sched.c 266.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 381 382 383
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
384

385
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
386

I
Ingo Molnar 已提交
387 388 389 390 391 392
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
393
	u64 min_vruntime;
I
Ingo Molnar 已提交
394 395 396

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
397 398 399 400 401 402

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
403 404
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
405
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
406

P
Peter Zijlstra 已提交
407
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
408

409
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
410 411
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
412 413
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
414 415 416 417 418 419
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
420 421
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
422 423 424

#ifdef CONFIG_SMP
	/*
425
	 * the part of load.weight contributed by tasks
426
	 */
427
	unsigned long task_weight;
428

429 430 431 432 433 434 435
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
436

437 438 439 440
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
441 442 443 444 445

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
446
#endif
I
Ingo Molnar 已提交
447 448
#endif
};
L
Linus Torvalds 已提交
449

I
Ingo Molnar 已提交
450 451 452
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
453
	unsigned long rt_nr_running;
454
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 456
	struct {
		int curr; /* highest queued rt task prio */
457
#ifdef CONFIG_SMP
458
		int next; /* next highest */
459
#endif
460
	} highest_prio;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
464
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
465
	int overloaded;
466
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
467
#endif
P
Peter Zijlstra 已提交
468
	int rt_throttled;
P
Peter Zijlstra 已提交
469
	u64 rt_time;
P
Peter Zijlstra 已提交
470
	u64 rt_runtime;
I
Ingo Molnar 已提交
471
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
472
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
473

474
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475 476
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
477 478 479 480 481
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
482 483
};

G
Gregory Haskins 已提交
484 485 486 487
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
488 489
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
496 497
	cpumask_var_t span;
	cpumask_var_t online;
498

I
Ingo Molnar 已提交
499
	/*
500 501 502
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
503
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
504
	atomic_t rto_count;
505 506 507
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
508 509
};

510 511 512 513
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
514 515 516 517
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
518 519 520 521 522 523 524
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
525
struct rq {
526 527
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
534 535
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536
#ifdef CONFIG_NO_HZ
537
	unsigned long last_tick_seen;
538 539
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543
	unsigned long nr_load_updates;
	u64 nr_switches;
544
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
545 546

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
547 548
	struct rt_rq rt;

I
Ingo Molnar 已提交
549
#ifdef CONFIG_FAIR_GROUP_SCHED
550 551
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
552 553
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
554
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

565
	struct task_struct *curr, *idle;
566
	unsigned long next_balance;
L
Linus Torvalds 已提交
567
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
568

569
	u64 clock;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576
	struct sched_domain *sd;

577
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
578
	/* For active balancing */
579
	int post_schedule;
L
Linus Torvalds 已提交
580 581
	int active_balance;
	int push_cpu;
582 583
	/* cpu of this runqueue: */
	int cpu;
584
	int online;
L
Linus Torvalds 已提交
585

586
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
587

588
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
589
	struct list_head migration_queue;
590 591 592

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
593 594
#endif

595 596 597 598
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
599
#ifdef CONFIG_SCHED_HRTICK
600 601 602 603
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
604 605 606
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
607 608 609
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
610 611
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
612 613

	/* sys_sched_yield() stats */
614
	unsigned int yld_count;
L
Linus Torvalds 已提交
615 616

	/* schedule() stats */
617 618 619
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
620 621

	/* try_to_wake_up() stats */
622 623
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
624 625

	/* BKL stats */
626
	unsigned int bkl_count;
L
Linus Torvalds 已提交
627 628 629
#endif
};

630
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
631

P
Peter Zijlstra 已提交
632 633
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
634
{
P
Peter Zijlstra 已提交
635
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
636 637
}

638 639 640 641 642 643 644 645 646
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
661
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
662

I
Ingo Molnar 已提交
663
inline void update_rq_clock(struct rq *rq)
664 665 666 667
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
668 669 670 671 672 673 674 675 676
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
677 678
/**
 * runqueue_is_locked
679
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
680 681 682 683 684
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
685
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
686
{
687
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
688 689
}

I
Ingo Molnar 已提交
690 691 692
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
693 694 695 696

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
697
enum {
P
Peter Zijlstra 已提交
698
#include "sched_features.h"
I
Ingo Molnar 已提交
699 700
};

P
Peter Zijlstra 已提交
701 702 703 704 705
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
706
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

716
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
717 718 719 720 721 722
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
723
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
724 725 726 727
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
728 729 730
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
731
	}
L
Li Zefan 已提交
732
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
733

L
Li Zefan 已提交
734
	return 0;
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
754
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
779 780 781 782 783
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

784
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
785 786 787 788 789
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
804

805 806 807 808 809 810
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
811 812
/*
 * ratelimit for updating the group shares.
813
 * default: 0.25ms
P
Peter Zijlstra 已提交
814
 */
815
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
816

817 818 819 820 821 822 823
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

824 825 826 827 828 829 830 831
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
832
/*
P
Peter Zijlstra 已提交
833
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
834 835
 * default: 1s
 */
P
Peter Zijlstra 已提交
836
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
837

838 839
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
840 841 842 843 844
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
845

846 847 848 849 850 851 852
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
853
	if (sysctl_sched_rt_runtime < 0)
854 855 856 857
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
858

L
Linus Torvalds 已提交
859
#ifndef prepare_arch_switch
860 861 862 863 864 865
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

866 867 868 869 870
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

871
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
872
static inline int task_running(struct rq *rq, struct task_struct *p)
873
{
874
	return task_current(rq, p);
875 876
}

877
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 879 880
{
}

881
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882
{
883 884 885 886
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
887 888 889 890 891 892 893
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

894 895 896 897
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
898
static inline int task_running(struct rq *rq, struct task_struct *p)
899 900 901 902
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
903
	return task_current(rq, p);
904 905 906
#endif
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

924
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 926 927 928 929 930 931 932 933 934 935 936
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
937
#endif
938 939
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
940

941 942 943 944
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
945
static inline struct rq *__task_rq_lock(struct task_struct *p)
946 947
	__acquires(rq->lock)
{
948 949 950 951 952
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
953 954 955 956
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
957 958
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
959
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
960 961
 * explicitly disabling preemption.
 */
962
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
963 964
	__acquires(rq->lock)
{
965
	struct rq *rq;
L
Linus Torvalds 已提交
966

967 968 969 970 971 972
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
973 974 975 976
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

977 978 979 980 981 982 983 984
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
985
static void __task_rq_unlock(struct rq *rq)
986 987 988 989 990
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

991
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
992 993 994 995 996 997
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
998
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
999
 */
A
Alexey Dobriyan 已提交
1000
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1001 1002
	__acquires(rq->lock)
{
1003
	struct rq *rq;
L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1033
	if (!cpu_active(cpu_of(rq)))
1034
		return 0;
P
Peter Zijlstra 已提交
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1055
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1062
#ifdef CONFIG_SMP
1063 1064 1065 1066
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1067
{
1068
	struct rq *rq = arg;
1069

1070 1071 1072 1073
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1074 1075
}

1076 1077 1078 1079 1080 1081
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1082
{
1083 1084
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085

1086
	hrtimer_set_expires(timer, time);
1087 1088 1089 1090

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1091
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 1093
		rq->hrtick_csd_pending = 1;
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1108
		hrtick_clear(cpu_rq(cpu));
1109 1110 1111 1112 1113 1114
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1115
static __init void init_hrtick(void)
1116 1117 1118
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1119 1120 1121 1122 1123 1124 1125 1126
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1127
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128
			HRTIMER_MODE_REL_PINNED, 0);
1129
}
1130

A
Andrew Morton 已提交
1131
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1132 1133
{
}
1134
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1135

1136
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1137
{
1138 1139
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1140

1141 1142 1143 1144
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1145

1146 1147
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1148
}
A
Andrew Morton 已提交
1149
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1150 1151 1152 1153 1154 1155 1156 1157
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1158 1159 1160
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1161
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1162

I
Ingo Molnar 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1176
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1177 1178 1179 1180 1181
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1182
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1183 1184
		return;

1185
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1241
	set_tsk_need_resched(rq->idle);
1242 1243 1244 1245 1246 1247

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1248
#endif /* CONFIG_NO_HZ */
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1271
#else /* !CONFIG_SMP */
1272
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
1275
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1276
}
1277 1278 1279 1280

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1281
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1282

1283 1284 1285 1286 1287 1288 1289 1290
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1291 1292 1293
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1294
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1295

1296 1297 1298
/*
 * delta *= weight / lw
 */
1299
static unsigned long
1300 1301 1302 1303 1304
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1305 1306 1307 1308 1309 1310 1311
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1312 1313 1314 1315 1316

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1317
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1318
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1319 1320
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1321
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322

1323
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 1325
}

1326
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 1328
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 1334
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338 1339 1340 1341
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1342
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 1344 1345 1346
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1347 1348
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 1359 1360
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1361 1362
 */
static const int prio_to_weight[40] = {
1363 1364 1365 1366 1367 1368 1369 1370
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1371 1372
};

1373 1374 1375 1376 1377 1378 1379
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1380
static const u32 prio_to_wmult[40] = {
1381 1382 1383 1384 1385 1386 1387 1388
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1389
};
1390

I
Ingo Molnar 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1416

1417 1418 1419 1420 1421 1422 1423 1424
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1425 1426
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 1428
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1429 1430
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 1432
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1433 1434
#endif

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1445
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1446
typedef int (*tg_visitor)(struct task_group *, void *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1452
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 1454
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1455
	int ret;
1456 1457 1458 1459

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1460 1461 1462
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1463 1464 1465 1466 1467 1468 1469
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1470 1471 1472
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1473 1474 1475 1476 1477

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1478
out_unlock:
1479
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1480 1481

	return ret;
1482 1483
}

P
Peter Zijlstra 已提交
1484 1485 1486
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1487
}
P
Peter Zijlstra 已提交
1488 1489 1490
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1550 1551 1552 1553 1554
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1555
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1556

1557 1558
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1559 1560
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1561 1562 1563 1564 1565

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1566

1567 1568 1569 1570 1571 1572
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1573 1574 1575 1576 1577
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1578 1579 1580 1581
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1582
{
1583
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1584
	int boost = 0;
1585

1586
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1587 1588 1589 1590
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1591

1592
	/*
P
Peter Zijlstra 已提交
1593 1594 1595
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1596
	 */
1597
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1598
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599

1600 1601 1602 1603
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1604

1605
		spin_lock_irqsave(&rq->lock, flags);
1606
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1607
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 1609 1610
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1611
}
1612 1613

/*
1614 1615 1616
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_shares_up(struct task_group *tg, void *data)
1619
{
1620 1621
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1622
	struct sched_domain *sd = data;
1623
	unsigned long flags;
1624
	int i;
1625

1626 1627 1628 1629 1630 1631
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1632
	for_each_cpu(i, sched_domain_span(sd)) {
1633 1634 1635
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1636 1637 1638 1639 1640 1641 1642 1643 1644
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1645
		shares += tg->cfs_rq[i]->shares;
1646 1647
	}

1648 1649 1650 1651 1652
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1653

1654
	for_each_cpu(i, sched_domain_span(sd))
1655 1656 1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1658 1659

	return 0;
1660 1661 1662
}

/*
1663 1664 1665
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1666
 */
P
Peter Zijlstra 已提交
1667
static int tg_load_down(struct task_group *tg, void *data)
1668
{
1669
	unsigned long load;
P
Peter Zijlstra 已提交
1670
	long cpu = (long)data;
1671

1672 1673 1674 1675 1676 1677 1678
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1679

1680
	tg->cfs_rq[cpu]->h_load = load;
1681

P
Peter Zijlstra 已提交
1682
	return 0;
1683 1684
}

1685
static void update_shares(struct sched_domain *sd)
1686
{
1687 1688 1689 1690 1691 1692 1693 1694
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1695 1696 1697

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1698
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1699
	}
1700 1701
}

1702 1703
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1704 1705 1706
	if (root_task_group_empty())
		return;

1707 1708 1709 1710 1711
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1712
static void update_h_load(long cpu)
1713
{
1714 1715 1716
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1717
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1718 1719 1720 1721
}

#else

1722
static inline void update_shares(struct sched_domain *sd)
1723 1724 1725
{
}

1726 1727 1728 1729
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1730 1731
#endif

1732 1733
#ifdef CONFIG_PREEMPT

1734 1735
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1736
/*
1737 1738 1739 1740 1741 1742
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1743
 */
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1798 1799 1800 1801 1802 1803
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1804 1805
#endif

V
Vegard Nossum 已提交
1806
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1807 1808
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1809
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1810 1811 1812
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1813
#endif
1814

1815 1816
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1817 1818
#include "sched_stats.h"
#include "sched_idletask.c"
1819 1820
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1821 1822 1823 1824 1825
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1826 1827
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1828

1829
static void inc_nr_running(struct rq *rq)
1830 1831 1832 1833
{
	rq->nr_running++;
}

1834
static void dec_nr_running(struct rq *rq)
1835 1836 1837 1838
{
	rq->nr_running--;
}

1839 1840 1841
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1842 1843 1844 1845
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1846

I
Ingo Molnar 已提交
1847 1848 1849 1850 1851 1852 1853 1854
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1855

I
Ingo Molnar 已提交
1856 1857
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1858 1859
}

1860 1861 1862 1863 1864 1865
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1866
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867
{
P
Peter Zijlstra 已提交
1868 1869 1870
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1871
	sched_info_queued(p);
1872
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1873
	p->se.on_rq = 1;
1874 1875
}

1876
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877
{
P
Peter Zijlstra 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1887 1888
	}

1889
	sched_info_dequeued(p);
1890
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1891
	p->se.on_rq = 0;
1892 1893
}

1894
/*
I
Ingo Molnar 已提交
1895
 * __normal_prio - return the priority that is based on the static prio
1896 1897 1898
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1899
	return p->static_prio;
1900 1901
}

1902 1903 1904 1905 1906 1907 1908
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1909
static inline int normal_prio(struct task_struct *p)
1910 1911 1912
{
	int prio;

1913
	if (task_has_rt_policy(p))
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1927
static int effective_prio(struct task_struct *p)
1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1940
/*
I
Ingo Molnar 已提交
1941
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1942
 */
I
Ingo Molnar 已提交
1943
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1944
{
1945
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1946
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1947

1948
	enqueue_task(rq, p, wakeup);
1949
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1950 1951 1952 1953 1954
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1955
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1956
{
1957
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1958 1959
		rq->nr_uninterruptible++;

1960
	dequeue_task(rq, p, sleep);
1961
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1962 1963 1964 1965 1966 1967
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1968
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1969 1970 1971 1972
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1973 1974
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1975
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1976
#ifdef CONFIG_SMP
1977 1978 1979 1980 1981 1982
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1983 1984
	task_thread_info(p)->cpu = cpu;
#endif
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1999
#ifdef CONFIG_SMP
2000 2001 2002
/*
 * Is this task likely cache-hot:
 */
2003
static int
2004 2005 2006 2007
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2008 2009 2010
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2011 2012 2013
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2014 2015
		return 1;

2016 2017 2018
	if (p->sched_class != &fair_sched_class)
		return 0;

2019 2020 2021 2022 2023
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2024 2025 2026 2027 2028 2029
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2030
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2031
{
I
Ingo Molnar 已提交
2032 2033
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2034 2035
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2036
	u64 clock_offset;
I
Ingo Molnar 已提交
2037 2038

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2039

2040
	trace_sched_migrate_task(p, new_cpu);
2041

I
Ingo Molnar 已提交
2042 2043 2044
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2045 2046 2047 2048
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2049
#endif
2050
	if (old_cpu != new_cpu) {
2051
		p->se.nr_migrations++;
2052
		new_rq->nr_migrations_in++;
2053
#ifdef CONFIG_SCHEDSTATS
2054 2055
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2056
#endif
2057
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2058
				     1, 1, NULL, 0);
2059
	}
2060 2061
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2062 2063

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2064 2065
}

2066
struct migration_req {
L
Linus Torvalds 已提交
2067 2068
	struct list_head list;

2069
	struct task_struct *task;
L
Linus Torvalds 已提交
2070 2071 2072
	int dest_cpu;

	struct completion done;
2073
};
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2079
static int
2080
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2081
{
2082
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2083 2084 2085 2086 2087

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2088
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2097

L
Linus Torvalds 已提交
2098 2099 2100
	return 1;
}

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2144 2145 2146
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2147 2148 2149 2150 2151 2152 2153
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2160
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2161 2162
{
	unsigned long flags;
I
Ingo Molnar 已提交
2163
	int running, on_rq;
R
Roland McGrath 已提交
2164
	unsigned long ncsw;
2165
	struct rq *rq;
L
Linus Torvalds 已提交
2166

2167 2168 2169 2170 2171 2172 2173 2174
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2175

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2187 2188 2189
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2190
			cpu_relax();
R
Roland McGrath 已提交
2191
		}
2192

2193 2194 2195 2196 2197 2198
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2199
		trace_sched_wait_task(rq, p);
2200 2201
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2202
		ncsw = 0;
2203
		if (!match_state || p->state == match_state)
2204
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2205
		task_rq_unlock(rq, &flags);
2206

R
Roland McGrath 已提交
2207 2208 2209 2210 2211 2212
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2223

2224 2225 2226 2227 2228
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2229
		 * So if it was still runnable (but just not actively
2230 2231 2232 2233 2234 2235 2236
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2237

2238 2239 2240 2241 2242 2243 2244
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2245 2246

	return ncsw;
L
Linus Torvalds 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2262
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267 2268 2269 2270 2271
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2272
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2273
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2274

T
Thomas Gleixner 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2310 2311
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2312
{
2313
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2314
	unsigned long flags;
2315
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2316

2317
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2318
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2319

P
Peter Zijlstra 已提交
2320
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2321

2322
	smp_wmb();
2323
	rq = orig_rq = task_rq_lock(p, &flags);
2324
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2325
	if (!(p->state & state))
L
Linus Torvalds 已提交
2326 2327
		goto out;

I
Ingo Molnar 已提交
2328
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2329 2330 2331
		goto out_running;

	cpu = task_cpu(p);
2332
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2333 2334 2335 2336 2337

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2338 2339 2340
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2341 2342
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2343
	 */
2344 2345
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2346 2347 2348
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2349
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2350
	if (cpu != orig_cpu)
2351
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2352

P
Peter Zijlstra 已提交
2353
	rq = task_rq_lock(p, &flags);
2354 2355 2356 2357

	if (rq != orig_rq)
		update_rq_clock(rq);

P
Peter Zijlstra 已提交
2358 2359
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2360

2361 2362 2363 2364 2365 2366 2367
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2368
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2369 2370 2371 2372 2373
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2374
#endif /* CONFIG_SCHEDSTATS */
2375

L
Linus Torvalds 已提交
2376 2377
out_activate:
#endif /* CONFIG_SMP */
2378
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2379
	if (wake_flags & WF_SYNC)
2380 2381 2382 2383 2384 2385 2386
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2387
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2388 2389
	success = 1;

P
Peter Zijlstra 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2406
out_running:
2407
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2408
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2409

L
Linus Torvalds 已提交
2410
	p->state = TASK_RUNNING;
2411 2412 2413 2414
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2415 2416
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2417
	put_cpu();
L
Linus Torvalds 已提交
2418 2419 2420 2421

	return success;
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2433
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2434
{
2435
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2436 2437 2438
}
EXPORT_SYMBOL(wake_up_process);

2439
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2440 2441 2442 2443 2444 2445 2446
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2447 2448 2449 2450 2451 2452 2453
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2454
	p->se.prev_sum_exec_runtime	= 0;
2455
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2456 2457
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2458 2459
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
2460
	p->se.avg_running		= 0;
I
Ingo Molnar 已提交
2461 2462

#ifdef CONFIG_SCHEDSTATS
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2494
#endif
N
Nick Piggin 已提交
2495

P
Peter Zijlstra 已提交
2496
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2497
	p->se.on_rq = 0;
2498
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2499

2500 2501 2502 2503
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2522 2523 2524 2525
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2526
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2527
			p->policy = SCHED_NORMAL;
2528 2529
			p->normal_prio = p->static_prio;
		}
2530

2531 2532
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2533
			p->normal_prio = p->static_prio;
2534 2535 2536
			set_load_weight(p);
		}

2537 2538 2539 2540 2541 2542
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2543

2544 2545 2546 2547 2548
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2549 2550
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2551

2552 2553 2554 2555 2556
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2557
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2558
	if (likely(sched_info_on()))
2559
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2560
#endif
2561
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2562 2563
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2564
#ifdef CONFIG_PREEMPT
2565
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2566
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2567
#endif
2568 2569
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2570
	put_cpu();
L
Linus Torvalds 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2580
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2581 2582
{
	unsigned long flags;
I
Ingo Molnar 已提交
2583
	struct rq *rq;
L
Linus Torvalds 已提交
2584 2585

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2586
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2587
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2588

2589
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2590
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2591 2592
	} else {
		/*
I
Ingo Molnar 已提交
2593 2594
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2595
		 */
2596
		p->sched_class->task_new(rq, p);
2597
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2598
	}
2599
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2600
	check_preempt_curr(rq, p, WF_FORK);
2601 2602 2603 2604
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2605
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2606 2607
}

2608 2609 2610
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2611
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2612
 * @notifier: notifier struct to register
2613 2614 2615 2616 2617 2618 2619 2620 2621
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2622
 * @notifier: notifier struct to unregister
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2652
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2664
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2665

2666 2667 2668
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2669
 * @prev: the current task that is being switched out
2670 2671 2672 2673 2674 2675 2676 2677 2678
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2679 2680 2681
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2682
{
2683
	fire_sched_out_preempt_notifiers(prev, next);
2684 2685 2686 2687
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2688 2689
/**
 * finish_task_switch - clean up after a task-switch
2690
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2691 2692
 * @prev: the thread we just switched away from.
 *
2693 2694 2695 2696
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2697 2698
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2699
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2700 2701 2702
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2703
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2704 2705 2706
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2707
	long prev_state;
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2713
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2714 2715
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2716
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2722
	prev_state = prev->state;
2723
	finish_arch_switch(prev);
2724
	perf_event_task_sched_in(current, cpu_of(rq));
2725
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2726

2727
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2728 2729
	if (mm)
		mmdrop(mm);
2730
	if (unlikely(prev_state == TASK_DEAD)) {
2731 2732 2733
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2734
		 */
2735
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2736
		put_task_struct(prev);
2737
	}
L
Linus Torvalds 已提交
2738 2739
}

2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2765

2766 2767 2768 2769 2770 2771
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2772 2773
}

2774 2775
#endif

L
Linus Torvalds 已提交
2776 2777 2778 2779
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2780
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2781 2782
	__releases(rq->lock)
{
2783 2784
	struct rq *rq = this_rq();

2785
	finish_task_switch(rq, prev);
2786

2787 2788 2789 2790 2791
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2792

2793 2794 2795 2796
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2797
	if (current->set_child_tid)
2798
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2799 2800 2801 2802 2803 2804
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2805
static inline void
2806
context_switch(struct rq *rq, struct task_struct *prev,
2807
	       struct task_struct *next)
L
Linus Torvalds 已提交
2808
{
I
Ingo Molnar 已提交
2809
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2810

2811
	prepare_task_switch(rq, prev, next);
2812
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2813 2814
	mm = next->mm;
	oldmm = prev->active_mm;
2815 2816 2817 2818 2819
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2820
	arch_start_context_switch(prev);
2821

I
Ingo Molnar 已提交
2822
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827 2828
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2829
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2830 2831 2832
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2833 2834 2835 2836 2837 2838 2839
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2840
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2841
#endif
L
Linus Torvalds 已提交
2842 2843 2844 2845

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2846 2847 2848 2849 2850 2851 2852
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2876
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2891 2892
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2893

2894
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2904
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2923 2924 2925 2926 2927 2928
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2944 2945
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2946
{
2947 2948 2949 2950
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2963

2964 2965
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2989 2990
}

2991 2992 2993 2994 2995 2996 2997 2998 2999
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3000
/*
I
Ingo Molnar 已提交
3001 3002
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3003
 */
I
Ingo Molnar 已提交
3004
static void update_cpu_load(struct rq *this_rq)
3005
{
3006
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3019 3020 3021 3022 3023 3024 3025
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3026 3027
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3028 3029 3030 3031 3032

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3033 3034
}

I
Ingo Molnar 已提交
3035 3036
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3043
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3044 3045 3046
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3047
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3048 3049 3050 3051
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3052
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3053
			spin_lock(&rq1->lock);
3054
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3055 3056
		} else {
			spin_lock(&rq2->lock);
3057
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3058 3059
		}
	}
3060 3061
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067 3068 3069
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3070
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3084
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3085 3086
 * the cpu_allowed mask is restored.
 */
3087
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3088
{
3089
	struct migration_req req;
L
Linus Torvalds 已提交
3090
	unsigned long flags;
3091
	struct rq *rq;
L
Linus Torvalds 已提交
3092 3093

	rq = task_rq_lock(p, &flags);
3094
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3095
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3102

L
Linus Torvalds 已提交
3103 3104 3105 3106 3107
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3108

L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114 3115
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3116 3117
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3118 3119 3120 3121
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3122
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3123
	put_cpu();
N
Nick Piggin 已提交
3124 3125
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3126 3127 3128 3129 3130 3131
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3132 3133
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3134
{
3135
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3136
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3137
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3138 3139 3140 3141
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3142
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3148
static
3149
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3150
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3151
		     int *all_pinned)
L
Linus Torvalds 已提交
3152
{
3153
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3160
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3161
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3162
		return 0;
3163
	}
3164 3165
	*all_pinned = 0;

3166 3167
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3168
		return 0;
3169
	}
L
Linus Torvalds 已提交
3170

3171 3172 3173 3174 3175 3176
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3177 3178 3179
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3180
#ifdef CONFIG_SCHEDSTATS
3181
		if (tsk_cache_hot) {
3182
			schedstat_inc(sd, lb_hot_gained[idle]);
3183 3184
			schedstat_inc(p, se.nr_forced_migrations);
		}
3185 3186 3187 3188
#endif
		return 1;
	}

3189
	if (tsk_cache_hot) {
3190
		schedstat_inc(p, se.nr_failed_migrations_hot);
3191
		return 0;
3192
	}
L
Linus Torvalds 已提交
3193 3194 3195
	return 1;
}

3196 3197 3198 3199 3200
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3201
{
3202
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3203 3204
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3205

3206
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3207 3208
		goto out;

3209 3210
	pinned = 1;

L
Linus Torvalds 已提交
3211
	/*
I
Ingo Molnar 已提交
3212
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3213
	 */
I
Ingo Molnar 已提交
3214 3215
	p = iterator->start(iterator->arg);
next:
3216
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3217
		goto out;
3218 3219

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3220 3221 3222
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3223 3224
	}

I
Ingo Molnar 已提交
3225
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3226
	pulled++;
I
Ingo Molnar 已提交
3227
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3228

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3239
	/*
3240
	 * We only want to steal up to the prescribed amount of weighted load.
3241
	 */
3242
	if (rem_load_move > 0) {
3243 3244
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3245 3246
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3247 3248 3249
	}
out:
	/*
3250
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3251 3252 3253 3254
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3255 3256 3257

	if (all_pinned)
		*all_pinned = pinned;
3258 3259

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3260 3261
}

I
Ingo Molnar 已提交
3262
/*
P
Peter Williams 已提交
3263 3264 3265
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3266 3267 3268 3269
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3270
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3271 3272 3273
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3274
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3275
	unsigned long total_load_moved = 0;
3276
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3277 3278

	do {
P
Peter Williams 已提交
3279 3280
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3281
				max_load_move - total_load_moved,
3282
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3283
		class = class->next;
3284

3285 3286 3287 3288 3289 3290
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3291 3292
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3293
#endif
P
Peter Williams 已提交
3294
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3295

P
Peter Williams 已提交
3296 3297 3298
	return total_load_moved > 0;
}

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3335
	const struct sched_class *class;
P
Peter Williams 已提交
3336

3337
	for_each_class(class) {
3338
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3339
			return 1;
3340
	}
P
Peter Williams 已提交
3341 3342

	return 0;
I
Ingo Molnar 已提交
3343
}
3344
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3345
/*
3346 3347
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3348
 */
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3367
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3368 3369 3370 3371 3372 3373
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3374
#endif
3375
};
L
Linus Torvalds 已提交
3376

3377
/*
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3388

3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3410
		load_idx = sd->busy_idx;
3411 3412 3413
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3414
		load_idx = sd->newidle_idx;
3415 3416
		break;
	default:
N
Nick Piggin 已提交
3417
		load_idx = sd->idle_idx;
3418 3419
		break;
	}
L
Linus Torvalds 已提交
3420

3421 3422
	return load_idx;
}
L
Linus Torvalds 已提交
3423 3424


3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3463

3464 3465
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3466

3467 3468 3469 3470 3471 3472 3473
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3474

3475 3476 3477 3478 3479 3480 3481 3482
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3483

3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3497

3498 3499 3500 3501 3502
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3503
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3504
		return;
L
Linus Torvalds 已提交
3505

3506 3507 3508 3509 3510 3511 3512
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3513

3514
/**
3515
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3516 3517 3518 3519 3520
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3521 3522 3523 3524 3525
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3526 3527 3528 3529 3530 3531 3532 3533
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3534

3535 3536 3537
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3538

3539 3540
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3541

3542
	return 1;
L
Linus Torvalds 已提交
3543

3544 3545 3546 3547 3548 3549 3550
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3551

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3577 3578 3579 3580 3581 3582 3583 3584 3585
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3586 3587 3588 3589 3590
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3609 3610 3611 3612 3613 3614
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3615 3616 3617 3618 3619
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3620
	power >>= SCHED_LOAD_SHIFT;
3621 3622

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3623 3624 3625 3626 3627
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3628 3629 3630
		power >>= SCHED_LOAD_SHIFT;
	}

3631 3632 3633 3634 3635
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3636

3637
	sdg->cpu_power = power;
3638 3639 3640
}

static void update_group_power(struct sched_domain *sd, int cpu)
3641 3642 3643
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3644
	unsigned long power;
3645 3646

	if (!child) {
3647
		update_cpu_power(sd, cpu);
3648 3649 3650
		return;
	}

3651
	power = 0;
3652 3653 3654

	group = child->groups;
	do {
3655
		power += group->cpu_power;
3656 3657
		group = group->next;
	} while (group != child->groups);
3658 3659

	sdg->cpu_power = power;
3660
}
3661

3662 3663
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3664
 * @sd: The sched_domain whose statistics are to be updated.
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3675 3676
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3687
	if (local_group) {
3688
		balance_cpu = group_first_cpu(group);
3689
		if (balance_cpu == this_cpu)
3690
			update_group_power(sd, this_cpu);
3691
	}
3692 3693 3694 3695 3696

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3697

3698 3699
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3700

3701 3702
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3703

3704
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3705
		if (local_group) {
3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3718
		}
3719

3720 3721 3722
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3723

3724 3725
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3726

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3738

3739
	/* Adjust by relative CPU power of the group */
3740
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3741

3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3752 3753
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3754 3755 3756 3757

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3758
	sgs->group_capacity =
3759
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3760
}
I
Ingo Molnar 已提交
3761

3762 3763 3764 3765 3766 3767 3768 3769 3770
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3771
 */
3772 3773 3774 3775
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3776
{
P
Peter Zijlstra 已提交
3777
	struct sched_domain *child = sd->child;
3778
	struct sched_group *group = sd->groups;
3779
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3780 3781 3782 3783
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3784

3785
	init_sd_power_savings_stats(sd, sds, idle);
3786
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3787 3788 3789 3790

	do {
		int local_group;

3791 3792
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3793
		memset(&sgs, 0, sizeof(sgs));
3794
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3795
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3796

3797 3798
		if (local_group && balance && !(*balance))
			return;
3799

3800
		sds->total_load += sgs.group_load;
3801
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3802

P
Peter Zijlstra 已提交
3803 3804 3805 3806 3807 3808
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3809
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3810 3811

		if (local_group) {
3812 3813 3814 3815 3816
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3817 3818
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3819 3820 3821 3822 3823
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3824
		}
3825

3826
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3827 3828
		group = group->next;
	} while (group != sd->groups);
3829
}
L
Linus Torvalds 已提交
3830

3831 3832
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3833 3834
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3853

3854 3855 3856 3857 3858
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3859

L
Linus Torvalds 已提交
3860
	/*
3861 3862 3863
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3864
	 */
3865

3866
	pwr_now += sds->busiest->cpu_power *
3867
			min(sds->busiest_load_per_task, sds->max_load);
3868
	pwr_now += sds->this->cpu_power *
3869 3870 3871 3872
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3873 3874
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3875
	if (sds->max_load > tmp)
3876
		pwr_move += sds->busiest->cpu_power *
3877 3878 3879
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3880
	if (sds->max_load * sds->busiest->cpu_power <
3881
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3882 3883
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3884
	else
3885 3886 3887
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3888 3889 3890 3891 3892 3893 3894
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3907 3908 3909 3910 3911
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3912
	if (sds->max_load < sds->avg_load) {
3913
		*imbalance = 0;
3914
		return fix_small_imbalance(sds, this_cpu, imbalance);
3915
	}
3916 3917

	/* Don't want to pull so many tasks that a group would go idle */
3918 3919
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3920

L
Linus Torvalds 已提交
3921
	/* How much load to actually move to equalise the imbalance */
3922 3923
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3924 3925
			/ SCHED_LOAD_SCALE;

3926 3927 3928 3929 3930 3931
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3932 3933
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3934

3935
}
3936
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3937

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3962 3963 3964 3965 3966 3967 3968
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3969

3970
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3971

3972 3973 3974 3975 3976 3977 3978
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3989 3990
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3991

3992 3993
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3994

3995
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3996 3997
		goto out_balanced;

3998
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3999

4000 4001 4002 4003
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4004 4005
		goto out_balanced;

4006 4007 4008 4009
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4010

L
Linus Torvalds 已提交
4011 4012 4013 4014 4015 4016 4017 4018
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4019
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4020 4021
	 * appear as very large values with unsigned longs.
	 */
4022
	if (sds.max_load <= sds.busiest_load_per_task)
4023 4024
		goto out_balanced;

4025 4026
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4027
	return sds.busiest;
L
Linus Torvalds 已提交
4028 4029

out_balanced:
4030 4031 4032 4033 4034 4035
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4036
ret:
L
Linus Torvalds 已提交
4037 4038 4039 4040 4041 4042 4043
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4044
static struct rq *
I
Ingo Molnar 已提交
4045
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4046
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4047
{
4048
	struct rq *busiest = NULL, *rq;
4049
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4050 4051
	int i;

4052
	for_each_cpu(i, sched_group_cpus(group)) {
4053 4054
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4055
		unsigned long wl;
4056

4057
		if (!cpumask_test_cpu(i, cpus))
4058 4059
			continue;

4060
		rq = cpu_rq(i);
4061 4062
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4063

4064
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4065
			continue;
L
Linus Torvalds 已提交
4066

I
Ingo Molnar 已提交
4067 4068
		if (wl > max_load) {
			max_load = wl;
4069
			busiest = rq;
L
Linus Torvalds 已提交
4070 4071 4072 4073 4074 4075
		}
	}

	return busiest;
}

4076 4077 4078 4079 4080 4081
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4082 4083 4084
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4085 4086 4087 4088
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4089
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4090
			struct sched_domain *sd, enum cpu_idle_type idle,
4091
			int *balance)
L
Linus Torvalds 已提交
4092
{
P
Peter Williams 已提交
4093
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4094 4095
	struct sched_group *group;
	unsigned long imbalance;
4096
	struct rq *busiest;
4097
	unsigned long flags;
4098
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4099

4100
	cpumask_setall(cpus);
4101

4102 4103 4104
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4105
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4106
	 * portraying it as CPU_NOT_IDLE.
4107
	 */
I
Ingo Molnar 已提交
4108
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4109
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4110
		sd_idle = 1;
L
Linus Torvalds 已提交
4111

4112
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4113

4114
redo:
4115
	update_shares(sd);
4116
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4117
				   cpus, balance);
4118

4119
	if (*balance == 0)
4120 4121
		goto out_balanced;

L
Linus Torvalds 已提交
4122 4123 4124 4125 4126
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4127
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4133
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4134 4135 4136

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4137
	ld_moved = 0;
L
Linus Torvalds 已提交
4138 4139 4140 4141
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4142
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4143 4144
		 * correctly treated as an imbalance.
		 */
4145
		local_irq_save(flags);
N
Nick Piggin 已提交
4146
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4147
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4148
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4149
		double_rq_unlock(this_rq, busiest);
4150
		local_irq_restore(flags);
4151

4152 4153 4154
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4155
		if (ld_moved && this_cpu != smp_processor_id())
4156 4157
			resched_cpu(this_cpu);

4158
		/* All tasks on this runqueue were pinned by CPU affinity */
4159
		if (unlikely(all_pinned)) {
4160 4161
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4162
				goto redo;
4163
			goto out_balanced;
4164
		}
L
Linus Torvalds 已提交
4165
	}
4166

P
Peter Williams 已提交
4167
	if (!ld_moved) {
L
Linus Torvalds 已提交
4168 4169 4170 4171 4172
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4173
			spin_lock_irqsave(&busiest->lock, flags);
4174 4175 4176 4177

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4178 4179
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4180
				spin_unlock_irqrestore(&busiest->lock, flags);
4181 4182 4183 4184
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4185 4186 4187
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4188
				active_balance = 1;
L
Linus Torvalds 已提交
4189
			}
4190
			spin_unlock_irqrestore(&busiest->lock, flags);
4191
			if (active_balance)
L
Linus Torvalds 已提交
4192 4193 4194 4195 4196 4197
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4198
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4199
		}
4200
	} else
L
Linus Torvalds 已提交
4201 4202
		sd->nr_balance_failed = 0;

4203
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4204 4205
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4206 4207 4208 4209 4210 4211 4212 4213 4214
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4215 4216
	}

P
Peter Williams 已提交
4217
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4218
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4219 4220 4221
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4222 4223 4224 4225

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4226
	sd->nr_balance_failed = 0;
4227 4228

out_one_pinned:
L
Linus Torvalds 已提交
4229
	/* tune up the balancing interval */
4230 4231
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4232 4233
		sd->balance_interval *= 2;

4234
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4235
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4236 4237 4238 4239
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4240 4241
	if (ld_moved)
		update_shares(sd);
4242
	return ld_moved;
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4249
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4250 4251
 * this_rq is locked.
 */
4252
static int
4253
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4254 4255
{
	struct sched_group *group;
4256
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4257
	unsigned long imbalance;
P
Peter Williams 已提交
4258
	int ld_moved = 0;
N
Nick Piggin 已提交
4259
	int sd_idle = 0;
4260
	int all_pinned = 0;
4261
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4262

4263
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4264

4265 4266 4267 4268
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4269
	 * portraying it as CPU_NOT_IDLE.
4270 4271 4272
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4273
		sd_idle = 1;
L
Linus Torvalds 已提交
4274

4275
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4276
redo:
4277
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4278
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4279
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4280
	if (!group) {
I
Ingo Molnar 已提交
4281
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4282
		goto out_balanced;
L
Linus Torvalds 已提交
4283 4284
	}

4285
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4286
	if (!busiest) {
I
Ingo Molnar 已提交
4287
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4288
		goto out_balanced;
L
Linus Torvalds 已提交
4289 4290
	}

N
Nick Piggin 已提交
4291 4292
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4293
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4294

P
Peter Williams 已提交
4295
	ld_moved = 0;
4296 4297 4298
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4299 4300
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4301
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4302 4303
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4304
		double_unlock_balance(this_rq, busiest);
4305

4306
		if (unlikely(all_pinned)) {
4307 4308
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4309 4310
				goto redo;
		}
4311 4312
	}

P
Peter Williams 已提交
4313
	if (!ld_moved) {
4314
		int active_balance = 0;
4315

I
Ingo Molnar 已提交
4316
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4317 4318
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4319
			return -1;
4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4356
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4369 4370 4371 4372
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4373 4374
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4375
		spin_lock(&this_rq->lock);
4376

N
Nick Piggin 已提交
4377
	} else
4378
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4379

4380
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4381
	return ld_moved;
4382 4383

out_balanced:
I
Ingo Molnar 已提交
4384
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4385
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4386
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4387
		return -1;
4388
	sd->nr_balance_failed = 0;
4389

4390
	return 0;
L
Linus Torvalds 已提交
4391 4392 4393 4394 4395 4396
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4397
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4398 4399
{
	struct sched_domain *sd;
4400
	int pulled_task = 0;
I
Ingo Molnar 已提交
4401
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4402 4403

	for_each_domain(this_cpu, sd) {
4404 4405 4406 4407 4408 4409
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4410
			/* If we've pulled tasks over stop searching: */
4411
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4412
							   sd);
4413 4414 4415 4416 4417 4418

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4419
	}
I
Ingo Molnar 已提交
4420
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4421 4422 4423 4424 4425
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4426
	}
L
Linus Torvalds 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4437
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4438
{
4439
	int target_cpu = busiest_rq->push_cpu;
4440 4441
	struct sched_domain *sd;
	struct rq *target_rq;
4442

4443
	/* Is there any task to move? */
4444 4445 4446 4447
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4448 4449

	/*
4450
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4451
	 * we need to fix it. Originally reported by
4452
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4453
	 */
4454
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4455

4456 4457
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4458 4459
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4460 4461

	/* Search for an sd spanning us and the target CPU. */
4462
	for_each_domain(target_cpu, sd) {
4463
		if ((sd->flags & SD_LOAD_BALANCE) &&
4464
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4465
				break;
4466
	}
4467

4468
	if (likely(sd)) {
4469
		schedstat_inc(sd, alb_count);
4470

P
Peter Williams 已提交
4471 4472
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4473 4474 4475 4476
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4477
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4478 4479
}

4480 4481 4482
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4483
	cpumask_var_t cpu_mask;
4484
	cpumask_var_t ilb_grp_nohz_mask;
4485 4486 4487 4488
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4489 4490 4491 4492 4493
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4605
	return cpumask_first(nohz.cpu_mask);
4606 4607 4608
}
#endif

4609
/*
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4620
 *
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4636 4637 4638 4639 4640 4641 4642 4643
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4644 4645
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4646

4647 4648 4649
			return 0;
		}

4650 4651
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4652
		/* time for ilb owner also to sleep */
4653
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4654 4655 4656 4657 4658 4659 4660 4661 4662
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4679
			return 1;
4680
		}
4681
	} else {
4682
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4683 4684
			return 0;

4685
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4698 4699 4700 4701 4702
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4703
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4704
{
4705 4706
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4707 4708
	unsigned long interval;
	struct sched_domain *sd;
4709
	/* Earliest time when we have to do rebalance again */
4710
	unsigned long next_balance = jiffies + 60*HZ;
4711
	int update_next_balance = 0;
4712
	int need_serialize;
L
Linus Torvalds 已提交
4713

4714
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4715 4716 4717 4718
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4719
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4720 4721 4722 4723 4724 4725
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4726 4727 4728
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4729
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4730

4731
		if (need_serialize) {
4732 4733 4734 4735
			if (!spin_trylock(&balancing))
				goto out;
		}

4736
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4737
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4738 4739
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4740 4741 4742
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4743
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4744
			}
4745
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4746
		}
4747
		if (need_serialize)
4748 4749
			spin_unlock(&balancing);
out:
4750
		if (time_after(next_balance, sd->last_balance + interval)) {
4751
			next_balance = sd->last_balance + interval;
4752 4753
			update_next_balance = 1;
		}
4754 4755 4756 4757 4758 4759 4760 4761

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4762
	}
4763 4764 4765 4766 4767 4768 4769 4770

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4771 4772 4773 4774 4775 4776 4777 4778 4779
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4780 4781 4782 4783
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4784

I
Ingo Molnar 已提交
4785
	rebalance_domains(this_cpu, idle);
4786 4787 4788 4789 4790 4791 4792

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4793 4794
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4795 4796 4797
		struct rq *rq;
		int balance_cpu;

4798 4799 4800 4801
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4802 4803 4804 4805 4806 4807 4808 4809
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4810
			rebalance_domains(balance_cpu, CPU_IDLE);
4811 4812

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4813 4814
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4815 4816 4817 4818 4819
		}
	}
#endif
}

4820 4821 4822 4823 4824
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4825 4826 4827 4828 4829 4830 4831
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4832
static inline void trigger_load_balance(struct rq *rq, int cpu)
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4844
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4845 4846 4847 4848
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4849
			int ilb = find_new_ilb(cpu);
4850

4851
			if (ilb < nr_cpu_ids)
4852 4853 4854 4855 4856 4857 4858 4859 4860
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4861
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4862 4863 4864 4865 4866 4867 4868 4869 4870
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4871
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4872 4873
		return;
#endif
4874 4875 4876
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4877
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4878
}
I
Ingo Molnar 已提交
4879 4880 4881

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4882 4883 4884
/*
 * on UP we do not need to balance between CPUs:
 */
4885
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4886 4887
{
}
I
Ingo Molnar 已提交
4888

L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4896
 * Return any ns on the sched_clock that have not yet been accounted in
4897
 * @p in case that task is currently running.
4898 4899
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4900
 */
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4915
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4916 4917
{
	unsigned long flags;
4918
	struct rq *rq;
4919
	u64 ns = 0;
4920

4921
	rq = task_rq_lock(p, &flags);
4922 4923
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4924

4925 4926
	return ns;
}
4927

4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4945

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4965
	task_rq_unlock(rq, &flags);
4966

L
Linus Torvalds 已提交
4967 4968 4969 4970 4971 4972 4973
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4974
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4975
 */
4976 4977
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4978 4979 4980 4981
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4982
	/* Add user time to process. */
L
Linus Torvalds 已提交
4983
	p->utime = cputime_add(p->utime, cputime);
4984
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4985
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4993 4994

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4995 4996
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4997 4998
}

4999 5000 5001 5002
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5003
 * @cputime_scaled: cputime scaled by cpu frequency
5004
 */
5005 5006
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5007 5008 5009 5010 5011 5012
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5013
	/* Add guest time to process. */
5014
	p->utime = cputime_add(p->utime, cputime);
5015
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5016
	account_group_user_time(p, cputime);
5017 5018
	p->gtime = cputime_add(p->gtime, cputime);

5019
	/* Add guest time to cpustat. */
5020 5021 5022 5023
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5024 5025 5026 5027 5028
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5029
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5030 5031
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5032
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5033 5034 5035 5036
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5037
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5038
		account_guest_time(p, cputime, cputime_scaled);
5039 5040
		return;
	}
5041

5042
	/* Add system time to process. */
L
Linus Torvalds 已提交
5043
	p->stime = cputime_add(p->stime, cputime);
5044
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5045
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5054 5055
		cpustat->system = cputime64_add(cpustat->system, tmp);

5056 5057
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5058 5059 5060 5061
	/* Account for system time used */
	acct_update_integrals(p);
}

5062
/*
L
Linus Torvalds 已提交
5063 5064
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5065
 */
5066
void account_steal_time(cputime_t cputime)
5067
{
5068 5069 5070 5071
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5072 5073
}

L
Linus Torvalds 已提交
5074
/*
5075 5076
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5077
 */
5078
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5079 5080
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5081
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5082
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5083

5084 5085 5086 5087
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5088 5089
}

5090 5091 5092 5093 5094 5095 5096 5097 5098
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5099
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5100 5101 5102
	struct rq *rq = this_rq();

	if (user_tick)
5103
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5104
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5105
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5106 5107
				    one_jiffy_scaled);
	else
5108
		account_idle_time(cputime_one_jiffy);
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5128 5129
}

5130 5131
#endif

5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5202
	struct task_struct *curr = rq->curr;
5203 5204

	sched_clock_tick();
I
Ingo Molnar 已提交
5205 5206

	spin_lock(&rq->lock);
5207
	update_rq_clock(rq);
5208
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5209
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5210
	spin_unlock(&rq->lock);
5211

5212
	perf_event_task_tick(curr, cpu);
5213

5214
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5215 5216
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5217
#endif
L
Linus Torvalds 已提交
5218 5219
}

5220
notrace unsigned long get_parent_ip(unsigned long addr)
5221 5222 5223 5224 5225 5226 5227 5228
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5229

5230 5231 5232
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5233
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5234
{
5235
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5236 5237 5238
	/*
	 * Underflow?
	 */
5239 5240
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5241
#endif
L
Linus Torvalds 已提交
5242
	preempt_count() += val;
5243
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5244 5245 5246
	/*
	 * Spinlock count overflowing soon?
	 */
5247 5248
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5249 5250 5251
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5252 5253 5254
}
EXPORT_SYMBOL(add_preempt_count);

5255
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5256
{
5257
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5258 5259 5260
	/*
	 * Underflow?
	 */
5261
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5262
		return;
L
Linus Torvalds 已提交
5263 5264 5265
	/*
	 * Is the spinlock portion underflowing?
	 */
5266 5267 5268
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5269
#endif
5270

5271 5272
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5273 5274 5275 5276 5277 5278 5279
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5280
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5281
 */
I
Ingo Molnar 已提交
5282
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5283
{
5284 5285 5286 5287 5288
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5289
	debug_show_held_locks(prev);
5290
	print_modules();
I
Ingo Molnar 已提交
5291 5292
	if (irqs_disabled())
		print_irqtrace_events(prev);
5293 5294 5295 5296 5297

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5298
}
L
Linus Torvalds 已提交
5299

I
Ingo Molnar 已提交
5300 5301 5302 5303 5304
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5305
	/*
I
Ingo Molnar 已提交
5306
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5307 5308 5309
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5310
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5311 5312
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5313 5314
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5315
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5316 5317
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5318 5319
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5320 5321
	}
#endif
I
Ingo Molnar 已提交
5322 5323
}

5324
static void put_prev_task(struct rq *rq, struct task_struct *p)
M
Mike Galbraith 已提交
5325
{
5326
	u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
M
Mike Galbraith 已提交
5327

5328
	update_avg(&p->se.avg_running, runtime);
M
Mike Galbraith 已提交
5329

5330
	if (p->state == TASK_RUNNING) {
M
Mike Galbraith 已提交
5331 5332 5333 5334 5335 5336 5337 5338 5339
		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
5340 5341 5342 5343
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
		update_avg(&p->se.avg_overlap, runtime);
	} else {
		update_avg(&p->se.avg_running, 0);
M
Mike Galbraith 已提交
5344
	}
5345
	p->sched_class->put_prev_task(rq, p);
M
Mike Galbraith 已提交
5346 5347
}

I
Ingo Molnar 已提交
5348 5349 5350 5351
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5352
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5353
{
5354
	const struct sched_class *class;
I
Ingo Molnar 已提交
5355
	struct task_struct *p;
L
Linus Torvalds 已提交
5356 5357

	/*
I
Ingo Molnar 已提交
5358 5359
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5360
	 */
I
Ingo Molnar 已提交
5361
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5362
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5363 5364
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5365 5366
	}

I
Ingo Molnar 已提交
5367 5368
	class = sched_class_highest;
	for ( ; ; ) {
5369
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5370 5371 5372 5373 5374 5375 5376 5377 5378
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5379

I
Ingo Molnar 已提交
5380 5381 5382
/*
 * schedule() is the main scheduler function.
 */
5383
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5384 5385
{
	struct task_struct *prev, *next;
5386
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5387
	struct rq *rq;
5388
	int cpu;
I
Ingo Molnar 已提交
5389

5390 5391
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5392 5393
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5394
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5395 5396 5397 5398 5399 5400 5401
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5402

5403
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5404
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5405

5406
	spin_lock_irq(&rq->lock);
5407
	update_rq_clock(rq);
5408
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5409 5410

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5411
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5412
			prev->state = TASK_RUNNING;
5413
		else
5414
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5415
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5416 5417
	}

5418
	pre_schedule(rq, prev);
5419

I
Ingo Molnar 已提交
5420
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5421 5422
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5423
	put_prev_task(rq, prev);
5424
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5425 5426

	if (likely(prev != next)) {
5427
		sched_info_switch(prev, next);
5428
		perf_event_task_sched_out(prev, next, cpu);
5429

L
Linus Torvalds 已提交
5430 5431 5432 5433
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5434
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5435 5436 5437 5438 5439 5440
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5441 5442 5443
	} else
		spin_unlock_irq(&rq->lock);

5444
	post_schedule(rq);
L
Linus Torvalds 已提交
5445

P
Peter Zijlstra 已提交
5446
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5447
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5448

L
Linus Torvalds 已提交
5449
	preempt_enable_no_resched();
5450
	if (need_resched())
L
Linus Torvalds 已提交
5451 5452 5453 5454
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5516 5517
#ifdef CONFIG_PREEMPT
/*
5518
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5519
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5520 5521 5522 5523 5524
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5525

L
Linus Torvalds 已提交
5526 5527
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5528
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5529
	 */
N
Nick Piggin 已提交
5530
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5531 5532
		return;

5533 5534 5535 5536
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5537

5538 5539 5540 5541 5542
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5543
	} while (need_resched());
L
Linus Torvalds 已提交
5544 5545 5546 5547
}
EXPORT_SYMBOL(preempt_schedule);

/*
5548
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5549 5550 5551 5552 5553 5554 5555
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5556

5557
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5558 5559
	BUG_ON(ti->preempt_count || !irqs_disabled());

5560 5561 5562 5563 5564 5565
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5566

5567 5568 5569 5570 5571
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5572
	} while (need_resched());
L
Linus Torvalds 已提交
5573 5574 5575 5576
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5577
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5578
			  void *key)
L
Linus Torvalds 已提交
5579
{
P
Peter Zijlstra 已提交
5580
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5581 5582 5583 5584
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5585 5586
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5587 5588 5589
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5590
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5591 5592
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5593
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5594
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5595
{
5596
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5597

5598
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5599 5600
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5601
		if (curr->func(curr, mode, wake_flags, key) &&
5602
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608 5609 5610 5611
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5612
 * @key: is directly passed to the wakeup function
5613 5614 5615
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5616
 */
5617
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5618
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5631
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5632 5633 5634 5635
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5636 5637 5638 5639 5640
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5641
/**
5642
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5643 5644 5645
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5646
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651 5652 5653
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5654 5655 5656
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5657
 */
5658 5659
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5660 5661
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5662
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5663 5664 5665 5666 5667

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5668
		wake_flags = 0;
L
Linus Torvalds 已提交
5669 5670

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5671
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5672 5673
	spin_unlock_irqrestore(&q->lock, flags);
}
5674 5675 5676 5677 5678 5679 5680 5681 5682
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5683 5684
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5685 5686 5687 5688 5689 5690 5691 5692
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5693 5694 5695
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5696
 */
5697
void complete(struct completion *x)
L
Linus Torvalds 已提交
5698 5699 5700 5701 5702
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5703
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5704 5705 5706 5707
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5708 5709 5710 5711 5712
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5713 5714 5715
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5716
 */
5717
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5718 5719 5720 5721 5722
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5723
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5724 5725 5726 5727
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5728 5729
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5730 5731 5732 5733 5734 5735 5736
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5737
			if (signal_pending_state(state, current)) {
5738 5739
				timeout = -ERESTARTSYS;
				break;
5740 5741
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5742 5743 5744
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5745
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5746
		__remove_wait_queue(&x->wait, &wait);
5747 5748
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5749 5750
	}
	x->done--;
5751
	return timeout ?: 1;
L
Linus Torvalds 已提交
5752 5753
}

5754 5755
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5756 5757 5758 5759
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5760
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5761
	spin_unlock_irq(&x->wait.lock);
5762 5763
	return timeout;
}
L
Linus Torvalds 已提交
5764

5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5775
void __sched wait_for_completion(struct completion *x)
5776 5777
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5778
}
5779
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5780

5781 5782 5783 5784 5785 5786 5787 5788 5789
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5790
unsigned long __sched
5791
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5792
{
5793
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5794
}
5795
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5796

5797 5798 5799 5800 5801 5802 5803
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5804
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5805
{
5806 5807 5808 5809
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5810
}
5811
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5812

5813 5814 5815 5816 5817 5818 5819 5820
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5821
unsigned long __sched
5822 5823
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5824
{
5825
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5826
}
5827
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5828

5829 5830 5831 5832 5833 5834 5835
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5891 5892
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5893
{
I
Ingo Molnar 已提交
5894 5895 5896 5897
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5898

5899
	__set_current_state(state);
L
Linus Torvalds 已提交
5900

5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5915 5916 5917
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5918
long __sched
I
Ingo Molnar 已提交
5919
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5920
{
5921
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5922 5923 5924
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5925
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5926
{
5927
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5928 5929 5930
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5931
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5932
{
5933
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5934 5935 5936
}
EXPORT_SYMBOL(sleep_on_timeout);

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5949
void rt_mutex_setprio(struct task_struct *p, int prio)
5950 5951
{
	unsigned long flags;
5952
	int oldprio, on_rq, running;
5953
	struct rq *rq;
5954
	const struct sched_class *prev_class = p->sched_class;
5955 5956 5957 5958

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5959
	update_rq_clock(rq);
5960

5961
	oldprio = p->prio;
I
Ingo Molnar 已提交
5962
	on_rq = p->se.on_rq;
5963
	running = task_current(rq, p);
5964
	if (on_rq)
5965
		dequeue_task(rq, p, 0);
5966 5967
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5968 5969 5970 5971 5972 5973

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5974 5975
	p->prio = prio;

5976 5977
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5978
	if (on_rq) {
5979
		enqueue_task(rq, p, 0);
5980 5981

		check_class_changed(rq, p, prev_class, oldprio, running);
5982 5983 5984 5985 5986 5987
	}
	task_rq_unlock(rq, &flags);
}

#endif

5988
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5989
{
I
Ingo Molnar 已提交
5990
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5991
	unsigned long flags;
5992
	struct rq *rq;
L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999 6000

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6001
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6002 6003 6004 6005
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6006
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6007
	 */
6008
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6009 6010 6011
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6012
	on_rq = p->se.on_rq;
6013
	if (on_rq)
6014
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6015 6016

	p->static_prio = NICE_TO_PRIO(nice);
6017
	set_load_weight(p);
6018 6019 6020
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6021

I
Ingo Molnar 已提交
6022
	if (on_rq) {
6023
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6024
		/*
6025 6026
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6027
		 */
6028
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6029 6030 6031 6032 6033 6034 6035
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6036 6037 6038 6039 6040
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6041
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6042
{
6043 6044
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6045

M
Matt Mackall 已提交
6046 6047 6048 6049
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6050 6051 6052 6053 6054 6055 6056 6057 6058
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6059
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6060
{
6061
	long nice, retval;
L
Linus Torvalds 已提交
6062 6063 6064 6065 6066 6067

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6068 6069
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6070 6071 6072
	if (increment > 40)
		increment = 40;

6073
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6074 6075 6076 6077 6078
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6079 6080 6081
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6100
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6101 6102 6103 6104 6105 6106 6107 6108
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6109
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6110 6111 6112
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6113
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6128
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133 6134 6135 6136
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6137
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6138
{
6139
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6140 6141 6142
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6143 6144
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6145
{
I
Ingo Molnar 已提交
6146
	BUG_ON(p->se.on_rq);
6147

L
Linus Torvalds 已提交
6148
	p->policy = policy;
I
Ingo Molnar 已提交
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6161
	p->rt_priority = prio;
6162 6163 6164
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6165
	set_load_weight(p);
L
Linus Torvalds 已提交
6166 6167
}

6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6184 6185
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6186
{
6187
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6188
	unsigned long flags;
6189
	const struct sched_class *prev_class = p->sched_class;
6190
	struct rq *rq;
6191
	int reset_on_fork;
L
Linus Torvalds 已提交
6192

6193 6194
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6195 6196
recheck:
	/* double check policy once rq lock held */
6197 6198
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6199
		policy = oldpolicy = p->policy;
6200 6201 6202 6203 6204 6205 6206 6207 6208 6209
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6210 6211
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6212 6213
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6214 6215
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6216
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6217
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6218
		return -EINVAL;
6219
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6220 6221
		return -EINVAL;

6222 6223 6224
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6225
	if (user && !capable(CAP_SYS_NICE)) {
6226
		if (rt_policy(policy)) {
6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6243 6244 6245 6246 6247 6248
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6249

6250
		/* can't change other user's priorities */
6251
		if (!check_same_owner(p))
6252
			return -EPERM;
6253 6254 6255 6256

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6257
	}
L
Linus Torvalds 已提交
6258

6259
	if (user) {
6260
#ifdef CONFIG_RT_GROUP_SCHED
6261 6262 6263 6264
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6265 6266
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6267
			return -EPERM;
6268 6269
#endif

6270 6271 6272 6273 6274
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6275 6276 6277 6278 6279
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6280 6281 6282 6283
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6284
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6285 6286 6287
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6288 6289
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6290 6291
		goto recheck;
	}
I
Ingo Molnar 已提交
6292
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6293
	on_rq = p->se.on_rq;
6294
	running = task_current(rq, p);
6295
	if (on_rq)
6296
		deactivate_task(rq, p, 0);
6297 6298
	if (running)
		p->sched_class->put_prev_task(rq, p);
6299

6300 6301
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6302
	oldprio = p->prio;
I
Ingo Molnar 已提交
6303
	__setscheduler(rq, p, policy, param->sched_priority);
6304

6305 6306
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6307 6308
	if (on_rq) {
		activate_task(rq, p, 0);
6309 6310

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6311
	}
6312 6313 6314
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6315 6316
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6317 6318
	return 0;
}
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6333 6334
EXPORT_SYMBOL_GPL(sched_setscheduler);

6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6352 6353
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6354 6355 6356
{
	struct sched_param lparam;
	struct task_struct *p;
6357
	int retval;
L
Linus Torvalds 已提交
6358 6359 6360 6361 6362

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6363 6364 6365

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6366
	p = find_process_by_pid(pid);
6367 6368 6369
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6370

L
Linus Torvalds 已提交
6371 6372 6373 6374 6375 6376 6377 6378 6379
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6380 6381
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6382
{
6383 6384 6385 6386
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6387 6388 6389 6390 6391 6392 6393 6394
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6395
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6396 6397 6398 6399 6400 6401 6402 6403
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6404
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6405
{
6406
	struct task_struct *p;
6407
	int retval;
L
Linus Torvalds 已提交
6408 6409

	if (pid < 0)
6410
		return -EINVAL;
L
Linus Torvalds 已提交
6411 6412 6413 6414 6415 6416 6417

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6418 6419
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6426
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6427 6428 6429
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6430
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6431 6432
{
	struct sched_param lp;
6433
	struct task_struct *p;
6434
	int retval;
L
Linus Torvalds 已提交
6435 6436

	if (!param || pid < 0)
6437
		return -EINVAL;
L
Linus Torvalds 已提交
6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6464
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6465
{
6466
	cpumask_var_t cpus_allowed, new_mask;
6467 6468
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6469

6470
	get_online_cpus();
L
Linus Torvalds 已提交
6471 6472 6473 6474 6475
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6476
		put_online_cpus();
L
Linus Torvalds 已提交
6477 6478 6479 6480 6481
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6482
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6483 6484 6485 6486 6487
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6488 6489 6490 6491 6492 6493 6494 6495
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6496
	retval = -EPERM;
6497
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6498 6499
		goto out_unlock;

6500 6501 6502 6503
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6504 6505
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6506
 again:
6507
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6508

P
Paul Menage 已提交
6509
	if (!retval) {
6510 6511
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6512 6513 6514 6515 6516
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6517
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6518 6519 6520
			goto again;
		}
	}
L
Linus Torvalds 已提交
6521
out_unlock:
6522 6523 6524 6525
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6526
	put_task_struct(p);
6527
	put_online_cpus();
L
Linus Torvalds 已提交
6528 6529 6530 6531
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6532
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6533
{
6534 6535 6536 6537 6538
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6548 6549
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6550
{
6551
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6552 6553
	int retval;

6554 6555
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6556

6557 6558 6559 6560 6561
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6562 6563
}

6564
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6565
{
6566
	struct task_struct *p;
L
Linus Torvalds 已提交
6567 6568
	int retval;

6569
	get_online_cpus();
L
Linus Torvalds 已提交
6570 6571 6572 6573 6574 6575 6576
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6577 6578 6579 6580
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6581
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6582 6583 6584

out_unlock:
	read_unlock(&tasklist_lock);
6585
	put_online_cpus();
L
Linus Torvalds 已提交
6586

6587
	return retval;
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592 6593 6594 6595
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6596 6597
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6598 6599
{
	int ret;
6600
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6601

6602
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6603 6604
		return -EINVAL;

6605 6606
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6607

6608 6609 6610 6611 6612 6613 6614 6615
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6616

6617
	return ret;
L
Linus Torvalds 已提交
6618 6619 6620 6621 6622
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6623 6624
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6625
 */
6626
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6627
{
6628
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6629

6630
	schedstat_inc(rq, yld_count);
6631
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6632 6633 6634 6635 6636 6637

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6638
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6639 6640 6641 6642 6643 6644 6645 6646
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6647 6648 6649 6650 6651
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6652
static void __cond_resched(void)
L
Linus Torvalds 已提交
6653
{
6654 6655 6656
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6657 6658
}

6659
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6660
{
P
Peter Zijlstra 已提交
6661
	if (should_resched()) {
L
Linus Torvalds 已提交
6662 6663 6664 6665 6666
		__cond_resched();
		return 1;
	}
	return 0;
}
6667
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6668 6669

/*
6670
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6671 6672
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6673
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6674 6675 6676
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6677
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6678
{
P
Peter Zijlstra 已提交
6679
	int resched = should_resched();
J
Jan Kara 已提交
6680 6681
	int ret = 0;

6682 6683
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6684
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6685
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6686
		if (resched)
N
Nick Piggin 已提交
6687 6688 6689
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6690
		ret = 1;
L
Linus Torvalds 已提交
6691 6692
		spin_lock(lock);
	}
J
Jan Kara 已提交
6693
	return ret;
L
Linus Torvalds 已提交
6694
}
6695
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6696

6697
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6698 6699 6700
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6701
	if (should_resched()) {
6702
		local_bh_enable();
L
Linus Torvalds 已提交
6703 6704 6705 6706 6707 6708
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6709
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6710 6711 6712 6713

/**
 * yield - yield the current processor to other threads.
 *
6714
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6725
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6726 6727 6728 6729 6730 6731 6732
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6733
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6734

6735
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6736
	atomic_inc(&rq->nr_iowait);
6737
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6738
	schedule();
6739
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6740
	atomic_dec(&rq->nr_iowait);
6741
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6742 6743 6744 6745 6746
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6747
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6748 6749
	long ret;

6750
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6751
	atomic_inc(&rq->nr_iowait);
6752
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6753
	ret = schedule_timeout(timeout);
6754
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6755
	atomic_dec(&rq->nr_iowait);
6756
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6767
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6777
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6778
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6792
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6793 6794 6795 6796 6797 6798 6799 6800 6801
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6802
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6803
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6817
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6818
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6819
{
6820
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6821
	unsigned int time_slice;
6822
	int retval;
L
Linus Torvalds 已提交
6823 6824 6825
	struct timespec t;

	if (pid < 0)
6826
		return -EINVAL;
L
Linus Torvalds 已提交
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6838
	time_slice = p->sched_class->get_rr_interval(p);
D
Dmitry Adamushko 已提交
6839

L
Linus Torvalds 已提交
6840
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6841
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6842 6843
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6844

L
Linus Torvalds 已提交
6845 6846 6847 6848 6849
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6850
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6851

6852
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6853 6854
{
	unsigned long free = 0;
6855
	unsigned state;
L
Linus Torvalds 已提交
6856 6857

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6858
	printk(KERN_INFO "%-13.13s %c", p->comm,
6859
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6860
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6861
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6862
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6863
	else
I
Ingo Molnar 已提交
6864
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6865 6866
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6867
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6868
	else
I
Ingo Molnar 已提交
6869
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6870 6871
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6872
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6873
#endif
6874 6875 6876
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6877

6878
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6879 6880
}

I
Ingo Molnar 已提交
6881
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6882
{
6883
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6884

6885 6886 6887
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6888
#else
6889 6890
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6891 6892 6893 6894 6895 6896 6897 6898
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6899
		if (!state_filter || (p->state & state_filter))
6900
			sched_show_task(p);
L
Linus Torvalds 已提交
6901 6902
	} while_each_thread(g, p);

6903 6904
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6905 6906 6907
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6908
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6909 6910 6911 6912 6913
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6914 6915
}

I
Ingo Molnar 已提交
6916 6917
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6918
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6919 6920
}

6921 6922 6923 6924 6925 6926 6927 6928
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6929
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6930
{
6931
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6932 6933
	unsigned long flags;

6934 6935
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6936 6937 6938
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6939
	idle->prio = idle->normal_prio = MAX_PRIO;
6940
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6941
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6942 6943

	rq->curr = rq->idle = idle;
6944 6945 6946
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6947 6948 6949
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6950 6951 6952
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6953
	task_thread_info(idle)->preempt_count = 0;
6954
#endif
I
Ingo Molnar 已提交
6955 6956 6957 6958
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6959
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6960 6961 6962 6963 6964 6965 6966
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6967
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6968
 */
6969
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6970

I
Ingo Molnar 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6994 6995

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6996 6997
}

L
Linus Torvalds 已提交
6998 6999 7000 7001
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7002
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7021
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7022 7023
 * call is not atomic; no spinlocks may be held.
 */
7024
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7025
{
7026
	struct migration_req req;
L
Linus Torvalds 已提交
7027
	unsigned long flags;
7028
	struct rq *rq;
7029
	int ret = 0;
L
Linus Torvalds 已提交
7030 7031

	rq = task_rq_lock(p, &flags);
7032
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7033 7034 7035 7036
		ret = -EINVAL;
		goto out;
	}

7037
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7038
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7039 7040 7041 7042
		ret = -EINVAL;
		goto out;
	}

7043
	if (p->sched_class->set_cpus_allowed)
7044
		p->sched_class->set_cpus_allowed(p, new_mask);
7045
	else {
7046 7047
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7048 7049
	}

L
Linus Torvalds 已提交
7050
	/* Can the task run on the task's current CPU? If so, we're done */
7051
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7052 7053
		goto out;

R
Rusty Russell 已提交
7054
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7055
		/* Need help from migration thread: drop lock and wait. */
7056 7057 7058
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7059 7060
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7061
		put_task_struct(mt);
L
Linus Torvalds 已提交
7062 7063 7064 7065 7066 7067
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7068

L
Linus Torvalds 已提交
7069 7070
	return ret;
}
7071
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7072 7073

/*
I
Ingo Molnar 已提交
7074
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7075 7076 7077 7078 7079 7080
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7081 7082
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7083
 */
7084
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7085
{
7086
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7087
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7088

7089
	if (unlikely(!cpu_active(dest_cpu)))
7090
		return ret;
L
Linus Torvalds 已提交
7091 7092 7093 7094 7095 7096 7097

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7098
		goto done;
L
Linus Torvalds 已提交
7099
	/* Affinity changed (again). */
7100
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7101
		goto fail;
L
Linus Torvalds 已提交
7102

I
Ingo Molnar 已提交
7103
	on_rq = p->se.on_rq;
7104
	if (on_rq)
7105
		deactivate_task(rq_src, p, 0);
7106

L
Linus Torvalds 已提交
7107
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7108 7109
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7110
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7111
	}
L
Linus Torvalds 已提交
7112
done:
7113
	ret = 1;
L
Linus Torvalds 已提交
7114
fail:
L
Linus Torvalds 已提交
7115
	double_rq_unlock(rq_src, rq_dest);
7116
	return ret;
L
Linus Torvalds 已提交
7117 7118
}

7119 7120 7121 7122 7123
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7124 7125 7126 7127 7128
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7129
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7130
{
7131
	int badcpu;
L
Linus Torvalds 已提交
7132
	int cpu = (long)data;
7133
	struct rq *rq;
L
Linus Torvalds 已提交
7134 7135 7136 7137 7138 7139

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7140
		struct migration_req *req;
L
Linus Torvalds 已提交
7141 7142 7143 7144 7145 7146
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7147
			break;
L
Linus Torvalds 已提交
7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7163
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7164 7165
		list_del_init(head->next);

7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7177
		local_irq_enable();
L
Linus Torvalds 已提交
7178 7179 7180 7181 7182 7183 7184 7185 7186

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7198
/*
7199
 * Figure out where task on dead CPU should go, use force if necessary.
7200
 */
7201
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7202
{
7203
	int dest_cpu;
7204
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7221

7222 7223 7224 7225 7226 7227 7228 7229 7230
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7231
		}
7232 7233 7234 7235 7236 7237
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7238 7239 7240 7241 7242 7243 7244 7245 7246
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7247
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7248
{
R
Rusty Russell 已提交
7249
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7263
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7264

7265
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7266

7267 7268
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7269 7270
			continue;

7271 7272 7273
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7274

7275
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7276 7277
}

I
Ingo Molnar 已提交
7278 7279
/*
 * Schedules idle task to be the next runnable task on current CPU.
7280 7281
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7282 7283 7284
 */
void sched_idle_next(void)
{
7285
	int this_cpu = smp_processor_id();
7286
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7287 7288 7289 7290
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7291
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7292

7293 7294 7295
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7296 7297 7298
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7299
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7300

7301 7302
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7303 7304 7305 7306

	spin_unlock_irqrestore(&rq->lock, flags);
}

7307 7308
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7322
/* called under rq->lock with disabled interrupts */
7323
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7324
{
7325
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7326 7327

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7328
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7329 7330

	/* Cannot have done final schedule yet: would have vanished. */
7331
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7332

7333
	get_task_struct(p);
L
Linus Torvalds 已提交
7334 7335 7336

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7337
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7338 7339
	 * fine.
	 */
7340
	spin_unlock_irq(&rq->lock);
7341
	move_task_off_dead_cpu(dead_cpu, p);
7342
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7343

7344
	put_task_struct(p);
L
Linus Torvalds 已提交
7345 7346 7347 7348 7349
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7350
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7351
	struct task_struct *next;
7352

I
Ingo Molnar 已提交
7353 7354 7355
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7356
		update_rq_clock(rq);
7357
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7358 7359
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7360
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7361
		migrate_dead(dead_cpu, next);
7362

L
Linus Torvalds 已提交
7363 7364
	}
}
7365 7366 7367 7368 7369 7370 7371

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7372
	rq->calc_load_active = 0;
7373
}
L
Linus Torvalds 已提交
7374 7375
#endif /* CONFIG_HOTPLUG_CPU */

7376 7377 7378
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7379 7380
	{
		.procname	= "sched_domain",
7381
		.mode		= 0555,
7382
	},
I
Ingo Molnar 已提交
7383
	{0, },
7384 7385 7386
};

static struct ctl_table sd_ctl_root[] = {
7387
	{
7388
		.ctl_name	= CTL_KERN,
7389
		.procname	= "kernel",
7390
		.mode		= 0555,
7391 7392
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7393
	{0, },
7394 7395 7396 7397 7398
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7399
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7400 7401 7402 7403

	return entry;
}

7404 7405
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7406
	struct ctl_table *entry;
7407

7408 7409 7410
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7411
	 * will always be set. In the lowest directory the names are
7412 7413 7414
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7415 7416
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7417 7418 7419
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7420 7421 7422 7423 7424

	kfree(*tablep);
	*tablep = NULL;
}

7425
static void
7426
set_table_entry(struct ctl_table *entry,
7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7440
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7441

7442 7443 7444
	if (table == NULL)
		return NULL;

7445
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7446
		sizeof(long), 0644, proc_doulongvec_minmax);
7447
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7448
		sizeof(long), 0644, proc_doulongvec_minmax);
7449
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7450
		sizeof(int), 0644, proc_dointvec_minmax);
7451
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7452
		sizeof(int), 0644, proc_dointvec_minmax);
7453
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7454
		sizeof(int), 0644, proc_dointvec_minmax);
7455
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7456
		sizeof(int), 0644, proc_dointvec_minmax);
7457
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7458
		sizeof(int), 0644, proc_dointvec_minmax);
7459
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7460
		sizeof(int), 0644, proc_dointvec_minmax);
7461
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7462
		sizeof(int), 0644, proc_dointvec_minmax);
7463
	set_table_entry(&table[9], "cache_nice_tries",
7464 7465
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7466
	set_table_entry(&table[10], "flags", &sd->flags,
7467
		sizeof(int), 0644, proc_dointvec_minmax);
7468 7469 7470
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7471 7472 7473 7474

	return table;
}

7475
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7476 7477 7478 7479 7480 7481 7482 7483 7484
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7485 7486
	if (table == NULL)
		return NULL;
7487 7488 7489 7490 7491

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7492
		entry->mode = 0555;
7493 7494 7495 7496 7497 7498 7499 7500
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7501
static void register_sched_domain_sysctl(void)
7502 7503 7504 7505 7506
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7507 7508 7509
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7510 7511 7512
	if (entry == NULL)
		return;

7513
	for_each_online_cpu(i) {
7514 7515
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7516
		entry->mode = 0555;
7517
		entry->child = sd_alloc_ctl_cpu_table(i);
7518
		entry++;
7519
	}
7520 7521

	WARN_ON(sd_sysctl_header);
7522 7523
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7524

7525
/* may be called multiple times per register */
7526 7527
static void unregister_sched_domain_sysctl(void)
{
7528 7529
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7530
	sd_sysctl_header = NULL;
7531 7532
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7533
}
7534
#else
7535 7536 7537 7538
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7539 7540 7541 7542
{
}
#endif

7543 7544 7545 7546 7547
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7548
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7568
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7569 7570 7571 7572
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7573 7574 7575 7576
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7577 7578
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7579 7580
{
	struct task_struct *p;
7581
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7582
	unsigned long flags;
7583
	struct rq *rq;
L
Linus Torvalds 已提交
7584 7585

	switch (action) {
7586

L
Linus Torvalds 已提交
7587
	case CPU_UP_PREPARE:
7588
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7589
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7590 7591 7592 7593 7594
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7595
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7596
		task_rq_unlock(rq, &flags);
7597
		get_task_struct(p);
L
Linus Torvalds 已提交
7598
		cpu_rq(cpu)->migration_thread = p;
7599
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7600
		break;
7601

L
Linus Torvalds 已提交
7602
	case CPU_ONLINE:
7603
	case CPU_ONLINE_FROZEN:
7604
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7605
		wake_up_process(cpu_rq(cpu)->migration_thread);
7606 7607 7608 7609 7610

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7611
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7612 7613

			set_rq_online(rq);
7614 7615
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7616
		break;
7617

L
Linus Torvalds 已提交
7618 7619
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7620
	case CPU_UP_CANCELED_FROZEN:
7621 7622
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7623
		/* Unbind it from offline cpu so it can run. Fall thru. */
7624
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7625
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7626
		kthread_stop(cpu_rq(cpu)->migration_thread);
7627
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7628 7629
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7630

L
Linus Torvalds 已提交
7631
	case CPU_DEAD:
7632
	case CPU_DEAD_FROZEN:
7633
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7634 7635 7636
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7637
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7638 7639
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7640
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7641
		update_rq_clock(rq);
7642
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7643
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7644 7645
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7646
		migrate_dead_tasks(cpu);
7647
		spin_unlock_irq(&rq->lock);
7648
		cpuset_unlock();
L
Linus Torvalds 已提交
7649 7650
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7651
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7652 7653 7654 7655 7656
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7657 7658
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7659 7660
			struct migration_req *req;

L
Linus Torvalds 已提交
7661
			req = list_entry(rq->migration_queue.next,
7662
					 struct migration_req, list);
L
Linus Torvalds 已提交
7663
			list_del_init(&req->list);
B
Brian King 已提交
7664
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7665
			complete(&req->done);
B
Brian King 已提交
7666
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7667 7668 7669
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7670

7671 7672
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7673 7674 7675 7676
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7677
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7678
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7679 7680 7681
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7682 7683 7684 7685 7686
#endif
	}
	return NOTIFY_OK;
}

7687 7688 7689
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7690
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7691
 */
7692
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7693 7694 7695 7696
	.notifier_call = migration_call,
	.priority = 10
};

7697
static int __init migration_init(void)
L
Linus Torvalds 已提交
7698 7699
{
	void *cpu = (void *)(long)smp_processor_id();
7700
	int err;
7701 7702

	/* Start one for the boot CPU: */
7703 7704
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7705 7706
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7707

7708
	return 0;
L
Linus Torvalds 已提交
7709
}
7710
early_initcall(migration_init);
L
Linus Torvalds 已提交
7711 7712 7713
#endif

#ifdef CONFIG_SMP
7714

7715
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7716

7717
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7718
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7719
{
I
Ingo Molnar 已提交
7720
	struct sched_group *group = sd->groups;
7721
	char str[256];
L
Linus Torvalds 已提交
7722

R
Rusty Russell 已提交
7723
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7724
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7725 7726 7727 7728 7729 7730 7731 7732 7733

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7734 7735
	}

7736
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7737

7738
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7739 7740 7741
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7742
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7743 7744 7745
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7746

I
Ingo Molnar 已提交
7747
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7748
	do {
I
Ingo Molnar 已提交
7749 7750 7751
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7752 7753 7754
			break;
		}

7755
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7756 7757 7758 7759 7760
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7761

7762
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7763 7764 7765 7766
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7767

7768
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7769 7770 7771 7772
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7773

7774
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7775

R
Rusty Russell 已提交
7776
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7777 7778

		printk(KERN_CONT " %s", str);
7779 7780 7781
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7782
		}
L
Linus Torvalds 已提交
7783

I
Ingo Molnar 已提交
7784 7785 7786
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7787

7788
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7789
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7790

7791 7792
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7793 7794 7795 7796
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7797

I
Ingo Molnar 已提交
7798 7799
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7800
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7801
	int level = 0;
L
Linus Torvalds 已提交
7802

I
Ingo Molnar 已提交
7803 7804 7805 7806
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7807

I
Ingo Molnar 已提交
7808 7809
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7810
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7811 7812 7813 7814
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7815
	for (;;) {
7816
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7817
			break;
L
Linus Torvalds 已提交
7818 7819
		level++;
		sd = sd->parent;
7820
		if (!sd)
I
Ingo Molnar 已提交
7821 7822
			break;
	}
7823
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7824
}
7825
#else /* !CONFIG_SCHED_DEBUG */
7826
# define sched_domain_debug(sd, cpu) do { } while (0)
7827
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7828

7829
static int sd_degenerate(struct sched_domain *sd)
7830
{
7831
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7832 7833 7834 7835 7836 7837
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7838 7839 7840
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7841 7842 7843 7844 7845
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7846
	if (sd->flags & (SD_WAKE_AFFINE))
7847 7848 7849 7850 7851
		return 0;

	return 1;
}

7852 7853
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7854 7855 7856 7857 7858 7859
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7860
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7861 7862 7863 7864 7865 7866 7867
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7868 7869 7870
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7871 7872
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7873 7874 7875 7876 7877 7878 7879
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7880 7881
static void free_rootdomain(struct root_domain *rd)
{
7882 7883
	cpupri_cleanup(&rd->cpupri);

7884 7885 7886 7887 7888 7889
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7890 7891
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7892
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7893 7894 7895 7896 7897
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7898
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7899

7900
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7901
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7902

7903
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7904

I
Ingo Molnar 已提交
7905 7906 7907 7908 7909 7910 7911
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7912 7913 7914 7915 7916
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7917
	cpumask_set_cpu(rq->cpu, rd->span);
7918
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7919
		set_rq_online(rq);
G
Gregory Haskins 已提交
7920 7921

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7922 7923 7924

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7925 7926
}

L
Li Zefan 已提交
7927
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7928
{
7929 7930
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7931 7932
	memset(rd, 0, sizeof(*rd));

7933 7934
	if (bootmem)
		gfp = GFP_NOWAIT;
7935

7936
	if (!alloc_cpumask_var(&rd->span, gfp))
7937
		goto out;
7938
	if (!alloc_cpumask_var(&rd->online, gfp))
7939
		goto free_span;
7940
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7941
		goto free_online;
7942

P
Pekka Enberg 已提交
7943
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7944
		goto free_rto_mask;
7945
	return 0;
7946

7947 7948
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7949 7950 7951 7952
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7953
out:
7954
	return -ENOMEM;
G
Gregory Haskins 已提交
7955 7956 7957 7958
}

static void init_defrootdomain(void)
{
7959 7960
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7961 7962 7963
	atomic_set(&def_root_domain.refcount, 1);
}

7964
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7965 7966 7967 7968 7969 7970 7971
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7972 7973 7974 7975
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7976 7977 7978 7979

	return rd;
}

L
Linus Torvalds 已提交
7980
/*
I
Ingo Molnar 已提交
7981
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7982 7983
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7984 7985
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7986
{
7987
	struct rq *rq = cpu_rq(cpu);
7988 7989 7990
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7991
	for (tmp = sd; tmp; ) {
7992 7993 7994
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7995

7996
		if (sd_parent_degenerate(tmp, parent)) {
7997
			tmp->parent = parent->parent;
7998 7999
			if (parent->parent)
				parent->parent->child = tmp;
8000 8001
		} else
			tmp = tmp->parent;
8002 8003
	}

8004
	if (sd && sd_degenerate(sd)) {
8005
		sd = sd->parent;
8006 8007 8008
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8009 8010 8011

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8012
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8013
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8014 8015 8016
}

/* cpus with isolated domains */
8017
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8018 8019 8020 8021

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8022
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8023 8024 8025
	return 1;
}

I
Ingo Molnar 已提交
8026
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8027 8028

/*
8029 8030
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8031 8032
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8033 8034 8035 8036 8037
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8038
static void
8039 8040 8041
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8042
					struct sched_group **sg,
8043 8044
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8045 8046 8047 8048
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8049
	cpumask_clear(covered);
8050

8051
	for_each_cpu(i, span) {
8052
		struct sched_group *sg;
8053
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8054 8055
		int j;

8056
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8057 8058
			continue;

8059
		cpumask_clear(sched_group_cpus(sg));
8060
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8061

8062
		for_each_cpu(j, span) {
8063
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8064 8065
				continue;

8066
			cpumask_set_cpu(j, covered);
8067
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8078
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8079

8080
#ifdef CONFIG_NUMA
8081

8082 8083 8084 8085 8086
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8087
 * Find the next node to include in a given scheduling domain. Simply
8088 8089 8090 8091
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8092
static int find_next_best_node(int node, nodemask_t *used_nodes)
8093 8094 8095 8096 8097
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8098
	for (i = 0; i < nr_node_ids; i++) {
8099
		/* Start at @node */
8100
		n = (node + i) % nr_node_ids;
8101 8102 8103 8104 8105

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8106
		if (node_isset(n, *used_nodes))
8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8118
	node_set(best_node, *used_nodes);
8119 8120 8121 8122 8123 8124
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8125
 * @span: resulting cpumask
8126
 *
I
Ingo Molnar 已提交
8127
 * Given a node, construct a good cpumask for its sched_domain to span. It
8128 8129 8130
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8131
static void sched_domain_node_span(int node, struct cpumask *span)
8132
{
8133
	nodemask_t used_nodes;
8134
	int i;
8135

8136
	cpumask_clear(span);
8137
	nodes_clear(used_nodes);
8138

8139
	cpumask_or(span, span, cpumask_of_node(node));
8140
	node_set(node, used_nodes);
8141 8142

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8143
		int next_node = find_next_best_node(node, &used_nodes);
8144

8145
		cpumask_or(span, span, cpumask_of_node(next_node));
8146 8147
	}
}
8148
#endif /* CONFIG_NUMA */
8149

8150
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8151

8152 8153
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8154 8155 8156
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8201
/*
8202
 * SMT sched-domains:
8203
 */
L
Linus Torvalds 已提交
8204
#ifdef CONFIG_SCHED_SMT
8205 8206
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8207

I
Ingo Molnar 已提交
8208
static int
8209 8210
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8211
{
8212
	if (sg)
8213
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8214 8215
	return cpu;
}
8216
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8217

8218 8219 8220
/*
 * multi-core sched-domains:
 */
8221
#ifdef CONFIG_SCHED_MC
8222 8223
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8224
#endif /* CONFIG_SCHED_MC */
8225 8226

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8227
static int
8228 8229
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8230
{
8231
	int group;
8232

8233
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8234
	group = cpumask_first(mask);
8235
	if (sg)
8236
		*sg = &per_cpu(sched_group_core, group).sg;
8237
	return group;
8238 8239
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8240
static int
8241 8242
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8243
{
8244
	if (sg)
8245
		*sg = &per_cpu(sched_group_core, cpu).sg;
8246 8247 8248 8249
	return cpu;
}
#endif

8250 8251
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8252

I
Ingo Molnar 已提交
8253
static int
8254 8255
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8256
{
8257
	int group;
8258
#ifdef CONFIG_SCHED_MC
8259
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8260
	group = cpumask_first(mask);
8261
#elif defined(CONFIG_SCHED_SMT)
8262
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8263
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8264
#else
8265
	group = cpu;
L
Linus Torvalds 已提交
8266
#endif
8267
	if (sg)
8268
		*sg = &per_cpu(sched_group_phys, group).sg;
8269
	return group;
L
Linus Torvalds 已提交
8270 8271 8272 8273
}

#ifdef CONFIG_NUMA
/*
8274 8275 8276
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8277
 */
8278
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8279
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8280

8281
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8282
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8283

8284 8285 8286
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8287
{
8288 8289
	int group;

8290
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8291
	group = cpumask_first(nodemask);
8292 8293

	if (sg)
8294
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8295
	return group;
L
Linus Torvalds 已提交
8296
}
8297

8298 8299 8300 8301 8302 8303 8304
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8305
	do {
8306
		for_each_cpu(j, sched_group_cpus(sg)) {
8307
			struct sched_domain *sd;
8308

8309
			sd = &per_cpu(phys_domains, j).sd;
8310
			if (j != group_first_cpu(sd->groups)) {
8311 8312 8313 8314 8315 8316
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8317

8318
			sg->cpu_power += sd->groups->cpu_power;
8319 8320 8321
		}
		sg = sg->next;
	} while (sg != group_head);
8322
}
8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8355
	sg->cpu_power = 0;
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8378
		sg->cpu_power = 0;
8379 8380 8381 8382 8383 8384 8385 8386 8387
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8388
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8389

8390
#ifdef CONFIG_NUMA
8391
/* Free memory allocated for various sched_group structures */
8392 8393
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8394
{
8395
	int cpu, i;
8396

8397
	for_each_cpu(cpu, cpu_map) {
8398 8399 8400 8401 8402 8403
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8404
		for (i = 0; i < nr_node_ids; i++) {
8405 8406
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8407
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8408
			if (cpumask_empty(nodemask))
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8425
#else /* !CONFIG_NUMA */
8426 8427
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8428 8429
{
}
8430
#endif /* CONFIG_NUMA */
8431

8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8446 8447
	long power;
	int weight;
8448 8449 8450

	WARN_ON(!sd || !sd->groups);

8451
	if (cpu != group_first_cpu(sd->groups))
8452 8453 8454 8455
		return;

	child = sd->child;

8456
	sd->groups->cpu_power = 0;
8457

8458 8459 8460 8461 8462
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8463 8464 8465
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8466
		 */
P
Peter Zijlstra 已提交
8467 8468
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8469
			power /= weight;
P
Peter Zijlstra 已提交
8470 8471
			power >>= SCHED_LOAD_SHIFT;
		}
8472
		sd->groups->cpu_power += power;
8473 8474 8475 8476
		return;
	}

	/*
8477
	 * Add cpu_power of each child group to this groups cpu_power.
8478 8479 8480
	 */
	group = child->groups;
	do {
8481
		sd->groups->cpu_power += group->cpu_power;
8482 8483 8484 8485
		group = group->next;
	} while (group != child->groups);
}

8486 8487 8488 8489 8490
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8491 8492 8493 8494 8495 8496
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8497
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8498

8499 8500 8501 8502 8503
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8504
	sd->level = SD_LV_##type;				\
8505
	SD_INIT_NAME(sd, type);					\
8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8520 8521 8522 8523
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8524 8525 8526 8527 8528 8529
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8548
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8549 8550
	} else {
		/* turn on idle balance on this domain */
8551
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8552 8553 8554
	}
}

8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8575
#ifdef CONFIG_NUMA
8576 8577 8578 8579 8580 8581 8582
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8583
#endif
8584 8585 8586 8587
	case sa_none:
		break;
	}
}
8588

8589 8590 8591
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8592
#ifdef CONFIG_NUMA
8593 8594 8595 8596 8597 8598 8599 8600 8601 8602
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8603
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8604
		return sa_notcovered;
8605
	}
8606
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8607
#endif
8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8620
		printk(KERN_WARNING "Cannot alloc root domain\n");
8621
		return sa_tmpmask;
G
Gregory Haskins 已提交
8622
	}
8623 8624
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8625

8626 8627 8628 8629
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8630
#ifdef CONFIG_NUMA
8631
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8632

8633 8634 8635 8636 8637
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8638
		set_domain_attribute(sd, attr);
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8653
#endif
8654 8655
	return sd;
}
L
Linus Torvalds 已提交
8656

8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8672

8673 8674 8675 8676 8677
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8678
#ifdef CONFIG_SCHED_MC
8679 8680 8681 8682 8683 8684 8685
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8686
#endif
8687 8688
	return sd;
}
8689

8690 8691 8692 8693 8694
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8695
#ifdef CONFIG_SCHED_SMT
8696 8697 8698 8699 8700 8701 8702
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8703
#endif
8704 8705
	return sd;
}
L
Linus Torvalds 已提交
8706

8707 8708 8709 8710
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8711
#ifdef CONFIG_SCHED_SMT
8712 8713 8714 8715 8716 8717 8718 8719
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8720
#endif
8721
#ifdef CONFIG_SCHED_MC
8722 8723 8724 8725 8726 8727 8728
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8729
#endif
8730 8731 8732 8733 8734 8735 8736
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8737
#ifdef CONFIG_NUMA
8738 8739 8740 8741 8742
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8743 8744
	default:
		break;
8745
	}
8746
}
8747

8748 8749 8750 8751 8752 8753 8754 8755 8756
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8757
	struct sched_domain *sd;
8758
	int i;
8759
#ifdef CONFIG_NUMA
8760
	d.sd_allnodes = 0;
8761
#endif
8762

8763 8764 8765 8766
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8767

L
Linus Torvalds 已提交
8768
	/*
8769
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8770
	 */
8771
	for_each_cpu(i, cpu_map) {
8772 8773
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8774

8775
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8776
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8777
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8778
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8779
	}
8780

8781
	for_each_cpu(i, cpu_map) {
8782
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8783
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8784
	}
8785

L
Linus Torvalds 已提交
8786
	/* Set up physical groups */
8787 8788
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8789

L
Linus Torvalds 已提交
8790 8791
#ifdef CONFIG_NUMA
	/* Set up node groups */
8792 8793
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8794

8795 8796
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8797
			goto error;
L
Linus Torvalds 已提交
8798 8799 8800
#endif

	/* Calculate CPU power for physical packages and nodes */
8801
#ifdef CONFIG_SCHED_SMT
8802
	for_each_cpu(i, cpu_map) {
8803
		sd = &per_cpu(cpu_domains, i).sd;
8804
		init_sched_groups_power(i, sd);
8805
	}
L
Linus Torvalds 已提交
8806
#endif
8807
#ifdef CONFIG_SCHED_MC
8808
	for_each_cpu(i, cpu_map) {
8809
		sd = &per_cpu(core_domains, i).sd;
8810
		init_sched_groups_power(i, sd);
8811 8812
	}
#endif
8813

8814
	for_each_cpu(i, cpu_map) {
8815
		sd = &per_cpu(phys_domains, i).sd;
8816
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8817 8818
	}

8819
#ifdef CONFIG_NUMA
8820
	for (i = 0; i < nr_node_ids; i++)
8821
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8822

8823
	if (d.sd_allnodes) {
8824
		struct sched_group *sg;
8825

8826
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8827
								d.tmpmask);
8828 8829
		init_numa_sched_groups_power(sg);
	}
8830 8831
#endif

L
Linus Torvalds 已提交
8832
	/* Attach the domains */
8833
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8834
#ifdef CONFIG_SCHED_SMT
8835
		sd = &per_cpu(cpu_domains, i).sd;
8836
#elif defined(CONFIG_SCHED_MC)
8837
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8838
#else
8839
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8840
#endif
8841
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8842
	}
8843

8844 8845 8846
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8847 8848

error:
8849 8850
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8851
}
P
Paul Jackson 已提交
8852

8853
static int build_sched_domains(const struct cpumask *cpu_map)
8854 8855 8856 8857
{
	return __build_sched_domains(cpu_map, NULL);
}

8858
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8859
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8860 8861
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8862 8863 8864

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8865 8866
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8867
 */
8868
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8869

8870 8871 8872 8873 8874 8875
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8876
{
8877
	return 0;
8878 8879
}

8880
/*
I
Ingo Molnar 已提交
8881
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8882 8883
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8884
 */
8885
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8886
{
8887 8888
	int err;

8889
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8890
	ndoms_cur = 1;
8891
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8892
	if (!doms_cur)
8893
		doms_cur = fallback_doms;
8894
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8895
	dattr_cur = NULL;
8896
	err = build_sched_domains(doms_cur);
8897
	register_sched_domain_sysctl();
8898 8899

	return err;
8900 8901
}

8902 8903
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8904
{
8905
	free_sched_groups(cpu_map, tmpmask);
8906
}
L
Linus Torvalds 已提交
8907

8908 8909 8910 8911
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8912
static void detach_destroy_domains(const struct cpumask *cpu_map)
8913
{
8914 8915
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8916 8917
	int i;

8918
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8919
		cpu_attach_domain(NULL, &def_root_domain, i);
8920
	synchronize_sched();
8921
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8922 8923
}

8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8940 8941
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8942
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8943 8944 8945
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8946
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8947 8948 8949
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8950 8951 8952
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8953 8954
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8955 8956 8957 8958
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8959
 *
8960
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8961 8962
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8963
 *
P
Paul Jackson 已提交
8964 8965
 * Call with hotplug lock held
 */
8966 8967
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8968
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8969
{
8970
	int i, j, n;
8971
	int new_topology;
P
Paul Jackson 已提交
8972

8973
	mutex_lock(&sched_domains_mutex);
8974

8975 8976 8977
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8978 8979 8980
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8981
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8982 8983 8984

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8985
		for (j = 0; j < n && !new_topology; j++) {
8986
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8987
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8988 8989 8990 8991 8992 8993 8994 8995
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8996 8997
	if (doms_new == NULL) {
		ndoms_cur = 0;
8998
		doms_new = fallback_doms;
8999
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9000
		WARN_ON_ONCE(dattr_new);
9001 9002
	}

P
Paul Jackson 已提交
9003 9004
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9005
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9006
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9007
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9008 9009 9010
				goto match2;
		}
		/* no match - add a new doms_new */
9011 9012
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9013 9014 9015 9016 9017
match2:
		;
	}

	/* Remember the new sched domains */
9018
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9019
		kfree(doms_cur);
9020
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9021
	doms_cur = doms_new;
9022
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9023
	ndoms_cur = ndoms_new;
9024 9025

	register_sched_domain_sysctl();
9026

9027
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9028 9029
}

9030
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9031
static void arch_reinit_sched_domains(void)
9032
{
9033
	get_online_cpus();
9034 9035 9036 9037

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9038
	rebuild_sched_domains();
9039
	put_online_cpus();
9040 9041 9042 9043
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9044
	unsigned int level = 0;
9045

9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9057 9058 9059
		return -EINVAL;

	if (smt)
9060
		sched_smt_power_savings = level;
9061
	else
9062
		sched_mc_power_savings = level;
9063

9064
	arch_reinit_sched_domains();
9065

9066
	return count;
9067 9068 9069
}

#ifdef CONFIG_SCHED_MC
9070 9071
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9072 9073 9074
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9075
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9076
					    const char *buf, size_t count)
9077 9078 9079
{
	return sched_power_savings_store(buf, count, 0);
}
9080 9081 9082
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9083 9084 9085
#endif

#ifdef CONFIG_SCHED_SMT
9086 9087
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9088 9089 9090
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9091
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9092
					     const char *buf, size_t count)
9093 9094 9095
{
	return sched_power_savings_store(buf, count, 1);
}
9096 9097
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9098 9099 9100
		   sched_smt_power_savings_store);
#endif

9101
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9117
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9118

9119
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9120
/*
9121 9122
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9123 9124 9125
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9126 9127 9128 9129 9130 9131
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9132
		partition_sched_domains(1, NULL, NULL);
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9143
{
P
Peter Zijlstra 已提交
9144 9145
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9146 9147
	switch (action) {
	case CPU_DOWN_PREPARE:
9148
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9149
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9150 9151 9152
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9153
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9154
	case CPU_ONLINE:
9155
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9156
		enable_runtime(cpu_rq(cpu));
9157 9158
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9159 9160 9161 9162 9163 9164 9165
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9166 9167 9168
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9169
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9170

9171 9172 9173 9174 9175
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9176
	get_online_cpus();
9177
	mutex_lock(&sched_domains_mutex);
9178 9179 9180 9181
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9182
	mutex_unlock(&sched_domains_mutex);
9183
	put_online_cpus();
9184 9185

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9186 9187
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9188 9189 9190 9191 9192
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9193
	init_hrtick();
9194 9195

	/* Move init over to a non-isolated CPU */
9196
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9197
		BUG();
I
Ingo Molnar 已提交
9198
	sched_init_granularity();
9199
	free_cpumask_var(non_isolated_cpus);
9200

9201
	init_sched_rt_class();
L
Linus Torvalds 已提交
9202 9203 9204 9205
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9206
	sched_init_granularity();
L
Linus Torvalds 已提交
9207 9208 9209
}
#endif /* CONFIG_SMP */

9210 9211
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9212 9213 9214 9215 9216 9217 9218
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9219
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9220 9221
{
	cfs_rq->tasks_timeline = RB_ROOT;
9222
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9223 9224 9225
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9226
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9227 9228
}

P
Peter Zijlstra 已提交
9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9242
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9243
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9244
#ifdef CONFIG_SMP
9245
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9246 9247
#endif
#endif
P
Peter Zijlstra 已提交
9248 9249 9250
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9251
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9252 9253 9254 9255
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9256 9257
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9258

9259
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9260
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9261 9262
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9263 9264
}

P
Peter Zijlstra 已提交
9265
#ifdef CONFIG_FAIR_GROUP_SCHED
9266 9267 9268
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9269
{
9270
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9271 9272 9273 9274 9275 9276 9277
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9278 9279 9280 9281
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9282 9283 9284 9285 9286
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9287 9288
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9289
	se->load.inv_weight = 0;
9290
	se->parent = parent;
P
Peter Zijlstra 已提交
9291
}
9292
#endif
P
Peter Zijlstra 已提交
9293

9294
#ifdef CONFIG_RT_GROUP_SCHED
9295 9296 9297
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9298
{
9299 9300
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9301 9302 9303 9304
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9305
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9306 9307 9308 9309
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9310 9311 9312
	if (!rt_se)
		return;

9313 9314 9315 9316 9317
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9318
	rt_se->my_q = rt_rq;
9319
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9320 9321 9322 9323
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9324 9325
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9326
	int i, j;
9327 9328 9329 9330 9331 9332 9333
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9334 9335 9336
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9337 9338
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9339
	alloc_size += num_possible_cpus() * cpumask_size();
9340 9341 9342 9343 9344 9345
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9346
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9347 9348 9349 9350 9351 9352 9353

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9354 9355 9356 9357 9358 9359 9360

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9361 9362
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9363 9364 9365 9366 9367
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9368 9369 9370 9371 9372 9373 9374 9375
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9376 9377
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9378 9379 9380 9381 9382 9383
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9384
	}
I
Ingo Molnar 已提交
9385

G
Gregory Haskins 已提交
9386 9387 9388 9389
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9390 9391 9392 9393 9394 9395
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9396 9397 9398
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9399 9400
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9401

9402
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9403
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9404 9405 9406 9407 9408 9409
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9410 9411
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9412

9413
	for_each_possible_cpu(i) {
9414
		struct rq *rq;
L
Linus Torvalds 已提交
9415 9416 9417

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9418
		rq->nr_running = 0;
9419 9420
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9421
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9422
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9423
#ifdef CONFIG_FAIR_GROUP_SCHED
9424
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9425
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9441
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9442 9443 9444 9445
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9446
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9447
#elif defined CONFIG_USER_SCHED
9448 9449
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9450 9451 9452 9453 9454 9455 9456 9457
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9458
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9459 9460
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9461
		init_tg_cfs_entry(&init_task_group,
9462
				&per_cpu(init_tg_cfs_rq, i),
9463 9464
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9465

9466
#endif
D
Dhaval Giani 已提交
9467 9468 9469
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9470
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9471
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9472
#ifdef CONFIG_CGROUP_SCHED
9473
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9474
#elif defined CONFIG_USER_SCHED
9475
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9476
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9477
				&per_cpu(init_rt_rq, i),
9478 9479
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9480
#endif
I
Ingo Molnar 已提交
9481
#endif
L
Linus Torvalds 已提交
9482

I
Ingo Molnar 已提交
9483 9484
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9485
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9486
		rq->sd = NULL;
G
Gregory Haskins 已提交
9487
		rq->rd = NULL;
9488
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9489
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9490
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9491
		rq->push_cpu = 0;
9492
		rq->cpu = i;
9493
		rq->online = 0;
L
Linus Torvalds 已提交
9494 9495
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9496
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9497
#endif
P
Peter Zijlstra 已提交
9498
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9499 9500 9501
		atomic_set(&rq->nr_iowait, 0);
	}

9502
	set_load_weight(&init_task);
9503

9504 9505 9506 9507
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9508
#ifdef CONFIG_SMP
9509
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9510 9511
#endif

9512 9513 9514 9515
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9529 9530 9531

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9532 9533 9534 9535
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9536

9537
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9538
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9539
#ifdef CONFIG_SMP
9540
#ifdef CONFIG_NO_HZ
9541 9542
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9543
#endif
9544
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9545
#endif /* SMP */
9546

9547
	perf_event_init();
9548

9549
	scheduler_running = 1;
L
Linus Torvalds 已提交
9550 9551 9552
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9553 9554 9555 9556 9557 9558 9559 9560
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9561
{
9562
#ifdef in_atomic
L
Linus Torvalds 已提交
9563 9564
	static unsigned long prev_jiffy;	/* ratelimiting */

9565 9566
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9584 9585 9586 9587 9588 9589
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9590 9591 9592
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9593

9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9605 9606
void normalize_rt_tasks(void)
{
9607
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9608
	unsigned long flags;
9609
	struct rq *rq;
L
Linus Torvalds 已提交
9610

9611
	read_lock_irqsave(&tasklist_lock, flags);
9612
	do_each_thread(g, p) {
9613 9614 9615 9616 9617 9618
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9619 9620
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9621 9622 9623
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9624
#endif
I
Ingo Molnar 已提交
9625 9626 9627 9628 9629 9630 9631 9632

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9633
			continue;
I
Ingo Molnar 已提交
9634
		}
L
Linus Torvalds 已提交
9635

9636
		spin_lock(&p->pi_lock);
9637
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9638

9639
		normalize_task(rq, p);
9640

9641
		__task_rq_unlock(rq);
9642
		spin_unlock(&p->pi_lock);
9643 9644
	} while_each_thread(g, p);

9645
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9646 9647 9648
}

#endif /* CONFIG_MAGIC_SYSRQ */
9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9667
struct task_struct *curr_task(int cpu)
9668 9669 9670 9671 9672 9673 9674 9675 9676 9677
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9678 9679
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9680 9681 9682 9683 9684 9685 9686
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9687
void set_curr_task(int cpu, struct task_struct *p)
9688 9689 9690 9691 9692
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9693

9694 9695
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9710 9711
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9712 9713
{
	struct cfs_rq *cfs_rq;
9714
	struct sched_entity *se;
9715
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9716 9717
	int i;

9718
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9719 9720
	if (!tg->cfs_rq)
		goto err;
9721
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9722 9723
	if (!tg->se)
		goto err;
9724 9725

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9726 9727

	for_each_possible_cpu(i) {
9728
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9729

9730 9731
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9732 9733 9734
		if (!cfs_rq)
			goto err;

9735 9736
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9737 9738 9739
		if (!se)
			goto err;

9740
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9759
#else /* !CONFG_FAIR_GROUP_SCHED */
9760 9761 9762 9763
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9764 9765
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9777
#endif /* CONFIG_FAIR_GROUP_SCHED */
9778 9779

#ifdef CONFIG_RT_GROUP_SCHED
9780 9781 9782 9783
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9784 9785
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9797 9798
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9799 9800
{
	struct rt_rq *rt_rq;
9801
	struct sched_rt_entity *rt_se;
9802 9803 9804
	struct rq *rq;
	int i;

9805
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9806 9807
	if (!tg->rt_rq)
		goto err;
9808
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9809 9810 9811
	if (!tg->rt_se)
		goto err;

9812 9813
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9814 9815 9816 9817

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9818 9819
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9820 9821
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9822

9823 9824
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9825 9826
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9827

9828
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9829 9830
	}

9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9847
#else /* !CONFIG_RT_GROUP_SCHED */
9848 9849 9850 9851
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9852 9853
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9865
#endif /* CONFIG_RT_GROUP_SCHED */
9866

9867
#ifdef CONFIG_GROUP_SCHED
9868 9869 9870 9871 9872 9873 9874 9875
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9876
struct task_group *sched_create_group(struct task_group *parent)
9877 9878 9879 9880 9881 9882 9883 9884 9885
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9886
	if (!alloc_fair_sched_group(tg, parent))
9887 9888
		goto err;

9889
	if (!alloc_rt_sched_group(tg, parent))
9890 9891
		goto err;

9892
	spin_lock_irqsave(&task_group_lock, flags);
9893
	for_each_possible_cpu(i) {
9894 9895
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9896
	}
P
Peter Zijlstra 已提交
9897
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9898 9899 9900 9901 9902

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9903
	list_add_rcu(&tg->siblings, &parent->children);
9904
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9905

9906
	return tg;
S
Srivatsa Vaddagiri 已提交
9907 9908

err:
P
Peter Zijlstra 已提交
9909
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9910 9911 9912
	return ERR_PTR(-ENOMEM);
}

9913
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9914
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9915 9916
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9917
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9918 9919
}

9920
/* Destroy runqueue etc associated with a task group */
9921
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9922
{
9923
	unsigned long flags;
9924
	int i;
S
Srivatsa Vaddagiri 已提交
9925

9926
	spin_lock_irqsave(&task_group_lock, flags);
9927
	for_each_possible_cpu(i) {
9928 9929
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9930
	}
P
Peter Zijlstra 已提交
9931
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9932
	list_del_rcu(&tg->siblings);
9933
	spin_unlock_irqrestore(&task_group_lock, flags);
9934 9935

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9936
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9937 9938
}

9939
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9940 9941 9942
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9943 9944
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9945 9946 9947 9948 9949 9950 9951 9952 9953
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9954
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9955 9956
	on_rq = tsk->se.on_rq;

9957
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9958
		dequeue_task(rq, tsk, 0);
9959 9960
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9961

P
Peter Zijlstra 已提交
9962
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9963

P
Peter Zijlstra 已提交
9964 9965 9966 9967 9968
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9969 9970 9971
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9972
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9973 9974 9975

	task_rq_unlock(rq, &flags);
}
9976
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9977

9978
#ifdef CONFIG_FAIR_GROUP_SCHED
9979
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9980 9981 9982 9983 9984
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9985
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9986 9987 9988
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9989
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9990

9991
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9992
		enqueue_entity(cfs_rq, se, 0);
9993
}
9994

9995 9996 9997 9998 9999 10000 10001 10002 10003
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10004 10005
}

10006 10007
static DEFINE_MUTEX(shares_mutex);

10008
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10009 10010
{
	int i;
10011
	unsigned long flags;
10012

10013 10014 10015 10016 10017 10018
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10019 10020
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10021 10022
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10023

10024
	mutex_lock(&shares_mutex);
10025
	if (tg->shares == shares)
10026
		goto done;
S
Srivatsa Vaddagiri 已提交
10027

10028
	spin_lock_irqsave(&task_group_lock, flags);
10029 10030
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10031
	list_del_rcu(&tg->siblings);
10032
	spin_unlock_irqrestore(&task_group_lock, flags);
10033 10034 10035 10036 10037 10038 10039 10040

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10041
	tg->shares = shares;
10042 10043 10044 10045 10046
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10047
		set_se_shares(tg->se[i], shares);
10048
	}
S
Srivatsa Vaddagiri 已提交
10049

10050 10051 10052 10053
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10054
	spin_lock_irqsave(&task_group_lock, flags);
10055 10056
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10057
	list_add_rcu(&tg->siblings, &tg->parent->children);
10058
	spin_unlock_irqrestore(&task_group_lock, flags);
10059
done:
10060
	mutex_unlock(&shares_mutex);
10061
	return 0;
S
Srivatsa Vaddagiri 已提交
10062 10063
}

10064 10065 10066 10067
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10068
#endif
10069

10070
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10071
/*
P
Peter Zijlstra 已提交
10072
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10073
 */
P
Peter Zijlstra 已提交
10074 10075 10076 10077 10078
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10079
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10080

P
Peter Zijlstra 已提交
10081
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10082 10083
}

P
Peter Zijlstra 已提交
10084 10085
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10086
{
P
Peter Zijlstra 已提交
10087
	struct task_struct *g, *p;
10088

P
Peter Zijlstra 已提交
10089 10090 10091 10092
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10093

P
Peter Zijlstra 已提交
10094 10095
	return 0;
}
10096

P
Peter Zijlstra 已提交
10097 10098 10099 10100 10101
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10102

P
Peter Zijlstra 已提交
10103 10104 10105 10106 10107 10108
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10109

P
Peter Zijlstra 已提交
10110 10111
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10112

P
Peter Zijlstra 已提交
10113 10114 10115
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10116 10117
	}

10118 10119 10120 10121 10122 10123 10124
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10125 10126 10127 10128 10129
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10130

10131 10132 10133
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10134 10135
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10136

P
Peter Zijlstra 已提交
10137
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10138

10139 10140 10141 10142 10143
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10144

10145 10146 10147
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10148 10149 10150
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10151

P
Peter Zijlstra 已提交
10152 10153 10154 10155
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10156

P
Peter Zijlstra 已提交
10157
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10158
	}
P
Peter Zijlstra 已提交
10159

P
Peter Zijlstra 已提交
10160 10161 10162 10163
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10164 10165
}

P
Peter Zijlstra 已提交
10166
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10167
{
P
Peter Zijlstra 已提交
10168 10169 10170 10171 10172 10173 10174
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10175 10176
}

10177 10178
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10179
{
P
Peter Zijlstra 已提交
10180
	int i, err = 0;
P
Peter Zijlstra 已提交
10181 10182

	mutex_lock(&rt_constraints_mutex);
10183
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10184 10185
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10186
		goto unlock;
P
Peter Zijlstra 已提交
10187 10188

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10189 10190
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10191 10192 10193 10194 10195 10196 10197 10198 10199

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10200
 unlock:
10201
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10202 10203 10204
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10205 10206
}

10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10219 10220 10221 10222
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10223
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10224 10225
		return -1;

10226
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10227 10228 10229
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10230 10231 10232 10233 10234 10235 10236 10237

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10238 10239 10240
	if (rt_period == 0)
		return -EINVAL;

10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10255
	u64 runtime, period;
10256 10257
	int ret = 0;

10258 10259 10260
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10261 10262 10263 10264 10265 10266 10267 10268
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10269

10270
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10271
	read_lock(&tasklist_lock);
10272
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10273
	read_unlock(&tasklist_lock);
10274 10275 10276 10277
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10278 10279 10280 10281 10282 10283 10284 10285 10286 10287

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10288
#else /* !CONFIG_RT_GROUP_SCHED */
10289 10290
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10291 10292 10293
	unsigned long flags;
	int i;

10294 10295 10296
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10297 10298 10299 10300 10301 10302 10303
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312 10313
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10314 10315
	return 0;
}
10316
#endif /* CONFIG_RT_GROUP_SCHED */
10317 10318

int sched_rt_handler(struct ctl_table *table, int write,
10319
		void __user *buffer, size_t *lenp,
10320 10321 10322 10323 10324 10325 10326 10327 10328 10329
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10330
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10347

10348
#ifdef CONFIG_CGROUP_SCHED
10349 10350

/* return corresponding task_group object of a cgroup */
10351
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10352
{
10353 10354
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10355 10356 10357
}

static struct cgroup_subsys_state *
10358
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10359
{
10360
	struct task_group *tg, *parent;
10361

10362
	if (!cgrp->parent) {
10363 10364 10365 10366
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10367 10368
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10369 10370 10371 10372 10373 10374
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10375 10376
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10377
{
10378
	struct task_group *tg = cgroup_tg(cgrp);
10379 10380 10381 10382

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10383
static int
10384
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10385
{
10386
#ifdef CONFIG_RT_GROUP_SCHED
10387
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10388 10389
		return -EINVAL;
#else
10390 10391 10392
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10393
#endif
10394 10395
	return 0;
}
10396

10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10416 10417 10418 10419
	return 0;
}

static void
10420
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10421 10422
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10423 10424
{
	sched_move_task(tsk);
10425 10426 10427 10428 10429 10430 10431 10432
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10433 10434
}

10435
#ifdef CONFIG_FAIR_GROUP_SCHED
10436
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10437
				u64 shareval)
10438
{
10439
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10440 10441
}

10442
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10443
{
10444
	struct task_group *tg = cgroup_tg(cgrp);
10445 10446 10447

	return (u64) tg->shares;
}
10448
#endif /* CONFIG_FAIR_GROUP_SCHED */
10449

10450
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10451
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10452
				s64 val)
P
Peter Zijlstra 已提交
10453
{
10454
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10455 10456
}

10457
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10458
{
10459
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10460
}
10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10472
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10473

10474
static struct cftype cpu_files[] = {
10475
#ifdef CONFIG_FAIR_GROUP_SCHED
10476 10477
	{
		.name = "shares",
10478 10479
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10480
	},
10481 10482
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10483
	{
P
Peter Zijlstra 已提交
10484
		.name = "rt_runtime_us",
10485 10486
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10487
	},
10488 10489
	{
		.name = "rt_period_us",
10490 10491
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10492
	},
10493
#endif
10494 10495 10496 10497
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10498
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10499 10500 10501
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10502 10503 10504 10505 10506 10507 10508
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10509 10510 10511
	.early_init	= 1,
};

10512
#endif	/* CONFIG_CGROUP_SCHED */
10513 10514 10515 10516 10517 10518 10519 10520 10521 10522

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10523
/* track cpu usage of a group of tasks and its child groups */
10524 10525 10526 10527
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10528
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10529
	struct cpuacct *parent;
10530 10531 10532 10533 10534
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10535
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10536
{
10537
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10550
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10551 10552
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10553
	int i;
10554 10555

	if (!ca)
10556
		goto out;
10557 10558

	ca->cpuusage = alloc_percpu(u64);
10559 10560 10561 10562 10563 10564
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10565

10566 10567 10568
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10569
	return &ca->css;
10570 10571 10572 10573 10574 10575 10576 10577 10578

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10579 10580 10581
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10582
static void
10583
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10584
{
10585
	struct cpuacct *ca = cgroup_ca(cgrp);
10586
	int i;
10587

10588 10589
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10590 10591 10592 10593
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10594 10595
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10596
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10615
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10629
/* return total cpu usage (in nanoseconds) of a group */
10630
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10631
{
10632
	struct cpuacct *ca = cgroup_ca(cgrp);
10633 10634 10635
	u64 totalcpuusage = 0;
	int i;

10636 10637
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10638 10639 10640 10641

	return totalcpuusage;
}

10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10654 10655
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10656 10657 10658 10659 10660

out:
	return err;
}

10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10695 10696 10697
static struct cftype files[] = {
	{
		.name = "usage",
10698 10699
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10700
	},
10701 10702 10703 10704
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10705 10706 10707 10708
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10709 10710
};

10711
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10712
{
10713
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10714 10715 10716 10717 10718 10719 10720 10721 10722 10723
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10724
	int cpu;
10725

L
Li Zefan 已提交
10726
	if (unlikely(!cpuacct_subsys.active))
10727 10728
		return;

10729
	cpu = task_cpu(tsk);
10730 10731 10732

	rcu_read_lock();

10733 10734
	ca = task_ca(tsk);

10735
	for (; ca; ca = ca->parent) {
10736
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10737 10738
		*cpuusage += cputime;
	}
10739 10740

	rcu_read_unlock();
10741 10742
}

10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10764 10765 10766 10767 10768 10769 10770 10771
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */