sched.c 170.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
159
struct task_group {
S
Srivatsa Vaddagiri 已提交
160 161 162 163 164
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
165 166
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171 172 173
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

174 175
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
176 177

/* Default task group.
I
Ingo Molnar 已提交
178
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
179
 */
180
struct task_group init_task_group = {
I
Ingo Molnar 已提交
181 182 183
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
184

185
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
187
#else
I
Ingo Molnar 已提交
188
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
189 190
#endif

191
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
192 193

/* return group to which a task belongs */
194
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
195
{
196
	struct task_group *tg;
197

198 199 200
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
201
	tg  = &init_task_group;
202
#endif
203 204

	return tg;
S
Srivatsa Vaddagiri 已提交
205 206 207 208 209
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
210 211
	p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_group(p)->se[task_cpu(p)];
S
Srivatsa Vaddagiri 已提交
212 213 214 215 216 217 218 219
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
220 221 222 223 224 225
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
226
	u64 min_vruntime;
I
Ingo Molnar 已提交
227 228 229 230 231 232 233 234

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
235 236 237

	unsigned long nr_spread_over;

238
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
239 240 241 242 243 244 245 246 247 248
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249
	struct task_group *tg;    /* group that "owns" this runqueue */
250
	struct rcu_head rcu;
I
Ingo Molnar 已提交
251 252
#endif
};
L
Linus Torvalds 已提交
253

I
Ingo Molnar 已提交
254 255 256 257 258 259 260
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
261 262 263 264 265 266 267
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
268
struct rq {
269 270
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
271 272 273 274 275 276

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
277 278
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
279
	unsigned char idle_at_tick;
280 281 282
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
283 284
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
285 286 287 288 289
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
290 291
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
292
#endif
I
Ingo Molnar 已提交
293
	struct rt_rq  rt;
L
Linus Torvalds 已提交
294 295 296 297 298 299 300 301 302

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

303
	struct task_struct *curr, *idle;
304
	unsigned long next_balance;
L
Linus Torvalds 已提交
305
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
306 307 308 309 310

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
311 312
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
313
	u64 tick_timestamp;
I
Ingo Molnar 已提交
314

L
Linus Torvalds 已提交
315 316 317 318 319 320 321 322
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
323 324
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
325

326
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
327 328 329 330 331 332 333 334 335 336 337
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
338
	unsigned long yld_count;
L
Linus Torvalds 已提交
339 340 341

	/* schedule() stats */
	unsigned long sched_switch;
342
	unsigned long sched_count;
L
Linus Torvalds 已提交
343 344 345
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
346
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
347
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
348 349

	/* BKL stats */
350
	unsigned long bkl_count;
L
Linus Torvalds 已提交
351
#endif
352
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
353 354
};

355
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
356
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
357

I
Ingo Molnar 已提交
358 359 360 361 362
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

363 364 365 366 367 368 369 370 371
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
372
/*
I
Ingo Molnar 已提交
373 374
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
375
 */
I
Ingo Molnar 已提交
376
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
377 378 379 380 381 382
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
383 384 385
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
386 387 388 389 390 391 392 393 394 395
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
396 397 398 399 400
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
401 402 403 404 405 406 407 408 409 410
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
411
}
I
Ingo Molnar 已提交
412

I
Ingo Molnar 已提交
413 414 415 416
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
417 418
}

N
Nick Piggin 已提交
419 420
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
421
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
422 423 424 425
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
426 427
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
428 429 430 431 432 433

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
434 435 436 437 438 439 440 441 442 443 444 445 446
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
447 448
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
449
	SCHED_FEAT_TREE_AVG             = 4,
450
	SCHED_FEAT_APPROX_AVG           = 8,
451
	SCHED_FEAT_WAKEUP_PREEMPT	= 16,
452
	SCHED_FEAT_PREEMPT_RESTRICT	= 32,
I
Ingo Molnar 已提交
453 454 455
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
456 457 458 459 460 461
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
		SCHED_FEAT_PREEMPT_RESTRICT	* 1;
I
Ingo Molnar 已提交
462 463 464

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

465 466 467 468 469 470 471 472
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
473
	struct rq *rq;
474

475
	local_irq_save(flags);
I
Ingo Molnar 已提交
476 477 478
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
479
	local_irq_restore(flags);
480 481 482

	return now;
}
P
Paul E. McKenney 已提交
483
EXPORT_SYMBOL_GPL(cpu_clock);
484

L
Linus Torvalds 已提交
485
#ifndef prepare_arch_switch
486 487 488 489 490 491 492
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
493
static inline int task_running(struct rq *rq, struct task_struct *p)
494 495 496 497
{
	return rq->curr == p;
}

498
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
499 500 501
{
}

502
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
503
{
504 505 506 507
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
508 509 510 511 512 513 514
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

515 516 517 518
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
519
static inline int task_running(struct rq *rq, struct task_struct *p)
520 521 522 523 524 525 526 527
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

528
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

545
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
546 547 548 549 550 551 552 553 554 555 556 557
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
558
#endif
559 560
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
561

562 563 564 565
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
566
static inline struct rq *__task_rq_lock(struct task_struct *p)
567 568
	__acquires(rq->lock)
{
569 570 571 572 573
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
574 575 576 577
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
578 579 580 581 582
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
583
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
584 585
	__acquires(rq->lock)
{
586
	struct rq *rq;
L
Linus Torvalds 已提交
587

588 589 590 591 592 593
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
594 595 596 597
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
598
static void __task_rq_unlock(struct rq *rq)
599 600 601 602 603
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

604
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
605 606 607 608 609 610
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
611
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
612
 */
A
Alexey Dobriyan 已提交
613
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
614 615
	__acquires(rq->lock)
{
616
	struct rq *rq;
L
Linus Torvalds 已提交
617 618 619 620 621 622 623 624

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

625
/*
626
 * We are going deep-idle (irqs are disabled):
627
 */
628
void sched_clock_idle_sleep_event(void)
629
{
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
646

647 648 649 650 651 652 653 654 655 656 657
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
658
}
659
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
660

I
Ingo Molnar 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

713 714 715 716 717 718 719 720
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
721 722 723
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
724
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
725

726
static unsigned long
727 728 729 730 731 732
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
733
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
734 735 736 737 738

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
739
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
740
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
741 742
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
743
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
744

745
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
746 747 748 749 750 751 752 753
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

754
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
755 756 757 758
{
	lw->weight += inc;
}

759
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
760 761 762 763
{
	lw->weight -= dec;
}

764 765 766 767 768 769 770 771 772
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
773 774 775 776 777 778 779 780 781 782 783
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
784 785 786
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
787 788
 */
static const int prio_to_weight[40] = {
789 790 791 792 793 794 795 796
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
797 798
};

799 800 801 802 803 804 805
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
806
static const u32 prio_to_wmult[40] = {
807 808 809 810 811 812 813 814
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
815
};
816

I
Ingo Molnar 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
834
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
835 836 837

#include "sched_stats.h"
#include "sched_idletask.c"
838 839
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
840 841 842 843 844 845
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

846 847 848 849
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
850
 * total load (rq->load.weight) on the runqueue, while
851 852 853 854 855 856 857
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
858
 * This function is called /before/ updating rq->load
859 860
 * and when switching tasks.
 */
861
static inline void inc_load(struct rq *rq, const struct task_struct *p)
862
{
863
	update_load_add(&rq->load, p->se.load.weight);
864 865
}

866
static inline void dec_load(struct rq *rq, const struct task_struct *p)
867
{
868
	update_load_sub(&rq->load, p->se.load.weight);
869 870
}

871
static void inc_nr_running(struct task_struct *p, struct rq *rq)
872 873
{
	rq->nr_running++;
874
	inc_load(rq, p);
875 876
}

877
static void dec_nr_running(struct task_struct *p, struct rq *rq)
878 879
{
	rq->nr_running--;
880
	dec_load(rq, p);
881 882
}

883 884 885
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
886 887 888 889
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
890

I
Ingo Molnar 已提交
891 892 893 894 895 896 897 898
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
899

I
Ingo Molnar 已提交
900 901
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
902 903
}

904
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
905
{
I
Ingo Molnar 已提交
906
	sched_info_queued(p);
907
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
908
	p->se.on_rq = 1;
909 910
}

911
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
912
{
913
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
914
	p->se.on_rq = 0;
915 916
}

917
/*
I
Ingo Molnar 已提交
918
 * __normal_prio - return the priority that is based on the static prio
919 920 921
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
922
	return p->static_prio;
923 924
}

925 926 927 928 929 930 931
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
932
static inline int normal_prio(struct task_struct *p)
933 934 935
{
	int prio;

936
	if (task_has_rt_policy(p))
937 938 939 940 941 942 943 944 945 946 947 948 949
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
950
static int effective_prio(struct task_struct *p)
951 952 953 954 955 956 957 958 959 960 961 962
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
963
/*
I
Ingo Molnar 已提交
964
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
965
 */
I
Ingo Molnar 已提交
966
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
967
{
I
Ingo Molnar 已提交
968 969
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
970

971
	enqueue_task(rq, p, wakeup);
972
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
973 974 975 976 977
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
978
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
979
{
I
Ingo Molnar 已提交
980 981 982
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

983
	dequeue_task(rq, p, sleep);
984
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
985 986 987 988 989 990
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
991
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
992 993 994 995
{
	return cpu_curr(task_cpu(p)) == p;
}

996 997 998
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
999
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1000 1001 1002 1003 1004 1005 1006
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1007
	set_task_cfs_rq(p);
1008 1009
}

L
Linus Torvalds 已提交
1010
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1011

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1023 1024 1025 1026 1027
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1028 1029 1030 1031 1032 1033
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1034
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1035
{
I
Ingo Molnar 已提交
1036 1037
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1038 1039
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1040
	u64 clock_offset;
I
Ingo Molnar 已提交
1041 1042

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1043 1044 1045 1046

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1047 1048 1049 1050
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1051 1052 1053 1054 1055
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1056
#endif
1057 1058
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1059 1060

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1061 1062
}

1063
struct migration_req {
L
Linus Torvalds 已提交
1064 1065
	struct list_head list;

1066
	struct task_struct *task;
L
Linus Torvalds 已提交
1067 1068 1069
	int dest_cpu;

	struct completion done;
1070
};
L
Linus Torvalds 已提交
1071 1072 1073 1074 1075

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1076
static int
1077
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1078
{
1079
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1080 1081 1082 1083 1084

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1085
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092 1093
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1094

L
Linus Torvalds 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1107
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1108 1109
{
	unsigned long flags;
I
Ingo Molnar 已提交
1110
	int running, on_rq;
1111
	struct rq *rq;
L
Linus Torvalds 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1135

1136 1137 1138 1139 1140 1141 1142 1143 1144
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1170

1171 1172 1173 1174 1175 1176 1177
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1193
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1205 1206
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1207 1208 1209 1210
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1211
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1212
{
1213
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1214
	unsigned long total = weighted_cpuload(cpu);
1215

1216
	if (type == 0)
I
Ingo Molnar 已提交
1217
		return total;
1218

I
Ingo Molnar 已提交
1219
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1220 1221 1222
}

/*
1223 1224
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1225
 */
A
Alexey Dobriyan 已提交
1226
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1227
{
1228
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1229
	unsigned long total = weighted_cpuload(cpu);
1230

N
Nick Piggin 已提交
1231
	if (type == 0)
I
Ingo Molnar 已提交
1232
		return total;
1233

I
Ingo Molnar 已提交
1234
	return max(rq->cpu_load[type-1], total);
1235 1236 1237 1238 1239 1240 1241
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1242
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1243
	unsigned long total = weighted_cpuload(cpu);
1244 1245
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1246
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1247 1248
}

N
Nick Piggin 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1266 1267
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1268
			continue;
1269

N
Nick Piggin 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1286 1287
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1288 1289 1290 1291 1292 1293 1294 1295

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1296
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1297 1298 1299 1300 1301 1302 1303

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1304
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1305
 */
I
Ingo Molnar 已提交
1306 1307
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1308
{
1309
	cpumask_t tmp;
N
Nick Piggin 已提交
1310 1311 1312 1313
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1314 1315 1316 1317
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1318
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1344

1345
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1346 1347 1348
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1349 1350
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1351 1352
		if (tmp->flags & flag)
			sd = tmp;
1353
	}
N
Nick Piggin 已提交
1354 1355 1356 1357

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1358 1359 1360 1361 1362 1363
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1364 1365 1366

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1367 1368 1369 1370
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1371

1372
		new_cpu = find_idlest_cpu(group, t, cpu);
1373 1374 1375 1376 1377
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1378

1379
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1406
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1422 1423 1424 1425
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1426
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1427
			for_each_cpu_mask(i, tmp) {
1428 1429 1430 1431 1432
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1433
					return i;
1434
				}
L
Linus Torvalds 已提交
1435
			}
I
Ingo Molnar 已提交
1436
		} else {
N
Nick Piggin 已提交
1437
			break;
I
Ingo Molnar 已提交
1438
		}
L
Linus Torvalds 已提交
1439 1440 1441 1442
	}
	return cpu;
}
#else
1443
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1463
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1464
{
1465
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1466 1467
	unsigned long flags;
	long old_state;
1468
	struct rq *rq;
L
Linus Torvalds 已提交
1469
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1470
	struct sched_domain *sd, *this_sd = NULL;
1471
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477 1478 1479
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1480
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1481 1482 1483
		goto out_running;

	cpu = task_cpu(p);
1484
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1485 1486 1487 1488 1489 1490
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1491 1492
	new_cpu = cpu;

1493
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1494 1495
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1496 1497 1498 1499 1500 1501 1502 1503
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1504 1505 1506
		}
	}

N
Nick Piggin 已提交
1507
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1508 1509 1510
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1511
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1512
	 */
N
Nick Piggin 已提交
1513 1514 1515
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1516

1517 1518
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1519 1520
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1521

N
Nick Piggin 已提交
1522 1523
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1524 1525
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1526 1527
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1528 1529 1530 1531 1532 1533
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1534
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1535
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1536

L
Linus Torvalds 已提交
1537
			/*
1538 1539 1540
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1541
			 */
1542
			if (sync)
I
Ingo Molnar 已提交
1543
				tl -= current->se.load.weight;
1544 1545

			if ((tl <= load &&
1546
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1547
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1548 1549 1550 1551 1552 1553
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1554
				schedstat_inc(p, se.nr_wakeups_affine);
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1566
				schedstat_inc(p, se.nr_wakeups_passive);
1567 1568
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1583
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1592 1593 1594 1595 1596 1597 1598 1599 1600
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1601
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1602
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1603
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1614
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1615 1616 1617 1618 1619 1620
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1621
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1629 1630 1631 1632 1633 1634 1635
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1636
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1637 1638 1639

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1640 1641 1642 1643 1644 1645
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1646
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1647
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1648
#endif
N
Nick Piggin 已提交
1649

I
Ingo Molnar 已提交
1650 1651
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1652

1653 1654 1655 1656
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662 1663
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1678
	set_task_cpu(p, cpu);
1679 1680 1681 1682 1683

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1684 1685
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1686

1687
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1688
	if (likely(sched_info_on()))
1689
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1690
#endif
1691
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1692 1693
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1694
#ifdef CONFIG_PREEMPT
1695
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1696
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1697
#endif
N
Nick Piggin 已提交
1698
	put_cpu();
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1708
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1709 1710
{
	unsigned long flags;
I
Ingo Molnar 已提交
1711
	struct rq *rq;
L
Linus Torvalds 已提交
1712 1713

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1714
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1715
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1716 1717 1718

	p->prio = effective_prio(p);

1719
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1720
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1721 1722
	} else {
		/*
I
Ingo Molnar 已提交
1723 1724
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1725
		 */
1726
		p->sched_class->task_new(rq, p);
1727
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1728
	}
I
Ingo Molnar 已提交
1729 1730
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1731 1732
}

1733 1734 1735
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1736 1737
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1738 1739 1740 1741 1742 1743 1744 1745 1746
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1747
 * @notifier: notifier struct to unregister
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1791 1792 1793
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1794
 * @prev: the current task that is being switched out
1795 1796 1797 1798 1799 1800 1801 1802 1803
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1804 1805 1806
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1807
{
1808
	fire_sched_out_preempt_notifiers(prev, next);
1809 1810 1811 1812
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1813 1814
/**
 * finish_task_switch - clean up after a task-switch
1815
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1816 1817
 * @prev: the thread we just switched away from.
 *
1818 1819 1820 1821
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1828
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1829 1830 1831
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1832
	long prev_state;
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1838
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1839 1840
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1841
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1847
	prev_state = prev->state;
1848 1849
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1850
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1851 1852
	if (mm)
		mmdrop(mm);
1853
	if (unlikely(prev_state == TASK_DEAD)) {
1854 1855 1856
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1857
		 */
1858
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1859
		put_task_struct(prev);
1860
	}
L
Linus Torvalds 已提交
1861 1862 1863 1864 1865 1866
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1867
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1868 1869
	__releases(rq->lock)
{
1870 1871
	struct rq *rq = this_rq();

1872 1873 1874 1875 1876
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882 1883 1884
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1885
static inline void
1886
context_switch(struct rq *rq, struct task_struct *prev,
1887
	       struct task_struct *next)
L
Linus Torvalds 已提交
1888
{
I
Ingo Molnar 已提交
1889
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1890

1891
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1892 1893
	mm = next->mm;
	oldmm = prev->active_mm;
1894 1895 1896 1897 1898 1899 1900
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1901
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906 1907
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1908
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1909 1910 1911
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1912 1913 1914 1915 1916 1917 1918
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1919
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1920
#endif
L
Linus Torvalds 已提交
1921 1922 1923 1924

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1925 1926 1927 1928 1929 1930 1931
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1955
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1970 1971
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1972

1973
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1983
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2004
/*
I
Ingo Molnar 已提交
2005 2006
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2007
 */
I
Ingo Molnar 已提交
2008
static void update_cpu_load(struct rq *this_rq)
2009
{
2010
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2023 2024 2025 2026 2027 2028 2029
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2030 2031
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2032 2033
}

I
Ingo Molnar 已提交
2034 2035
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2042
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2043 2044 2045
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2046
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2047 2048 2049 2050
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2051
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2059 2060
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2069
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2083
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2084 2085 2086 2087
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2088 2089 2090 2091 2092
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2093
	if (unlikely(!spin_trylock(&busiest->lock))) {
2094
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2109
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2110
{
2111
	struct migration_req req;
L
Linus Torvalds 已提交
2112
	unsigned long flags;
2113
	struct rq *rq;
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2124

L
Linus Torvalds 已提交
2125 2126 2127 2128 2129
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2130

L
Linus Torvalds 已提交
2131 2132 2133 2134 2135 2136 2137
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2138 2139
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2140 2141 2142 2143
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2144
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2145
	put_cpu();
N
Nick Piggin 已提交
2146 2147
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2148 2149 2150 2151 2152 2153
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2154 2155
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2156
{
2157
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2158
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2159
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2160 2161 2162 2163
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2164
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2165 2166 2167 2168 2169
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2170
static
2171
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2172
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2173
		     int *all_pinned)
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179 2180
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2181 2182
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2183
		return 0;
2184
	}
2185 2186
	*all_pinned = 0;

2187 2188
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2189
		return 0;
2190
	}
L
Linus Torvalds 已提交
2191

2192 2193 2194 2195 2196 2197
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2198 2199
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2200
#ifdef CONFIG_SCHEDSTATS
2201
		if (task_hot(p, rq->clock, sd)) {
2202
			schedstat_inc(sd, lb_hot_gained[idle]);
2203 2204
			schedstat_inc(p, se.nr_forced_migrations);
		}
2205 2206 2207 2208
#endif
		return 1;
	}

2209 2210
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2211
		return 0;
2212
	}
L
Linus Torvalds 已提交
2213 2214 2215
	return 1;
}

I
Ingo Molnar 已提交
2216
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2217
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2218
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2219
		      int *all_pinned, unsigned long *load_moved,
2220
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2221
{
I
Ingo Molnar 已提交
2222 2223 2224
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2225

2226
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2227 2228
		goto out;

2229 2230
	pinned = 1;

L
Linus Torvalds 已提交
2231
	/*
I
Ingo Molnar 已提交
2232
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2233
	 */
I
Ingo Molnar 已提交
2234 2235 2236
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2237
		goto out;
2238 2239 2240 2241 2242
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2243 2244
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2245
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2246 2247 2248
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2249 2250
	}

I
Ingo Molnar 已提交
2251
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2252
	pulled++;
I
Ingo Molnar 已提交
2253
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2254

2255 2256 2257 2258 2259
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2260 2261
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2262 2263
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269 2270 2271
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2272 2273 2274

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2275
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2276 2277 2278
	return pulled;
}

I
Ingo Molnar 已提交
2279
/*
P
Peter Williams 已提交
2280 2281 2282
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2283 2284 2285 2286
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2287
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2288 2289 2290
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2291
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2292
	unsigned long total_load_moved = 0;
2293
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2294 2295

	do {
P
Peter Williams 已提交
2296 2297 2298
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2299
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2300
		class = class->next;
P
Peter Williams 已提交
2301
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2302

P
Peter Williams 已提交
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2316
	const struct sched_class *class;
2317
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2318 2319 2320

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2321 2322
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2323 2324 2325
			return 1;

	return 0;
I
Ingo Molnar 已提交
2326 2327
}

L
Linus Torvalds 已提交
2328 2329
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2330 2331
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2332 2333 2334
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2335 2336
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2337 2338 2339
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2340
	unsigned long max_pull;
2341 2342
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2343
	int load_idx, group_imb = 0;
2344 2345 2346 2347 2348 2349
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2350 2351

	max_load = this_load = total_load = total_pwr = 0;
2352 2353
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2354
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2355
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2356
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2357 2358 2359
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2360 2361

	do {
2362
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2363 2364
		int local_group;
		int i;
2365
		int __group_imb = 0;
2366
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2367
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2368 2369 2370

		local_group = cpu_isset(this_cpu, group->cpumask);

2371 2372 2373
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2374
		/* Tally up the load of all CPUs in the group */
2375
		sum_weighted_load = sum_nr_running = avg_load = 0;
2376 2377
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2378 2379

		for_each_cpu_mask(i, group->cpumask) {
2380 2381 2382 2383 2384 2385
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2386

2387
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2388 2389
				*sd_idle = 0;

L
Linus Torvalds 已提交
2390
			/* Bias balancing toward cpus of our domain */
2391 2392 2393 2394 2395 2396
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2397
				load = target_load(i, load_idx);
2398
			} else {
N
Nick Piggin 已提交
2399
				load = source_load(i, load_idx);
2400 2401 2402 2403 2404
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2405 2406

			avg_load += load;
2407
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2408
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2409 2410
		}

2411 2412 2413
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2414 2415
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2416
		 */
2417 2418
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2419 2420 2421 2422
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2423
		total_load += avg_load;
2424
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2425 2426

		/* Adjust by relative CPU power of the group */
2427 2428
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2429

2430 2431 2432
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2433
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2434

L
Linus Torvalds 已提交
2435 2436 2437
		if (local_group) {
			this_load = avg_load;
			this = group;
2438 2439 2440
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2441
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2442 2443
			max_load = avg_load;
			busiest = group;
2444 2445
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2446
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2447
		}
2448 2449 2450 2451 2452 2453

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2454 2455 2456
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2457 2458 2459 2460 2461 2462 2463 2464 2465

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2466
		/*
2467 2468
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2469 2470
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2471
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2472
			goto group_next;
2473

I
Ingo Molnar 已提交
2474
		/*
2475
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2476 2477 2478 2479 2480
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2481 2482
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2483 2484
			group_min = group;
			min_nr_running = sum_nr_running;
2485 2486
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2487
		}
2488

I
Ingo Molnar 已提交
2489
		/*
2490
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2502
		}
2503 2504
group_next:
#endif
L
Linus Torvalds 已提交
2505 2506 2507
		group = group->next;
	} while (group != sd->groups);

2508
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2509 2510 2511 2512 2513 2514 2515 2516
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2517
	busiest_load_per_task /= busiest_nr_running;
2518 2519 2520
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2544 2545

	/* Don't want to pull so many tasks that a group would go idle */
2546
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2547

L
Linus Torvalds 已提交
2548
	/* How much load to actually move to equalise the imbalance */
2549 2550
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2551 2552
			/ SCHED_LOAD_SCALE;

2553 2554 2555 2556 2557 2558
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2559
	if (*imbalance < busiest_load_per_task) {
2560
		unsigned long tmp, pwr_now, pwr_move;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2572

I
Ingo Molnar 已提交
2573 2574
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2575
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2585 2586 2587 2588
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2589 2590 2591
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2592 2593
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2594
		if (max_load > tmp)
2595
			pwr_move += busiest->__cpu_power *
2596
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2597 2598

		/* Amount of load we'd add */
2599
		if (max_load * busiest->__cpu_power <
2600
				busiest_load_per_task * SCHED_LOAD_SCALE)
2601 2602
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2603
		else
2604 2605 2606 2607
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2608 2609 2610
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2611 2612
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2613 2614 2615 2616 2617
	}

	return busiest;

out_balanced:
2618
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2619
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2620
		goto ret;
L
Linus Torvalds 已提交
2621

2622 2623 2624 2625 2626
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2627
ret:
L
Linus Torvalds 已提交
2628 2629 2630 2631 2632 2633 2634
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2635
static struct rq *
I
Ingo Molnar 已提交
2636
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2637
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2638
{
2639
	struct rq *busiest = NULL, *rq;
2640
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2641 2642 2643
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2644
		unsigned long wl;
2645 2646 2647 2648

		if (!cpu_isset(i, *cpus))
			continue;

2649
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2650
		wl = weighted_cpuload(i);
2651

I
Ingo Molnar 已提交
2652
		if (rq->nr_running == 1 && wl > imbalance)
2653
			continue;
L
Linus Torvalds 已提交
2654

I
Ingo Molnar 已提交
2655 2656
		if (wl > max_load) {
			max_load = wl;
2657
			busiest = rq;
L
Linus Torvalds 已提交
2658 2659 2660 2661 2662 2663
		}
	}

	return busiest;
}

2664 2665 2666 2667 2668 2669
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2670 2671 2672 2673
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2674
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2675
			struct sched_domain *sd, enum cpu_idle_type idle,
2676
			int *balance)
L
Linus Torvalds 已提交
2677
{
P
Peter Williams 已提交
2678
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2679 2680
	struct sched_group *group;
	unsigned long imbalance;
2681
	struct rq *busiest;
2682
	cpumask_t cpus = CPU_MASK_ALL;
2683
	unsigned long flags;
N
Nick Piggin 已提交
2684

2685 2686 2687
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2688
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2689
	 * portraying it as CPU_NOT_IDLE.
2690
	 */
I
Ingo Molnar 已提交
2691
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2692
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2693
		sd_idle = 1;
L
Linus Torvalds 已提交
2694

2695
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2696

2697 2698
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2699 2700
				   &cpus, balance);

2701
	if (*balance == 0)
2702 2703
		goto out_balanced;

L
Linus Torvalds 已提交
2704 2705 2706 2707 2708
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2709
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2710 2711 2712 2713 2714
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2715
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2716 2717 2718

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2719
	ld_moved = 0;
L
Linus Torvalds 已提交
2720 2721 2722 2723
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2724
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2725 2726
		 * correctly treated as an imbalance.
		 */
2727
		local_irq_save(flags);
N
Nick Piggin 已提交
2728
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2729
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2730
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2731
		double_rq_unlock(this_rq, busiest);
2732
		local_irq_restore(flags);
2733

2734 2735 2736
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2737
		if (ld_moved && this_cpu != smp_processor_id())
2738 2739
			resched_cpu(this_cpu);

2740
		/* All tasks on this runqueue were pinned by CPU affinity */
2741 2742 2743 2744
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2745
			goto out_balanced;
2746
		}
L
Linus Torvalds 已提交
2747
	}
2748

P
Peter Williams 已提交
2749
	if (!ld_moved) {
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2755
			spin_lock_irqsave(&busiest->lock, flags);
2756 2757 2758 2759 2760

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2761
				spin_unlock_irqrestore(&busiest->lock, flags);
2762 2763 2764 2765
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2766 2767 2768
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2769
				active_balance = 1;
L
Linus Torvalds 已提交
2770
			}
2771
			spin_unlock_irqrestore(&busiest->lock, flags);
2772
			if (active_balance)
L
Linus Torvalds 已提交
2773 2774 2775 2776 2777 2778
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2779
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2780
		}
2781
	} else
L
Linus Torvalds 已提交
2782 2783
		sd->nr_balance_failed = 0;

2784
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2785 2786
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2787 2788 2789 2790 2791 2792 2793 2794 2795
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2796 2797
	}

P
Peter Williams 已提交
2798
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2800
		return -1;
P
Peter Williams 已提交
2801
	return ld_moved;
L
Linus Torvalds 已提交
2802 2803 2804 2805

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2806
	sd->nr_balance_failed = 0;
2807 2808

out_one_pinned:
L
Linus Torvalds 已提交
2809
	/* tune up the balancing interval */
2810 2811
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2812 2813
		sd->balance_interval *= 2;

2814
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2816
		return -1;
L
Linus Torvalds 已提交
2817 2818 2819 2820 2821 2822 2823
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2824
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2825 2826
 * this_rq is locked.
 */
2827
static int
2828
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2829 2830
{
	struct sched_group *group;
2831
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2832
	unsigned long imbalance;
P
Peter Williams 已提交
2833
	int ld_moved = 0;
N
Nick Piggin 已提交
2834
	int sd_idle = 0;
2835
	int all_pinned = 0;
2836
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2837

2838 2839 2840 2841
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2842
	 * portraying it as CPU_NOT_IDLE.
2843 2844 2845
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2846
		sd_idle = 1;
L
Linus Torvalds 已提交
2847

2848
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2849
redo:
I
Ingo Molnar 已提交
2850
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2851
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2852
	if (!group) {
I
Ingo Molnar 已提交
2853
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2854
		goto out_balanced;
L
Linus Torvalds 已提交
2855 2856
	}

I
Ingo Molnar 已提交
2857
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2858
				&cpus);
N
Nick Piggin 已提交
2859
	if (!busiest) {
I
Ingo Molnar 已提交
2860
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2861
		goto out_balanced;
L
Linus Torvalds 已提交
2862 2863
	}

N
Nick Piggin 已提交
2864 2865
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2866
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2867

P
Peter Williams 已提交
2868
	ld_moved = 0;
2869 2870 2871
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2872 2873
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2874
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2875 2876
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2877
		spin_unlock(&busiest->lock);
2878

2879
		if (unlikely(all_pinned)) {
2880 2881 2882 2883
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2884 2885
	}

P
Peter Williams 已提交
2886
	if (!ld_moved) {
I
Ingo Molnar 已提交
2887
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2888 2889
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2890 2891
			return -1;
	} else
2892
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2893

P
Peter Williams 已提交
2894
	return ld_moved;
2895 2896

out_balanced:
I
Ingo Molnar 已提交
2897
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2898
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2899
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2900
		return -1;
2901
	sd->nr_balance_failed = 0;
2902

2903
	return 0;
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908 2909
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2910
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2911 2912
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2913 2914
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2915 2916

	for_each_domain(this_cpu, sd) {
2917 2918 2919 2920 2921 2922
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2923
			/* If we've pulled tasks over stop searching: */
2924
			pulled_task = load_balance_newidle(this_cpu,
2925 2926 2927 2928 2929 2930 2931
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2932
	}
I
Ingo Molnar 已提交
2933
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2934 2935 2936 2937 2938
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2939
	}
L
Linus Torvalds 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2950
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2951
{
2952
	int target_cpu = busiest_rq->push_cpu;
2953 2954
	struct sched_domain *sd;
	struct rq *target_rq;
2955

2956
	/* Is there any task to move? */
2957 2958 2959 2960
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2961 2962

	/*
2963 2964 2965
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2966
	 */
2967
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2968

2969 2970
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2971 2972
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2973 2974

	/* Search for an sd spanning us and the target CPU. */
2975
	for_each_domain(target_cpu, sd) {
2976
		if ((sd->flags & SD_LOAD_BALANCE) &&
2977
		    cpu_isset(busiest_cpu, sd->span))
2978
				break;
2979
	}
2980

2981
	if (likely(sd)) {
2982
		schedstat_inc(sd, alb_count);
2983

P
Peter Williams 已提交
2984 2985
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2986 2987 2988 2989
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2990
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2991 2992
}

2993 2994 2995 2996 2997 2998 2999 3000 3001
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3002
/*
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3013
 *
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3070 3071 3072 3073 3074
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3075
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3076
{
3077 3078
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3079 3080
	unsigned long interval;
	struct sched_domain *sd;
3081
	/* Earliest time when we have to do rebalance again */
3082
	unsigned long next_balance = jiffies + 60*HZ;
3083
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3084

3085
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3086 3087 3088 3089
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3090
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3097 3098 3099
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3100

3101 3102 3103 3104 3105
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3106
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3107
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3108 3109
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3110 3111 3112
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3113
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3114
			}
3115
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3116
		}
3117 3118 3119
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3120
		if (time_after(next_balance, sd->last_balance + interval)) {
3121
			next_balance = sd->last_balance + interval;
3122 3123
			update_next_balance = 1;
		}
3124 3125 3126 3127 3128 3129 3130 3131

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3132
	}
3133 3134 3135 3136 3137 3138 3139 3140

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3141 3142 3143 3144 3145 3146 3147 3148 3149
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3150 3151 3152 3153
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3154

I
Ingo Molnar 已提交
3155
	rebalance_domains(this_cpu, idle);
3156 3157 3158 3159 3160 3161 3162

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3163 3164
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3165 3166 3167 3168
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3169
		cpu_clear(this_cpu, cpus);
3170 3171 3172 3173 3174 3175 3176 3177 3178
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3179
			rebalance_domains(balance_cpu, CPU_IDLE);
3180 3181

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3182 3183
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3196
static inline void trigger_load_balance(struct rq *rq, int cpu)
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3248
}
I
Ingo Molnar 已提交
3249 3250 3251

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3252 3253 3254
/*
 * on UP we do not need to balance between CPUs:
 */
3255
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3256 3257
{
}
I
Ingo Molnar 已提交
3258 3259 3260 3261 3262 3263

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3264
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3265 3266 3267 3268 3269 3270
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276 3277
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3278 3279
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3280
 */
3281
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3282 3283
{
	unsigned long flags;
3284 3285
	u64 ns, delta_exec;
	struct rq *rq;
3286

3287 3288 3289
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3290 3291
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3292 3293 3294 3295
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3296

L
Linus Torvalds 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
void account_guest_time(struct task_struct *p, cputime_t cputime)
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3351 3352
	cputime64_t tmp;

3353 3354 3355 3356 3357 3358
	if (p->flags & PF_VCPU) {
		account_guest_time(p, cputime);
		p->flags &= ~PF_VCPU;
		return;
	}

L
Linus Torvalds 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3386
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3409
	struct task_struct *curr = rq->curr;
3410
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3411 3412

	spin_lock(&rq->lock);
3413
	__update_rq_clock(rq);
3414 3415 3416 3417 3418 3419
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3420
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3421 3422 3423
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3424

3425
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3426 3427
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3428
#endif
L
Linus Torvalds 已提交
3429 3430 3431 3432 3433 3434 3435 3436 3437
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3438 3439
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3440 3441 3442 3443
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3444 3445
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450 3451 3452 3453
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3454 3455
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3456 3457 3458
	/*
	 * Is the spinlock portion underflowing?
	 */
3459 3460 3461 3462
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3463 3464 3465 3466 3467 3468 3469
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3470
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3471
 */
I
Ingo Molnar 已提交
3472
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3473
{
I
Ingo Molnar 已提交
3474 3475 3476 3477 3478 3479 3480
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3481

I
Ingo Molnar 已提交
3482 3483 3484 3485 3486
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3487 3488 3489 3490 3491
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3492 3493 3494
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3495 3496
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3497
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3498 3499
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3500 3501
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3502 3503
	}
#endif
I
Ingo Molnar 已提交
3504 3505 3506 3507 3508 3509
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3510
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3511
{
3512
	const struct sched_class *class;
I
Ingo Molnar 已提交
3513
	struct task_struct *p;
L
Linus Torvalds 已提交
3514 3515

	/*
I
Ingo Molnar 已提交
3516 3517
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3518
	 */
I
Ingo Molnar 已提交
3519
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3520
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3521 3522
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3523 3524
	}

I
Ingo Molnar 已提交
3525 3526
	class = sched_class_highest;
	for ( ; ; ) {
3527
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3528 3529 3530 3531 3532 3533 3534 3535 3536
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3537

I
Ingo Molnar 已提交
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3560

3561 3562 3563 3564
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3565
	__update_rq_clock(rq);
3566 3567
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3568 3569 3570

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3571
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3572
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3573
		} else {
3574
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3575
		}
I
Ingo Molnar 已提交
3576
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3577 3578
	}

I
Ingo Molnar 已提交
3579
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3580 3581
		idle_balance(cpu, rq);

3582
	prev->sched_class->put_prev_task(rq, prev);
3583
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3584 3585

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3586

L
Linus Torvalds 已提交
3587 3588 3589 3590 3591
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3592
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3593 3594 3595
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3596 3597 3598
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3599
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3600
	}
L
Linus Torvalds 已提交
3601 3602 3603 3604 3605 3606 3607 3608
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3609
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3624
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3625 3626
		return;

3627 3628 3629 3630 3631 3632 3633 3634
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3635
#ifdef CONFIG_PREEMPT_BKL
3636 3637
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3638
#endif
3639
		schedule();
L
Linus Torvalds 已提交
3640
#ifdef CONFIG_PREEMPT_BKL
3641
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3642
#endif
3643
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3644

3645 3646 3647 3648 3649 3650
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3651 3652 3653 3654
}
EXPORT_SYMBOL(preempt_schedule);

/*
3655
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3667
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3668 3669
	BUG_ON(ti->preempt_count || !irqs_disabled());

3670 3671 3672 3673 3674 3675 3676 3677
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3678
#ifdef CONFIG_PREEMPT_BKL
3679 3680
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3681
#endif
3682 3683 3684
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3685
#ifdef CONFIG_PREEMPT_BKL
3686
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3687
#endif
3688
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3689

3690 3691 3692 3693 3694 3695
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3696 3697 3698 3699
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3700 3701
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3702
{
3703
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3719
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3720

3721
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3722 3723
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3724
		if (curr->func(curr, mode, sync, key) &&
3725
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3735
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3736 3737
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3738
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3757
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3769 3770
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3811 3812
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3813 3814 3815 3816 3817 3818 3819
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3820 3821 3822 3823 3824 3825
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3831
				return timeout;
L
Linus Torvalds 已提交
3832 3833 3834 3835 3836 3837 3838 3839
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3840 3841
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3842 3843 3844 3845
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3846
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3847
	spin_unlock_irq(&x->wait.lock);
3848 3849
	return timeout;
}
L
Linus Torvalds 已提交
3850

3851 3852 3853
void fastcall __sched wait_for_completion(struct completion *x)
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3854
}
3855
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3856 3857

unsigned long fastcall __sched
3858
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3859
{
3860
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3861
}
3862
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3863

3864
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3865
{
3866 3867 3868 3869
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3870
}
3871
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3872

3873 3874 3875
unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3876
{
3877
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3878
}
3879
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3880

3881 3882
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3883
{
I
Ingo Molnar 已提交
3884 3885 3886 3887
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3888

3889
	__set_current_state(state);
L
Linus Torvalds 已提交
3890

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3905 3906 3907
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3908
long __sched
I
Ingo Molnar 已提交
3909
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3910
{
3911
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3912 3913 3914
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3915
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3916
{
3917
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3918 3919 3920
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3921
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3922
{
3923
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3924 3925 3926
}
EXPORT_SYMBOL(sleep_on_timeout);

3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3939
void rt_mutex_setprio(struct task_struct *p, int prio)
3940 3941
{
	unsigned long flags;
3942
	int oldprio, on_rq, running;
3943
	struct rq *rq;
3944 3945 3946 3947

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3948
	update_rq_clock(rq);
3949

3950
	oldprio = p->prio;
I
Ingo Molnar 已提交
3951
	on_rq = p->se.on_rq;
3952 3953
	running = task_running(rq, p);
	if (on_rq) {
3954
		dequeue_task(rq, p, 0);
3955 3956 3957
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3958 3959 3960 3961 3962 3963

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3964 3965
	p->prio = prio;

I
Ingo Molnar 已提交
3966
	if (on_rq) {
3967 3968
		if (running)
			p->sched_class->set_curr_task(rq);
3969
		enqueue_task(rq, p, 0);
3970 3971
		/*
		 * Reschedule if we are currently running on this runqueue and
3972 3973
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3974
		 */
3975
		if (running) {
3976 3977
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3978 3979 3980
		} else {
			check_preempt_curr(rq, p);
		}
3981 3982 3983 3984 3985 3986
	}
	task_rq_unlock(rq, &flags);
}

#endif

3987
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3988
{
I
Ingo Molnar 已提交
3989
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3990
	unsigned long flags;
3991
	struct rq *rq;
L
Linus Torvalds 已提交
3992 3993 3994 3995 3996 3997 3998 3999

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4000
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4001 4002 4003 4004
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4005
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4006
	 */
4007
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4008 4009 4010
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4011 4012
	on_rq = p->se.on_rq;
	if (on_rq) {
4013
		dequeue_task(rq, p, 0);
4014
		dec_load(rq, p);
4015
	}
L
Linus Torvalds 已提交
4016 4017

	p->static_prio = NICE_TO_PRIO(nice);
4018
	set_load_weight(p);
4019 4020 4021
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4022

I
Ingo Molnar 已提交
4023
	if (on_rq) {
4024
		enqueue_task(rq, p, 0);
4025
		inc_load(rq, p);
L
Linus Torvalds 已提交
4026
		/*
4027 4028
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4029
		 */
4030
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4031 4032 4033 4034 4035 4036 4037
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4038 4039 4040 4041 4042
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4043
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4044
{
4045 4046
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4047

M
Matt Mackall 已提交
4048 4049 4050 4051
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4063
	long nice, retval;
L
Linus Torvalds 已提交
4064 4065 4066 4067 4068 4069

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4070 4071
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4081 4082 4083
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4102
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108 4109 4110
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4111
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4130
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4139
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4145 4146
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4147
{
I
Ingo Molnar 已提交
4148
	BUG_ON(p->se.on_rq);
4149

L
Linus Torvalds 已提交
4150
	p->policy = policy;
I
Ingo Molnar 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4163
	p->rt_priority = prio;
4164 4165 4166
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4167
	set_load_weight(p);
L
Linus Torvalds 已提交
4168 4169 4170
}

/**
4171
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4172 4173 4174
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4175
 *
4176
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4177
 */
I
Ingo Molnar 已提交
4178 4179
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4180
{
4181
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4182
	unsigned long flags;
4183
	struct rq *rq;
L
Linus Torvalds 已提交
4184

4185 4186
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4187 4188 4189 4190 4191
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4192 4193
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4194
		return -EINVAL;
L
Linus Torvalds 已提交
4195 4196
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4197 4198
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4199 4200
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4201
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4202
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4203
		return -EINVAL;
4204
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4205 4206
		return -EINVAL;

4207 4208 4209 4210
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4211
		if (rt_policy(policy)) {
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4228 4229 4230 4231 4232 4233
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4234

4235 4236 4237 4238 4239
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4240 4241 4242 4243

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4244 4245 4246 4247 4248
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4249 4250 4251 4252
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4253
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4254 4255 4256
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4257 4258
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4259 4260
		goto recheck;
	}
I
Ingo Molnar 已提交
4261
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4262
	on_rq = p->se.on_rq;
4263 4264
	running = task_running(rq, p);
	if (on_rq) {
4265
		deactivate_task(rq, p, 0);
4266 4267 4268
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4269

L
Linus Torvalds 已提交
4270
	oldprio = p->prio;
I
Ingo Molnar 已提交
4271
	__setscheduler(rq, p, policy, param->sched_priority);
4272

I
Ingo Molnar 已提交
4273
	if (on_rq) {
4274 4275
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4276
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4277 4278
		/*
		 * Reschedule if we are currently running on this runqueue and
4279 4280
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4281
		 */
4282
		if (running) {
4283 4284
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4285 4286 4287
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4288
	}
4289 4290 4291
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4292 4293
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4294 4295 4296 4297
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4298 4299
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4300 4301 4302
{
	struct sched_param lparam;
	struct task_struct *p;
4303
	int retval;
L
Linus Torvalds 已提交
4304 4305 4306 4307 4308

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4309 4310 4311

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4312
	p = find_process_by_pid(pid);
4313 4314 4315
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4316

L
Linus Torvalds 已提交
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4329 4330 4331 4332
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4352
	struct task_struct *p;
4353
	int retval;
L
Linus Torvalds 已提交
4354 4355

	if (pid < 0)
4356
		return -EINVAL;
L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4378
	struct task_struct *p;
4379
	int retval;
L
Linus Torvalds 已提交
4380 4381

	if (!param || pid < 0)
4382
		return -EINVAL;
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4412 4413
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4414

4415
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4421
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4438 4439 4440 4441
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4448
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4489
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4490 4491 4492
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4493
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4494 4495
EXPORT_SYMBOL(cpu_online_map);

4496
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4497
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4498 4499 4500 4501
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4502
	struct task_struct *p;
L
Linus Torvalds 已提交
4503 4504
	int retval;

4505
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4513 4514 4515 4516
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4517
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4518 4519 4520

out_unlock:
	read_unlock(&tasklist_lock);
4521
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4522

4523
	return retval;
L
Linus Torvalds 已提交
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4554 4555
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4556 4557 4558
 */
asmlinkage long sys_sched_yield(void)
{
4559
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4560

4561
	schedstat_inc(rq, yld_count);
4562
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4563 4564 4565 4566 4567 4568

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4569
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4570 4571 4572 4573 4574 4575 4576 4577
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4578
static void __cond_resched(void)
L
Linus Torvalds 已提交
4579
{
4580 4581 4582
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4583 4584 4585 4586 4587
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4597 4598
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4614
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4615
{
J
Jan Kara 已提交
4616 4617
	int ret = 0;

L
Linus Torvalds 已提交
4618 4619 4620
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4621
		ret = 1;
L
Linus Torvalds 已提交
4622 4623
		spin_lock(lock);
	}
4624
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4625
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4626 4627 4628
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4629
		ret = 1;
L
Linus Torvalds 已提交
4630 4631
		spin_lock(lock);
	}
J
Jan Kara 已提交
4632
	return ret;
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4640
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4641
		local_bh_enable();
L
Linus Torvalds 已提交
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4653
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4672
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4673

4674
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4675 4676 4677
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4678
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4684
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4685 4686
	long ret;

4687
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4688 4689 4690
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4691
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4712
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4713
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4737
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4738
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4755
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4756
	unsigned int time_slice;
4757
	int retval;
L
Linus Torvalds 已提交
4758 4759 4760
	struct timespec t;

	if (pid < 0)
4761
		return -EINVAL;
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4786
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4787
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4788 4789
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4790

L
Linus Torvalds 已提交
4791 4792 4793 4794 4795
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4796
static const char stat_nam[] = "RSDTtZX";
4797 4798

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4799 4800
{
	unsigned long free = 0;
4801
	unsigned state;
L
Linus Torvalds 已提交
4802 4803

	state = p->state ? __ffs(p->state) + 1 : 0;
4804 4805
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4806
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4807
	if (state == TASK_RUNNING)
4808
		printk(" running  ");
L
Linus Torvalds 已提交
4809
	else
4810
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4811 4812
#else
	if (state == TASK_RUNNING)
4813
		printk("  running task    ");
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4819
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4820 4821
		while (!*n)
			n++;
4822
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4823 4824
	}
#endif
4825
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4826 4827 4828 4829 4830

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4831
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4832
{
4833
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4834

4835 4836 4837
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4838
#else
4839 4840
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846 4847 4848
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4849
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4850
			show_task(p);
L
Linus Torvalds 已提交
4851 4852
	} while_each_thread(g, p);

4853 4854
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4855 4856 4857
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4858
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4859 4860 4861 4862 4863
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4864 4865
}

I
Ingo Molnar 已提交
4866 4867
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4868
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4869 4870
}

4871 4872 4873 4874 4875 4876 4877 4878
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4879
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4880
{
4881
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4882 4883
	unsigned long flags;

I
Ingo Molnar 已提交
4884 4885 4886
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4887
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4888
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4889
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4890 4891 4892

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4893 4894 4895
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4896 4897 4898 4899
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4900
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4901
#else
A
Al Viro 已提交
4902
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4903
#endif
I
Ingo Molnar 已提交
4904 4905 4906 4907
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4923
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4945
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4946
{
4947
	struct migration_req req;
L
Linus Torvalds 已提交
4948
	unsigned long flags;
4949
	struct rq *rq;
4950
	int ret = 0;
L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4973

L
Linus Torvalds 已提交
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4986 4987
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4988
 */
4989
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4990
{
4991
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4992
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4993 4994

	if (unlikely(cpu_is_offline(dest_cpu)))
4995
		return ret;
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5008
	on_rq = p->se.on_rq;
5009
	if (on_rq)
5010
		deactivate_task(rq_src, p, 0);
5011

L
Linus Torvalds 已提交
5012
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5013 5014 5015
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5016
	}
5017
	ret = 1;
L
Linus Torvalds 已提交
5018 5019
out:
	double_rq_unlock(rq_src, rq_dest);
5020
	return ret;
L
Linus Torvalds 已提交
5021 5022 5023 5024 5025 5026 5027
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5028
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5029 5030
{
	int cpu = (long)data;
5031
	struct rq *rq;
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5038
		struct migration_req *req;
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5061
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5062 5063
		list_del_init(head->next);

N
Nick Piggin 已提交
5064 5065 5066
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5096 5097 5098 5099
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5100
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5101
{
5102
	unsigned long flags;
L
Linus Torvalds 已提交
5103
	cpumask_t mask;
5104 5105
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5106

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
			rq = task_rq_lock(p, &flags);
			cpus_setall(p->cpus_allowed);
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5123

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
			if (p->mm && printk_ratelimit())
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
				       p->pid, p->comm, dead_cpu);
		}
5134
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5135 5136 5137 5138 5139 5140 5141 5142 5143
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5144
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5145
{
5146
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5160
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5161

5162
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5163

5164 5165
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5166 5167
			continue;

5168 5169 5170
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5171

5172
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5173 5174
}

A
Alexey Dobriyan 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5189 5190
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5191
 * It does so by boosting its priority to highest possible and adding it to
5192
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5193 5194 5195
 */
void sched_idle_next(void)
{
5196
	int this_cpu = smp_processor_id();
5197
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5198 5199 5200 5201
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5202
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5203

5204 5205 5206
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5207 5208 5209
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5210
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5211 5212

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5213
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5214 5215 5216 5217

	spin_unlock_irqrestore(&rq->lock, flags);
}

5218 5219
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5233
/* called under rq->lock with disabled interrupts */
5234
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5235
{
5236
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5237 5238

	/* Must be exiting, otherwise would be on tasklist. */
5239
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5240 5241

	/* Cannot have done final schedule yet: would have vanished. */
5242
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5243

5244
	get_task_struct(p);
L
Linus Torvalds 已提交
5245 5246 5247 5248 5249 5250

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
	 */
5251
	spin_unlock_irq(&rq->lock);
5252
	move_task_off_dead_cpu(dead_cpu, p);
5253
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5254

5255
	put_task_struct(p);
L
Linus Torvalds 已提交
5256 5257 5258 5259 5260
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5261
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5262
	struct task_struct *next;
5263

I
Ingo Molnar 已提交
5264 5265 5266
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5267
		update_rq_clock(rq);
5268
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5269 5270 5271
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5272

L
Linus Torvalds 已提交
5273 5274 5275 5276
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5277 5278 5279
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5280 5281
	{
		.procname	= "sched_domain",
5282
		.mode		= 0555,
5283
	},
5284 5285 5286 5287
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5288
	{
5289
		.ctl_name	= CTL_KERN,
5290
		.procname	= "kernel",
5291
		.mode		= 0555,
5292 5293
		.child		= sd_ctl_dir,
	},
5294 5295 5296 5297 5298 5299
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5300
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5301 5302 5303 5304

	return entry;
}

5305 5306
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5307
	struct ctl_table *entry;
5308

5309 5310 5311 5312 5313 5314 5315
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
	 * will always be set.  In the lowest directory the names are
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5316 5317
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5318 5319 5320
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5321 5322 5323 5324 5325

	kfree(*tablep);
	*tablep = NULL;
}

5326
static void
5327
set_table_entry(struct ctl_table *entry,
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5341
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5342

5343 5344 5345
	if (table == NULL)
		return NULL;

5346
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5347
		sizeof(long), 0644, proc_doulongvec_minmax);
5348
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5349
		sizeof(long), 0644, proc_doulongvec_minmax);
5350
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5351
		sizeof(int), 0644, proc_dointvec_minmax);
5352
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5353
		sizeof(int), 0644, proc_dointvec_minmax);
5354
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5355
		sizeof(int), 0644, proc_dointvec_minmax);
5356
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5357
		sizeof(int), 0644, proc_dointvec_minmax);
5358
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5359
		sizeof(int), 0644, proc_dointvec_minmax);
5360
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5361
		sizeof(int), 0644, proc_dointvec_minmax);
5362
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5363
		sizeof(int), 0644, proc_dointvec_minmax);
5364
	set_table_entry(&table[9], "cache_nice_tries",
5365 5366
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5367
	set_table_entry(&table[10], "flags", &sd->flags,
5368
		sizeof(int), 0644, proc_dointvec_minmax);
5369
	/* &table[11] is terminator */
5370 5371 5372 5373

	return table;
}

I
Ingo Molnar 已提交
5374
static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5375 5376 5377 5378 5379 5380 5381 5382 5383
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5384 5385
	if (table == NULL)
		return NULL;
5386 5387 5388 5389 5390

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5391
		entry->mode = 0555;
5392 5393 5394 5395 5396 5397 5398 5399
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5400
static void register_sched_domain_sysctl(void)
5401 5402 5403 5404 5405
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5406 5407 5408
	if (entry == NULL)
		return;

5409 5410
	sd_ctl_dir[0].child = entry;

5411
	for_each_online_cpu(i) {
5412 5413
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5414
		entry->mode = 0555;
5415
		entry->child = sd_alloc_ctl_cpu_table(i);
5416
		entry++;
5417 5418 5419
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5420 5421 5422 5423 5424 5425 5426

static void unregister_sched_domain_sysctl(void)
{
	unregister_sysctl_table(sd_sysctl_header);
	sd_sysctl_header = NULL;
	sd_free_ctl_entry(&sd_ctl_dir[0].child);
}
5427
#else
5428 5429 5430 5431
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5432 5433 5434 5435
{
}
#endif

L
Linus Torvalds 已提交
5436 5437 5438 5439
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5440 5441
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5442 5443
{
	struct task_struct *p;
5444
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5445
	unsigned long flags;
5446
	struct rq *rq;
L
Linus Torvalds 已提交
5447 5448

	switch (action) {
5449 5450 5451 5452
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5453
	case CPU_UP_PREPARE:
5454
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5455
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5456 5457 5458 5459 5460
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5461
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5462 5463 5464
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5465

L
Linus Torvalds 已提交
5466
	case CPU_ONLINE:
5467
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5468 5469 5470
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5471

L
Linus Torvalds 已提交
5472 5473
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5474
	case CPU_UP_CANCELED_FROZEN:
5475 5476
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5477
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5478 5479
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5480 5481 5482
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5483

L
Linus Torvalds 已提交
5484
	case CPU_DEAD:
5485
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5486 5487 5488 5489 5490
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5491
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5492
		update_rq_clock(rq);
5493
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5494
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5495 5496
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5497
		migrate_dead_tasks(cpu);
5498
		spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
5499 5500 5501 5502
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5503
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5504 5505 5506
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5507 5508
			struct migration_req *req;

L
Linus Torvalds 已提交
5509
			req = list_entry(rq->migration_queue.next,
5510
					 struct migration_req, list);
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5517 5518 5519
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524 5525 5526
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5527
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5528 5529 5530 5531 5532 5533 5534
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5535
	int err;
5536 5537

	/* Start one for the boot CPU: */
5538 5539
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5540 5541
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5542

L
Linus Torvalds 已提交
5543 5544 5545 5546 5547
	return 0;
}
#endif

#ifdef CONFIG_SMP
5548 5549 5550 5551 5552

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5553
#ifdef CONFIG_SCHED_DEBUG
L
Linus Torvalds 已提交
5554 5555 5556 5557
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5558 5559 5560 5561 5562
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5582 5583
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5584 5585 5586 5587 5588 5589
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5590 5591
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5592
		if (!cpu_isset(cpu, group->cpumask))
5593 5594
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5607
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5608
				printk("\n");
5609 5610
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
5611
				break;
L
Linus Torvalds 已提交
5612 5613 5614 5615 5616
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
5617
				break;
L
Linus Torvalds 已提交
5618 5619 5620 5621 5622
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
5623
				break;
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5636 5637
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5638 5639 5640

		level++;
		sd = sd->parent;
5641 5642
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5643

5644 5645 5646
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5647 5648 5649 5650

	} while (sd);
}
#else
5651
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5652 5653
#endif

5654
static int sd_degenerate(struct sched_domain *sd)
5655 5656 5657 5658 5659 5660 5661 5662
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5663 5664 5665
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5679 5680
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5699 5700 5701
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5702 5703 5704 5705 5706 5707 5708
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5709 5710 5711 5712
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5713
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5714
{
5715
	struct rq *rq = cpu_rq(cpu);
5716 5717 5718 5719 5720 5721 5722
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5723
		if (sd_parent_degenerate(tmp, parent)) {
5724
			tmp->parent = parent->parent;
5725 5726 5727
			if (parent->parent)
				parent->parent->child = tmp;
		}
5728 5729
	}

5730
	if (sd && sd_degenerate(sd)) {
5731
		sd = sd->parent;
5732 5733 5734
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5735 5736 5737

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5738
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5739 5740 5741
}

/* cpus with isolated domains */
5742
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5757
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5758 5759

/*
5760 5761 5762 5763
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5764 5765 5766 5767 5768
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5769
static void
5770 5771 5772
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777 5778
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5779 5780
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5781 5782 5783 5784 5785 5786
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5787
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5788 5789

		for_each_cpu_mask(j, span) {
5790
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5805
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5806

5807
#ifdef CONFIG_NUMA
5808

5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5861 5862
	cpumask_t span, nodemask;
	int i;
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5873

5874 5875 5876 5877 5878 5879 5880 5881
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5882
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5883

5884
/*
5885
 * SMT sched-domains:
5886
 */
L
Linus Torvalds 已提交
5887 5888
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5889
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5890

5891 5892
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5893
{
5894 5895
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5896 5897 5898 5899
	return cpu;
}
#endif

5900 5901 5902
/*
 * multi-core sched-domains:
 */
5903 5904
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5905
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5906 5907 5908
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5909 5910
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5911
{
5912
	int group;
5913
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5914
	cpus_and(mask, mask, *cpu_map);
5915 5916 5917 5918
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5919 5920
}
#elif defined(CONFIG_SCHED_MC)
5921 5922
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5923
{
5924 5925
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5926 5927 5928 5929
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5930
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5931
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5932

5933 5934
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5935
{
5936
	int group;
5937
#ifdef CONFIG_SCHED_MC
5938
	cpumask_t mask = cpu_coregroup_map(cpu);
5939
	cpus_and(mask, mask, *cpu_map);
5940
	group = first_cpu(mask);
5941
#elif defined(CONFIG_SCHED_SMT)
5942
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5943
	cpus_and(mask, mask, *cpu_map);
5944
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5945
#else
5946
	group = cpu;
L
Linus Torvalds 已提交
5947
#endif
5948 5949 5950
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5951 5952 5953 5954
}

#ifdef CONFIG_NUMA
/*
5955 5956 5957
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5958
 */
5959
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5960
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5961

5962
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5963
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5964

5965 5966
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5967
{
5968 5969 5970 5971 5972 5973 5974 5975 5976
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5977
}
5978

5979 5980 5981 5982 5983 5984 5985
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
5986 5987 5988
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
5989

5990 5991 5992 5993 5994 5995 5996 5997
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
5998

5999 6000 6001 6002
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6003
}
L
Linus Torvalds 已提交
6004 6005
#endif

6006
#ifdef CONFIG_NUMA
6007 6008 6009
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6010
	int cpu, i;
6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6041 6042 6043 6044 6045
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6046

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6073 6074
	sd->groups->__cpu_power = 0;

6075 6076 6077 6078 6079 6080 6081 6082 6083 6084
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6085
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6086 6087 6088 6089 6090 6091 6092 6093
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6094
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6095 6096 6097 6098
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6099
/*
6100 6101
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6102
 */
6103
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6104 6105
{
	int i;
6106 6107
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6108
	int sd_allnodes = 0;
6109 6110 6111 6112

	/*
	 * Allocate the per-node list of sched groups
	 */
6113
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6114
					   GFP_KERNEL);
6115 6116
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6117
		return -ENOMEM;
6118 6119 6120
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6121 6122

	/*
6123
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6124
	 */
6125
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6126 6127 6128
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6129
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6130 6131

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6132 6133
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6134 6135 6136
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6137
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6138
			p = sd;
6139
			sd_allnodes = 1;
6140 6141 6142
		} else
			p = NULL;

L
Linus Torvalds 已提交
6143 6144
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6145 6146
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6147 6148
		if (p)
			p->child = sd;
6149
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6150 6151 6152 6153 6154 6155 6156
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6157 6158
		if (p)
			p->child = sd;
6159
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6160

6161 6162 6163 6164 6165 6166 6167
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6168
		p->child = sd;
6169
		cpu_to_core_group(i, cpu_map, &sd->groups);
6170 6171
#endif

L
Linus Torvalds 已提交
6172 6173 6174 6175
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6176
		sd->span = per_cpu(cpu_sibling_map, i);
6177
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6178
		sd->parent = p;
6179
		p->child = sd;
6180
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6186
	for_each_cpu_mask(i, *cpu_map) {
6187
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6188
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6189 6190 6191
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6192 6193
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6194 6195 6196
	}
#endif

6197 6198 6199 6200 6201 6202 6203
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6204 6205
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6206 6207 6208
	}
#endif

L
Linus Torvalds 已提交
6209 6210 6211 6212
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6213
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6214 6215 6216
		if (cpus_empty(nodemask))
			continue;

6217
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6218 6219 6220 6221
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6222
	if (sd_allnodes)
I
Ingo Molnar 已提交
6223 6224
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6235 6236
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6237
			continue;
6238
		}
6239 6240 6241 6242

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6243
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6244 6245 6246 6247 6248
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6249 6250 6251
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6252

6253 6254 6255
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6256
		sg->__cpu_power = 0;
6257
		sg->cpumask = nodemask;
6258
		sg->next = sg;
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6277 6278
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6279 6280 6281
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6282
				goto error;
6283
			}
6284
			sg->__cpu_power = 0;
6285
			sg->cpumask = tmp;
6286
			sg->next = prev->next;
6287 6288 6289 6290 6291
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6292 6293 6294
#endif

	/* Calculate CPU power for physical packages and nodes */
6295
#ifdef CONFIG_SCHED_SMT
6296
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6297 6298
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6299
		init_sched_groups_power(i, sd);
6300
	}
L
Linus Torvalds 已提交
6301
#endif
6302
#ifdef CONFIG_SCHED_MC
6303
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6304 6305
		struct sched_domain *sd = &per_cpu(core_domains, i);

6306
		init_sched_groups_power(i, sd);
6307 6308
	}
#endif
6309

6310
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6311 6312
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6313
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6314 6315
	}

6316
#ifdef CONFIG_NUMA
6317 6318
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6319

6320 6321
	if (sd_allnodes) {
		struct sched_group *sg;
6322

6323
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6324 6325
		init_numa_sched_groups_power(sg);
	}
6326 6327
#endif

L
Linus Torvalds 已提交
6328
	/* Attach the domains */
6329
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6330 6331 6332
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6333 6334
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6335 6336 6337 6338 6339
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6340 6341 6342

	return 0;

6343
#ifdef CONFIG_NUMA
6344 6345 6346
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6347
#endif
L
Linus Torvalds 已提交
6348
}
6349 6350 6351
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6352
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6353 6354
{
	cpumask_t cpu_default_map;
6355
	int err;
L
Linus Torvalds 已提交
6356

6357 6358 6359 6360 6361 6362 6363
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6364 6365
	err = build_sched_domains(&cpu_default_map);

6366 6367
	register_sched_domain_sysctl();

6368
	return err;
6369 6370 6371
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6372
{
6373
	free_sched_groups(cpu_map);
6374
}
L
Linus Torvalds 已提交
6375

6376 6377 6378 6379
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6380
static void detach_destroy_domains(const cpumask_t *cpu_map)
6381 6382 6383
{
	int i;

6384 6385
	unregister_sched_domain_sysctl();

6386 6387 6388 6389 6390 6391
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

6392
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6393
static int arch_reinit_sched_domains(void)
6394 6395 6396
{
	int err;

6397
	mutex_lock(&sched_hotcpu_mutex);
6398 6399
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6400
	mutex_unlock(&sched_hotcpu_mutex);
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6427 6428
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6429 6430 6431
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6432 6433
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6434 6435 6436 6437 6438 6439 6440
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6441 6442
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6443 6444 6445
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6466 6467
#endif

L
Linus Torvalds 已提交
6468 6469 6470
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6471
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6472 6473 6474 6475 6476 6477 6478
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6479
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6480
	case CPU_DOWN_PREPARE:
6481
	case CPU_DOWN_PREPARE_FROZEN:
6482
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6483 6484 6485
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6486
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6487
	case CPU_DOWN_FAILED:
6488
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6489
	case CPU_ONLINE:
6490
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6491
	case CPU_DEAD:
6492
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6493 6494 6495 6496 6497 6498 6499 6500 6501
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6502
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6503 6504 6505 6506 6507 6508

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6509 6510
	cpumask_t non_isolated_cpus;

6511
	mutex_lock(&sched_hotcpu_mutex);
6512
	arch_init_sched_domains(&cpu_online_map);
6513
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6514 6515
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6516
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6517 6518
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6519 6520 6521 6522

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6534

L
Linus Torvalds 已提交
6535 6536 6537 6538 6539
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6540
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6541 6542 6543 6544 6545
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6546
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6547 6548
}

L
Linus Torvalds 已提交
6549 6550
void __init sched_init(void)
{
6551
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6552 6553
	int i, j;

6554
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6555
		struct rt_prio_array *array;
6556
		struct rq *rq;
L
Linus Torvalds 已提交
6557 6558 6559

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6560
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6561
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6562 6563 6564 6565
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6566 6567 6568 6569 6570 6571 6572
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6573
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6574
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6575 6576
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6577 6578 6579
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6580
			se->load.weight = init_task_group_load;
6581
			se->load.inv_weight =
6582
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6583 6584
			se->parent = NULL;
		}
6585
		init_task_group.shares = init_task_group_load;
6586
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6587
#endif
L
Linus Torvalds 已提交
6588

I
Ingo Molnar 已提交
6589 6590
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6591
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6592
		rq->sd = NULL;
L
Linus Torvalds 已提交
6593
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6594
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6595
		rq->push_cpu = 0;
6596
		rq->cpu = i;
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6602 6603 6604 6605
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6606
		}
6607
		highest_cpu = i;
I
Ingo Molnar 已提交
6608 6609
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6610 6611
	}

6612
	set_load_weight(&init_task);
6613

6614 6615 6616 6617
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6618
#ifdef CONFIG_SMP
6619
	nr_cpu_ids = highest_cpu + 1;
6620 6621 6622
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6623 6624 6625 6626
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6640 6641 6642 6643
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6644 6645 6646 6647 6648
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6649
#ifdef in_atomic
L
Linus Torvalds 已提交
6650 6651 6652 6653 6654 6655 6656
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6657
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6658 6659 6660
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6661
		debug_show_held_locks(current);
6662 6663
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6664 6665 6666 6667 6668 6669 6670 6671
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6686 6687
void normalize_rt_tasks(void)
{
6688
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6689
	unsigned long flags;
6690
	struct rq *rq;
L
Linus Torvalds 已提交
6691 6692

	read_lock_irq(&tasklist_lock);
6693
	do_each_thread(g, p) {
6694 6695 6696 6697 6698 6699
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6700 6701
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6702 6703 6704
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6705
#endif
I
Ingo Molnar 已提交
6706 6707 6708 6709 6710 6711 6712 6713 6714
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6715
			continue;
I
Ingo Molnar 已提交
6716
		}
L
Linus Torvalds 已提交
6717

6718 6719
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6720

6721
		normalize_task(rq, p);
6722

6723 6724
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6725 6726
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6727 6728 6729 6730
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6749
struct task_struct *curr_task(int cpu)
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6769
void set_curr_task(int cpu, struct task_struct *p)
6770 6771 6772 6773 6774
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6775 6776 6777 6778

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6779
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6780
{
6781
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6782 6783
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6784
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6785 6786 6787 6788 6789 6790
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6791
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6792 6793
	if (!tg->cfs_rq)
		goto err;
6794
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6795 6796 6797 6798
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6799
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6826 6827 6828 6829 6830
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6831

6832
	tg->shares = NICE_0_LOAD;
6833
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
6834

6835
	return tg;
S
Srivatsa Vaddagiri 已提交
6836 6837 6838

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6839
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
6840
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
6841
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
6842 6843
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
6844 6845 6846
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
6847 6848 6849 6850

	return ERR_PTR(-ENOMEM);
}

6851 6852
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6853
{
6854
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6855
	struct task_group *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6873
/* Destroy runqueue etc associated with a task group */
6874
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
6875
{
6876 6877
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6878

6879 6880 6881 6882 6883 6884 6885 6886 6887
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6888 6889
}

6890
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6891 6892 6893
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6894 6895
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6911
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6912
		dequeue_task(rq, tsk, 0);
6913 6914 6915
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6916 6917 6918

	set_task_cfs_rq(tsk);

6919 6920 6921
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6922
		enqueue_task(rq, tsk, 0);
6923
	}
S
Srivatsa Vaddagiri 已提交
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6950
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6951 6952 6953
{
	int i;

6954
	spin_lock(&tg->lock);
6955
	if (tg->shares == shares)
6956
		goto done;
S
Srivatsa Vaddagiri 已提交
6957

6958
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6959
	for_each_possible_cpu(i)
6960
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6961

6962 6963
done:
	spin_unlock(&tg->lock);
6964
	return 0;
S
Srivatsa Vaddagiri 已提交
6965 6966
}

6967 6968 6969 6970 6971
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
6972
#endif	/* CONFIG_FAIR_GROUP_SCHED */