sched.c 163.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
#define NS_TO_JIFFIES(TIME)	((TIME) / (1000000000 / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107 108 109 110 111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.
 */
#define MIN_TIMESLICE		max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

I
Ingo Molnar 已提交
136 137 138
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)

139
/*
I
Ingo Molnar 已提交
140
 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
141 142
 * to time slice values: [800ms ... 100ms ... 5ms]
 */
I
Ingo Molnar 已提交
143
static unsigned int static_prio_timeslice(int static_prio)
144
{
I
Ingo Molnar 已提交
145 146 147 148 149 150 151
	if (static_prio == NICE_TO_PRIO(19))
		return 1;

	if (static_prio < NICE_TO_PRIO(0))
		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
	else
		return SCALE_PRIO(DEF_TIMESLICE, static_prio);
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
166
/*
I
Ingo Molnar 已提交
167
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
168
 */
I
Ingo Molnar 已提交
169 170 171 172 173 174 175 176 177 178 179 180
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	s64 fair_clock;
	u64 exec_clock;
I
Ingo Molnar 已提交
181
	u64 min_vruntime;
I
Ingo Molnar 已提交
182 183 184 185 186 187 188 189 190 191
	s64 wait_runtime;
	unsigned long wait_runtime_overruns, wait_runtime_underruns;

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
192
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
193 194 195 196 197 198 199 200 201 202 203 204
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
#endif
};
L
Linus Torvalds 已提交
205

I
Ingo Molnar 已提交
206 207 208 209 210 211 212
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
213 214 215 216 217 218 219
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
220
struct rq {
I
Ingo Molnar 已提交
221
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
222 223 224 225 226 227

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
228 229
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
230
	unsigned char idle_at_tick;
231 232 233
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
234
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
235 236 237 238 239 240
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
241
#endif
I
Ingo Molnar 已提交
242
	struct rt_rq  rt;
L
Linus Torvalds 已提交
243 244 245 246 247 248 249 250 251

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

252
	struct task_struct *curr, *idle;
253
	unsigned long next_balance;
L
Linus Torvalds 已提交
254
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
255 256 257 258 259

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
260 261
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
262
	u64 tick_timestamp;
I
Ingo Molnar 已提交
263

L
Linus Torvalds 已提交
264 265 266 267 268 269 270 271
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
272
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
273

274
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
	unsigned long yld_cnt;

	/* schedule() stats */
	unsigned long sched_switch;
	unsigned long sched_cnt;
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
	unsigned long ttwu_cnt;
	unsigned long ttwu_local;
#endif
297
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
298 299
};

300
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
301
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
302

I
Ingo Molnar 已提交
303 304 305 306 307
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

308 309 310 311 312 313 314 315 316
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
317
/*
I
Ingo Molnar 已提交
318 319
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
320
 */
I
Ingo Molnar 已提交
321
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
322 323 324 325 326 327
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
328 329 330
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
331 332 333 334 335 336 337 338 339 340
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
341 342 343 344 345
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
346 347 348 349 350 351 352 353 354 355
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
356
}
I
Ingo Molnar 已提交
357

I
Ingo Molnar 已提交
358 359 360 361
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
362 363
}

N
Nick Piggin 已提交
364 365
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
367 368 369 370
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
371 372
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
373 374 375 376 377 378

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
	SCHED_FEAT_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 2,
	SCHED_FEAT_SLEEPER_AVG		= 4,
	SCHED_FEAT_SLEEPER_LOAD_AVG	= 8,
	SCHED_FEAT_START_DEBIT		= 16,
P
Peter Zijlstra 已提交
397 398
	SCHED_FEAT_USE_TREE_AVG         = 32,
	SCHED_FEAT_APPROX_AVG           = 64,
I
Ingo Molnar 已提交
399 400 401 402 403 404 405
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_FAIR_SLEEPERS	*0 |
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
		SCHED_FEAT_SLEEPER_AVG		*0 |
		SCHED_FEAT_SLEEPER_LOAD_AVG	*1 |
P
Peter Zijlstra 已提交
406 407 408
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_USE_TREE_AVG		*0 |
		SCHED_FEAT_APPROX_AVG		*0;
I
Ingo Molnar 已提交
409 410 411

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

412 413 414 415 416 417 418 419
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
420
	struct rq *rq;
421

422
	local_irq_save(flags);
I
Ingo Molnar 已提交
423 424 425
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
426
	local_irq_restore(flags);
427 428 429 430

	return now;
}

I
Ingo Molnar 已提交
431 432 433 434 435 436 437 438 439 440 441 442
#ifdef CONFIG_FAIR_GROUP_SCHED
/* Change a task's ->cfs_rq if it moves across CPUs */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = &task_rq(p)->cfs;
}
#else
static inline void set_task_cfs_rq(struct task_struct *p)
{
}
#endif

L
Linus Torvalds 已提交
443
#ifndef prepare_arch_switch
444 445 446 447 448 449 450
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
451
static inline int task_running(struct rq *rq, struct task_struct *p)
452 453 454 455
{
	return rq->curr == p;
}

456
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
457 458 459
{
}

460
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
461
{
462 463 464 465
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
466 467 468 469 470 471 472
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

473 474 475 476
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
477
static inline int task_running(struct rq *rq, struct task_struct *p)
478 479 480 481 482 483 484 485
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

486
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

503
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
504 505 506 507 508 509 510 511 512 513 514 515
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
516
#endif
517 518
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
519

520 521 522 523
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
524
static inline struct rq *__task_rq_lock(struct task_struct *p)
525 526
	__acquires(rq->lock)
{
527
	struct rq *rq;
528 529 530 531 532 533 534 535 536 537 538

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
539 540 541 542 543
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
544
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
545 546
	__acquires(rq->lock)
{
547
	struct rq *rq;
L
Linus Torvalds 已提交
548 549 550 551 552 553 554 555 556 557 558 559

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

560
static inline void __task_rq_unlock(struct rq *rq)
561 562 563 564 565
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

566
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
567 568 569 570 571 572
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
573
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
574
 */
575
static inline struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
576 577
	__acquires(rq->lock)
{
578
	struct rq *rq;
L
Linus Torvalds 已提交
579 580 581 582 583 584 585 586

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

587
/*
588
 * We are going deep-idle (irqs are disabled):
589
 */
590
void sched_clock_idle_sleep_event(void)
591
{
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
608

609 610 611 612 613 614 615 616 617 618 619
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
620
}
621
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
622

I
Ingo Molnar 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

675 676 677 678 679 680 681 682
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
683 684 685
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
686
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
687

688
static unsigned long
689 690 691 692 693 694
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
695
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
696 697 698 699 700

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
701
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
702
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
703 704
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
705
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
706

707
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
708 709 710 711 712 713 714 715
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

716
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
717 718
{
	lw->weight += inc;
719 720
	if (sched_feat(FAIR_SLEEPERS))
		lw->inv_weight = WMULT_CONST / lw->weight;
721 722
}

723
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
724 725
{
	lw->weight -= dec;
726
	if (sched_feat(FAIR_SLEEPERS) && likely(lw->weight))
727
		lw->inv_weight = WMULT_CONST / lw->weight;
728 729
}

730 731 732 733 734 735 736 737 738
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
739 740 741 742 743 744 745 746 747 748 749
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
750 751 752
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
753 754
 */
static const int prio_to_weight[40] = {
755 756 757 758 759 760 761 762
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
763 764
};

765 766 767 768 769 770 771
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
772
static const u32 prio_to_wmult[40] = {
773 774 775 776 777 778 779 780
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
781
};
782

I
Ingo Molnar 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
800
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
801 802 803 804 805 806 807 808 809 810 811

#include "sched_stats.h"
#include "sched_rt.c"
#include "sched_fair.c"
#include "sched_idletask.c"
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

812 813 814 815
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
816
 * total load (rq->load.weight) on the runqueue, while
817 818 819 820 821 822 823
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
824
 * This function is called /before/ updating rq->load
825 826
 * and when switching tasks.
 */
827
static inline void inc_load(struct rq *rq, const struct task_struct *p)
828
{
829
	update_load_add(&rq->load, p->se.load.weight);
830 831
}

832
static inline void dec_load(struct rq *rq, const struct task_struct *p)
833
{
834
	update_load_sub(&rq->load, p->se.load.weight);
835 836
}

837
static void inc_nr_running(struct task_struct *p, struct rq *rq)
838 839
{
	rq->nr_running++;
840
	inc_load(rq, p);
841 842
}

843
static void dec_nr_running(struct task_struct *p, struct rq *rq)
844 845
{
	rq->nr_running--;
846
	dec_load(rq, p);
847 848
}

849 850
static void set_load_weight(struct task_struct *p)
{
I
Ingo Molnar 已提交
851 852
	p->se.wait_runtime = 0;

853
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
854 855 856 857
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
858

I
Ingo Molnar 已提交
859 860 861 862 863 864 865 866
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
867

I
Ingo Molnar 已提交
868 869
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
870 871
}

872
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
873
{
I
Ingo Molnar 已提交
874
	sched_info_queued(p);
875
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
876
	p->se.on_rq = 1;
877 878
}

879
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
880
{
881
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
882
	p->se.on_rq = 0;
883 884
}

885
/*
I
Ingo Molnar 已提交
886
 * __normal_prio - return the priority that is based on the static prio
887 888 889
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
890
	return p->static_prio;
891 892
}

893 894 895 896 897 898 899
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
900
static inline int normal_prio(struct task_struct *p)
901 902 903
{
	int prio;

904
	if (task_has_rt_policy(p))
905 906 907 908 909 910 911 912 913 914 915 916 917
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
918
static int effective_prio(struct task_struct *p)
919 920 921 922 923 924 925 926 927 928 929 930
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
931
/*
I
Ingo Molnar 已提交
932
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
933
 */
I
Ingo Molnar 已提交
934
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
935
{
I
Ingo Molnar 已提交
936 937
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
938

939
	enqueue_task(rq, p, wakeup);
940
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
941 942 943
}

/*
I
Ingo Molnar 已提交
944
 * activate_idle_task - move idle task to the _front_ of runqueue.
L
Linus Torvalds 已提交
945
 */
I
Ingo Molnar 已提交
946
static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
L
Linus Torvalds 已提交
947
{
I
Ingo Molnar 已提交
948
	update_rq_clock(rq);
L
Linus Torvalds 已提交
949

I
Ingo Molnar 已提交
950 951
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
I
Ingo Molnar 已提交
952

953
	enqueue_task(rq, p, 0);
954
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
955 956 957 958 959
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
960
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
961
{
I
Ingo Molnar 已提交
962 963 964
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

965
	dequeue_task(rq, p, sleep);
966
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
967 968 969 970 971 972
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
974 975 976 977
{
	return cpu_curr(task_cpu(p)) == p;
}

978 979 980
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
981
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
982 983 984 985 986 987 988 989
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
	set_task_cfs_rq(p);
#endif
990 991
}

L
Linus Torvalds 已提交
992
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
993

I
Ingo Molnar 已提交
994
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
995
{
I
Ingo Molnar 已提交
996 997 998 999 1000
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
	u64 clock_offset, fair_clock_offset;

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1001 1002
	fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;

I
Ingo Molnar 已提交
1003 1004
	if (p->se.wait_start_fair)
		p->se.wait_start_fair -= fair_clock_offset;
I
Ingo Molnar 已提交
1005 1006 1007 1008

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1009 1010 1011 1012
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1013
#endif
I
Ingo Molnar 已提交
1014 1015

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1016 1017
}

1018
struct migration_req {
L
Linus Torvalds 已提交
1019 1020
	struct list_head list;

1021
	struct task_struct *task;
L
Linus Torvalds 已提交
1022 1023 1024
	int dest_cpu;

	struct completion done;
1025
};
L
Linus Torvalds 已提交
1026 1027 1028 1029 1030

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1031
static int
1032
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1033
{
1034
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1035 1036 1037 1038 1039

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1040
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045 1046 1047 1048
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1049

L
Linus Torvalds 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1062
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1063 1064
{
	unsigned long flags;
I
Ingo Molnar 已提交
1065
	int running, on_rq;
1066
	struct rq *rq;
L
Linus Torvalds 已提交
1067 1068

repeat:
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1096
	rq = task_rq_lock(p, &flags);
1097
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1098
	on_rq = p->se.on_rq;
1099 1100 1101 1102 1103 1104 1105 1106 1107
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1108 1109 1110
		cpu_relax();
		goto repeat;
	}
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1121
	if (unlikely(on_rq)) {
1122 1123 1124 1125 1126 1127 1128 1129 1130
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1146
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1158 1159
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1160 1161 1162 1163
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
N
Nick Piggin 已提交
1164
static inline unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1165
{
1166
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1167
	unsigned long total = weighted_cpuload(cpu);
1168

1169
	if (type == 0)
I
Ingo Molnar 已提交
1170
		return total;
1171

I
Ingo Molnar 已提交
1172
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1173 1174 1175
}

/*
1176 1177
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1178
 */
N
Nick Piggin 已提交
1179
static inline unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1180
{
1181
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1182
	unsigned long total = weighted_cpuload(cpu);
1183

N
Nick Piggin 已提交
1184
	if (type == 0)
I
Ingo Molnar 已提交
1185
		return total;
1186

I
Ingo Molnar 已提交
1187
	return max(rq->cpu_load[type-1], total);
1188 1189 1190 1191 1192 1193 1194
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1195
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1196
	unsigned long total = weighted_cpuload(cpu);
1197 1198
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1199
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1200 1201
}

N
Nick Piggin 已提交
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1219 1220 1221 1222
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1239 1240
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1241 1242 1243 1244 1245 1246 1247 1248

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1249
nextgroup:
N
Nick Piggin 已提交
1250 1251 1252 1253 1254 1255 1256 1257 1258
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1259
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1260
 */
I
Ingo Molnar 已提交
1261 1262
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1263
{
1264
	cpumask_t tmp;
N
Nick Piggin 已提交
1265 1266 1267 1268
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1269 1270 1271 1272
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1273
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1299

1300
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1301 1302 1303
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1304 1305
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1306 1307
		if (tmp->flags & flag)
			sd = tmp;
1308
	}
N
Nick Piggin 已提交
1309 1310 1311 1312

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1313 1314 1315 1316 1317 1318
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1319 1320 1321

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1322 1323 1324 1325
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1326

1327
		new_cpu = find_idlest_cpu(group, t, cpu);
1328 1329 1330 1331 1332
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1333

1334
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1361
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1377 1378 1379 1380
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1381
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1382 1383 1384 1385
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1386
		} else {
N
Nick Piggin 已提交
1387
			break;
I
Ingo Molnar 已提交
1388
		}
L
Linus Torvalds 已提交
1389 1390 1391 1392
	}
	return cpu;
}
#else
1393
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1413
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1414 1415 1416 1417
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1418
	struct rq *rq;
L
Linus Torvalds 已提交
1419
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1420
	struct sched_domain *sd, *this_sd = NULL;
1421
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1422 1423 1424 1425 1426 1427 1428 1429
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1430
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435 1436 1437 1438 1439
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1440 1441
	new_cpu = cpu;

L
Linus Torvalds 已提交
1442 1443 1444
	schedstat_inc(rq, ttwu_cnt);
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1445 1446 1447 1448 1449 1450 1451 1452
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1453 1454 1455
		}
	}

N
Nick Piggin 已提交
1456
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1457 1458 1459
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1460
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1461
	 */
N
Nick Piggin 已提交
1462 1463 1464
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1465

1466 1467
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1468 1469
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1470

N
Nick Piggin 已提交
1471 1472
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1473 1474
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1475 1476 1477
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1478

L
Linus Torvalds 已提交
1479
			/*
1480 1481 1482
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1483
			 */
1484
			if (sync)
I
Ingo Molnar 已提交
1485
				tl -= current->se.load.weight;
1486 1487

			if ((tl <= load &&
1488
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1489
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1523
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1524 1525 1526 1527 1528 1529 1530 1531
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1532
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1533
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1534 1535 1536 1537 1538 1539 1540 1541
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1542 1543
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1554
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1561
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1569 1570 1571 1572 1573 1574 1575 1576
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.wait_start_fair		= 0;
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1577
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1578
	p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
1579 1580 1581

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1582 1583 1584 1585 1586 1587 1588
	p->se.sum_wait_runtime		= 0;
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1589
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1590 1591 1592
	p->se.wait_max			= 0;
	p->se.wait_runtime_overruns	= 0;
	p->se.wait_runtime_underruns	= 0;
I
Ingo Molnar 已提交
1593
#endif
N
Nick Piggin 已提交
1594

I
Ingo Molnar 已提交
1595 1596
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1597

1598 1599 1600 1601
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
	__set_task_cpu(p, cpu);
1624 1625 1626 1627 1628 1629

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;

1630
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1631
	if (likely(sched_info_on()))
1632
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1633
#endif
1634
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1635 1636
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1637
#ifdef CONFIG_PREEMPT
1638
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1639
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1640
#endif
N
Nick Piggin 已提交
1641
	put_cpu();
L
Linus Torvalds 已提交
1642 1643 1644 1645 1646 1647 1648 1649 1650
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1651
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1652 1653
{
	unsigned long flags;
I
Ingo Molnar 已提交
1654 1655
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1656 1657

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1658
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1659
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1660
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1661 1662 1663

	p->prio = effective_prio(p);

1664 1665 1666 1667 1668
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

1669 1670
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1671
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1672 1673
	} else {
		/*
I
Ingo Molnar 已提交
1674 1675
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1676
		 */
1677
		p->sched_class->task_new(rq, p);
1678
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1679
	}
I
Ingo Molnar 已提交
1680 1681
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1682 1683
}

1684 1685 1686
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1687 1688
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1689 1690 1691 1692 1693 1694 1695 1696 1697
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1698
 * @notifier: notifier struct to unregister
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1742 1743 1744
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1745
 * @prev: the current task that is being switched out
1746 1747 1748 1749 1750 1751 1752 1753 1754
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1755 1756 1757
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1758
{
1759
	fire_sched_out_preempt_notifiers(prev, next);
1760 1761 1762 1763
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1764 1765
/**
 * finish_task_switch - clean up after a task-switch
1766
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1767 1768
 * @prev: the thread we just switched away from.
 *
1769 1770 1771 1772
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
1779
static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1780 1781 1782
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1783
	long prev_state;
L
Linus Torvalds 已提交
1784 1785 1786 1787 1788

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1789
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1790 1791
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1792
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1793 1794 1795 1796 1797
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1798
	prev_state = prev->state;
1799 1800
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1801
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1802 1803
	if (mm)
		mmdrop(mm);
1804
	if (unlikely(prev_state == TASK_DEAD)) {
1805 1806 1807
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1808
		 */
1809
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1810
		put_task_struct(prev);
1811
	}
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1818
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1819 1820
	__releases(rq->lock)
{
1821 1822
	struct rq *rq = this_rq();

1823 1824 1825 1826 1827
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1828 1829 1830 1831 1832 1833 1834 1835
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1836
static inline void
1837
context_switch(struct rq *rq, struct task_struct *prev,
1838
	       struct task_struct *next)
L
Linus Torvalds 已提交
1839
{
I
Ingo Molnar 已提交
1840
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1841

1842
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1843 1844
	mm = next->mm;
	oldmm = prev->active_mm;
1845 1846 1847 1848 1849 1850 1851
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1852
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1859
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1860 1861 1862
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1863 1864 1865 1866 1867 1868 1869
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1870
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1871
#endif
L
Linus Torvalds 已提交
1872 1873 1874 1875

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1876 1877 1878 1879 1880 1881 1882
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1906
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1921 1922
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1923

1924
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1934
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1955
/*
I
Ingo Molnar 已提交
1956 1957
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1958
 */
I
Ingo Molnar 已提交
1959
static void update_cpu_load(struct rq *this_rq)
1960
{
1961
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1974 1975 1976 1977 1978 1979 1980
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1981 1982
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1983 1984
}

I
Ingo Molnar 已提交
1985 1986
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1993
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1994 1995 1996
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
1997
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
1998 1999 2000 2001
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2002
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2003 2004 2005 2006 2007 2008 2009
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2010 2011
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2020
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2034
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2035 2036 2037 2038
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2039 2040 2041 2042 2043
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2044
	if (unlikely(!spin_trylock(&busiest->lock))) {
2045
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2060
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2061
{
2062
	struct migration_req req;
L
Linus Torvalds 已提交
2063
	unsigned long flags;
2064
	struct rq *rq;
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2075

L
Linus Torvalds 已提交
2076 2077 2078 2079 2080
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2081

L
Linus Torvalds 已提交
2082 2083 2084 2085 2086 2087 2088
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2089 2090
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2091 2092 2093 2094
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2095
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2096
	put_cpu();
N
Nick Piggin 已提交
2097 2098
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2105 2106
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2107
{
2108
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2109
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2110
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2111 2112 2113 2114
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2115
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2121
static
2122
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2123
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2124
		     int *all_pinned)
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2134 2135 2136 2137
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2138 2139 2140 2141

	return 1;
}

I
Ingo Molnar 已提交
2142
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2143
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2144
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2145
		      int *all_pinned, unsigned long *load_moved,
2146
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2147
{
I
Ingo Molnar 已提交
2148 2149 2150
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2151

2152
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2153 2154
		goto out;

2155 2156
	pinned = 1;

L
Linus Torvalds 已提交
2157
	/*
I
Ingo Molnar 已提交
2158
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2159
	 */
I
Ingo Molnar 已提交
2160 2161 2162
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2163
		goto out;
2164 2165 2166 2167 2168
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2169 2170
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2171
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2172 2173 2174
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2175 2176
	}

I
Ingo Molnar 已提交
2177
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2178
	pulled++;
I
Ingo Molnar 已提交
2179
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2180

2181 2182 2183 2184 2185
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2186 2187
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2188 2189
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2190 2191 2192 2193 2194 2195 2196 2197
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2198 2199 2200

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2201
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2202 2203 2204
	return pulled;
}

I
Ingo Molnar 已提交
2205
/*
P
Peter Williams 已提交
2206 2207 2208
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2209 2210 2211 2212
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2213
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2214 2215 2216 2217
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
	struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2218
	unsigned long total_load_moved = 0;
2219
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2220 2221

	do {
P
Peter Williams 已提交
2222 2223 2224
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2225
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2226
		class = class->next;
P
Peter Williams 已提交
2227
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2228

P
Peter Williams 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct sched_class *class;
2243
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2244 2245 2246

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2247 2248
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2249 2250 2251
			return 1;

	return 0;
I
Ingo Molnar 已提交
2252 2253
}

L
Linus Torvalds 已提交
2254 2255
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2256 2257
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2258 2259 2260
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2261 2262
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2263 2264 2265
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2266
	unsigned long max_pull;
2267 2268
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2269
	int load_idx;
2270 2271 2272 2273 2274 2275
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2276 2277

	max_load = this_load = total_load = total_pwr = 0;
2278 2279
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2280
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2281
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2282
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2283 2284 2285
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2286 2287

	do {
2288
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2289 2290
		int local_group;
		int i;
2291
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2292
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2293 2294 2295

		local_group = cpu_isset(this_cpu, group->cpumask);

2296 2297 2298
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2299
		/* Tally up the load of all CPUs in the group */
2300
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2301 2302

		for_each_cpu_mask(i, group->cpumask) {
2303 2304 2305 2306 2307 2308
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2309

2310
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2311 2312
				*sd_idle = 0;

L
Linus Torvalds 已提交
2313
			/* Bias balancing toward cpus of our domain */
2314 2315 2316 2317 2318 2319
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2320
				load = target_load(i, load_idx);
2321
			} else
N
Nick Piggin 已提交
2322
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2323 2324

			avg_load += load;
2325
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2326
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2327 2328
		}

2329 2330 2331
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2332 2333
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2334
		 */
2335 2336
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2337 2338 2339 2340
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2341
		total_load += avg_load;
2342
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2343 2344

		/* Adjust by relative CPU power of the group */
2345 2346
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2347

2348
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2349

L
Linus Torvalds 已提交
2350 2351 2352
		if (local_group) {
			this_load = avg_load;
			this = group;
2353 2354 2355
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2356
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2357 2358
			max_load = avg_load;
			busiest = group;
2359 2360
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2361
		}
2362 2363 2364 2365 2366 2367

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2368 2369 2370
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2371 2372 2373 2374 2375 2376 2377 2378 2379

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2380
		/*
2381 2382
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2383 2384
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2385
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2386
			goto group_next;
2387

I
Ingo Molnar 已提交
2388
		/*
2389
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2390 2391 2392 2393 2394
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2395 2396
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2397 2398
			group_min = group;
			min_nr_running = sum_nr_running;
2399 2400
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2401
		}
2402

I
Ingo Molnar 已提交
2403
		/*
2404
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2416
		}
2417 2418
group_next:
#endif
L
Linus Torvalds 已提交
2419 2420 2421
		group = group->next;
	} while (group != sd->groups);

2422
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427 2428 2429 2430
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2431
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2455 2456

	/* Don't want to pull so many tasks that a group would go idle */
2457
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2458

L
Linus Torvalds 已提交
2459
	/* How much load to actually move to equalise the imbalance */
2460 2461
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2462 2463
			/ SCHED_LOAD_SCALE;

2464 2465 2466 2467 2468 2469
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2470
	if (*imbalance < busiest_load_per_task) {
2471
		unsigned long tmp, pwr_now, pwr_move;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2483

I
Ingo Molnar 已提交
2484 2485
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2486
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2496 2497 2498 2499
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2500 2501 2502
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2503 2504
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2505
		if (max_load > tmp)
2506
			pwr_move += busiest->__cpu_power *
2507
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2508 2509

		/* Amount of load we'd add */
2510
		if (max_load * busiest->__cpu_power <
2511
				busiest_load_per_task * SCHED_LOAD_SCALE)
2512 2513
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2514
		else
2515 2516 2517 2518
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2519 2520 2521
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2522 2523
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528
	}

	return busiest;

out_balanced:
2529
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2530
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2531
		goto ret;
L
Linus Torvalds 已提交
2532

2533 2534 2535 2536 2537
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2538
ret:
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2546
static struct rq *
I
Ingo Molnar 已提交
2547
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2548
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2549
{
2550
	struct rq *busiest = NULL, *rq;
2551
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2552 2553 2554
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2555
		unsigned long wl;
2556 2557 2558 2559

		if (!cpu_isset(i, *cpus))
			continue;

2560
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2561
		wl = weighted_cpuload(i);
2562

I
Ingo Molnar 已提交
2563
		if (rq->nr_running == 1 && wl > imbalance)
2564
			continue;
L
Linus Torvalds 已提交
2565

I
Ingo Molnar 已提交
2566 2567
		if (wl > max_load) {
			max_load = wl;
2568
			busiest = rq;
L
Linus Torvalds 已提交
2569 2570 2571 2572 2573 2574
		}
	}

	return busiest;
}

2575 2576 2577 2578 2579 2580
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2581 2582 2583 2584
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2585
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2586
			struct sched_domain *sd, enum cpu_idle_type idle,
2587
			int *balance)
L
Linus Torvalds 已提交
2588
{
P
Peter Williams 已提交
2589
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2590 2591
	struct sched_group *group;
	unsigned long imbalance;
2592
	struct rq *busiest;
2593
	cpumask_t cpus = CPU_MASK_ALL;
2594
	unsigned long flags;
N
Nick Piggin 已提交
2595

2596 2597 2598
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2599
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2600
	 * portraying it as CPU_NOT_IDLE.
2601
	 */
I
Ingo Molnar 已提交
2602
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2603
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2604
		sd_idle = 1;
L
Linus Torvalds 已提交
2605 2606 2607

	schedstat_inc(sd, lb_cnt[idle]);

2608 2609
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2610 2611
				   &cpus, balance);

2612
	if (*balance == 0)
2613 2614
		goto out_balanced;

L
Linus Torvalds 已提交
2615 2616 2617 2618 2619
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2620
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2626
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2627 2628 2629

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2630
	ld_moved = 0;
L
Linus Torvalds 已提交
2631 2632 2633 2634
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2635
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2636 2637
		 * correctly treated as an imbalance.
		 */
2638
		local_irq_save(flags);
N
Nick Piggin 已提交
2639
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2640
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2641
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2642
		double_rq_unlock(this_rq, busiest);
2643
		local_irq_restore(flags);
2644

2645 2646 2647
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2648
		if (ld_moved && this_cpu != smp_processor_id())
2649 2650
			resched_cpu(this_cpu);

2651
		/* All tasks on this runqueue were pinned by CPU affinity */
2652 2653 2654 2655
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2656
			goto out_balanced;
2657
		}
L
Linus Torvalds 已提交
2658
	}
2659

P
Peter Williams 已提交
2660
	if (!ld_moved) {
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2666
			spin_lock_irqsave(&busiest->lock, flags);
2667 2668 2669 2670 2671

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2672
				spin_unlock_irqrestore(&busiest->lock, flags);
2673 2674 2675 2676
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2677 2678 2679
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2680
				active_balance = 1;
L
Linus Torvalds 已提交
2681
			}
2682
			spin_unlock_irqrestore(&busiest->lock, flags);
2683
			if (active_balance)
L
Linus Torvalds 已提交
2684 2685 2686 2687 2688 2689
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2690
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2691
		}
2692
	} else
L
Linus Torvalds 已提交
2693 2694
		sd->nr_balance_failed = 0;

2695
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2696 2697
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2698 2699 2700 2701 2702 2703 2704 2705 2706
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2707 2708
	}

P
Peter Williams 已提交
2709
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2710
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2711
		return -1;
P
Peter Williams 已提交
2712
	return ld_moved;
L
Linus Torvalds 已提交
2713 2714 2715 2716

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2717
	sd->nr_balance_failed = 0;
2718 2719

out_one_pinned:
L
Linus Torvalds 已提交
2720
	/* tune up the balancing interval */
2721 2722
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2723 2724
		sd->balance_interval *= 2;

2725
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2726
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2727
		return -1;
L
Linus Torvalds 已提交
2728 2729 2730 2731 2732 2733 2734
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2735
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2736 2737
 * this_rq is locked.
 */
2738
static int
2739
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2740 2741
{
	struct sched_group *group;
2742
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2743
	unsigned long imbalance;
P
Peter Williams 已提交
2744
	int ld_moved = 0;
N
Nick Piggin 已提交
2745
	int sd_idle = 0;
2746
	int all_pinned = 0;
2747
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2748

2749 2750 2751 2752
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2753
	 * portraying it as CPU_NOT_IDLE.
2754 2755 2756
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2757
		sd_idle = 1;
L
Linus Torvalds 已提交
2758

I
Ingo Molnar 已提交
2759
	schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2760
redo:
I
Ingo Molnar 已提交
2761
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2762
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2763
	if (!group) {
I
Ingo Molnar 已提交
2764
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2765
		goto out_balanced;
L
Linus Torvalds 已提交
2766 2767
	}

I
Ingo Molnar 已提交
2768
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2769
				&cpus);
N
Nick Piggin 已提交
2770
	if (!busiest) {
I
Ingo Molnar 已提交
2771
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2772
		goto out_balanced;
L
Linus Torvalds 已提交
2773 2774
	}

N
Nick Piggin 已提交
2775 2776
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2777
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2778

P
Peter Williams 已提交
2779
	ld_moved = 0;
2780 2781 2782
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2783 2784
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2785
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2786 2787
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2788
		spin_unlock(&busiest->lock);
2789

2790
		if (unlikely(all_pinned)) {
2791 2792 2793 2794
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2795 2796
	}

P
Peter Williams 已提交
2797
	if (!ld_moved) {
I
Ingo Molnar 已提交
2798
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2799 2800
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2801 2802
			return -1;
	} else
2803
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2804

P
Peter Williams 已提交
2805
	return ld_moved;
2806 2807

out_balanced:
I
Ingo Molnar 已提交
2808
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2809
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2810
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2811
		return -1;
2812
	sd->nr_balance_failed = 0;
2813

2814
	return 0;
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2821
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2822 2823
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2824 2825
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2826 2827

	for_each_domain(this_cpu, sd) {
2828 2829 2830 2831 2832 2833
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2834
			/* If we've pulled tasks over stop searching: */
2835
			pulled_task = load_balance_newidle(this_cpu,
2836 2837 2838 2839 2840 2841 2842
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2843
	}
I
Ingo Molnar 已提交
2844
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2845 2846 2847 2848 2849
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2850
	}
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2861
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2862
{
2863
	int target_cpu = busiest_rq->push_cpu;
2864 2865
	struct sched_domain *sd;
	struct rq *target_rq;
2866

2867
	/* Is there any task to move? */
2868 2869 2870 2871
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2872 2873

	/*
2874 2875 2876
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2877
	 */
2878
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2879

2880 2881
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2882 2883
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2884 2885

	/* Search for an sd spanning us and the target CPU. */
2886
	for_each_domain(target_cpu, sd) {
2887
		if ((sd->flags & SD_LOAD_BALANCE) &&
2888
		    cpu_isset(busiest_cpu, sd->span))
2889
				break;
2890
	}
2891

2892 2893
	if (likely(sd)) {
		schedstat_inc(sd, alb_cnt);
2894

P
Peter Williams 已提交
2895 2896
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2897 2898 2899 2900
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2901
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2902 2903
}

2904 2905 2906 2907 2908 2909 2910 2911 2912
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2913
/*
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2924
 *
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2981 2982 2983 2984 2985
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
I
Ingo Molnar 已提交
2986
static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2987
{
2988 2989
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2990 2991
	unsigned long interval;
	struct sched_domain *sd;
2992
	/* Earliest time when we have to do rebalance again */
2993
	unsigned long next_balance = jiffies + 60*HZ;
2994
	int update_next_balance = 0;
L
Linus Torvalds 已提交
2995

2996
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
2997 2998 2999 3000
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3001
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3002 3003 3004 3005 3006 3007
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3008 3009 3010
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3011

3012 3013 3014 3015 3016
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3017
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3018
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3019 3020
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3021 3022 3023
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3024
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3025
			}
3026
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3027
		}
3028 3029 3030
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3031
		if (time_after(next_balance, sd->last_balance + interval)) {
3032
			next_balance = sd->last_balance + interval;
3033 3034
			update_next_balance = 1;
		}
3035 3036 3037 3038 3039 3040 3041 3042

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3043
	}
3044 3045 3046 3047 3048 3049 3050 3051

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3052 3053 3054 3055 3056 3057 3058 3059 3060
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3061 3062 3063 3064
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3065

I
Ingo Molnar 已提交
3066
	rebalance_domains(this_cpu, idle);
3067 3068 3069 3070 3071 3072 3073

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3074 3075
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3076 3077 3078 3079
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3080
		cpu_clear(this_cpu, cpus);
3081 3082 3083 3084 3085 3086 3087 3088 3089
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3090
			rebalance_domains(balance_cpu, CPU_IDLE);
3091 3092

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3093 3094
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3107
static inline void trigger_load_balance(struct rq *rq, int cpu)
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3159
}
I
Ingo Molnar 已提交
3160 3161 3162

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3163 3164 3165
/*
 * on UP we do not need to balance between CPUs:
 */
3166
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3167 3168
{
}
I
Ingo Molnar 已提交
3169 3170 3171 3172 3173 3174

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3175
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3176 3177 3178 3179 3180 3181
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3182 3183 3184 3185 3186 3187 3188
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3189 3190
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3191
 */
3192
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3193 3194
{
	unsigned long flags;
3195 3196
	u64 ns, delta_exec;
	struct rq *rq;
3197

3198 3199 3200
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3201 3202
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3203 3204 3205 3206
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3207

L
Linus Torvalds 已提交
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3242
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3272
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3295
	struct task_struct *curr = rq->curr;
3296
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3297 3298

	spin_lock(&rq->lock);
3299
	__update_rq_clock(rq);
3300 3301 3302 3303 3304 3305
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3306
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3307 3308 3309
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3310

3311
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3312 3313
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3314
#endif
L
Linus Torvalds 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3324 3325
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3326 3327 3328 3329
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3330 3331
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336 3337 3338 3339
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3340 3341
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3342 3343 3344
	/*
	 * Is the spinlock portion underflowing?
	 */
3345 3346 3347 3348
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3349 3350 3351 3352 3353 3354 3355
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3356
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3357
 */
I
Ingo Molnar 已提交
3358
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3359
{
I
Ingo Molnar 已提交
3360 3361 3362 3363 3364 3365 3366
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3367

I
Ingo Molnar 已提交
3368 3369 3370 3371 3372
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3373 3374 3375 3376 3377
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3378 3379 3380
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3381 3382
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

I
Ingo Molnar 已提交
3383 3384 3385 3386 3387 3388 3389
	schedstat_inc(this_rq(), sched_cnt);
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3390
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3391 3392 3393
{
	struct sched_class *class;
	struct task_struct *p;
L
Linus Torvalds 已提交
3394 3395

	/*
I
Ingo Molnar 已提交
3396 3397
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3398
	 */
I
Ingo Molnar 已提交
3399
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3400
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3401 3402
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3403 3404
	}

I
Ingo Molnar 已提交
3405 3406
	class = sched_class_highest;
	for ( ; ; ) {
3407
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3417

I
Ingo Molnar 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3440 3441

	spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
3442
	clear_tsk_need_resched(prev);
I
Ingo Molnar 已提交
3443
	__update_rq_clock(rq);
L
Linus Torvalds 已提交
3444 3445 3446

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3447
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3448
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3449
		} else {
3450
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3451
		}
I
Ingo Molnar 已提交
3452
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3453 3454
	}

I
Ingo Molnar 已提交
3455
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3456 3457
		idle_balance(cpu, rq);

3458
	prev->sched_class->put_prev_task(rq, prev);
3459
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3460 3461

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3462

L
Linus Torvalds 已提交
3463 3464 3465 3466 3467
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3468
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3469 3470 3471
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3472 3473 3474
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3475
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3476
	}
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481 3482 3483 3484
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3485
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3500
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3528
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3540
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3570 3571
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3572
{
3573
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3589
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3590

3591
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3592 3593
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3594
		if (curr->func(curr, mode, sync, key) &&
3595
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3605
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3606 3607
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3608
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3627
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3639 3640
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3684

L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3803 3804 3805 3806 3807
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3808
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3809
}
L
Linus Torvalds 已提交
3810

I
Ingo Molnar 已提交
3811 3812 3813 3814 3815 3816 3817
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3818

I
Ingo Molnar 已提交
3819
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3820
{
I
Ingo Molnar 已提交
3821 3822 3823 3824
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3825 3826 3827

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3828
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3829
	schedule();
I
Ingo Molnar 已提交
3830
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3831 3832 3833
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3834
long __sched
I
Ingo Molnar 已提交
3835
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3836
{
I
Ingo Molnar 已提交
3837 3838 3839 3840
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3841 3842 3843

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3844
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3845
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3846
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3852
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3853
{
I
Ingo Molnar 已提交
3854 3855 3856 3857
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3858 3859 3860

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3861
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3862
	schedule();
I
Ingo Molnar 已提交
3863
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3864 3865 3866
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3867
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3868
{
I
Ingo Molnar 已提交
3869 3870 3871 3872
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3873 3874 3875

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3876
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3877
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3878
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3879 3880 3881 3882 3883

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3896
void rt_mutex_setprio(struct task_struct *p, int prio)
3897 3898
{
	unsigned long flags;
I
Ingo Molnar 已提交
3899
	int oldprio, on_rq;
3900
	struct rq *rq;
3901 3902 3903 3904

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3905
	update_rq_clock(rq);
3906

3907
	oldprio = p->prio;
I
Ingo Molnar 已提交
3908 3909
	on_rq = p->se.on_rq;
	if (on_rq)
3910
		dequeue_task(rq, p, 0);
I
Ingo Molnar 已提交
3911 3912 3913 3914 3915 3916

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3917 3918
	p->prio = prio;

I
Ingo Molnar 已提交
3919
	if (on_rq) {
3920
		enqueue_task(rq, p, 0);
3921 3922
		/*
		 * Reschedule if we are currently running on this runqueue and
3923 3924
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3925
		 */
3926 3927 3928
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3929 3930 3931
		} else {
			check_preempt_curr(rq, p);
		}
3932 3933 3934 3935 3936 3937
	}
	task_rq_unlock(rq, &flags);
}

#endif

3938
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3939
{
I
Ingo Molnar 已提交
3940
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3941
	unsigned long flags;
3942
	struct rq *rq;
L
Linus Torvalds 已提交
3943 3944 3945 3946 3947 3948 3949 3950

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3951
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3952 3953 3954 3955
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3956
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3957
	 */
3958
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3959 3960 3961
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3962 3963
	on_rq = p->se.on_rq;
	if (on_rq) {
3964
		dequeue_task(rq, p, 0);
3965
		dec_load(rq, p);
3966
	}
L
Linus Torvalds 已提交
3967 3968

	p->static_prio = NICE_TO_PRIO(nice);
3969
	set_load_weight(p);
3970 3971 3972
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3973

I
Ingo Molnar 已提交
3974
	if (on_rq) {
3975
		enqueue_task(rq, p, 0);
3976
		inc_load(rq, p);
L
Linus Torvalds 已提交
3977
		/*
3978 3979
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3980
		 */
3981
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3982 3983 3984 3985 3986 3987 3988
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3989 3990 3991 3992 3993
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3994
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3995
{
3996 3997
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
3998

M
Matt Mackall 已提交
3999 4000 4001 4002
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4014
	long nice, retval;
L
Linus Torvalds 已提交
4015 4016 4017 4018 4019 4020

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4021 4022
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4023 4024 4025 4026 4027 4028 4029 4030 4031
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4032 4033 4034
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4053
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4062
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4081
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
4090
static inline struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4096 4097
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4098
{
I
Ingo Molnar 已提交
4099
	BUG_ON(p->se.on_rq);
4100

L
Linus Torvalds 已提交
4101
	p->policy = policy;
I
Ingo Molnar 已提交
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4114
	p->rt_priority = prio;
4115 4116 4117
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4118
	set_load_weight(p);
L
Linus Torvalds 已提交
4119 4120 4121
}

/**
4122
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4123 4124 4125
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4126
 *
4127
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4128
 */
I
Ingo Molnar 已提交
4129 4130
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4131
{
I
Ingo Molnar 已提交
4132
	int retval, oldprio, oldpolicy = -1, on_rq;
L
Linus Torvalds 已提交
4133
	unsigned long flags;
4134
	struct rq *rq;
L
Linus Torvalds 已提交
4135

4136 4137
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4143 4144
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4145
		return -EINVAL;
L
Linus Torvalds 已提交
4146 4147
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4148 4149
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4150 4151
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4152
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4153
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4154
		return -EINVAL;
4155
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4156 4157
		return -EINVAL;

4158 4159 4160 4161
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4162
		if (rt_policy(policy)) {
4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4179 4180 4181 4182 4183 4184
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4185

4186 4187 4188 4189 4190
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4191 4192 4193 4194

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4195 4196 4197 4198 4199
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4200 4201 4202 4203
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4204
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4205 4206 4207
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4208 4209
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4210 4211
		goto recheck;
	}
I
Ingo Molnar 已提交
4212
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4213
	on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
4214
	if (on_rq)
4215
		deactivate_task(rq, p, 0);
L
Linus Torvalds 已提交
4216
	oldprio = p->prio;
I
Ingo Molnar 已提交
4217 4218 4219
	__setscheduler(rq, p, policy, param->sched_priority);
	if (on_rq) {
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4220 4221
		/*
		 * Reschedule if we are currently running on this runqueue and
4222 4223
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4224
		 */
4225 4226 4227
		if (task_running(rq, p)) {
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4228 4229 4230
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4231
	}
4232 4233 4234
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4235 4236
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4237 4238 4239 4240
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4241 4242
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4243 4244 4245
{
	struct sched_param lparam;
	struct task_struct *p;
4246
	int retval;
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4252 4253 4254

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4255
	p = find_process_by_pid(pid);
4256 4257 4258
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4259

L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4272 4273 4274 4275
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4295
	struct task_struct *p;
L
Linus Torvalds 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4323
	struct task_struct *p;
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4358 4359
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4360

4361
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4367
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4384 4385 4386 4387
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4388 4389 4390 4391 4392 4393
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4394
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4435
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4436 4437 4438
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4439
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4440 4441
EXPORT_SYMBOL(cpu_online_map);

4442
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4443
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4444 4445 4446 4447
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4448
	struct task_struct *p;
L
Linus Torvalds 已提交
4449 4450
	int retval;

4451
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4459 4460 4461 4462
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4463
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4464 4465 4466

out_unlock:
	read_unlock(&tasklist_lock);
4467
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4468

4469
	return retval;
L
Linus Torvalds 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4500 4501
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4502 4503 4504
 */
asmlinkage long sys_sched_yield(void)
{
4505
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4506 4507

	schedstat_inc(rq, yld_cnt);
4508
	current->sched_class->yield_task(rq, current);
L
Linus Torvalds 已提交
4509 4510 4511 4512 4513 4514

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4515
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520 4521 4522 4523
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4524
static void __cond_resched(void)
L
Linus Torvalds 已提交
4525
{
4526 4527 4528
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4529 4530 4531 4532 4533
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4534 4535 4536 4537 4538 4539 4540 4541 4542
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4543 4544
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4560
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4561
{
J
Jan Kara 已提交
4562 4563
	int ret = 0;

L
Linus Torvalds 已提交
4564 4565 4566
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4567
		ret = 1;
L
Linus Torvalds 已提交
4568 4569
		spin_lock(lock);
	}
4570
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4571
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4572 4573 4574
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4575
		ret = 1;
L
Linus Torvalds 已提交
4576 4577
		spin_lock(lock);
	}
J
Jan Kara 已提交
4578
	return ret;
L
Linus Torvalds 已提交
4579 4580 4581 4582 4583 4584 4585
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4586
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4587
		local_bh_enable();
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4599
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4618
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4619

4620
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4621 4622 4623
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4624
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4630
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4631 4632
	long ret;

4633
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4634 4635 4636
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4637
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4658
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4659
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4683
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4684
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4701
	struct task_struct *p;
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4718
	jiffies_to_timespec(p->policy == SCHED_FIFO ?
I
Ingo Molnar 已提交
4719
				0 : static_prio_timeslice(p->static_prio), &t);
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725 4726 4727 4728
	read_unlock(&tasklist_lock);
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4729
static const char stat_nam[] = "RSDTtZX";
4730 4731

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4732 4733
{
	unsigned long free = 0;
4734
	unsigned state;
L
Linus Torvalds 已提交
4735 4736

	state = p->state ? __ffs(p->state) + 1 : 0;
4737 4738
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4739
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4740
	if (state == TASK_RUNNING)
4741
		printk(" running  ");
L
Linus Torvalds 已提交
4742
	else
4743
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4744 4745
#else
	if (state == TASK_RUNNING)
4746
		printk("  running task    ");
L
Linus Torvalds 已提交
4747 4748 4749 4750 4751
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4752
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4753 4754
		while (!*n)
			n++;
4755
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4756 4757
	}
#endif
4758
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4759 4760 4761 4762 4763

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4764
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4765
{
4766
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4767

4768 4769 4770
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4771
#else
4772 4773
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778 4779 4780 4781
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4782
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4783
			show_task(p);
L
Linus Torvalds 已提交
4784 4785
	} while_each_thread(g, p);

4786 4787
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4788 4789 4790
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4791
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4792 4793 4794 4795 4796
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4797 4798
}

I
Ingo Molnar 已提交
4799 4800
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4801
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4802 4803
}

4804 4805 4806 4807 4808 4809 4810 4811
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4812
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4813
{
4814
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4815 4816
	unsigned long flags;

I
Ingo Molnar 已提交
4817 4818 4819
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4820
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4821
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4822
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4823 4824 4825

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4826 4827 4828
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4829 4830 4831 4832
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4833
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4834
#else
A
Al Viro 已提交
4835
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4836
#endif
I
Ingo Molnar 已提交
4837 4838 4839 4840
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4856
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4878
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4879
{
4880
	struct migration_req req;
L
Linus Torvalds 已提交
4881
	unsigned long flags;
4882
	struct rq *rq;
4883
	int ret = 0;
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4906

L
Linus Torvalds 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4919 4920
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4921
 */
4922
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4923
{
4924
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4925
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4926 4927

	if (unlikely(cpu_is_offline(dest_cpu)))
4928
		return ret;
L
Linus Torvalds 已提交
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4941
	on_rq = p->se.on_rq;
4942
	if (on_rq)
4943
		deactivate_task(rq_src, p, 0);
4944

L
Linus Torvalds 已提交
4945
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4946 4947 4948
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4949
	}
4950
	ret = 1;
L
Linus Torvalds 已提交
4951 4952
out:
	double_rq_unlock(rq_src, rq_dest);
4953
	return ret;
L
Linus Torvalds 已提交
4954 4955 4956 4957 4958 4959 4960
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
4961
static int migration_thread(void *data)
L
Linus Torvalds 已提交
4962 4963
{
	int cpu = (long)data;
4964
	struct rq *rq;
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969 4970

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
4971
		struct migration_req *req;
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
4994
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
4995 4996
		list_del_init(head->next);

N
Nick Piggin 已提交
4997 4998 4999
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5018 5019 5020 5021
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5022
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5023
{
5024
	unsigned long flags;
L
Linus Torvalds 已提交
5025
	cpumask_t mask;
5026 5027
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5028

5029
restart:
L
Linus Torvalds 已提交
5030 5031
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5032
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5033 5034 5035 5036
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5037
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5038 5039 5040

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5041 5042 5043
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5044
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5045 5046 5047 5048 5049 5050

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5051
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5052 5053
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5054
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5055
	}
5056
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5057
		goto restart;
L
Linus Torvalds 已提交
5058 5059 5060 5061 5062 5063 5064 5065 5066
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5067
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5068
{
5069
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5083
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5084 5085 5086

	write_lock_irq(&tasklist_lock);

5087 5088
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5089 5090
			continue;

5091 5092 5093
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5094 5095 5096 5097

	write_unlock_irq(&tasklist_lock);
}

I
Ingo Molnar 已提交
5098 5099
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5100
 * It does so by boosting its priority to highest possible and adding it to
5101
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5102 5103 5104
 */
void sched_idle_next(void)
{
5105
	int this_cpu = smp_processor_id();
5106
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5107 5108 5109 5110
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5111
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5112

5113 5114 5115
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5116 5117 5118
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5119
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5120 5121

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5122
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5123 5124 5125 5126

	spin_unlock_irqrestore(&rq->lock, flags);
}

5127 5128
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5142
/* called under rq->lock with disabled interrupts */
5143
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5144
{
5145
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5146 5147

	/* Must be exiting, otherwise would be on tasklist. */
5148
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5149 5150

	/* Cannot have done final schedule yet: would have vanished. */
5151
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5152

5153
	get_task_struct(p);
L
Linus Torvalds 已提交
5154 5155 5156 5157 5158

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5159
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5160
	 */
5161
	spin_unlock(&rq->lock);
5162
	move_task_off_dead_cpu(dead_cpu, p);
5163
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5164

5165
	put_task_struct(p);
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5171
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5172
	struct task_struct *next;
5173

I
Ingo Molnar 已提交
5174 5175 5176
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5177
		update_rq_clock(rq);
5178
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5179 5180 5181
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5182

L
Linus Torvalds 已提交
5183 5184 5185 5186
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5187 5188 5189
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5190 5191
	{
		.procname	= "sched_domain",
5192
		.mode		= 0555,
5193
	},
5194 5195 5196 5197
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5198
	{
5199
		.ctl_name	= CTL_KERN,
5200
		.procname	= "kernel",
5201
		.mode		= 0555,
5202 5203
		.child		= sd_ctl_dir,
	},
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5219
set_table_entry(struct ctl_table *entry,
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5235
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5236
		sizeof(long), 0644, proc_doulongvec_minmax);
5237
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5238
		sizeof(long), 0644, proc_doulongvec_minmax);
5239
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5240
		sizeof(int), 0644, proc_dointvec_minmax);
5241
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5242
		sizeof(int), 0644, proc_dointvec_minmax);
5243
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5244
		sizeof(int), 0644, proc_dointvec_minmax);
5245
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5246
		sizeof(int), 0644, proc_dointvec_minmax);
5247
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5248
		sizeof(int), 0644, proc_dointvec_minmax);
5249
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5250
		sizeof(int), 0644, proc_dointvec_minmax);
5251
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5252
		sizeof(int), 0644, proc_dointvec_minmax);
5253
	set_table_entry(&table[10], "cache_nice_tries",
5254 5255
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5256
	set_table_entry(&table[12], "flags", &sd->flags,
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5277
		entry->mode = 0555;
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5297
		entry->mode = 0555;
5298 5299 5300 5301 5302 5303 5304 5305 5306 5307
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5308 5309 5310 5311
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5312 5313
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5314 5315
{
	struct task_struct *p;
5316
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5317
	unsigned long flags;
5318
	struct rq *rq;
L
Linus Torvalds 已提交
5319 5320

	switch (action) {
5321 5322 5323 5324
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5325
	case CPU_UP_PREPARE:
5326
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5327
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5333
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5334 5335 5336
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5337

L
Linus Torvalds 已提交
5338
	case CPU_ONLINE:
5339
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5340 5341 5342
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5343

L
Linus Torvalds 已提交
5344 5345
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5346
	case CPU_UP_CANCELED_FROZEN:
5347 5348
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5349
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5350 5351
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5352 5353 5354
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5355

L
Linus Torvalds 已提交
5356
	case CPU_DEAD:
5357
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5358 5359 5360 5361 5362 5363
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5364
		update_rq_clock(rq);
5365
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5366
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5367 5368
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373 5374
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5375
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5376 5377 5378
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5379 5380
			struct migration_req *req;

L
Linus Torvalds 已提交
5381
			req = list_entry(rq->migration_queue.next,
5382
					 struct migration_req, list);
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387 5388
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5389 5390 5391
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397 5398
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5399
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5400 5401 5402 5403 5404 5405 5406
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5407
	int err;
5408 5409

	/* Start one for the boot CPU: */
5410 5411
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5412 5413
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5414

L
Linus Torvalds 已提交
5415 5416 5417 5418 5419
	return 0;
}
#endif

#ifdef CONFIG_SMP
5420 5421 5422 5423 5424

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5425
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5426 5427 5428 5429 5430
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5431 5432 5433 5434 5435
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5455 5456
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5463 5464
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5465
		if (!cpu_isset(cpu, group->cpumask))
5466 5467
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5480
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5481
				printk("\n");
5482 5483
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5506 5507
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5508 5509 5510

		level++;
		sd = sd->parent;
5511 5512
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5513

5514 5515 5516
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5517 5518 5519 5520

	} while (sd);
}
#else
5521
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5522 5523
#endif

5524
static int sd_degenerate(struct sched_domain *sd)
5525 5526 5527 5528 5529 5530 5531 5532
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5533 5534 5535
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5549 5550
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5569 5570 5571
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5572 5573 5574 5575 5576 5577 5578
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5579 5580 5581 5582
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5583
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5584
{
5585
	struct rq *rq = cpu_rq(cpu);
5586 5587 5588 5589 5590 5591 5592
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5593
		if (sd_parent_degenerate(tmp, parent)) {
5594
			tmp->parent = parent->parent;
5595 5596 5597
			if (parent->parent)
				parent->parent->child = tmp;
		}
5598 5599
	}

5600
	if (sd && sd_degenerate(sd)) {
5601
		sd = sd->parent;
5602 5603 5604
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5605 5606 5607

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5608
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5609 5610 5611
}

/* cpus with isolated domains */
5612
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5630 5631 5632 5633
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5634 5635 5636 5637 5638
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5639
static void
5640 5641 5642
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5643 5644 5645 5646 5647 5648
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5649 5650
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5657
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5658 5659

		for_each_cpu_mask(j, span) {
5660
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5675
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5676

5677
#ifdef CONFIG_NUMA
5678

5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5731 5732
	cpumask_t span, nodemask;
	int i;
5733 5734 5735 5736 5737 5738 5739 5740 5741 5742

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5743

5744 5745 5746 5747 5748 5749 5750 5751
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5752
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5753

5754
/*
5755
 * SMT sched-domains:
5756
 */
L
Linus Torvalds 已提交
5757 5758
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5759
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5760

5761 5762
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5763
{
5764 5765
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5766 5767 5768 5769
	return cpu;
}
#endif

5770 5771 5772
/*
 * multi-core sched-domains:
 */
5773 5774
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5775
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5776 5777 5778
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5779 5780
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5781
{
5782
	int group;
5783 5784
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5785 5786 5787 5788
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5789 5790
}
#elif defined(CONFIG_SCHED_MC)
5791 5792
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5793
{
5794 5795
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5796 5797 5798 5799
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5800
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5801
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5802

5803 5804
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5805
{
5806
	int group;
5807
#ifdef CONFIG_SCHED_MC
5808
	cpumask_t mask = cpu_coregroup_map(cpu);
5809
	cpus_and(mask, mask, *cpu_map);
5810
	group = first_cpu(mask);
5811
#elif defined(CONFIG_SCHED_SMT)
5812 5813
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5814
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5815
#else
5816
	group = cpu;
L
Linus Torvalds 已提交
5817
#endif
5818 5819 5820
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5821 5822 5823 5824
}

#ifdef CONFIG_NUMA
/*
5825 5826 5827
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5828
 */
5829
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5830
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5831

5832
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5833
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5834

5835 5836
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5837
{
5838 5839 5840 5841 5842 5843 5844 5845 5846
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5847
}
5848

5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5869
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5870 5871 5872 5873 5874
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5875 5876
#endif

5877
#ifdef CONFIG_NUMA
5878 5879 5880
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5881
	int cpu, i;
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5912 5913 5914 5915 5916
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5917

5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5944 5945
	sd->groups->__cpu_power = 0;

5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5956
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5957 5958 5959 5960 5961 5962 5963 5964
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
5965
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
5966 5967 5968 5969
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
5970
/*
5971 5972
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
5973
 */
5974
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
5975 5976
{
	int i;
5977 5978
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
5979
	int sd_allnodes = 0;
5980 5981 5982 5983

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
5984
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5985
					   GFP_KERNEL);
5986 5987
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
5988
		return -ENOMEM;
5989 5990 5991
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
5992 5993

	/*
5994
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
5995
	 */
5996
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
5997 5998 5999
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6000
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6001 6002

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6003 6004
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6005 6006 6007
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6008
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6009
			p = sd;
6010
			sd_allnodes = 1;
6011 6012 6013
		} else
			p = NULL;

L
Linus Torvalds 已提交
6014 6015
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6016 6017
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6018 6019
		if (p)
			p->child = sd;
6020
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6021 6022 6023 6024 6025 6026 6027
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6028 6029
		if (p)
			p->child = sd;
6030
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6031

6032 6033 6034 6035 6036 6037 6038
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6039
		p->child = sd;
6040
		cpu_to_core_group(i, cpu_map, &sd->groups);
6041 6042
#endif

L
Linus Torvalds 已提交
6043 6044 6045 6046 6047
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6048
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6049
		sd->parent = p;
6050
		p->child = sd;
6051
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6057
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6058
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6059
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6060 6061 6062
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6063 6064
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6065 6066 6067
	}
#endif

6068 6069 6070 6071 6072 6073 6074
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6075 6076
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6077 6078 6079
	}
#endif

L
Linus Torvalds 已提交
6080 6081 6082 6083
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6084
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6085 6086 6087
		if (cpus_empty(nodemask))
			continue;

6088
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6089 6090 6091 6092
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6093
	if (sd_allnodes)
I
Ingo Molnar 已提交
6094 6095
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6106 6107
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6108
			continue;
6109
		}
6110 6111 6112 6113

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6114
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6115 6116 6117 6118 6119
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6120 6121 6122
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6123

6124 6125 6126
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6127
		sg->__cpu_power = 0;
6128
		sg->cpumask = nodemask;
6129
		sg->next = sg;
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6148 6149
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6150 6151 6152
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6153
				goto error;
6154
			}
6155
			sg->__cpu_power = 0;
6156
			sg->cpumask = tmp;
6157
			sg->next = prev->next;
6158 6159 6160 6161 6162
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6163 6164 6165
#endif

	/* Calculate CPU power for physical packages and nodes */
6166
#ifdef CONFIG_SCHED_SMT
6167
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6168 6169
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6170
		init_sched_groups_power(i, sd);
6171
	}
L
Linus Torvalds 已提交
6172
#endif
6173
#ifdef CONFIG_SCHED_MC
6174
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6175 6176
		struct sched_domain *sd = &per_cpu(core_domains, i);

6177
		init_sched_groups_power(i, sd);
6178 6179
	}
#endif
6180

6181
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6182 6183
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6184
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6185 6186
	}

6187
#ifdef CONFIG_NUMA
6188 6189
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6190

6191 6192
	if (sd_allnodes) {
		struct sched_group *sg;
6193

6194
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6195 6196
		init_numa_sched_groups_power(sg);
	}
6197 6198
#endif

L
Linus Torvalds 已提交
6199
	/* Attach the domains */
6200
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6201 6202 6203
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6204 6205
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6206 6207 6208 6209 6210
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6211 6212 6213

	return 0;

6214
#ifdef CONFIG_NUMA
6215 6216 6217
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6218
#endif
L
Linus Torvalds 已提交
6219
}
6220 6221 6222
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6223
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6224 6225
{
	cpumask_t cpu_default_map;
6226
	int err;
L
Linus Torvalds 已提交
6227

6228 6229 6230 6231 6232 6233 6234
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6235 6236 6237
	err = build_sched_domains(&cpu_default_map);

	return err;
6238 6239 6240
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6241
{
6242
	free_sched_groups(cpu_map);
6243
}
L
Linus Torvalds 已提交
6244

6245 6246 6247 6248
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6249
static void detach_destroy_domains(const cpumask_t *cpu_map)
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6267
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6268 6269
{
	cpumask_t change_map;
6270
	int err = 0;
6271 6272 6273 6274 6275 6276 6277 6278

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6279 6280 6281 6282 6283
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6284 6285
}

6286
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6287
static int arch_reinit_sched_domains(void)
6288 6289 6290
{
	int err;

6291
	mutex_lock(&sched_hotcpu_mutex);
6292 6293
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6294
	mutex_unlock(&sched_hotcpu_mutex);
6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6321 6322
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6323 6324 6325
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6326 6327
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6328 6329 6330 6331 6332 6333 6334
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6335 6336
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6337 6338 6339
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6360 6361
#endif

L
Linus Torvalds 已提交
6362 6363 6364
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6365
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6366 6367 6368 6369 6370 6371 6372
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6373
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6374
	case CPU_DOWN_PREPARE:
6375
	case CPU_DOWN_PREPARE_FROZEN:
6376
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6377 6378 6379
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6380
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6381
	case CPU_DOWN_FAILED:
6382
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6383
	case CPU_ONLINE:
6384
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6385
	case CPU_DEAD:
6386
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6387 6388 6389 6390 6391 6392 6393 6394 6395
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6396
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401 6402

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6403 6404
	cpumask_t non_isolated_cpus;

6405
	mutex_lock(&sched_hotcpu_mutex);
6406
	arch_init_sched_domains(&cpu_online_map);
6407
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6408 6409
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6410
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6411 6412
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6413

6414 6415
	init_sched_domain_sysctl();

6416 6417 6418
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6430

L
Linus Torvalds 已提交
6431 6432 6433 6434 6435
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

I
Ingo Molnar 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444
static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
{
	cfs_rq->tasks_timeline = RB_ROOT;
	cfs_rq->fair_clock = 1;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
}

L
Linus Torvalds 已提交
6445 6446
void __init sched_init(void)
{
6447
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6448 6449 6450 6451 6452 6453 6454 6455
	int i, j;

	/*
	 * Link up the scheduling class hierarchy:
	 */
	rt_sched_class.next = &fair_sched_class;
	fair_sched_class.next = &idle_sched_class;
	idle_sched_class.next = NULL;
L
Linus Torvalds 已提交
6456

6457
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6458
		struct rt_prio_array *array;
6459
		struct rq *rq;
L
Linus Torvalds 已提交
6460 6461 6462

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6463
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6464
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6465 6466 6467 6468 6469 6470
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
#endif
L
Linus Torvalds 已提交
6471

I
Ingo Molnar 已提交
6472 6473
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6474
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6475
		rq->sd = NULL;
L
Linus Torvalds 已提交
6476
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6477
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6478
		rq->push_cpu = 0;
6479
		rq->cpu = i;
L
Linus Torvalds 已提交
6480 6481 6482 6483 6484
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6485 6486 6487 6488
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6489
		}
6490
		highest_cpu = i;
I
Ingo Molnar 已提交
6491 6492
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6493 6494
	}

6495
	set_load_weight(&init_task);
6496

6497 6498 6499 6500
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6501
#ifdef CONFIG_SMP
6502
	nr_cpu_ids = highest_cpu + 1;
6503 6504 6505
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6506 6507 6508 6509
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6523 6524 6525 6526
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6527 6528 6529 6530 6531
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6532
#ifdef in_atomic
L
Linus Torvalds 已提交
6533 6534 6535 6536 6537 6538 6539
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6540
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6541 6542 6543
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6544
		debug_show_held_locks(current);
6545 6546
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6557
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6558
	unsigned long flags;
6559
	struct rq *rq;
I
Ingo Molnar 已提交
6560
	int on_rq;
L
Linus Torvalds 已提交
6561 6562

	read_lock_irq(&tasklist_lock);
6563
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6564 6565
		p->se.fair_key			= 0;
		p->se.wait_runtime		= 0;
I
Ingo Molnar 已提交
6566
		p->se.exec_start		= 0;
I
Ingo Molnar 已提交
6567
		p->se.wait_start_fair		= 0;
I
Ingo Molnar 已提交
6568
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6569 6570 6571
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6572
#endif
I
Ingo Molnar 已提交
6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
		task_rq(p)->cfs.fair_clock	= 0;
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6583
			continue;
I
Ingo Molnar 已提交
6584
		}
L
Linus Torvalds 已提交
6585

6586 6587
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6588 6589 6590 6591 6592 6593 6594
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6595

I
Ingo Molnar 已提交
6596
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6597
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6598 6599
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6600 6601
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6602
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6603 6604
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6605 6606 6607
#ifdef CONFIG_SMP
 out_unlock:
#endif
6608 6609
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6610 6611
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6612 6613 6614 6615
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6634
struct task_struct *curr_task(int cpu)
6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6654
void set_curr_task(int cpu, struct task_struct *p)
6655 6656 6657 6658 6659
{
	cpu_curr(cpu) = p;
}

#endif