Ingo Molnar 已提交
3430
		if (rq->nr_running == 1 && wl > imbalance)
3431
			continue;
L
Linus Torvalds 已提交
3432

I
Ingo Molnar 已提交
3433 3434
		if (wl > max_load) {
			max_load = wl;
3435
			busiest = rq;
L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441
		}
	}

	return busiest;
}

3442 3443 3444 3445 3446 3447
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3448 3449 3450 3451
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3452
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3453
			struct sched_domain *sd, enum cpu_idle_type idle,
3454
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3455
{
P
Peter Williams 已提交
3456
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3457 3458
	struct sched_group *group;
	unsigned long imbalance;
3459
	struct rq *busiest;
3460
	unsigned long flags;
N
Nick Piggin 已提交
3461

3462
	cpumask_setall(cpus);
3463

3464 3465 3466
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3467
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3468
	 * portraying it as CPU_NOT_IDLE.
3469
	 */
I
Ingo Molnar 已提交
3470
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3471
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3472
		sd_idle = 1;
L
Linus Torvalds 已提交
3473

3474
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3475

3476
redo:
3477
	update_shares(sd);
3478
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3479
				   cpus, balance);
3480

3481
	if (*balance == 0)
3482 3483
		goto out_balanced;

L
Linus Torvalds 已提交
3484 3485 3486 3487 3488
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3489
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3495
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3496 3497 3498

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3499
	ld_moved = 0;
L
Linus Torvalds 已提交
3500 3501 3502 3503
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3504
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3505 3506
		 * correctly treated as an imbalance.
		 */
3507
		local_irq_save(flags);
N
Nick Piggin 已提交
3508
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3509
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3510
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3511
		double_rq_unlock(this_rq, busiest);
3512
		local_irq_restore(flags);
3513

3514 3515 3516
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3517
		if (ld_moved && this_cpu != smp_processor_id())
3518 3519
			resched_cpu(this_cpu);

3520
		/* All tasks on this runqueue were pinned by CPU affinity */
3521
		if (unlikely(all_pinned)) {
3522 3523
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3524
				goto redo;
3525
			goto out_balanced;
3526
		}
L
Linus Torvalds 已提交
3527
	}
3528

P
Peter Williams 已提交
3529
	if (!ld_moved) {
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3535
			spin_lock_irqsave(&busiest->lock, flags);
3536 3537 3538 3539

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3540 3541
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3542
				spin_unlock_irqrestore(&busiest->lock, flags);
3543 3544 3545 3546
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3547 3548 3549
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3550
				active_balance = 1;
L
Linus Torvalds 已提交
3551
			}
3552
			spin_unlock_irqrestore(&busiest->lock, flags);
3553
			if (active_balance)
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3560
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3561
		}
3562
	} else
L
Linus Torvalds 已提交
3563 3564
		sd->nr_balance_failed = 0;

3565
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3566 3567
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3568 3569 3570 3571 3572 3573 3574 3575 3576
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3577 3578
	}

P
Peter Williams 已提交
3579
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3580
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3581 3582 3583
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3584 3585 3586 3587

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3588
	sd->nr_balance_failed = 0;
3589 3590

out_one_pinned:
L
Linus Torvalds 已提交
3591
	/* tune up the balancing interval */
3592 3593
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3594 3595
		sd->balance_interval *= 2;

3596
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3597
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3598 3599 3600 3601
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3602 3603
	if (ld_moved)
		update_shares(sd);
3604
	return ld_moved;
L
Linus Torvalds 已提交
3605 3606 3607 3608 3609 3610
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3611
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3612 3613
 * this_rq is locked.
 */
3614
static int
3615
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3616
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3617 3618
{
	struct sched_group *group;
3619
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3620
	unsigned long imbalance;
P
Peter Williams 已提交
3621
	int ld_moved = 0;
N
Nick Piggin 已提交
3622
	int sd_idle = 0;
3623
	int all_pinned = 0;
3624

3625
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3626

3627 3628 3629 3630
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3631
	 * portraying it as CPU_NOT_IDLE.
3632 3633 3634
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3635
		sd_idle = 1;
L
Linus Torvalds 已提交
3636

3637
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3638
redo:
3639
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3640
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3641
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3642
	if (!group) {
I
Ingo Molnar 已提交
3643
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3644
		goto out_balanced;
L
Linus Torvalds 已提交
3645 3646
	}

3647
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3648
	if (!busiest) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3650
		goto out_balanced;
L
Linus Torvalds 已提交
3651 3652
	}

N
Nick Piggin 已提交
3653 3654
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3655
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3656

P
Peter Williams 已提交
3657
	ld_moved = 0;
3658 3659 3660
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3661 3662
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3663
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3664 3665
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3666
		double_unlock_balance(this_rq, busiest);
3667

3668
		if (unlikely(all_pinned)) {
3669 3670
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3671 3672
				goto redo;
		}
3673 3674
	}

P
Peter Williams 已提交
3675
	if (!ld_moved) {
3676
		int active_balance = 0;
3677

I
Ingo Molnar 已提交
3678
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3679 3680
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3681
			return -1;
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
		if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
		if (active_balance)
			wake_up_process(busiest->migration_thread);

N
Nick Piggin 已提交
3734
	} else
3735
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3736

3737
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3738
	return ld_moved;
3739 3740

out_balanced:
I
Ingo Molnar 已提交
3741
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3742
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3743
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3744
		return -1;
3745
	sd->nr_balance_failed = 0;
3746

3747
	return 0;
L
Linus Torvalds 已提交
3748 3749 3750 3751 3752 3753
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3754
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3755 3756
{
	struct sched_domain *sd;
3757
	int pulled_task = 0;
I
Ingo Molnar 已提交
3758
	unsigned long next_balance = jiffies + HZ;
3759 3760 3761 3762
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3763 3764

	for_each_domain(this_cpu, sd) {
3765 3766 3767 3768 3769 3770
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3771
			/* If we've pulled tasks over stop searching: */
3772
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3773
							   sd, tmpmask);
3774 3775 3776 3777 3778 3779

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3780
	}
I
Ingo Molnar 已提交
3781
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3782 3783 3784 3785 3786
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3787
	}
3788
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3799
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3800
{
3801
	int target_cpu = busiest_rq->push_cpu;
3802 3803
	struct sched_domain *sd;
	struct rq *target_rq;
3804

3805
	/* Is there any task to move? */
3806 3807 3808 3809
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3810 3811

	/*
3812
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3813
	 * we need to fix it. Originally reported by
3814
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3815
	 */
3816
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3817

3818 3819
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3820 3821
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3822 3823

	/* Search for an sd spanning us and the target CPU. */
3824
	for_each_domain(target_cpu, sd) {
3825
		if ((sd->flags & SD_LOAD_BALANCE) &&
3826
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3827
				break;
3828
	}
3829

3830
	if (likely(sd)) {
3831
		schedstat_inc(sd, alb_count);
3832

P
Peter Williams 已提交
3833 3834
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3835 3836 3837 3838
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3839
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3840 3841
}

3842 3843 3844
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3845
	cpumask_var_t cpu_mask;
3846 3847 3848 3849
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3850
/*
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3861
 *
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
3875
		cpumask_set_cpu(cpu, nohz.cpu_mask);
3876 3877 3878 3879 3880
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3881
		if (!cpu_active(cpu) &&
3882 3883 3884 3885 3886 3887 3888
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
3889
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
3902
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3903 3904
			return 0;

3905
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3918 3919 3920 3921 3922
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3923
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3924
{
3925 3926
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3927 3928
	unsigned long interval;
	struct sched_domain *sd;
3929
	/* Earliest time when we have to do rebalance again */
3930
	unsigned long next_balance = jiffies + 60*HZ;
3931
	int update_next_balance = 0;
3932
	int need_serialize;
3933 3934 3935 3936 3937
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3938

3939
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3940 3941 3942 3943
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3944
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3945 3946 3947 3948 3949 3950
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3951 3952 3953
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3954
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3955

3956
		if (need_serialize) {
3957 3958 3959 3960
			if (!spin_trylock(&balancing))
				goto out;
		}

3961
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3962
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
3963 3964
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3965 3966 3967
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3968
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3969
			}
3970
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3971
		}
3972
		if (need_serialize)
3973 3974
			spin_unlock(&balancing);
out:
3975
		if (time_after(next_balance, sd->last_balance + interval)) {
3976
			next_balance = sd->last_balance + interval;
3977 3978
			update_next_balance = 1;
		}
3979 3980 3981 3982 3983 3984 3985 3986

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3987
	}
3988 3989 3990 3991 3992 3993 3994 3995

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3996 3997

	free_cpumask_var(tmp);
3998 3999 4000 4001 4002 4003 4004 4005 4006
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4007 4008 4009 4010
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4011

I
Ingo Molnar 已提交
4012
	rebalance_domains(this_cpu, idle);
4013 4014 4015 4016 4017 4018 4019

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4020 4021
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4022 4023 4024
		struct rq *rq;
		int balance_cpu;

4025 4026 4027 4028
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4029 4030 4031 4032 4033 4034 4035 4036
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4037
			rebalance_domains(balance_cpu, CPU_IDLE);
4038 4039

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4040 4041
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4054
static inline void trigger_load_balance(struct rq *rq, int cpu)
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4066
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4079
			int ilb = cpumask_first(nohz.cpu_mask);
4080

4081
			if (ilb < nr_cpu_ids)
4082 4083 4084 4085 4086 4087 4088 4089 4090
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4091
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4092 4093 4094 4095 4096 4097 4098 4099 4100
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4101
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4102 4103 4104 4105
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4106
}
I
Ingo Molnar 已提交
4107 4108 4109

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4110 4111 4112
/*
 * on UP we do not need to balance between CPUs:
 */
4113
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4114 4115
{
}
I
Ingo Molnar 已提交
4116

L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4124 4125
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4126
 */
4127
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4128 4129
{
	unsigned long flags;
4130
	struct rq *rq;
4131
	u64 ns = 0;
4132

4133
	rq = task_rq_lock(p, &flags);
4134

4135
	if (task_current(rq, p)) {
4136 4137
		u64 delta_exec;

I
Ingo Molnar 已提交
4138 4139
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4140
		if ((s64)delta_exec > 0)
4141
			ns = delta_exec;
4142
	}
4143

4144
	task_rq_unlock(rq, &flags);
4145

L
Linus Torvalds 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4160
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165 4166 4167

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4168 4169
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4170 4171
}

4172 4173 4174 4175 4176
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4177
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4178 4179 4180 4181 4182 4183 4184
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4185
	account_group_user_time(p, cputime);
4186 4187 4188 4189 4190 4191
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4212
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4213 4214
	cputime64_t tmp;

4215 4216 4217 4218
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4219

L
Linus Torvalds 已提交
4220
	p->stime = cputime_add(p->stime, cputime);
4221
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226 4227 4228

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4229
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4230
		cpustat->system = cputime64_add(cpustat->system, tmp);
4231
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4232 4233 4234 4235 4236 4237 4238
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4259
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4267
	} else
L
Linus Torvalds 已提交
4268 4269 4270
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4341
	struct task_struct *curr = rq->curr;
4342 4343

	sched_clock_tick();
I
Ingo Molnar 已提交
4344 4345

	spin_lock(&rq->lock);
4346
	update_rq_clock(rq);
4347
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4348
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4349
	spin_unlock(&rq->lock);
4350

4351
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4352 4353
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4354
#endif
L
Linus Torvalds 已提交
4355 4356
}

4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4369

4370
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4371
{
4372
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4373 4374 4375
	/*
	 * Underflow?
	 */
4376 4377
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4378
#endif
L
Linus Torvalds 已提交
4379
	preempt_count() += val;
4380
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4381 4382 4383
	/*
	 * Spinlock count overflowing soon?
	 */
4384 4385
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4386 4387 4388
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4389 4390 4391
}
EXPORT_SYMBOL(add_preempt_count);

4392
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4393
{
4394
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4395 4396 4397
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4398
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4399
		return;
L
Linus Torvalds 已提交
4400 4401 4402
	/*
	 * Is the spinlock portion underflowing?
	 */
4403 4404 4405
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4406
#endif
4407

4408 4409
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415 4416
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4417
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4418
 */
I
Ingo Molnar 已提交
4419
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4420
{
4421 4422 4423 4424 4425
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4426
	debug_show_held_locks(prev);
4427
	print_modules();
I
Ingo Molnar 已提交
4428 4429
	if (irqs_disabled())
		print_irqtrace_events(prev);
4430 4431 4432 4433 4434

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4435
}
L
Linus Torvalds 已提交
4436

I
Ingo Molnar 已提交
4437 4438 4439 4440 4441
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4442
	/*
I
Ingo Molnar 已提交
4443
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4444 4445 4446
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4447
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4448 4449
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4450 4451
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4452
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4453 4454
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4455 4456
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4457 4458
	}
#endif
I
Ingo Molnar 已提交
4459 4460 4461 4462 4463 4464
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4465
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4466
{
4467
	const struct sched_class *class;
I
Ingo Molnar 已提交
4468
	struct task_struct *p;
L
Linus Torvalds 已提交
4469 4470

	/*
I
Ingo Molnar 已提交
4471 4472
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4473
	 */
I
Ingo Molnar 已提交
4474
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4475
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4476 4477
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4478 4479
	}

I
Ingo Molnar 已提交
4480 4481
	class = sched_class_highest;
	for ( ; ; ) {
4482
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4483 4484 4485 4486 4487 4488 4489 4490 4491
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4492

I
Ingo Molnar 已提交
4493 4494 4495 4496 4497 4498
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4499
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4500
	struct rq *rq;
4501
	int cpu;
I
Ingo Molnar 已提交
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4515

4516
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4517
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4518

4519
	spin_lock_irq(&rq->lock);
4520
	update_rq_clock(rq);
4521
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4522 4523

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4524
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4525
			prev->state = TASK_RUNNING;
4526
		else
4527
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4528
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4529 4530
	}

4531 4532 4533 4534
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4535

I
Ingo Molnar 已提交
4536
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4537 4538
		idle_balance(cpu, rq);

4539
	prev->sched_class->put_prev_task(rq, prev);
4540
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4541 4542

	if (likely(prev != next)) {
4543 4544
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4545 4546 4547 4548
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4549
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4550 4551 4552 4553 4554 4555
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4556 4557 4558
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4559
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4560
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4561

L
Linus Torvalds 已提交
4562 4563 4564 4565 4566 4567 4568 4569
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4570
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4571
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4577

L
Linus Torvalds 已提交
4578 4579
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4580
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4581
	 */
N
Nick Piggin 已提交
4582
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4583 4584
		return;

4585 4586 4587 4588
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4589

4590 4591 4592 4593 4594 4595
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4596 4597 4598 4599
}
EXPORT_SYMBOL(preempt_schedule);

/*
4600
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4608

4609
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4610 4611
	BUG_ON(ti->preempt_count || !irqs_disabled());

4612 4613 4614 4615 4616 4617
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4618

4619 4620 4621 4622 4623 4624
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4625 4626 4627 4628
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4629 4630
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4631
{
4632
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4633 4634 4635 4636
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4637 4638
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4639 4640 4641
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4642
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4643 4644 4645 4646 4647
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4648
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4649

4650
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4651 4652
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4653
		if (curr->func(curr, mode, sync, key) &&
4654
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4664
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4665
 */
4666
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4667
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4680
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4681 4682 4683 4684 4685
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4686
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4698
void
I
Ingo Molnar 已提交
4699
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4716 4717 4718 4719 4720 4721 4722 4723 4724
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4725
void complete(struct completion *x)
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4731
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4732 4733 4734 4735
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4736 4737 4738 4739 4740 4741
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4742
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4743 4744 4745 4746 4747
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4748
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4749 4750 4751 4752
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4753 4754
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4755 4756 4757 4758 4759 4760 4761
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4762
			if (signal_pending_state(state, current)) {
4763 4764
				timeout = -ERESTARTSYS;
				break;
4765 4766
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4767 4768 4769
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4770
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4771
		__remove_wait_queue(&x->wait, &wait);
4772 4773
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4774 4775
	}
	x->done--;
4776
	return timeout ?: 1;
L
Linus Torvalds 已提交
4777 4778
}

4779 4780
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4781 4782 4783 4784
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4785
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4786
	spin_unlock_irq(&x->wait.lock);
4787 4788
	return timeout;
}
L
Linus Torvalds 已提交
4789

4790 4791 4792 4793 4794 4795 4796 4797 4798 4799
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4800
void __sched wait_for_completion(struct completion *x)
4801 4802
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4803
}
4804
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4805

4806 4807 4808 4809 4810 4811 4812 4813 4814
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4815
unsigned long __sched
4816
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4817
{
4818
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4819
}
4820
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4821

4822 4823 4824 4825 4826 4827 4828
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4829
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4830
{
4831 4832 4833 4834
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4835
}
4836
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4837

4838 4839 4840 4841 4842 4843 4844 4845
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4846
unsigned long __sched
4847 4848
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4849
{
4850
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4851
}
4852
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4853

4854 4855 4856 4857 4858 4859 4860
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4861 4862 4863 4864 4865 4866 4867 4868 4869
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4916 4917
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4918
{
I
Ingo Molnar 已提交
4919 4920 4921 4922
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4923

4924
	__set_current_state(state);
L
Linus Torvalds 已提交
4925

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4940 4941 4942
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4943
long __sched
I
Ingo Molnar 已提交
4944
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4945
{
4946
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4947 4948 4949
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4950
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4951
{
4952
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4953 4954 4955
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4956
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4957
{
4958
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4959 4960 4961
}
EXPORT_SYMBOL(sleep_on_timeout);

4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4974
void rt_mutex_setprio(struct task_struct *p, int prio)
4975 4976
{
	unsigned long flags;
4977
	int oldprio, on_rq, running;
4978
	struct rq *rq;
4979
	const struct sched_class *prev_class = p->sched_class;
4980 4981 4982 4983

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4984
	update_rq_clock(rq);
4985

4986
	oldprio = p->prio;
I
Ingo Molnar 已提交
4987
	on_rq = p->se.on_rq;
4988
	running = task_current(rq, p);
4989
	if (on_rq)
4990
		dequeue_task(rq, p, 0);
4991 4992
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4993 4994 4995 4996 4997 4998

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4999 5000
	p->prio = prio;

5001 5002
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5003
	if (on_rq) {
5004
		enqueue_task(rq, p, 0);
5005 5006

		check_class_changed(rq, p, prev_class, oldprio, running);
5007 5008 5009 5010 5011 5012
	}
	task_rq_unlock(rq, &flags);
}

#endif

5013
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5014
{
I
Ingo Molnar 已提交
5015
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5016
	unsigned long flags;
5017
	struct rq *rq;
L
Linus Torvalds 已提交
5018 5019 5020 5021 5022 5023 5024 5025

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5026
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5027 5028 5029 5030
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5031
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5032
	 */
5033
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5034 5035 5036
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5037
	on_rq = p->se.on_rq;
5038
	if (on_rq)
5039
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5040 5041

	p->static_prio = NICE_TO_PRIO(nice);
5042
	set_load_weight(p);
5043 5044 5045
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5046

I
Ingo Molnar 已提交
5047
	if (on_rq) {
5048
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5049
		/*
5050 5051
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5052
		 */
5053
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5054 5055 5056 5057 5058 5059 5060
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5061 5062 5063 5064 5065
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5066
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5067
{
5068 5069
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5070

M
Matt Mackall 已提交
5071 5072 5073 5074
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5086
	long nice, retval;
L
Linus Torvalds 已提交
5087 5088 5089 5090 5091 5092

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5093 5094
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5095 5096 5097 5098 5099 5100 5101 5102 5103
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5104 5105 5106
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5125
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132 5133
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5134
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5135 5136 5137
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5138
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5153
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158 5159 5160 5161
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5162
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5163
{
5164
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5165 5166 5167
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5168 5169
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5170
{
I
Ingo Molnar 已提交
5171
	BUG_ON(p->se.on_rq);
5172

L
Linus Torvalds 已提交
5173
	p->policy = policy;
I
Ingo Molnar 已提交
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5186
	p->rt_priority = prio;
5187 5188 5189
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5190
	set_load_weight(p);
L
Linus Torvalds 已提交
5191 5192
}

5193 5194
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5195
{
5196
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5197
	unsigned long flags;
5198
	const struct sched_class *prev_class = p->sched_class;
5199
	struct rq *rq;
L
Linus Torvalds 已提交
5200

5201 5202
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5208 5209
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5210
		return -EINVAL;
L
Linus Torvalds 已提交
5211 5212
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5213 5214
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5215 5216
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5217
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5218
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5219
		return -EINVAL;
5220
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5221 5222
		return -EINVAL;

5223 5224 5225
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5226
	if (user && !capable(CAP_SYS_NICE)) {
5227
		if (rt_policy(policy)) {
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5244 5245 5246 5247 5248 5249
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5250

5251 5252 5253 5254 5255
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5256

5257
	if (user) {
5258
#ifdef CONFIG_RT_GROUP_SCHED
5259 5260 5261 5262
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5263 5264
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5265
			return -EPERM;
5266 5267
#endif

5268 5269 5270 5271 5272
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5273 5274 5275 5276 5277
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5278 5279 5280 5281
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5282
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5283 5284 5285
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5286 5287
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5288 5289
		goto recheck;
	}
I
Ingo Molnar 已提交
5290
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5291
	on_rq = p->se.on_rq;
5292
	running = task_current(rq, p);
5293
	if (on_rq)
5294
		deactivate_task(rq, p, 0);
5295 5296
	if (running)
		p->sched_class->put_prev_task(rq, p);
5297

L
Linus Torvalds 已提交
5298
	oldprio = p->prio;
I
Ingo Molnar 已提交
5299
	__setscheduler(rq, p, policy, param->sched_priority);
5300

5301 5302
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5303 5304
	if (on_rq) {
		activate_task(rq, p, 0);
5305 5306

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5307
	}
5308 5309 5310
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5311 5312
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5313 5314
	return 0;
}
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5329 5330
EXPORT_SYMBOL_GPL(sched_setscheduler);

5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5348 5349
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5350 5351 5352
{
	struct sched_param lparam;
	struct task_struct *p;
5353
	int retval;
L
Linus Torvalds 已提交
5354 5355 5356 5357 5358

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5359 5360 5361

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5362
	p = find_process_by_pid(pid);
5363 5364 5365
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5366

L
Linus Torvalds 已提交
5367 5368 5369 5370 5371 5372 5373 5374 5375
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5376 5377
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5378
{
5379 5380 5381 5382
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5402
	struct task_struct *p;
5403
	int retval;
L
Linus Torvalds 已提交
5404 5405

	if (pid < 0)
5406
		return -EINVAL;
L
Linus Torvalds 已提交
5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5428
	struct task_struct *p;
5429
	int retval;
L
Linus Torvalds 已提交
5430 5431

	if (!param || pid < 0)
5432
		return -EINVAL;
L
Linus Torvalds 已提交
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5459
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5460
{
5461
	cpumask_var_t cpus_allowed, new_mask;
5462 5463
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5464

5465
	get_online_cpus();
L
Linus Torvalds 已提交
5466 5467 5468 5469 5470
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5471
		put_online_cpus();
L
Linus Torvalds 已提交
5472 5473 5474 5475 5476
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5477
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5478 5479 5480 5481 5482
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5483 5484 5485 5486 5487 5488 5489 5490
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495
	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5496 5497 5498 5499
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5500 5501
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5502
 again:
5503
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5504

P
Paul Menage 已提交
5505
	if (!retval) {
5506 5507
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5508 5509 5510 5511 5512
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5513
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5514 5515 5516
			goto again;
		}
	}
L
Linus Torvalds 已提交
5517
out_unlock:
5518 5519 5520 5521
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5522
	put_task_struct(p);
5523
	put_online_cpus();
L
Linus Torvalds 已提交
5524 5525 5526 5527
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5528
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5529
{
5530 5531 5532 5533 5534
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
5547
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5548 5549
	int retval;

5550 5551
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5552

5553 5554 5555 5556 5557
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5558 5559
}

5560
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5561
{
5562
	struct task_struct *p;
L
Linus Torvalds 已提交
5563 5564
	int retval;

5565
	get_online_cpus();
L
Linus Torvalds 已提交
5566 5567 5568 5569 5570 5571 5572
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5573 5574 5575 5576
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5577
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5578 5579 5580

out_unlock:
	read_unlock(&tasklist_lock);
5581
	put_online_cpus();
L
Linus Torvalds 已提交
5582

5583
	return retval;
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
5596
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5597

5598
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5599 5600
		return -EINVAL;

5601 5602
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5603

5604 5605 5606 5607 5608 5609 5610 5611
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5612

5613
	return ret;
L
Linus Torvalds 已提交
5614 5615 5616 5617 5618
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5619 5620
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5621 5622 5623
 */
asmlinkage long sys_sched_yield(void)
{
5624
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5625

5626
	schedstat_inc(rq, yld_count);
5627
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632 5633

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5634
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5635 5636 5637 5638 5639 5640 5641 5642
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5643
static void __cond_resched(void)
L
Linus Torvalds 已提交
5644
{
5645 5646 5647
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5648 5649 5650 5651 5652
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658 5659
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5660
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5661
{
5662 5663
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668
		__cond_resched();
		return 1;
	}
	return 0;
}
5669
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5670 5671 5672 5673 5674

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5675
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5676 5677 5678
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5679
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5680
{
N
Nick Piggin 已提交
5681
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5682 5683
	int ret = 0;

N
Nick Piggin 已提交
5684
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5685
		spin_unlock(lock);
N
Nick Piggin 已提交
5686 5687 5688 5689
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5690
		ret = 1;
L
Linus Torvalds 已提交
5691 5692
		spin_lock(lock);
	}
J
Jan Kara 已提交
5693
	return ret;
L
Linus Torvalds 已提交
5694 5695 5696 5697 5698 5699 5700
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5701
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5702
		local_bh_enable();
L
Linus Torvalds 已提交
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5714
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5725
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5726 5727 5728 5729 5730 5731 5732
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5733
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5734

5735
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5736 5737 5738
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5739
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5740 5741 5742 5743 5744
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5745
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5746 5747
	long ret;

5748
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5749 5750 5751
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5752
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5773
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5774
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5798
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5799
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5816
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5817
	unsigned int time_slice;
5818
	int retval;
L
Linus Torvalds 已提交
5819 5820 5821
	struct timespec t;

	if (pid < 0)
5822
		return -EINVAL;
L
Linus Torvalds 已提交
5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5834 5835 5836 5837 5838 5839
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5840
		time_slice = DEF_TIMESLICE;
5841
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5842 5843 5844 5845 5846
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5847 5848
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5849 5850
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5851
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5852
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5853 5854
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5855

L
Linus Torvalds 已提交
5856 5857 5858 5859 5860
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5861
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5862

5863
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5864 5865
{
	unsigned long free = 0;
5866
	unsigned state;
L
Linus Torvalds 已提交
5867 5868

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5869
	printk(KERN_INFO "%-13.13s %c", p->comm,
5870
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5871
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5872
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5873
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5874
	else
I
Ingo Molnar 已提交
5875
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5876 5877
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5878
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5879
	else
I
Ingo Molnar 已提交
5880
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5881 5882 5883
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5884
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5885 5886
		while (!*n)
			n++;
5887
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5888 5889
	}
#endif
5890
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5891
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5892

5893
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5894 5895
}

I
Ingo Molnar 已提交
5896
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5897
{
5898
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5899

5900 5901 5902
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5903
#else
5904 5905
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5906 5907 5908 5909 5910 5911 5912 5913
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5914
		if (!state_filter || (p->state & state_filter))
5915
			sched_show_task(p);
L
Linus Torvalds 已提交
5916 5917
	} while_each_thread(g, p);

5918 5919
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5920 5921 5922
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5923
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5924 5925 5926 5927 5928
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5929 5930
}

I
Ingo Molnar 已提交
5931 5932
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5933
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5934 5935
}

5936 5937 5938 5939 5940 5941 5942 5943
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5944
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5945
{
5946
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5947 5948
	unsigned long flags;

5949 5950
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5951 5952 5953
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5954
	idle->prio = idle->normal_prio = MAX_PRIO;
5955
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
5956
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5957 5958

	rq->curr = rq->idle = idle;
5959 5960 5961
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5962 5963 5964
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5965 5966 5967
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5968
	task_thread_info(idle)->preempt_count = 0;
5969
#endif
I
Ingo Molnar 已提交
5970 5971 5972 5973
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5974
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
5975 5976 5977 5978 5979 5980 5981
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5982
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5983
 */
5984
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5985

I
Ingo Molnar 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6009 6010

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6011 6012
}

L
Linus Torvalds 已提交
6013 6014 6015 6016
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6017
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6036
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6037 6038
 * call is not atomic; no spinlocks may be held.
 */
6039
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6040
{
6041
	struct migration_req req;
L
Linus Torvalds 已提交
6042
	unsigned long flags;
6043
	struct rq *rq;
6044
	int ret = 0;
L
Linus Torvalds 已提交
6045 6046

	rq = task_rq_lock(p, &flags);
6047
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6048 6049 6050 6051
		ret = -EINVAL;
		goto out;
	}

6052
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6053
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6054 6055 6056 6057
		ret = -EINVAL;
		goto out;
	}

6058
	if (p->sched_class->set_cpus_allowed)
6059
		p->sched_class->set_cpus_allowed(p, new_mask);
6060
	else {
6061 6062
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6063 6064
	}

L
Linus Torvalds 已提交
6065
	/* Can the task run on the task's current CPU? If so, we're done */
6066
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6067 6068
		goto out;

R
Rusty Russell 已提交
6069
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6079

L
Linus Torvalds 已提交
6080 6081
	return ret;
}
6082
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6083 6084

/*
I
Ingo Molnar 已提交
6085
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6086 6087 6088 6089 6090 6091
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6092 6093
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6094
 */
6095
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6096
{
6097
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6098
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6099

6100
	if (unlikely(!cpu_active(dest_cpu)))
6101
		return ret;
L
Linus Torvalds 已提交
6102 6103 6104 6105 6106 6107 6108

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6109
		goto done;
L
Linus Torvalds 已提交
6110
	/* Affinity changed (again). */
6111
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6112
		goto fail;
L
Linus Torvalds 已提交
6113

I
Ingo Molnar 已提交
6114
	on_rq = p->se.on_rq;
6115
	if (on_rq)
6116
		deactivate_task(rq_src, p, 0);
6117

L
Linus Torvalds 已提交
6118
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6119 6120
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6121
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6122
	}
L
Linus Torvalds 已提交
6123
done:
6124
	ret = 1;
L
Linus Torvalds 已提交
6125
fail:
L
Linus Torvalds 已提交
6126
	double_rq_unlock(rq_src, rq_dest);
6127
	return ret;
L
Linus Torvalds 已提交
6128 6129 6130 6131 6132 6133 6134
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6135
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6136 6137
{
	int cpu = (long)data;
6138
	struct rq *rq;
L
Linus Torvalds 已提交
6139 6140 6141 6142 6143 6144

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6145
		struct migration_req *req;
L
Linus Torvalds 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6168
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6169 6170
		list_del_init(head->next);

N
Nick Piggin 已提交
6171 6172 6173
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6203
/*
6204
 * Figure out where task on dead CPU should go, use force if necessary.
6205
 */
6206
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6207
{
6208
	int dest_cpu;
6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
	/* FIXME: Use cpumask_of_node here. */
	cpumask_t _nodemask = node_to_cpumask(cpu_to_node(dead_cpu));
	const struct cpumask *nodemask = &_nodemask;

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6228

6229 6230 6231 6232 6233 6234 6235 6236 6237
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6238
		}
6239 6240 6241 6242 6243 6244
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6245 6246 6247 6248 6249 6250 6251 6252 6253
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6254
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6255
{
R
Rusty Russell 已提交
6256
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6270
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6271

6272
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6273

6274 6275
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6276 6277
			continue;

6278 6279 6280
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6281

6282
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6283 6284
}

I
Ingo Molnar 已提交
6285 6286
/*
 * Schedules idle task to be the next runnable task on current CPU.
6287 6288
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6289 6290 6291
 */
void sched_idle_next(void)
{
6292
	int this_cpu = smp_processor_id();
6293
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6294 6295 6296 6297
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6298
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6299

6300 6301 6302
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6303 6304 6305
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6306
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6307

6308 6309
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6310 6311 6312 6313

	spin_unlock_irqrestore(&rq->lock, flags);
}

6314 6315
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6329
/* called under rq->lock with disabled interrupts */
6330
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6331
{
6332
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6333 6334

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6335
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6336 6337

	/* Cannot have done final schedule yet: would have vanished. */
6338
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6339

6340
	get_task_struct(p);
L
Linus Torvalds 已提交
6341 6342 6343

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6344
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6345 6346
	 * fine.
	 */
6347
	spin_unlock_irq(&rq->lock);
6348
	move_task_off_dead_cpu(dead_cpu, p);
6349
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6350

6351
	put_task_struct(p);
L
Linus Torvalds 已提交
6352 6353 6354 6355 6356
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6357
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6358
	struct task_struct *next;
6359

I
Ingo Molnar 已提交
6360 6361 6362
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6363
		update_rq_clock(rq);
6364
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6365 6366
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6367
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6368
		migrate_dead(dead_cpu, next);
6369

L
Linus Torvalds 已提交
6370 6371 6372 6373
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6374 6375 6376
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6377 6378
	{
		.procname	= "sched_domain",
6379
		.mode		= 0555,
6380
	},
I
Ingo Molnar 已提交
6381
	{0, },
6382 6383 6384
};

static struct ctl_table sd_ctl_root[] = {
6385
	{
6386
		.ctl_name	= CTL_KERN,
6387
		.procname	= "kernel",
6388
		.mode		= 0555,
6389 6390
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6391
	{0, },
6392 6393 6394 6395 6396
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6397
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6398 6399 6400 6401

	return entry;
}

6402 6403
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6404
	struct ctl_table *entry;
6405

6406 6407 6408
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6409
	 * will always be set. In the lowest directory the names are
6410 6411 6412
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6413 6414
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6415 6416 6417
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6418 6419 6420 6421 6422

	kfree(*tablep);
	*tablep = NULL;
}

6423
static void
6424
set_table_entry(struct ctl_table *entry,
6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6438
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6439

6440 6441 6442
	if (table == NULL)
		return NULL;

6443
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6444
		sizeof(long), 0644, proc_doulongvec_minmax);
6445
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6446
		sizeof(long), 0644, proc_doulongvec_minmax);
6447
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6448
		sizeof(int), 0644, proc_dointvec_minmax);
6449
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6450
		sizeof(int), 0644, proc_dointvec_minmax);
6451
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6452
		sizeof(int), 0644, proc_dointvec_minmax);
6453
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6454
		sizeof(int), 0644, proc_dointvec_minmax);
6455
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6456
		sizeof(int), 0644, proc_dointvec_minmax);
6457
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6458
		sizeof(int), 0644, proc_dointvec_minmax);
6459
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6460
		sizeof(int), 0644, proc_dointvec_minmax);
6461
	set_table_entry(&table[9], "cache_nice_tries",
6462 6463
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6464
	set_table_entry(&table[10], "flags", &sd->flags,
6465
		sizeof(int), 0644, proc_dointvec_minmax);
6466 6467 6468
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6469 6470 6471 6472

	return table;
}

6473
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6474 6475 6476 6477 6478 6479 6480 6481 6482
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6483 6484
	if (table == NULL)
		return NULL;
6485 6486 6487 6488 6489

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6490
		entry->mode = 0555;
6491 6492 6493 6494 6495 6496 6497 6498
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6499
static void register_sched_domain_sysctl(void)
6500 6501 6502 6503 6504
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6505 6506 6507
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6508 6509 6510
	if (entry == NULL)
		return;

6511
	for_each_online_cpu(i) {
6512 6513
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6514
		entry->mode = 0555;
6515
		entry->child = sd_alloc_ctl_cpu_table(i);
6516
		entry++;
6517
	}
6518 6519

	WARN_ON(sd_sysctl_header);
6520 6521
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6522

6523
/* may be called multiple times per register */
6524 6525
static void unregister_sched_domain_sysctl(void)
{
6526 6527
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6528
	sd_sysctl_header = NULL;
6529 6530
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6531
}
6532
#else
6533 6534 6535 6536
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6537 6538 6539 6540
{
}
#endif

6541 6542 6543 6544 6545
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6546
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6566
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6567 6568 6569 6570
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6571 6572 6573 6574
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6575 6576
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6577 6578
{
	struct task_struct *p;
6579
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6580
	unsigned long flags;
6581
	struct rq *rq;
L
Linus Torvalds 已提交
6582 6583

	switch (action) {
6584

L
Linus Torvalds 已提交
6585
	case CPU_UP_PREPARE:
6586
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6587
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6593
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6594 6595 6596
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6597

L
Linus Torvalds 已提交
6598
	case CPU_ONLINE:
6599
	case CPU_ONLINE_FROZEN:
6600
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6601
		wake_up_process(cpu_rq(cpu)->migration_thread);
6602 6603 6604 6605 6606

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6607
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6608 6609

			set_rq_online(rq);
6610 6611
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6612
		break;
6613

L
Linus Torvalds 已提交
6614 6615
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6616
	case CPU_UP_CANCELED_FROZEN:
6617 6618
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6619
		/* Unbind it from offline cpu so it can run. Fall thru. */
6620
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6621
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6622 6623 6624
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6625

L
Linus Torvalds 已提交
6626
	case CPU_DEAD:
6627
	case CPU_DEAD_FROZEN:
6628
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6629 6630 6631 6632 6633
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6634
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6635
		update_rq_clock(rq);
6636
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6637
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6638 6639
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6640
		migrate_dead_tasks(cpu);
6641
		spin_unlock_irq(&rq->lock);
6642
		cpuset_unlock();
L
Linus Torvalds 已提交
6643 6644 6645
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6646 6647 6648 6649 6650
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6651 6652
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6653 6654
			struct migration_req *req;

L
Linus Torvalds 已提交
6655
			req = list_entry(rq->migration_queue.next,
6656
					 struct migration_req, list);
L
Linus Torvalds 已提交
6657
			list_del_init(&req->list);
B
Brian King 已提交
6658
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6659
			complete(&req->done);
B
Brian King 已提交
6660
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6661 6662 6663
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6664

6665 6666
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6667 6668 6669 6670
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6671
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6672
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6673 6674 6675
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6676 6677 6678 6679 6680 6681 6682 6683
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6684
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6685 6686 6687 6688
	.notifier_call = migration_call,
	.priority = 10
};

6689
static int __init migration_init(void)
L
Linus Torvalds 已提交
6690 6691
{
	void *cpu = (void *)(long)smp_processor_id();
6692
	int err;
6693 6694

	/* Start one for the boot CPU: */
6695 6696
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6697 6698
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6699 6700

	return err;
L
Linus Torvalds 已提交
6701
}
6702
early_initcall(migration_init);
L
Linus Torvalds 已提交
6703 6704 6705
#endif

#ifdef CONFIG_SMP
6706

6707
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6708

6709
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6710
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6711
{
I
Ingo Molnar 已提交
6712
	struct sched_group *group = sd->groups;
6713
	char str[256];
L
Linus Torvalds 已提交
6714

R
Rusty Russell 已提交
6715
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6716
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6717 6718 6719 6720 6721 6722 6723 6724 6725

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6726 6727
	}

6728
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6729

6730
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6731 6732 6733
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6734
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6735 6736 6737
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6738

I
Ingo Molnar 已提交
6739
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6740
	do {
I
Ingo Molnar 已提交
6741 6742 6743
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6744 6745 6746
			break;
		}

I
Ingo Molnar 已提交
6747 6748 6749 6750 6751 6752
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6753

6754
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6755 6756 6757 6758
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6759

6760
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6761 6762 6763 6764
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6765

6766
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6767

R
Rusty Russell 已提交
6768
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6769
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6770

I
Ingo Molnar 已提交
6771 6772 6773
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6774

6775
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6776
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6777

6778 6779
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6780 6781 6782 6783
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6784

I
Ingo Molnar 已提交
6785 6786
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6787
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6788
	int level = 0;
L
Linus Torvalds 已提交
6789

I
Ingo Molnar 已提交
6790 6791 6792 6793
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6794

I
Ingo Molnar 已提交
6795 6796
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6797
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6798 6799 6800 6801
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6802
	for (;;) {
6803
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6804
			break;
L
Linus Torvalds 已提交
6805 6806
		level++;
		sd = sd->parent;
6807
		if (!sd)
I
Ingo Molnar 已提交
6808 6809
			break;
	}
6810
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6811
}
6812
#else /* !CONFIG_SCHED_DEBUG */
6813
# define sched_domain_debug(sd, cpu) do { } while (0)
6814
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6815

6816
static int sd_degenerate(struct sched_domain *sd)
6817
{
6818
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6819 6820 6821 6822 6823 6824
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6825 6826 6827
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6841 6842
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6843 6844 6845 6846 6847 6848
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6849
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6861 6862 6863
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6864 6865
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
6866 6867 6868 6869 6870 6871 6872
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6873 6874
static void free_rootdomain(struct root_domain *rd)
{
6875 6876
	cpupri_cleanup(&rd->cpupri);

6877 6878 6879 6880 6881 6882
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6892
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6893
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6894

6895
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6896

G
Gregory Haskins 已提交
6897
		if (atomic_dec_and_test(&old_rd->refcount))
6898
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6899 6900 6901 6902 6903
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6904 6905
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6906
		set_rq_online(rq);
G
Gregory Haskins 已提交
6907 6908 6909 6910

	spin_unlock_irqrestore(&rq->lock, flags);
}

6911
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6912 6913 6914
{
	memset(rd, 0, sizeof(*rd));

6915 6916 6917 6918
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
6919
		cpupri_init(&rd->cpupri, true);
6920 6921 6922 6923 6924 6925 6926 6927 6928
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
		goto free_rd;
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6929

6930 6931
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
6932
	return 0;
6933

6934 6935
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
6936 6937 6938 6939 6940 6941 6942
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
free_rd:
	kfree(rd);
	return -ENOMEM;
G
Gregory Haskins 已提交
6943 6944 6945 6946
}

static void init_defrootdomain(void)
{
6947 6948
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6949 6950 6951
	atomic_set(&def_root_domain.refcount, 1);
}

6952
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6953 6954 6955 6956 6957 6958 6959
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6960 6961 6962 6963
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6964 6965 6966 6967

	return rd;
}

L
Linus Torvalds 已提交
6968
/*
I
Ingo Molnar 已提交
6969
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6970 6971
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6972 6973
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6974
{
6975
	struct rq *rq = cpu_rq(cpu);
6976 6977 6978
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6979
	for (tmp = sd; tmp; ) {
6980 6981 6982
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6983

6984
		if (sd_parent_degenerate(tmp, parent)) {
6985
			tmp->parent = parent->parent;
6986 6987
			if (parent->parent)
				parent->parent->child = tmp;
6988 6989
		} else
			tmp = tmp->parent;
6990 6991
	}

6992
	if (sd && sd_degenerate(sd)) {
6993
		sd = sd->parent;
6994 6995 6996
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6997 6998 6999

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7000
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7001
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7002 7003 7004
}

/* cpus with isolated domains */
7005
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7006 7007 7008 7009

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7010
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7011 7012 7013
	return 1;
}

I
Ingo Molnar 已提交
7014
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7015 7016

/*
7017 7018
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7019 7020
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7021 7022 7023 7024 7025
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7026
static void
7027 7028 7029
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7030
					struct sched_group **sg,
7031 7032
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7033 7034 7035 7036
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7037
	cpumask_clear(covered);
7038

7039
	for_each_cpu(i, span) {
7040
		struct sched_group *sg;
7041
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7042 7043
		int j;

7044
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7045 7046
			continue;

7047
		cpumask_clear(sched_group_cpus(sg));
7048
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7049

7050
		for_each_cpu(j, span) {
7051
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7052 7053
				continue;

7054
			cpumask_set_cpu(j, covered);
7055
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7056 7057 7058 7059 7060 7061 7062 7063 7064 7065
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7066
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7067

7068
#ifdef CONFIG_NUMA
7069

7070 7071 7072 7073 7074
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7075
 * Find the next node to include in a given scheduling domain. Simply
7076 7077 7078 7079
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7080
static int find_next_best_node(int node, nodemask_t *used_nodes)
7081 7082 7083 7084 7085
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7086
	for (i = 0; i < nr_node_ids; i++) {
7087
		/* Start at @node */
7088
		n = (node + i) % nr_node_ids;
7089 7090 7091 7092 7093

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7094
		if (node_isset(n, *used_nodes))
7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7106
	node_set(best_node, *used_nodes);
7107 7108 7109 7110 7111 7112
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7113
 * @span: resulting cpumask
7114
 *
I
Ingo Molnar 已提交
7115
 * Given a node, construct a good cpumask for its sched_domain to span. It
7116 7117 7118
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7119
static void sched_domain_node_span(int node, struct cpumask *span)
7120
{
7121
	nodemask_t used_nodes;
7122
	/* FIXME: use cpumask_of_node() */
7123
	node_to_cpumask_ptr(nodemask, node);
7124
	int i;
7125

7126
	cpus_clear(*span);
7127
	nodes_clear(used_nodes);
7128

7129
	cpus_or(*span, *span, *nodemask);
7130
	node_set(node, used_nodes);
7131 7132

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7133
		int next_node = find_next_best_node(node, &used_nodes);
7134

7135
		node_to_cpumask_ptr_next(nodemask, next_node);
7136
		cpus_or(*span, *span, *nodemask);
7137 7138
	}
}
7139
#endif /* CONFIG_NUMA */
7140

7141
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7142

7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7158
/*
7159
 * SMT sched-domains:
7160
 */
L
Linus Torvalds 已提交
7161
#ifdef CONFIG_SCHED_SMT
7162 7163
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7164

I
Ingo Molnar 已提交
7165
static int
7166 7167
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7168
{
7169
	if (sg)
7170
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7171 7172
	return cpu;
}
7173
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7174

7175 7176 7177
/*
 * multi-core sched-domains:
 */
7178
#ifdef CONFIG_SCHED_MC
7179 7180
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7181
#endif /* CONFIG_SCHED_MC */
7182 7183

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7184
static int
7185 7186
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7187
{
7188
	int group;
7189

7190 7191
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7192
	if (sg)
7193
		*sg = &per_cpu(sched_group_core, group).sg;
7194
	return group;
7195 7196
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7197
static int
7198 7199
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7200
{
7201
	if (sg)
7202
		*sg = &per_cpu(sched_group_core, cpu).sg;
7203 7204 7205 7206
	return cpu;
}
#endif

7207 7208
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7209

I
Ingo Molnar 已提交
7210
static int
7211 7212
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7213
{
7214
	int group;
7215
#ifdef CONFIG_SCHED_MC
7216
	/* FIXME: Use cpu_coregroup_mask. */
7217 7218
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
7219
	group = cpumask_first(mask);
7220
#elif defined(CONFIG_SCHED_SMT)
7221 7222
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7223
#else
7224
	group = cpu;
L
Linus Torvalds 已提交
7225
#endif
7226
	if (sg)
7227
		*sg = &per_cpu(sched_group_phys, group).sg;
7228
	return group;
L
Linus Torvalds 已提交
7229 7230 7231 7232
}

#ifdef CONFIG_NUMA
/*
7233 7234 7235
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7236
 */
7237
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7238
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7239

7240
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7241
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7242

7243 7244 7245
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7246
{
7247
	int group;
7248
	/* FIXME: use cpumask_of_node */
7249
	node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7250

7251 7252
	cpumask_and(nodemask, pnodemask, cpu_map);
	group = cpumask_first(nodemask);
7253 7254

	if (sg)
7255
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7256
	return group;
L
Linus Torvalds 已提交
7257
}
7258

7259 7260 7261 7262 7263 7264 7265
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7266
	do {
7267
		for_each_cpu(j, sched_group_cpus(sg)) {
7268
			struct sched_domain *sd;
7269

7270
			sd = &per_cpu(phys_domains, j).sd;
7271
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7272 7273 7274 7275 7276 7277
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7278

7279 7280 7281 7282
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7283
}
7284
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7285

7286
#ifdef CONFIG_NUMA
7287
/* Free memory allocated for various sched_group structures */
7288 7289
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7290
{
7291
	int cpu, i;
7292

7293
	for_each_cpu(cpu, cpu_map) {
7294 7295 7296 7297 7298 7299
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7300
		for (i = 0; i < nr_node_ids; i++) {
7301
			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7302
			/* FIXME: Use cpumask_of_node */
7303
			node_to_cpumask_ptr(pnodemask, i);
7304

7305
			cpus_and(*nodemask, *pnodemask, *cpu_map);
7306
			if (cpumask_empty(nodemask))
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7323
#else /* !CONFIG_NUMA */
7324 7325
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7326 7327
{
}
7328
#endif /* CONFIG_NUMA */
7329

7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7351
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7352 7353 7354 7355
		return;

	child = sd->child;

7356 7357
	sd->groups->__cpu_power = 0;

7358 7359 7360 7361 7362 7363 7364 7365 7366 7367
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7368
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7369 7370 7371 7372 7373 7374 7375 7376
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7377
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7378 7379 7380 7381
		group = group->next;
	} while (group != child->groups);
}

7382 7383 7384 7385 7386
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7387 7388 7389 7390 7391 7392
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7393
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7394

7395 7396 7397 7398 7399
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7400
	sd->level = SD_LV_##type;				\
7401
	SD_INIT_NAME(sd, type);					\
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7416 7417 7418 7419
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7420 7421 7422 7423 7424 7425
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7451
/*
7452 7453
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7454
 */
7455
static int __build_sched_domains(const struct cpumask *cpu_map,
7456
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7457
{
7458
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7459
	struct root_domain *rd;
7460 7461
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7462
#ifdef CONFIG_NUMA
7463
	cpumask_var_t domainspan, covered, notcovered;
7464
	struct sched_group **sched_group_nodes = NULL;
7465
	int sd_allnodes = 0;
7466

7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7487 7488 7489
	/*
	 * Allocate the per-node list of sched groups
	 */
7490
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7491
				    GFP_KERNEL);
7492 7493
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7494
		goto free_tmpmask;
7495 7496
	}
#endif
L
Linus Torvalds 已提交
7497

7498
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7499 7500
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7501
		goto free_sched_groups;
G
Gregory Haskins 已提交
7502 7503
	}

7504
#ifdef CONFIG_NUMA
7505
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7506 7507
#endif

L
Linus Torvalds 已提交
7508
	/*
7509
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7510
	 */
7511
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7512 7513
		struct sched_domain *sd = NULL, *p;

7514
		/* FIXME: use cpumask_of_node */
7515 7516
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7517 7518

#ifdef CONFIG_NUMA
7519 7520
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7521
			sd = &per_cpu(allnodes_domains, i);
7522
			SD_INIT(sd, ALLNODES);
7523
			set_domain_attribute(sd, attr);
7524
			cpumask_copy(sched_domain_span(sd), cpu_map);
7525
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7526
			p = sd;
7527
			sd_allnodes = 1;
7528 7529 7530
		} else
			p = NULL;

L
Linus Torvalds 已提交
7531
		sd = &per_cpu(node_domains, i);
7532
		SD_INIT(sd, NODE);
7533
		set_domain_attribute(sd, attr);
7534
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7535
		sd->parent = p;
7536 7537
		if (p)
			p->child = sd;
7538 7539
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7540 7541 7542
#endif

		p = sd;
7543
		sd = &per_cpu(phys_domains, i).sd;
7544
		SD_INIT(sd, CPU);
7545
		set_domain_attribute(sd, attr);
7546
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7547
		sd->parent = p;
7548 7549
		if (p)
			p->child = sd;
7550
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7551

7552 7553
#ifdef CONFIG_SCHED_MC
		p = sd;
7554
		sd = &per_cpu(core_domains, i).sd;
7555
		SD_INIT(sd, MC);
7556
		set_domain_attribute(sd, attr);
7557 7558 7559
		*sched_domain_span(sd) = cpu_coregroup_map(i);
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
7560
		sd->parent = p;
7561
		p->child = sd;
7562
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7563 7564
#endif

L
Linus Torvalds 已提交
7565 7566
#ifdef CONFIG_SCHED_SMT
		p = sd;
7567
		sd = &per_cpu(cpu_domains, i).sd;
7568
		SD_INIT(sd, SIBLING);
7569
		set_domain_attribute(sd, attr);
7570 7571
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7572
		sd->parent = p;
7573
		p->child = sd;
7574
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7575 7576 7577 7578 7579
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7580
	for_each_cpu(i, cpu_map) {
7581 7582 7583
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7584 7585
			continue;

I
Ingo Molnar 已提交
7586
		init_sched_build_groups(this_sibling_map, cpu_map,
7587 7588
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7589 7590 7591
	}
#endif

7592 7593
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7594
	for_each_cpu(i, cpu_map) {
7595
		/* FIXME: Use cpu_coregroup_mask */
7596 7597
		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
7598
		if (i != cpumask_first(this_core_map))
7599
			continue;
7600

I
Ingo Molnar 已提交
7601
		init_sched_build_groups(this_core_map, cpu_map,
7602 7603
					&cpu_to_core_group,
					send_covered, tmpmask);
7604 7605 7606
	}
#endif

L
Linus Torvalds 已提交
7607
	/* Set up physical groups */
7608
	for (i = 0; i < nr_node_ids; i++) {
7609
		/* FIXME: Use cpumask_of_node */
7610 7611
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
7612
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7613 7614
			continue;

7615 7616 7617
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7618 7619 7620 7621
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7622 7623 7624 7625 7626
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7627

7628
	for (i = 0; i < nr_node_ids; i++) {
7629 7630 7631 7632
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7633
		/* FIXME: Use cpumask_of_node */
7634
		*nodemask = node_to_cpumask(i);
7635
		cpumask_clear(covered);
7636 7637

		cpus_and(*nodemask, *nodemask, *cpu_map);
7638
		if (cpumask_empty(nodemask)) {
7639
			sched_group_nodes[i] = NULL;
7640
			continue;
7641
		}
7642

7643
		sched_domain_node_span(i, domainspan);
7644
		cpumask_and(domainspan, domainspan, cpu_map);
7645

7646 7647
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7648 7649 7650 7651 7652
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7653
		sched_group_nodes[i] = sg;
7654
		for_each_cpu(j, nodemask) {
7655
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7656

7657 7658 7659
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7660
		sg->__cpu_power = 0;
7661
		cpumask_copy(sched_group_cpus(sg), nodemask);
7662
		sg->next = sg;
7663
		cpumask_or(covered, covered, nodemask);
7664 7665
		prev = sg;

7666 7667
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7668
			/* FIXME: Use cpumask_of_node */
7669
			node_to_cpumask_ptr(pnodemask, n);
7670

7671 7672 7673 7674
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7675 7676
				break;

7677 7678
			cpumask_and(tmpmask, tmpmask, pnodemask);
			if (cpumask_empty(tmpmask))
7679 7680
				continue;

7681 7682
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7683
					  GFP_KERNEL, i);
7684 7685 7686
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7687
				goto error;
7688
			}
7689
			sg->__cpu_power = 0;
7690
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7691
			sg->next = prev->next;
7692
			cpumask_or(covered, covered, tmpmask);
7693 7694 7695 7696
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7697 7698 7699
#endif

	/* Calculate CPU power for physical packages and nodes */
7700
#ifdef CONFIG_SCHED_SMT
7701
	for_each_cpu(i, cpu_map) {
7702
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7703

7704
		init_sched_groups_power(i, sd);
7705
	}
L
Linus Torvalds 已提交
7706
#endif
7707
#ifdef CONFIG_SCHED_MC
7708
	for_each_cpu(i, cpu_map) {
7709
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7710

7711
		init_sched_groups_power(i, sd);
7712 7713
	}
#endif
7714

7715
	for_each_cpu(i, cpu_map) {
7716
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7717

7718
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7719 7720
	}

7721
#ifdef CONFIG_NUMA
7722
	for (i = 0; i < nr_node_ids; i++)
7723
		init_numa_sched_groups_power(sched_group_nodes[i]);
7724

7725 7726
	if (sd_allnodes) {
		struct sched_group *sg;
7727

7728
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7729
								tmpmask);
7730 7731
		init_numa_sched_groups_power(sg);
	}
7732 7733
#endif

L
Linus Torvalds 已提交
7734
	/* Attach the domains */
7735
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7736 7737
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7738
		sd = &per_cpu(cpu_domains, i).sd;
7739
#elif defined(CONFIG_SCHED_MC)
7740
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7741
#else
7742
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7743
#endif
G
Gregory Haskins 已提交
7744
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7745
	}
7746

7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7775

7776
#ifdef CONFIG_NUMA
7777
error:
7778
	free_sched_groups(cpu_map, tmpmask);
7779
	free_rootdomain(rd);
7780
	goto free_tmpmask;
7781
#endif
L
Linus Torvalds 已提交
7782
}
P
Paul Jackson 已提交
7783

7784
static int build_sched_domains(const struct cpumask *cpu_map)
7785 7786 7787 7788
{
	return __build_sched_domains(cpu_map, NULL);
}

7789
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7790
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7791 7792
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7793 7794 7795

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7796 7797
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7798
 */
7799
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7800

7801 7802 7803 7804 7805 7806
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7807
{
7808
	return 0;
7809 7810
}

7811
/*
I
Ingo Molnar 已提交
7812
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7813 7814
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7815
 */
7816
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7817
{
7818 7819
	int err;

7820
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7821
	ndoms_cur = 1;
7822
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7823
	if (!doms_cur)
7824
		doms_cur = fallback_doms;
7825
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7826
	dattr_cur = NULL;
7827
	err = build_sched_domains(doms_cur);
7828
	register_sched_domain_sysctl();
7829 7830

	return err;
7831 7832
}

7833 7834
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7835
{
7836
	free_sched_groups(cpu_map, tmpmask);
7837
}
L
Linus Torvalds 已提交
7838

7839 7840 7841 7842
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7843
static void detach_destroy_domains(const struct cpumask *cpu_map)
7844
{
7845 7846
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7847 7848
	int i;

7849
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7850
		cpu_attach_domain(NULL, &def_root_domain, i);
7851
	synchronize_sched();
7852
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7853 7854
}

7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7871 7872
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7873
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7874 7875 7876
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
7877
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7878 7879 7880
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7881 7882 7883
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7884 7885
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7886 7887 7888 7889
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7890
 *
7891
 * If doms_new == NULL it will be replaced with cpu_online_mask.
7892 7893
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7894
 *
P
Paul Jackson 已提交
7895 7896
 * Call with hotplug lock held
 */
7897 7898
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
7899
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7900
{
7901
	int i, j, n;
7902
	int new_topology;
P
Paul Jackson 已提交
7903

7904
	mutex_lock(&sched_domains_mutex);
7905

7906 7907 7908
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7909 7910 7911
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

7912
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7913 7914 7915

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7916
		for (j = 0; j < n && !new_topology; j++) {
7917
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
7918
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7919 7920 7921 7922 7923 7924 7925 7926
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7927 7928
	if (doms_new == NULL) {
		ndoms_cur = 0;
7929
		doms_new = fallback_doms;
7930
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
7931
		WARN_ON_ONCE(dattr_new);
7932 7933
	}

P
Paul Jackson 已提交
7934 7935
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
7936
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
7937
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
7938
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7939 7940 7941
				goto match2;
		}
		/* no match - add a new doms_new */
7942 7943
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7944 7945 7946 7947 7948
match2:
		;
	}

	/* Remember the new sched domains */
7949
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
7950
		kfree(doms_cur);
7951
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7952
	doms_cur = doms_new;
7953
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7954
	ndoms_cur = ndoms_new;
7955 7956

	register_sched_domain_sysctl();
7957

7958
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7959 7960
}

7961
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7962
int arch_reinit_sched_domains(void)
7963
{
7964
	get_online_cpus();
7965 7966 7967 7968

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7969
	rebuild_sched_domains();
7970
	put_online_cpus();
7971

7972
	return 0;
7973 7974 7975 7976 7977
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;
7978
	unsigned int level = 0;
7979

7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7991 7992 7993
		return -EINVAL;

	if (smt)
7994
		sched_smt_power_savings = level;
7995
	else
7996
		sched_mc_power_savings = level;
7997 7998 7999 8000 8001 8002 8003

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
8004 8005
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8006 8007 8008
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8009
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8010
					    const char *buf, size_t count)
8011 8012 8013
{
	return sched_power_savings_store(buf, count, 0);
}
8014 8015 8016
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8017 8018 8019
#endif

#ifdef CONFIG_SCHED_SMT
8020 8021
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8022 8023 8024
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8025
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8026
					     const char *buf, size_t count)
8027 8028 8029
{
	return sched_power_savings_store(buf, count, 1);
}
8030 8031
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8051
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8052

8053
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8054
/*
8055 8056
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8057 8058 8059
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8060 8061 8062 8063 8064 8065
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8066
		partition_sched_domains(1, NULL, NULL);
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8077
{
P
Peter Zijlstra 已提交
8078 8079
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8080 8081
	switch (action) {
	case CPU_DOWN_PREPARE:
8082
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8083
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8084 8085 8086
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8087
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8088
	case CPU_ONLINE:
8089
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8090
		enable_runtime(cpu_rq(cpu));
8091 8092
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8093 8094 8095 8096 8097 8098 8099
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8100 8101 8102
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8103

8104 8105 8106 8107 8108
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8109
	get_online_cpus();
8110
	mutex_lock(&sched_domains_mutex);
8111 8112 8113 8114
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8115
	mutex_unlock(&sched_domains_mutex);
8116
	put_online_cpus();
8117 8118

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8119 8120
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8121 8122 8123 8124 8125
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8126
	init_hrtick();
8127 8128

	/* Move init over to a non-isolated CPU */
8129
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8130
		BUG();
I
Ingo Molnar 已提交
8131
	sched_init_granularity();
8132
	free_cpumask_var(non_isolated_cpus);
8133 8134

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8135
	init_sched_rt_class();
L
Linus Torvalds 已提交
8136 8137 8138 8139
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8140
	sched_init_granularity();
L
Linus Torvalds 已提交
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8151
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8152 8153
{
	cfs_rq->tasks_timeline = RB_ROOT;
8154
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8155 8156 8157
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8158
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8159 8160
}

P
Peter Zijlstra 已提交
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8174
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8175 8176
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8177
#endif
P
Peter Zijlstra 已提交
8178 8179 8180 8181 8182 8183 8184
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8185 8186
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8187

8188
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8189
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8190 8191
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8192 8193
}

P
Peter Zijlstra 已提交
8194
#ifdef CONFIG_FAIR_GROUP_SCHED
8195 8196 8197
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8198
{
8199
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8200 8201 8202 8203 8204 8205 8206
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8207 8208 8209 8210
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8211 8212 8213 8214 8215
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8216 8217
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8218
	se->load.inv_weight = 0;
8219
	se->parent = parent;
P
Peter Zijlstra 已提交
8220
}
8221
#endif
P
Peter Zijlstra 已提交
8222

8223
#ifdef CONFIG_RT_GROUP_SCHED
8224 8225 8226
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8227
{
8228 8229
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8230 8231 8232 8233
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8234
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8235 8236 8237 8238
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8239 8240 8241
	if (!rt_se)
		return;

8242 8243 8244 8245 8246
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8247
	rt_se->my_q = rt_rq;
8248
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8249 8250 8251 8252
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8253 8254
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8255
	int i, j;
8256 8257 8258 8259 8260 8261 8262
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8263 8264 8265
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8266 8267 8268 8269 8270 8271
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8272
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8273 8274 8275 8276 8277 8278 8279

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8280 8281 8282 8283 8284 8285 8286

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8287 8288
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8289 8290 8291 8292 8293
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8294 8295 8296 8297 8298 8299 8300 8301
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8302 8303
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8304
	}
I
Ingo Molnar 已提交
8305

G
Gregory Haskins 已提交
8306 8307 8308 8309
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8310 8311 8312 8313 8314 8315
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8316 8317 8318
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8319 8320
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8321

8322
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8323
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8324 8325 8326 8327 8328 8329
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8330 8331
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8332

8333
	for_each_possible_cpu(i) {
8334
		struct rq *rq;
L
Linus Torvalds 已提交
8335 8336 8337

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8338
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8339
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8340
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8341
#ifdef CONFIG_FAIR_GROUP_SCHED
8342
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8343
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8364
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8365
#elif defined CONFIG_USER_SCHED
8366 8367
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8379
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8380
				&per_cpu(init_cfs_rq, i),
8381 8382
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8383

8384
#endif
D
Dhaval Giani 已提交
8385 8386 8387
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8388
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8389
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8390
#ifdef CONFIG_CGROUP_SCHED
8391
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8392
#elif defined CONFIG_USER_SCHED
8393
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8394
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8395
				&per_cpu(init_rt_rq, i),
8396 8397
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8398
#endif
I
Ingo Molnar 已提交
8399
#endif
L
Linus Torvalds 已提交
8400

I
Ingo Molnar 已提交
8401 8402
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8403
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8404
		rq->sd = NULL;
G
Gregory Haskins 已提交
8405
		rq->rd = NULL;
L
Linus Torvalds 已提交
8406
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8407
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8408
		rq->push_cpu = 0;
8409
		rq->cpu = i;
8410
		rq->online = 0;
L
Linus Torvalds 已提交
8411 8412
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8413
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8414
#endif
P
Peter Zijlstra 已提交
8415
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8416 8417 8418
		atomic_set(&rq->nr_iowait, 0);
	}

8419
	set_load_weight(&init_task);
8420

8421 8422 8423 8424
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8425
#ifdef CONFIG_SMP
8426
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8427 8428
#endif

8429 8430 8431 8432
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8446 8447 8448 8449
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8450

8451 8452
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8453
#ifdef CONFIG_SMP
8454 8455 8456
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8457
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8458
#endif /* SMP */
8459

8460
	scheduler_running = 1;
L
Linus Torvalds 已提交
8461 8462 8463 8464 8465
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8466
#ifdef in_atomic
L
Linus Torvalds 已提交
8467 8468
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8488 8489 8490 8491 8492 8493
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8494 8495 8496
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8497

8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8509 8510
void normalize_rt_tasks(void)
{
8511
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8512
	unsigned long flags;
8513
	struct rq *rq;
L
Linus Torvalds 已提交
8514

8515
	read_lock_irqsave(&tasklist_lock, flags);
8516
	do_each_thread(g, p) {
8517 8518 8519 8520 8521 8522
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8523 8524
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8525 8526 8527
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8528
#endif
I
Ingo Molnar 已提交
8529 8530 8531 8532 8533 8534 8535 8536

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8537
			continue;
I
Ingo Molnar 已提交
8538
		}
L
Linus Torvalds 已提交
8539

8540
		spin_lock(&p->pi_lock);
8541
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8542

8543
		normalize_task(rq, p);
8544

8545
		__task_rq_unlock(rq);
8546
		spin_unlock(&p->pi_lock);
8547 8548
	} while_each_thread(g, p);

8549
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8550 8551 8552
}

#endif /* CONFIG_MAGIC_SYSRQ */
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8571
struct task_struct *curr_task(int cpu)
8572 8573 8574 8575 8576 8577 8578 8579 8580 8581
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8582 8583
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8584 8585 8586 8587 8588 8589 8590
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8591
void set_curr_task(int cpu, struct task_struct *p)
8592 8593 8594 8595 8596
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8597

8598 8599
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8614 8615
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8616 8617
{
	struct cfs_rq *cfs_rq;
8618
	struct sched_entity *se;
8619
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8620 8621
	int i;

8622
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8623 8624
	if (!tg->cfs_rq)
		goto err;
8625
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8626 8627
	if (!tg->se)
		goto err;
8628 8629

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8630 8631

	for_each_possible_cpu(i) {
8632
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8633

8634 8635
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8636 8637 8638
		if (!cfs_rq)
			goto err;

8639 8640
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8641 8642 8643
		if (!se)
			goto err;

8644
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8663
#else /* !CONFG_FAIR_GROUP_SCHED */
8664 8665 8666 8667
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8668 8669
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8681
#endif /* CONFIG_FAIR_GROUP_SCHED */
8682 8683

#ifdef CONFIG_RT_GROUP_SCHED
8684 8685 8686 8687
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8688 8689
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8701 8702
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8703 8704
{
	struct rt_rq *rt_rq;
8705
	struct sched_rt_entity *rt_se;
8706 8707 8708
	struct rq *rq;
	int i;

8709
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8710 8711
	if (!tg->rt_rq)
		goto err;
8712
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8713 8714 8715
	if (!tg->rt_se)
		goto err;

8716 8717
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8718 8719 8720 8721

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8722 8723
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8724 8725
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8726

8727 8728
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8729 8730
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8731

8732
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8733 8734
	}

8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8751
#else /* !CONFIG_RT_GROUP_SCHED */
8752 8753 8754 8755
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8756 8757
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8769
#endif /* CONFIG_RT_GROUP_SCHED */
8770

8771
#ifdef CONFIG_GROUP_SCHED
8772 8773 8774 8775 8776 8777 8778 8779
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8780
struct task_group *sched_create_group(struct task_group *parent)
8781 8782 8783 8784 8785 8786 8787 8788 8789
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8790
	if (!alloc_fair_sched_group(tg, parent))
8791 8792
		goto err;

8793
	if (!alloc_rt_sched_group(tg, parent))
8794 8795
		goto err;

8796
	spin_lock_irqsave(&task_group_lock, flags);
8797
	for_each_possible_cpu(i) {
8798 8799
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8800
	}
P
Peter Zijlstra 已提交
8801
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8802 8803 8804 8805 8806

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8807
	list_add_rcu(&tg->siblings, &parent->children);
8808
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8809

8810
	return tg;
S
Srivatsa Vaddagiri 已提交
8811 8812

err:
P
Peter Zijlstra 已提交
8813
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8814 8815 8816
	return ERR_PTR(-ENOMEM);
}

8817
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8818
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8819 8820
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8821
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8822 8823
}

8824
/* Destroy runqueue etc associated with a task group */
8825
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8826
{
8827
	unsigned long flags;
8828
	int i;
S
Srivatsa Vaddagiri 已提交
8829

8830
	spin_lock_irqsave(&task_group_lock, flags);
8831
	for_each_possible_cpu(i) {
8832 8833
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8834
	}
P
Peter Zijlstra 已提交
8835
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8836
	list_del_rcu(&tg->siblings);
8837
	spin_unlock_irqrestore(&task_group_lock, flags);
8838 8839

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8840
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8841 8842
}

8843
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8844 8845 8846
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8847 8848
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8849 8850 8851 8852 8853 8854 8855 8856 8857
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8858
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8859 8860
	on_rq = tsk->se.on_rq;

8861
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8862
		dequeue_task(rq, tsk, 0);
8863 8864
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8865

P
Peter Zijlstra 已提交
8866
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8867

P
Peter Zijlstra 已提交
8868 8869 8870 8871 8872
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8873 8874 8875
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8876
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8877 8878 8879

	task_rq_unlock(rq, &flags);
}
8880
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8881

8882
#ifdef CONFIG_FAIR_GROUP_SCHED
8883
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8884 8885 8886 8887 8888
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8889
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8890 8891 8892
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8893
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8894

8895
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8896
		enqueue_entity(cfs_rq, se, 0);
8897
}
8898

8899 8900 8901 8902 8903 8904 8905 8906 8907
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8908 8909
}

8910 8911
static DEFINE_MUTEX(shares_mutex);

8912
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8913 8914
{
	int i;
8915
	unsigned long flags;
8916

8917 8918 8919 8920 8921 8922
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8923 8924
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8925 8926
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8927

8928
	mutex_lock(&shares_mutex);
8929
	if (tg->shares == shares)
8930
		goto done;
S
Srivatsa Vaddagiri 已提交
8931

8932
	spin_lock_irqsave(&task_group_lock, flags);
8933 8934
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8935
	list_del_rcu(&tg->siblings);
8936
	spin_unlock_irqrestore(&task_group_lock, flags);
8937 8938 8939 8940 8941 8942 8943 8944

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8945
	tg->shares = shares;
8946 8947 8948 8949 8950
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8951
		set_se_shares(tg->se[i], shares);
8952
	}
S
Srivatsa Vaddagiri 已提交
8953

8954 8955 8956 8957
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8958
	spin_lock_irqsave(&task_group_lock, flags);
8959 8960
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8961
	list_add_rcu(&tg->siblings, &tg->parent->children);
8962
	spin_unlock_irqrestore(&task_group_lock, flags);
8963
done:
8964
	mutex_unlock(&shares_mutex);
8965
	return 0;
S
Srivatsa Vaddagiri 已提交
8966 8967
}

8968 8969 8970 8971
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8972
#endif
8973

8974
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8975
/*
P
Peter Zijlstra 已提交
8976
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8977
 */
P
Peter Zijlstra 已提交
8978 8979 8980 8981 8982
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8983
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8984

P
Peter Zijlstra 已提交
8985
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8986 8987
}

P
Peter Zijlstra 已提交
8988 8989
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8990
{
P
Peter Zijlstra 已提交
8991
	struct task_struct *g, *p;
8992

P
Peter Zijlstra 已提交
8993 8994 8995 8996
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8997

P
Peter Zijlstra 已提交
8998 8999
	return 0;
}
9000

P
Peter Zijlstra 已提交
9001 9002 9003 9004 9005
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9006

P
Peter Zijlstra 已提交
9007 9008 9009 9010 9011 9012
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9013

P
Peter Zijlstra 已提交
9014 9015
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9016

P
Peter Zijlstra 已提交
9017 9018 9019
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9020 9021
	}

9022 9023 9024 9025 9026
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9027

9028 9029 9030
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9031 9032
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9033

P
Peter Zijlstra 已提交
9034
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9035

9036 9037 9038 9039 9040
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9041

9042 9043 9044
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9045 9046 9047
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9048

P
Peter Zijlstra 已提交
9049 9050 9051 9052
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9053

P
Peter Zijlstra 已提交
9054
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9055
	}
P
Peter Zijlstra 已提交
9056

P
Peter Zijlstra 已提交
9057 9058 9059 9060
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9061 9062
}

P
Peter Zijlstra 已提交
9063
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9064
{
P
Peter Zijlstra 已提交
9065 9066 9067 9068 9069 9070 9071
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9072 9073
}

9074 9075
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9076
{
P
Peter Zijlstra 已提交
9077
	int i, err = 0;
P
Peter Zijlstra 已提交
9078 9079

	mutex_lock(&rt_constraints_mutex);
9080
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9081 9082
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9083
		goto unlock;
P
Peter Zijlstra 已提交
9084 9085

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9086 9087
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9088 9089 9090 9091 9092 9093 9094 9095 9096

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9097
 unlock:
9098
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9099 9100 9101
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9102 9103
}

9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9116 9117 9118 9119
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9120
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9121 9122
		return -1;

9123
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9124 9125 9126
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9127 9128 9129 9130 9131 9132 9133 9134

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9135 9136 9137
	if (rt_period == 0)
		return -EINVAL;

9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9152
	u64 runtime, period;
9153 9154
	int ret = 0;

9155 9156 9157
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9158 9159 9160 9161 9162 9163 9164 9165
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9166

9167
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9168
	read_lock(&tasklist_lock);
9169
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9170
	read_unlock(&tasklist_lock);
9171 9172 9173 9174
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9175
#else /* !CONFIG_RT_GROUP_SCHED */
9176 9177
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9178 9179 9180
	unsigned long flags;
	int i;

9181 9182 9183
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9184 9185 9186 9187 9188 9189 9190 9191 9192 9193
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9194 9195
	return 0;
}
9196
#endif /* CONFIG_RT_GROUP_SCHED */
9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9227

9228
#ifdef CONFIG_CGROUP_SCHED
9229 9230

/* return corresponding task_group object of a cgroup */
9231
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9232
{
9233 9234
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9235 9236 9237
}

static struct cgroup_subsys_state *
9238
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9239
{
9240
	struct task_group *tg, *parent;
9241

9242
	if (!cgrp->parent) {
9243 9244 9245 9246
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9247 9248
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9249 9250 9251 9252 9253 9254
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9255 9256
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9257
{
9258
	struct task_group *tg = cgroup_tg(cgrp);
9259 9260 9261 9262

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9263 9264 9265
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9266
{
9267 9268
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9269
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9270 9271
		return -EINVAL;
#else
9272 9273 9274
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9275
#endif
9276 9277 9278 9279 9280

	return 0;
}

static void
9281
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9282 9283 9284 9285 9286
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9287
#ifdef CONFIG_FAIR_GROUP_SCHED
9288
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9289
				u64 shareval)
9290
{
9291
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9292 9293
}

9294
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9295
{
9296
	struct task_group *tg = cgroup_tg(cgrp);
9297 9298 9299

	return (u64) tg->shares;
}
9300
#endif /* CONFIG_FAIR_GROUP_SCHED */
9301

9302
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9303
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9304
				s64 val)
P
Peter Zijlstra 已提交
9305
{
9306
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9307 9308
}

9309
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9310
{
9311
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9312
}
9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9325

9326
static struct cftype cpu_files[] = {
9327
#ifdef CONFIG_FAIR_GROUP_SCHED
9328 9329
	{
		.name = "shares",
9330 9331
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9332
	},
9333 9334
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9335
	{
P
Peter Zijlstra 已提交
9336
		.name = "rt_runtime_us",
9337 9338
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9339
	},
9340 9341
	{
		.name = "rt_period_us",
9342 9343
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9344
	},
9345
#endif
9346 9347 9348 9349
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9350
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9351 9352 9353
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9354 9355 9356 9357 9358 9359 9360
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9361 9362 9363
	.early_init	= 1,
};

9364
#endif	/* CONFIG_CGROUP_SCHED */
9365 9366 9367 9368 9369 9370 9371 9372 9373 9374

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9375
/* track cpu usage of a group of tasks and its child groups */
9376 9377 9378 9379
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9380
	struct cpuacct *parent;
9381 9382 9383 9384 9385
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9386
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9387
{
9388
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9401
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9414 9415 9416
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9417 9418 9419 9420
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9421
static void
9422
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9423
{
9424
	struct cpuacct *ca = cgroup_ca(cgrp);
9425 9426 9427 9428 9429 9430

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9431
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9432
{
9433
	struct cpuacct *ca = cgroup_ca(cgrp);
9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9475 9476 9477
static struct cftype files[] = {
	{
		.name = "usage",
9478 9479
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9480 9481 9482
	},
};

9483
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9484
{
9485
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9496
	int cpu;
9497 9498 9499 9500

	if (!cpuacct_subsys.active)
		return;

9501
	cpu = task_cpu(tsk);
9502 9503
	ca = task_ca(tsk);

9504 9505
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */