sched.c 185.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
	 * 	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
	 * 	 entity have the same weight on all CPUs. If the group
	 * 	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 * 	 better distribution of weight could be:
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
206
	unsigned long shares;
207

208
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
209 210 211 212 213 214 215
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

216 217
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
218

219 220 221 222 223
/* task_group_mutex serializes add/remove of task groups and also changes to
 * a task group's cpu shares.
 */
static DEFINE_MUTEX(task_group_mutex);

224 225 226
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

227 228 229 230 231 232 233 234
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

S
Srivatsa Vaddagiri 已提交
235
/* Default task group.
I
Ingo Molnar 已提交
236
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
237
 */
238
struct task_group init_task_group = {
I
Ingo Molnar 已提交
239 240 241
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
242

243
#ifdef CONFIG_FAIR_USER_SCHED
244
# define INIT_TASK_GROUP_LOAD	2*NICE_0_LOAD
245
#else
246
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
247 248
#endif

249 250
#define MIN_GROUP_SHARES       2

251
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
S
Srivatsa Vaddagiri 已提交
252 253

/* return group to which a task belongs */
254
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
255
{
256
	struct task_group *tg;
257

258 259
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
260 261 262
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
263
#else
I
Ingo Molnar 已提交
264
	tg = &init_task_group;
265
#endif
266
	return tg;
S
Srivatsa Vaddagiri 已提交
267 268 269
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
271
{
272 273
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
274 275
}

276 277 278 279 280 281 282 283 284 285
static inline void lock_task_group_list(void)
{
	mutex_lock(&task_group_mutex);
}

static inline void unlock_task_group_list(void)
{
	mutex_unlock(&task_group_mutex);
}

286 287 288 289 290 291 292 293 294 295
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
296 297
#else

298
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 300
static inline void lock_task_group_list(void) { }
static inline void unlock_task_group_list(void) { }
301 302
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
303 304 305

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
306 307 308 309 310 311
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
312
	u64 min_vruntime;
I
Ingo Molnar 已提交
313 314 315 316 317 318 319 320

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
321 322 323

	unsigned long nr_spread_over;

324
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
325 326
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
327 328
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
329 330 331 332 333 334
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
335 336
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
337 338
#endif
};
L
Linus Torvalds 已提交
339

I
Ingo Molnar 已提交
340 341 342 343 344
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345
	unsigned long rt_nr_running;
346
	unsigned long rt_nr_migratory;
347 348
	/* highest queued rt task prio */
	int highest_prio;
G
Gregory Haskins 已提交
349
	int overloaded;
I
Ingo Molnar 已提交
350 351
};

L
Linus Torvalds 已提交
352 353 354 355 356 357 358
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
359
struct rq {
360 361
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
362 363 364 365 366 367

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
368 369
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
370
	unsigned char idle_at_tick;
371 372 373
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
374 375
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
376 377 378 379 380
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
381 382
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
383
#endif
I
Ingo Molnar 已提交
384
	struct rt_rq rt;
L
Linus Torvalds 已提交
385 386 387 388 389 390 391 392 393

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

394
	struct task_struct *curr, *idle;
395
	unsigned long next_balance;
L
Linus Torvalds 已提交
396
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
397 398 399 400 401

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
402 403
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
404
	u64 tick_timestamp;
I
Ingo Molnar 已提交
405

L
Linus Torvalds 已提交
406 407 408 409 410 411 412 413
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
414 415
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
416

417
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
418 419 420 421 422 423 424 425
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
426 427 428 429
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
430 431

	/* schedule() stats */
432 433 434
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
435 436

	/* try_to_wake_up() stats */
437 438
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
439 440

	/* BKL stats */
441
	unsigned int bkl_count;
L
Linus Torvalds 已提交
442
#endif
443
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
444 445
};

446
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
447

I
Ingo Molnar 已提交
448 449 450 451 452
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

453 454 455 456 457 458 459 460 461
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
462
/*
I
Ingo Molnar 已提交
463 464
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
465
 */
I
Ingo Molnar 已提交
466
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
467 468 469 470 471 472
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
473 474 475
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
476 477 478 479 480 481 482 483 484 485
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
486 487 488 489 490
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
491 492 493 494 495 496 497 498 499 500
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
501
}
I
Ingo Molnar 已提交
502

I
Ingo Molnar 已提交
503 504 505 506
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
507 508
}

N
Nick Piggin 已提交
509 510
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
511
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
512 513 514 515
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
516 517
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
518 519 520 521 522 523

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
537
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
538 539
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
540 541
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
542 543 544
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
545
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
546
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
547 548
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
549
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
550 551 552

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

553 554 555 556 557 558
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

559 560 561 562 563 564 565 566
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
567
	struct rq *rq;
568

569
	local_irq_save(flags);
I
Ingo Molnar 已提交
570
	rq = cpu_rq(cpu);
571 572 573 574 575 576
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
577
	now = rq->clock;
578
	local_irq_restore(flags);
579 580 581

	return now;
}
P
Paul E. McKenney 已提交
582
EXPORT_SYMBOL_GPL(cpu_clock);
583

L
Linus Torvalds 已提交
584
#ifndef prepare_arch_switch
585 586 587 588 589 590
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

591 592 593 594 595
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

596
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
597
static inline int task_running(struct rq *rq, struct task_struct *p)
598
{
599
	return task_current(rq, p);
600 601
}

602
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
603 604 605
{
}

606
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
607
{
608 609 610 611
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
612 613 614 615 616 617 618
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

619 620 621 622
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
623
static inline int task_running(struct rq *rq, struct task_struct *p)
624 625 626 627
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
628
	return task_current(rq, p);
629 630 631
#endif
}

632
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

649
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
650 651 652 653 654 655 656 657 658 659 660 661
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
662
#endif
663 664
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
665

666 667 668 669
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
670
static inline struct rq *__task_rq_lock(struct task_struct *p)
671 672
	__acquires(rq->lock)
{
673 674 675 676 677
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
678 679 680 681
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
682 683
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
684
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
685 686
 * explicitly disabling preemption.
 */
687
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
688 689
	__acquires(rq->lock)
{
690
	struct rq *rq;
L
Linus Torvalds 已提交
691

692 693 694 695 696 697
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
698 699 700 701
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
702
static void __task_rq_unlock(struct rq *rq)
703 704 705 706 707
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

708
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
709 710 711 712 713 714
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
715
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
716
 */
A
Alexey Dobriyan 已提交
717
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
718 719
	__acquires(rq->lock)
{
720
	struct rq *rq;
L
Linus Torvalds 已提交
721 722 723 724 725 726 727 728

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

729
/*
730
 * We are going deep-idle (irqs are disabled):
731
 */
732
void sched_clock_idle_sleep_event(void)
733
{
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
750

751
	touch_softlockup_watchdog();
752 753 754 755 756 757 758 759 760 761 762
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
763
}
764
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
765

I
Ingo Molnar 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

818 819 820 821 822 823 824 825
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
826 827 828
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
829
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
830

831
static unsigned long
832 833 834 835 836 837
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
838
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
839 840 841 842 843

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
844
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
845
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
846 847
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
848
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
849

850
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
851 852 853 854 855 856 857 858
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

859
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
860 861 862 863
{
	lw->weight += inc;
}

864
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
865 866 867 868
{
	lw->weight -= dec;
}

869 870 871 872
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
873
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
874 875 876 877
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
878 879 880 881 882 883 884 885 886 887 888
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
889 890 891
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
892 893
 */
static const int prio_to_weight[40] = {
894 895 896 897 898 899 900 901
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
902 903
};

904 905 906 907 908 909 910
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
911
static const u32 prio_to_wmult[40] = {
912 913 914 915 916 917 918 919
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
920
};
921

I
Ingo Molnar 已提交
922 923 924 925 926 927 928 929 930 931 932 933 934
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

935 936 937 938 939 940 941 942 943 944 945 946
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
947

948 949 950 951 952 953
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

954 955 956 957 958 959 960 961 962 963
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

964 965 966 967 968 969 970
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
971 972
#include "sched_stats.h"
#include "sched_idletask.c"
973 974
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
975 976 977 978 979 980
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

981
static void inc_nr_running(struct task_struct *p, struct rq *rq)
982 983 984 985
{
	rq->nr_running++;
}

986
static void dec_nr_running(struct task_struct *p, struct rq *rq)
987 988 989 990
{
	rq->nr_running--;
}

991 992 993
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
994 995 996 997
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
998

I
Ingo Molnar 已提交
999 1000 1001 1002 1003 1004 1005 1006
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1007

I
Ingo Molnar 已提交
1008 1009
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1010 1011
}

1012
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1013
{
I
Ingo Molnar 已提交
1014
	sched_info_queued(p);
1015
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1016
	p->se.on_rq = 1;
1017 1018
}

1019
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1020
{
1021
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1022
	p->se.on_rq = 0;
1023 1024
}

1025
/*
I
Ingo Molnar 已提交
1026
 * __normal_prio - return the priority that is based on the static prio
1027 1028 1029
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1030
	return p->static_prio;
1031 1032
}

1033 1034 1035 1036 1037 1038 1039
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1040
static inline int normal_prio(struct task_struct *p)
1041 1042 1043
{
	int prio;

1044
	if (task_has_rt_policy(p))
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1058
static int effective_prio(struct task_struct *p)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1071
/*
I
Ingo Molnar 已提交
1072
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1073
 */
I
Ingo Molnar 已提交
1074
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1075
{
I
Ingo Molnar 已提交
1076 1077
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1078

1079
	enqueue_task(rq, p, wakeup);
1080
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1081 1082 1083 1084 1085
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1086
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1087
{
I
Ingo Molnar 已提交
1088 1089 1090
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

1091
	dequeue_task(rq, p, sleep);
1092
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1093 1094 1095 1096 1097 1098
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1099
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1100 1101 1102 1103
{
	return cpu_curr(task_cpu(p)) == p;
}

1104 1105 1106
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1107
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1108 1109 1110 1111
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1112
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1113
#ifdef CONFIG_SMP
1114 1115 1116 1117 1118 1119
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1120 1121
	task_thread_info(p)->cpu = cpu;
#endif
1122 1123
}

L
Linus Torvalds 已提交
1124
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1125

1126 1127 1128
/*
 * Is this task likely cache-hot:
 */
1129
static int
1130 1131 1132 1133 1134 1135 1136
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1137 1138 1139 1140 1141
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1142 1143 1144 1145 1146 1147
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1148
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1149
{
I
Ingo Molnar 已提交
1150 1151
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1152 1153
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1154
	u64 clock_offset;
I
Ingo Molnar 已提交
1155 1156

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1157 1158 1159 1160

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1161 1162 1163 1164
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1165 1166 1167 1168 1169
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1170
#endif
1171 1172
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1173 1174

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1175 1176
}

1177
struct migration_req {
L
Linus Torvalds 已提交
1178 1179
	struct list_head list;

1180
	struct task_struct *task;
L
Linus Torvalds 已提交
1181 1182 1183
	int dest_cpu;

	struct completion done;
1184
};
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1190
static int
1191
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1192
{
1193
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1194 1195 1196 1197 1198

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1199
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1200 1201 1202 1203 1204 1205 1206 1207
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1208

L
Linus Torvalds 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1221
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1222 1223
{
	unsigned long flags;
I
Ingo Molnar 已提交
1224
	int running, on_rq;
1225
	struct rq *rq;
L
Linus Torvalds 已提交
1226

1227 1228 1229 1230 1231 1232 1233 1234
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1259

1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1284

1285 1286 1287 1288 1289 1290 1291
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1307
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1319 1320
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1321 1322 1323 1324
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1325
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1326
{
1327
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1328
	unsigned long total = weighted_cpuload(cpu);
1329

1330
	if (type == 0)
I
Ingo Molnar 已提交
1331
		return total;
1332

I
Ingo Molnar 已提交
1333
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1334 1335 1336
}

/*
1337 1338
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1339
 */
A
Alexey Dobriyan 已提交
1340
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1341
{
1342
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1343
	unsigned long total = weighted_cpuload(cpu);
1344

N
Nick Piggin 已提交
1345
	if (type == 0)
I
Ingo Molnar 已提交
1346
		return total;
1347

I
Ingo Molnar 已提交
1348
	return max(rq->cpu_load[type-1], total);
1349 1350 1351 1352 1353
}

/*
 * Return the average load per task on the cpu's run queue
 */
1354
static unsigned long cpu_avg_load_per_task(int cpu)
1355
{
1356
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1357
	unsigned long total = weighted_cpuload(cpu);
1358 1359
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1360
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1361 1362
}

N
Nick Piggin 已提交
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1380 1381
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1382
			continue;
1383

N
Nick Piggin 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1400 1401
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1402 1403 1404 1405 1406 1407 1408 1409

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1410
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1411 1412 1413 1414 1415 1416 1417

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1418
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1419
 */
I
Ingo Molnar 已提交
1420 1421
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1422
{
1423
	cpumask_t tmp;
N
Nick Piggin 已提交
1424 1425 1426 1427
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1428 1429 1430 1431
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1432
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1458

1459
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1460 1461 1462
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1463 1464
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1465 1466
		if (tmp->flags & flag)
			sd = tmp;
1467
	}
N
Nick Piggin 已提交
1468 1469 1470 1471

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1472 1473 1474 1475 1476 1477
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1478 1479 1480

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1481 1482 1483 1484
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1485

1486
		new_cpu = find_idlest_cpu(group, t, cpu);
1487 1488 1489 1490 1491
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1492

1493
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1525
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1526
{
1527
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1528 1529
	unsigned long flags;
	long old_state;
1530
	struct rq *rq;
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539
#ifdef CONFIG_SMP
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1540
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1541 1542 1543
		goto out_running;

	cpu = task_cpu(p);
1544
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1551
	new_cpu = p->sched_class->select_task_rq(p, sync);
L
Linus Torvalds 已提交
1552 1553 1554 1555 1556 1557 1558 1559
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1560
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1561 1562 1563 1564 1565 1566
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}

#endif


L
Linus Torvalds 已提交
1584 1585
out_activate:
#endif /* CONFIG_SMP */
1586 1587 1588 1589 1590 1591 1592 1593 1594
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1595
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1596
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1597
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1598 1599 1600 1601
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1602
	wakeup_balance_rt(rq, p);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607 1608
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1609
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1616
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1624 1625 1626 1627 1628 1629 1630
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1631
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1632 1633 1634

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1635 1636 1637 1638 1639 1640
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1641
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1642
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1643
#endif
N
Nick Piggin 已提交
1644

I
Ingo Molnar 已提交
1645 1646
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1647

1648 1649 1650 1651
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1652 1653 1654 1655 1656 1657 1658
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1673
	set_task_cpu(p, cpu);
1674 1675 1676 1677 1678

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1679 1680
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1681

1682
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1683
	if (likely(sched_info_on()))
1684
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1685
#endif
1686
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1687 1688
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1689
#ifdef CONFIG_PREEMPT
1690
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1691
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1692
#endif
N
Nick Piggin 已提交
1693
	put_cpu();
L
Linus Torvalds 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1703
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1704 1705
{
	unsigned long flags;
I
Ingo Molnar 已提交
1706
	struct rq *rq;
L
Linus Torvalds 已提交
1707 1708

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1709
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1710
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1711 1712 1713

	p->prio = effective_prio(p);

1714
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1715
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1716 1717
	} else {
		/*
I
Ingo Molnar 已提交
1718 1719
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1720
		 */
1721
		p->sched_class->task_new(rq, p);
1722
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1723
	}
I
Ingo Molnar 已提交
1724
	check_preempt_curr(rq, p);
S
Steven Rostedt 已提交
1725
	wakeup_balance_rt(rq, p);
I
Ingo Molnar 已提交
1726
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1727 1728
}

1729 1730 1731
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1732 1733
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1734 1735 1736 1737 1738 1739 1740 1741 1742
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1743
 * @notifier: notifier struct to unregister
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1787 1788 1789
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1790
 * @prev: the current task that is being switched out
1791 1792 1793 1794 1795 1796 1797 1798 1799
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1800 1801 1802
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1803
{
1804
	fire_sched_out_preempt_notifiers(prev, next);
1805 1806 1807 1808
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1809 1810
/**
 * finish_task_switch - clean up after a task-switch
1811
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1812 1813
 * @prev: the thread we just switched away from.
 *
1814 1815 1816 1817
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1818 1819
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1820
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1821 1822 1823
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1824
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1825 1826 1827
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1828
	long prev_state;
L
Linus Torvalds 已提交
1829 1830 1831 1832 1833

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1834
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1835 1836
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1837
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1838 1839 1840 1841 1842
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1843
	prev_state = prev->state;
1844 1845
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
1846 1847
	schedule_tail_balance_rt(rq);

1848
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1849 1850
	if (mm)
		mmdrop(mm);
1851
	if (unlikely(prev_state == TASK_DEAD)) {
1852 1853 1854
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1855
		 */
1856
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1857
		put_task_struct(prev);
1858
	}
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863 1864
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1865
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1866 1867
	__releases(rq->lock)
{
1868 1869
	struct rq *rq = this_rq();

1870 1871 1872 1873 1874
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1875
	if (current->set_child_tid)
1876
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1877 1878 1879 1880 1881 1882
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1883
static inline void
1884
context_switch(struct rq *rq, struct task_struct *prev,
1885
	       struct task_struct *next)
L
Linus Torvalds 已提交
1886
{
I
Ingo Molnar 已提交
1887
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1888

1889
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1890 1891
	mm = next->mm;
	oldmm = prev->active_mm;
1892 1893 1894 1895 1896 1897 1898
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1899
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1900 1901 1902 1903 1904 1905
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1906
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1907 1908 1909
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1910 1911 1912 1913 1914 1915 1916
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1917
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1918
#endif
L
Linus Torvalds 已提交
1919 1920 1921 1922

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1923 1924 1925 1926 1927 1928 1929
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1953
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1968 1969
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1970

1971
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1981
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2002
/*
I
Ingo Molnar 已提交
2003 2004
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2005
 */
I
Ingo Molnar 已提交
2006
static void update_cpu_load(struct rq *this_rq)
2007
{
2008
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2021 2022 2023 2024 2025 2026 2027
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2028 2029
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2030 2031
}

I
Ingo Molnar 已提交
2032 2033
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2034 2035 2036 2037 2038 2039
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2040
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2041 2042 2043
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2044
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2045 2046 2047 2048
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2049
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2050 2051 2052 2053 2054 2055 2056
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2057 2058
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2059 2060 2061 2062 2063 2064 2065 2066
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2067
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2081
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2082 2083 2084 2085
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2086 2087
	int ret = 0;

2088 2089 2090 2091 2092
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2093
	if (unlikely(!spin_trylock(&busiest->lock))) {
2094
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2095 2096 2097
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2098
			ret = 1;
L
Linus Torvalds 已提交
2099 2100 2101
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2102
	return ret;
L
Linus Torvalds 已提交
2103 2104 2105 2106 2107
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2108
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2109 2110
 * the cpu_allowed mask is restored.
 */
2111
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2112
{
2113
	struct migration_req req;
L
Linus Torvalds 已提交
2114
	unsigned long flags;
2115
	struct rq *rq;
L
Linus Torvalds 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2126

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2132

L
Linus Torvalds 已提交
2133 2134 2135 2136 2137 2138 2139
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2140 2141
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2142 2143 2144 2145
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2146
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2147
	put_cpu();
N
Nick Piggin 已提交
2148 2149
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2156 2157
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2158
{
2159
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2160
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2161
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2162 2163 2164 2165
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2166
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2172
static
2173
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2174
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2175
		     int *all_pinned)
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2183 2184
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2185
		return 0;
2186
	}
2187 2188
	*all_pinned = 0;

2189 2190
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2191
		return 0;
2192
	}
L
Linus Torvalds 已提交
2193

2194 2195 2196 2197 2198 2199
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2200 2201
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2202
#ifdef CONFIG_SCHEDSTATS
2203
		if (task_hot(p, rq->clock, sd)) {
2204
			schedstat_inc(sd, lb_hot_gained[idle]);
2205 2206
			schedstat_inc(p, se.nr_forced_migrations);
		}
2207 2208 2209 2210
#endif
		return 1;
	}

2211 2212
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2213
		return 0;
2214
	}
L
Linus Torvalds 已提交
2215 2216 2217
	return 1;
}

2218 2219 2220 2221 2222
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2223
{
2224
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2225 2226
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2227

2228
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2229 2230
		goto out;

2231 2232
	pinned = 1;

L
Linus Torvalds 已提交
2233
	/*
I
Ingo Molnar 已提交
2234
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2235
	 */
I
Ingo Molnar 已提交
2236 2237
	p = iterator->start(iterator->arg);
next:
2238
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2239
		goto out;
2240
	/*
2241
	 * To help distribute high priority tasks across CPUs we don't
2242 2243 2244
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2245 2246
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2247
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2248 2249 2250
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2251 2252
	}

I
Ingo Molnar 已提交
2253
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2254
	pulled++;
I
Ingo Molnar 已提交
2255
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2256

2257
	/*
2258
	 * We only want to steal up to the prescribed amount of weighted load.
2259
	 */
2260
	if (rem_load_move > 0) {
2261 2262
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2263 2264
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2265 2266 2267
	}
out:
	/*
2268
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2269 2270 2271 2272
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2273 2274 2275

	if (all_pinned)
		*all_pinned = pinned;
2276 2277

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2278 2279
}

I
Ingo Molnar 已提交
2280
/*
P
Peter Williams 已提交
2281 2282 2283
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2284 2285 2286 2287
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2288
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2289 2290 2291
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2292
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2293
	unsigned long total_load_moved = 0;
2294
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2295 2296

	do {
P
Peter Williams 已提交
2297 2298
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2299
				max_load_move - total_load_moved,
2300
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2301
		class = class->next;
P
Peter Williams 已提交
2302
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2303

P
Peter Williams 已提交
2304 2305 2306
	return total_load_moved > 0;
}

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2343
	const struct sched_class *class;
P
Peter Williams 已提交
2344 2345

	for (class = sched_class_highest; class; class = class->next)
2346
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2347 2348 2349
			return 1;

	return 0;
I
Ingo Molnar 已提交
2350 2351
}

L
Linus Torvalds 已提交
2352 2353
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2354 2355
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2356 2357 2358
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2359 2360
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2361 2362 2363
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2364
	unsigned long max_pull;
2365 2366
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2367
	int load_idx, group_imb = 0;
2368 2369 2370 2371 2372 2373
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2374 2375

	max_load = this_load = total_load = total_pwr = 0;
2376 2377
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2378
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2379
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2380
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2381 2382 2383
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2384 2385

	do {
2386
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2387 2388
		int local_group;
		int i;
2389
		int __group_imb = 0;
2390
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2391
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2392 2393 2394

		local_group = cpu_isset(this_cpu, group->cpumask);

2395 2396 2397
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2398
		/* Tally up the load of all CPUs in the group */
2399
		sum_weighted_load = sum_nr_running = avg_load = 0;
2400 2401
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2402 2403

		for_each_cpu_mask(i, group->cpumask) {
2404 2405 2406 2407 2408 2409
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2410

2411
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2412 2413
				*sd_idle = 0;

L
Linus Torvalds 已提交
2414
			/* Bias balancing toward cpus of our domain */
2415 2416 2417 2418 2419 2420
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2421
				load = target_load(i, load_idx);
2422
			} else {
N
Nick Piggin 已提交
2423
				load = source_load(i, load_idx);
2424 2425 2426 2427 2428
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2429 2430

			avg_load += load;
2431
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2432
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2433 2434
		}

2435 2436 2437
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2438 2439
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2440
		 */
2441 2442
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2443 2444 2445 2446
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2447
		total_load += avg_load;
2448
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2449 2450

		/* Adjust by relative CPU power of the group */
2451 2452
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2453

2454 2455 2456
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2457
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2458

L
Linus Torvalds 已提交
2459 2460 2461
		if (local_group) {
			this_load = avg_load;
			this = group;
2462 2463 2464
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2465
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2466 2467
			max_load = avg_load;
			busiest = group;
2468 2469
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2470
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2471
		}
2472 2473 2474 2475 2476 2477

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2478 2479 2480
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2481 2482 2483 2484 2485 2486 2487 2488 2489

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2490
		/*
2491 2492
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2493 2494
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2495
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2496
			goto group_next;
2497

I
Ingo Molnar 已提交
2498
		/*
2499
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2500 2501 2502 2503 2504
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2505 2506
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2507 2508
			group_min = group;
			min_nr_running = sum_nr_running;
2509 2510
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2511
		}
2512

I
Ingo Molnar 已提交
2513
		/*
2514
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2526
		}
2527 2528
group_next:
#endif
L
Linus Torvalds 已提交
2529 2530 2531
		group = group->next;
	} while (group != sd->groups);

2532
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2533 2534 2535 2536 2537 2538 2539 2540
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2541
	busiest_load_per_task /= busiest_nr_running;
2542 2543 2544
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2553
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2554 2555
	 * appear as very large values with unsigned longs.
	 */
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2568 2569

	/* Don't want to pull so many tasks that a group would go idle */
2570
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2571

L
Linus Torvalds 已提交
2572
	/* How much load to actually move to equalise the imbalance */
2573 2574
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2575 2576
			/ SCHED_LOAD_SCALE;

2577 2578 2579 2580 2581 2582
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2583
	if (*imbalance < busiest_load_per_task) {
2584
		unsigned long tmp, pwr_now, pwr_move;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2596

I
Ingo Molnar 已提交
2597 2598
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2599
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2609 2610 2611 2612
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2613 2614 2615
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2616 2617
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2618
		if (max_load > tmp)
2619
			pwr_move += busiest->__cpu_power *
2620
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2621 2622

		/* Amount of load we'd add */
2623
		if (max_load * busiest->__cpu_power <
2624
				busiest_load_per_task * SCHED_LOAD_SCALE)
2625 2626
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2627
		else
2628 2629 2630 2631
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2632 2633 2634
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2635 2636
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641
	}

	return busiest;

out_balanced:
2642
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2643
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2644
		goto ret;
L
Linus Torvalds 已提交
2645

2646 2647 2648 2649 2650
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2651
ret:
L
Linus Torvalds 已提交
2652 2653 2654 2655 2656 2657 2658
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2659
static struct rq *
I
Ingo Molnar 已提交
2660
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2661
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2662
{
2663
	struct rq *busiest = NULL, *rq;
2664
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2665 2666 2667
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2668
		unsigned long wl;
2669 2670 2671 2672

		if (!cpu_isset(i, *cpus))
			continue;

2673
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2674
		wl = weighted_cpuload(i);
2675

I
Ingo Molnar 已提交
2676
		if (rq->nr_running == 1 && wl > imbalance)
2677
			continue;
L
Linus Torvalds 已提交
2678

I
Ingo Molnar 已提交
2679 2680
		if (wl > max_load) {
			max_load = wl;
2681
			busiest = rq;
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687
		}
	}

	return busiest;
}

2688 2689 2690 2691 2692 2693
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2694 2695 2696 2697
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2698
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2699
			struct sched_domain *sd, enum cpu_idle_type idle,
2700
			int *balance)
L
Linus Torvalds 已提交
2701
{
P
Peter Williams 已提交
2702
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2703 2704
	struct sched_group *group;
	unsigned long imbalance;
2705
	struct rq *busiest;
2706
	cpumask_t cpus = CPU_MASK_ALL;
2707
	unsigned long flags;
N
Nick Piggin 已提交
2708

2709 2710 2711
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2712
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2713
	 * portraying it as CPU_NOT_IDLE.
2714
	 */
I
Ingo Molnar 已提交
2715
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2716
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2717
		sd_idle = 1;
L
Linus Torvalds 已提交
2718

2719
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2720

2721 2722
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2723 2724
				   &cpus, balance);

2725
	if (*balance == 0)
2726 2727
		goto out_balanced;

L
Linus Torvalds 已提交
2728 2729 2730 2731 2732
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2733
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2739
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2740 2741 2742

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2743
	ld_moved = 0;
L
Linus Torvalds 已提交
2744 2745 2746 2747
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2748
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2749 2750
		 * correctly treated as an imbalance.
		 */
2751
		local_irq_save(flags);
N
Nick Piggin 已提交
2752
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2753
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2754
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2755
		double_rq_unlock(this_rq, busiest);
2756
		local_irq_restore(flags);
2757

2758 2759 2760
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2761
		if (ld_moved && this_cpu != smp_processor_id())
2762 2763
			resched_cpu(this_cpu);

2764
		/* All tasks on this runqueue were pinned by CPU affinity */
2765 2766 2767 2768
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2769
			goto out_balanced;
2770
		}
L
Linus Torvalds 已提交
2771
	}
2772

P
Peter Williams 已提交
2773
	if (!ld_moved) {
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2779
			spin_lock_irqsave(&busiest->lock, flags);
2780 2781 2782 2783 2784

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2785
				spin_unlock_irqrestore(&busiest->lock, flags);
2786 2787 2788 2789
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2790 2791 2792
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2793
				active_balance = 1;
L
Linus Torvalds 已提交
2794
			}
2795
			spin_unlock_irqrestore(&busiest->lock, flags);
2796
			if (active_balance)
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2803
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2804
		}
2805
	} else
L
Linus Torvalds 已提交
2806 2807
		sd->nr_balance_failed = 0;

2808
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2809 2810
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2811 2812 2813 2814 2815 2816 2817 2818 2819
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2820 2821
	}

P
Peter Williams 已提交
2822
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2823
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2824
		return -1;
P
Peter Williams 已提交
2825
	return ld_moved;
L
Linus Torvalds 已提交
2826 2827 2828 2829

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2830
	sd->nr_balance_failed = 0;
2831 2832

out_one_pinned:
L
Linus Torvalds 已提交
2833
	/* tune up the balancing interval */
2834 2835
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2836 2837
		sd->balance_interval *= 2;

2838
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2839
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2840
		return -1;
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846 2847
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2848
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2849 2850
 * this_rq is locked.
 */
2851
static int
2852
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2853 2854
{
	struct sched_group *group;
2855
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2856
	unsigned long imbalance;
P
Peter Williams 已提交
2857
	int ld_moved = 0;
N
Nick Piggin 已提交
2858
	int sd_idle = 0;
2859
	int all_pinned = 0;
2860
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2861

2862 2863 2864 2865
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2866
	 * portraying it as CPU_NOT_IDLE.
2867 2868 2869
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2870
		sd_idle = 1;
L
Linus Torvalds 已提交
2871

2872
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2873
redo:
I
Ingo Molnar 已提交
2874
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2875
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2876
	if (!group) {
I
Ingo Molnar 已提交
2877
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2878
		goto out_balanced;
L
Linus Torvalds 已提交
2879 2880
	}

I
Ingo Molnar 已提交
2881
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2882
				&cpus);
N
Nick Piggin 已提交
2883
	if (!busiest) {
I
Ingo Molnar 已提交
2884
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2885
		goto out_balanced;
L
Linus Torvalds 已提交
2886 2887
	}

N
Nick Piggin 已提交
2888 2889
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2890
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2891

P
Peter Williams 已提交
2892
	ld_moved = 0;
2893 2894 2895
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2896 2897
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2898
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2899 2900
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2901
		spin_unlock(&busiest->lock);
2902

2903
		if (unlikely(all_pinned)) {
2904 2905 2906 2907
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2908 2909
	}

P
Peter Williams 已提交
2910
	if (!ld_moved) {
I
Ingo Molnar 已提交
2911
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2912 2913
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2914 2915
			return -1;
	} else
2916
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2917

P
Peter Williams 已提交
2918
	return ld_moved;
2919 2920

out_balanced:
I
Ingo Molnar 已提交
2921
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2922
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2924
		return -1;
2925
	sd->nr_balance_failed = 0;
2926

2927
	return 0;
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932 2933
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2934
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2935 2936
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2937 2938
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2939 2940

	for_each_domain(this_cpu, sd) {
2941 2942 2943 2944 2945 2946
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2947
			/* If we've pulled tasks over stop searching: */
2948
			pulled_task = load_balance_newidle(this_cpu,
2949 2950 2951 2952 2953 2954 2955
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2956
	}
I
Ingo Molnar 已提交
2957
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2958 2959 2960 2961 2962
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2963
	}
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2974
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2975
{
2976
	int target_cpu = busiest_rq->push_cpu;
2977 2978
	struct sched_domain *sd;
	struct rq *target_rq;
2979

2980
	/* Is there any task to move? */
2981 2982 2983 2984
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2985 2986

	/*
2987
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
2988
	 * we need to fix it. Originally reported by
2989
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2990
	 */
2991
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2992

2993 2994
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2995 2996
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2997 2998

	/* Search for an sd spanning us and the target CPU. */
2999
	for_each_domain(target_cpu, sd) {
3000
		if ((sd->flags & SD_LOAD_BALANCE) &&
3001
		    cpu_isset(busiest_cpu, sd->span))
3002
				break;
3003
	}
3004

3005
	if (likely(sd)) {
3006
		schedstat_inc(sd, alb_count);
3007

P
Peter Williams 已提交
3008 3009
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3010 3011 3012 3013
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3014
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3015 3016
}

3017 3018 3019
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3020
	cpumask_t cpu_mask;
3021 3022 3023 3024 3025
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3026
/*
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3037
 *
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3094 3095 3096 3097 3098
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3099
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3100
{
3101 3102
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3103 3104
	unsigned long interval;
	struct sched_domain *sd;
3105
	/* Earliest time when we have to do rebalance again */
3106
	unsigned long next_balance = jiffies + 60*HZ;
3107
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3108

3109
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3110 3111 3112 3113
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3114
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3121 3122 3123
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3124

3125 3126 3127 3128 3129
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3130
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3131
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3132 3133
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3134 3135 3136
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3137
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3138
			}
3139
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3140
		}
3141 3142 3143
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3144
		if (time_after(next_balance, sd->last_balance + interval)) {
3145
			next_balance = sd->last_balance + interval;
3146 3147
			update_next_balance = 1;
		}
3148 3149 3150 3151 3152 3153 3154 3155

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3156
	}
3157 3158 3159 3160 3161 3162 3163 3164

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3165 3166 3167 3168 3169 3170 3171 3172 3173
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3174 3175 3176 3177
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3178

I
Ingo Molnar 已提交
3179
	rebalance_domains(this_cpu, idle);
3180 3181 3182 3183 3184 3185 3186

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3187 3188
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3189 3190 3191 3192
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3193
		cpu_clear(this_cpu, cpus);
3194 3195 3196 3197 3198 3199 3200 3201 3202
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3203
			rebalance_domains(balance_cpu, CPU_IDLE);
3204 3205

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3206 3207
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3220
static inline void trigger_load_balance(struct rq *rq, int cpu)
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3272
}
I
Ingo Molnar 已提交
3273 3274 3275

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3276 3277 3278
/*
 * on UP we do not need to balance between CPUs:
 */
3279
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3280 3281
{
}
I
Ingo Molnar 已提交
3282

L
Linus Torvalds 已提交
3283 3284 3285 3286 3287 3288 3289
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3290 3291
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3292
 */
3293
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3294 3295
{
	unsigned long flags;
3296 3297
	u64 ns, delta_exec;
	struct rq *rq;
3298

3299 3300
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3301
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3302 3303
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3304 3305 3306 3307
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3308

L
Linus Torvalds 已提交
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3332 3333 3334 3335 3336
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3337
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3371
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3372 3373
	cputime64_t tmp;

3374 3375
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3376

L
Linus Torvalds 已提交
3377 3378 3379 3380 3381 3382 3383 3384
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3385
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3386
		cpustat->system = cputime64_add(cpustat->system, tmp);
3387
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3388 3389 3390 3391 3392 3393 3394
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3415
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3416 3417 3418 3419 3420 3421 3422

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3423
	} else
L
Linus Torvalds 已提交
3424 3425 3426
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3438
	struct task_struct *curr = rq->curr;
3439
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3440 3441

	spin_lock(&rq->lock);
3442
	__update_rq_clock(rq);
3443 3444 3445 3446 3447 3448
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3449
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3450 3451 3452
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3453

3454
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3455 3456
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3457
#endif
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3467 3468
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3469 3470 3471 3472
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3473 3474
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3475 3476 3477 3478 3479 3480 3481 3482
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3483 3484
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3485 3486 3487
	/*
	 * Is the spinlock portion underflowing?
	 */
3488 3489 3490 3491
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497 3498
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3499
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3500
 */
I
Ingo Molnar 已提交
3501
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3502
{
3503 3504 3505 3506 3507
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3508 3509 3510
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3511 3512 3513 3514 3515

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3516
}
L
Linus Torvalds 已提交
3517

I
Ingo Molnar 已提交
3518 3519 3520 3521 3522
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3523
	/*
I
Ingo Molnar 已提交
3524
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3525 3526 3527
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3528 3529 3530
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3531 3532
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3533
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3534 3535
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3536 3537
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3538 3539
	}
#endif
I
Ingo Molnar 已提交
3540 3541 3542 3543 3544 3545
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3546
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3547
{
3548
	const struct sched_class *class;
I
Ingo Molnar 已提交
3549
	struct task_struct *p;
L
Linus Torvalds 已提交
3550 3551

	/*
I
Ingo Molnar 已提交
3552 3553
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3554
	 */
I
Ingo Molnar 已提交
3555
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3556
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3557 3558
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3559 3560
	}

I
Ingo Molnar 已提交
3561 3562
	class = sched_class_highest;
	for ( ; ; ) {
3563
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3564 3565 3566 3567 3568 3569 3570 3571 3572
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3573

I
Ingo Molnar 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3596

3597 3598 3599 3600
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3601
	__update_rq_clock(rq);
3602 3603
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3604 3605 3606

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3607
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3608
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3609
		} else {
3610
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3611
		}
I
Ingo Molnar 已提交
3612
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3613 3614
	}

3615 3616
	schedule_balance_rt(rq, prev);

I
Ingo Molnar 已提交
3617
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3618 3619
		idle_balance(cpu, rq);

3620
	prev->sched_class->put_prev_task(rq, prev);
3621
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3622 3623

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3624

L
Linus Torvalds 已提交
3625 3626 3627 3628 3629
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3630
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3631 3632 3633
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3634 3635 3636
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3637
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3638
	}
L
Linus Torvalds 已提交
3639 3640 3641 3642 3643 3644 3645 3646
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3647
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3648
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3660
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3661
	 */
N
Nick Piggin 已提交
3662
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3663 3664
		return;

3665 3666 3667 3668 3669 3670 3671 3672
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3673
#ifdef CONFIG_PREEMPT_BKL
3674 3675
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3676
#endif
3677
		schedule();
L
Linus Torvalds 已提交
3678
#ifdef CONFIG_PREEMPT_BKL
3679
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3680
#endif
3681
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3682

3683 3684 3685 3686 3687 3688
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3689 3690 3691 3692
}
EXPORT_SYMBOL(preempt_schedule);

/*
3693
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3705
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3706 3707
	BUG_ON(ti->preempt_count || !irqs_disabled());

3708 3709 3710 3711 3712 3713 3714 3715
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3716
#ifdef CONFIG_PREEMPT_BKL
3717 3718
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3719
#endif
3720 3721 3722
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3723
#ifdef CONFIG_PREEMPT_BKL
3724
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3725
#endif
3726
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3727

3728 3729 3730 3731 3732 3733
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3734 3735 3736 3737
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3738 3739
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3740
{
3741
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3742 3743 3744 3745
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3746 3747
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3748 3749 3750
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3751
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3757
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3758

3759
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3760 3761
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3762
		if (curr->func(curr, mode, sync, key) &&
3763
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3764 3765 3766 3767 3768 3769 3770 3771 3772
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3773
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3774 3775
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3776
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3795
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3807 3808
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3825
void complete(struct completion *x)
L
Linus Torvalds 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3837
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3849 3850
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3858 3859 3860 3861 3862 3863
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3869
				return timeout;
L
Linus Torvalds 已提交
3870 3871 3872 3873 3874 3875 3876 3877
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3878 3879
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3880 3881 3882 3883
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3884
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3885
	spin_unlock_irq(&x->wait.lock);
3886 3887
	return timeout;
}
L
Linus Torvalds 已提交
3888

3889
void __sched wait_for_completion(struct completion *x)
3890 3891
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3892
}
3893
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3894

3895
unsigned long __sched
3896
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3897
{
3898
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3899
}
3900
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3901

3902
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3903
{
3904 3905 3906 3907
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3908
}
3909
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3910

3911
unsigned long __sched
3912 3913
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3914
{
3915
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3916
}
3917
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3918

3919 3920
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3921
{
I
Ingo Molnar 已提交
3922 3923 3924 3925
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3926

3927
	__set_current_state(state);
L
Linus Torvalds 已提交
3928

3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3943 3944 3945
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3946
long __sched
I
Ingo Molnar 已提交
3947
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3948
{
3949
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3950 3951 3952
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3953
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3954
{
3955
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3956 3957 3958
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3959
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3960
{
3961
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3962 3963 3964
}
EXPORT_SYMBOL(sleep_on_timeout);

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3977
void rt_mutex_setprio(struct task_struct *p, int prio)
3978 3979
{
	unsigned long flags;
3980
	int oldprio, on_rq, running;
3981
	struct rq *rq;
3982 3983 3984 3985

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3986
	update_rq_clock(rq);
3987

3988
	oldprio = p->prio;
I
Ingo Molnar 已提交
3989
	on_rq = p->se.on_rq;
3990
	running = task_current(rq, p);
3991
	if (on_rq) {
3992
		dequeue_task(rq, p, 0);
3993 3994 3995
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3996 3997 3998 3999 4000 4001

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4002 4003
	p->prio = prio;

I
Ingo Molnar 已提交
4004
	if (on_rq) {
4005 4006
		if (running)
			p->sched_class->set_curr_task(rq);
4007
		enqueue_task(rq, p, 0);
4008 4009
		/*
		 * Reschedule if we are currently running on this runqueue and
4010 4011
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4012
		 */
4013
		if (running) {
4014 4015
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4016 4017 4018
		} else {
			check_preempt_curr(rq, p);
		}
4019 4020 4021 4022 4023 4024
	}
	task_rq_unlock(rq, &flags);
}

#endif

4025
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4026
{
I
Ingo Molnar 已提交
4027
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4028
	unsigned long flags;
4029
	struct rq *rq;
L
Linus Torvalds 已提交
4030 4031 4032 4033 4034 4035 4036 4037

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4038
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4039 4040 4041 4042
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4043
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4044
	 */
4045
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4046 4047 4048
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4049
	on_rq = p->se.on_rq;
4050
	if (on_rq)
4051
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4052 4053

	p->static_prio = NICE_TO_PRIO(nice);
4054
	set_load_weight(p);
4055 4056 4057
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4058

I
Ingo Molnar 已提交
4059
	if (on_rq) {
4060
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4061
		/*
4062 4063
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4064
		 */
4065
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4066 4067 4068 4069 4070 4071 4072
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4073 4074 4075 4076 4077
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4078
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4079
{
4080 4081
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4082

M
Matt Mackall 已提交
4083 4084 4085 4086
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4098
	long nice, retval;
L
Linus Torvalds 已提交
4099 4100 4101 4102 4103 4104

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4105 4106
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111 4112 4113 4114 4115
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4116 4117 4118
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4137
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143 4144 4145
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4146
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4165
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4166 4167 4168 4169 4170 4171 4172 4173
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4174
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4175
{
4176
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4177 4178 4179
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4180 4181
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4182
{
I
Ingo Molnar 已提交
4183
	BUG_ON(p->se.on_rq);
4184

L
Linus Torvalds 已提交
4185
	p->policy = policy;
I
Ingo Molnar 已提交
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4198
	p->rt_priority = prio;
4199 4200 4201
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4202
	set_load_weight(p);
L
Linus Torvalds 已提交
4203 4204 4205
}

/**
4206
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4207 4208 4209
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4210
 *
4211
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4212
 */
I
Ingo Molnar 已提交
4213 4214
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4215
{
4216
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4217
	unsigned long flags;
4218
	struct rq *rq;
L
Linus Torvalds 已提交
4219

4220 4221
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4222 4223 4224 4225 4226
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4227 4228
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4229
		return -EINVAL;
L
Linus Torvalds 已提交
4230 4231
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4232 4233
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4234 4235
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4236
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4237
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4238
		return -EINVAL;
4239
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4240 4241
		return -EINVAL;

4242 4243 4244 4245
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4246
		if (rt_policy(policy)) {
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4263 4264 4265 4266 4267 4268
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4269

4270 4271 4272 4273 4274
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4275 4276 4277 4278

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4279 4280 4281 4282 4283
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4284 4285 4286 4287
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4288
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4289 4290 4291
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4292 4293
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4294 4295
		goto recheck;
	}
I
Ingo Molnar 已提交
4296
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4297
	on_rq = p->se.on_rq;
4298
	running = task_current(rq, p);
4299
	if (on_rq) {
4300
		deactivate_task(rq, p, 0);
4301 4302 4303
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4304

L
Linus Torvalds 已提交
4305
	oldprio = p->prio;
I
Ingo Molnar 已提交
4306
	__setscheduler(rq, p, policy, param->sched_priority);
4307

I
Ingo Molnar 已提交
4308
	if (on_rq) {
4309 4310
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4311
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4312 4313
		/*
		 * Reschedule if we are currently running on this runqueue and
4314 4315
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4316
		 */
4317
		if (running) {
4318 4319
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4320 4321 4322
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4323
	}
4324 4325 4326
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4327 4328
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4329 4330 4331 4332
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4333 4334
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4335 4336 4337
{
	struct sched_param lparam;
	struct task_struct *p;
4338
	int retval;
L
Linus Torvalds 已提交
4339 4340 4341 4342 4343

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4344 4345 4346

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4347
	p = find_process_by_pid(pid);
4348 4349 4350
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4351

L
Linus Torvalds 已提交
4352 4353 4354 4355 4356 4357 4358 4359 4360
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4361 4362
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4363
{
4364 4365 4366 4367
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4387
	struct task_struct *p;
4388
	int retval;
L
Linus Torvalds 已提交
4389 4390

	if (pid < 0)
4391
		return -EINVAL;
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4413
	struct task_struct *p;
4414
	int retval;
L
Linus Torvalds 已提交
4415 4416

	if (!param || pid < 0)
4417
		return -EINVAL;
L
Linus Torvalds 已提交
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4447 4448
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4449

4450
	get_online_cpus();
L
Linus Torvalds 已提交
4451 4452 4453 4454 4455
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4456
		put_online_cpus();
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4462
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4473 4474 4475 4476
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4477 4478
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4479
 again:
L
Linus Torvalds 已提交
4480 4481
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4494 4495
out_unlock:
	put_task_struct(p);
4496
	put_online_cpus();
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4537
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4538 4539 4540
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4541
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4542 4543
EXPORT_SYMBOL(cpu_online_map);

4544
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4545
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4546 4547 4548 4549
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4550
	struct task_struct *p;
L
Linus Torvalds 已提交
4551 4552
	int retval;

4553
	get_online_cpus();
L
Linus Torvalds 已提交
4554 4555 4556 4557 4558 4559 4560
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4561 4562 4563 4564
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4565
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4566 4567 4568

out_unlock:
	read_unlock(&tasklist_lock);
4569
	put_online_cpus();
L
Linus Torvalds 已提交
4570

4571
	return retval;
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4602 4603
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4604 4605 4606
 */
asmlinkage long sys_sched_yield(void)
{
4607
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4608

4609
	schedstat_inc(rq, yld_count);
4610
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4611 4612 4613 4614 4615 4616

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4617
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4626
static void __cond_resched(void)
L
Linus Torvalds 已提交
4627
{
4628 4629 4630
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4631 4632 4633 4634 4635
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640 4641 4642 4643 4644
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4645 4646
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4658
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4659 4660 4661
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4662
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4663
{
J
Jan Kara 已提交
4664 4665
	int ret = 0;

L
Linus Torvalds 已提交
4666 4667 4668
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4669
		ret = 1;
L
Linus Torvalds 已提交
4670 4671
		spin_lock(lock);
	}
4672
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4673
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4674 4675 4676
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4677
		ret = 1;
L
Linus Torvalds 已提交
4678 4679
		spin_lock(lock);
	}
J
Jan Kara 已提交
4680
	return ret;
L
Linus Torvalds 已提交
4681 4682 4683 4684 4685 4686 4687
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4688
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4689
		local_bh_enable();
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4701
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4712
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717 4718 4719
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4720
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4721

4722
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4723 4724 4725
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4726
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4727 4728 4729 4730 4731
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4732
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4733 4734
	long ret;

4735
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4736 4737 4738
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4739
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4760
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4761
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4785
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4786
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4803
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4804
	unsigned int time_slice;
4805
	int retval;
L
Linus Torvalds 已提交
4806 4807 4808
	struct timespec t;

	if (pid < 0)
4809
		return -EINVAL;
L
Linus Torvalds 已提交
4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4821 4822 4823 4824 4825 4826
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4827
		time_slice = DEF_TIMESLICE;
4828
	} else {
D
Dmitry Adamushko 已提交
4829 4830 4831 4832 4833
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4834 4835
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4836 4837
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4838
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4839
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4840 4841
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4842

L
Linus Torvalds 已提交
4843 4844 4845 4846 4847
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4848
static const char stat_nam[] = "RSDTtZX";
4849

4850
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4851 4852
{
	unsigned long free = 0;
4853
	unsigned state;
L
Linus Torvalds 已提交
4854 4855

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4856
	printk(KERN_INFO "%-13.13s %c", p->comm,
4857
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4858
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4859
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4860
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4861
	else
I
Ingo Molnar 已提交
4862
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4863 4864
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4865
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4866
	else
I
Ingo Molnar 已提交
4867
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4868 4869 4870
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4871
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4872 4873
		while (!*n)
			n++;
4874
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4875 4876
	}
#endif
4877
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
4878
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
4879 4880 4881 4882 4883

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4884
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4885
{
4886
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4887

4888 4889 4890
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4891
#else
4892 4893
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4894 4895 4896 4897 4898 4899 4900 4901
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4902
		if (!state_filter || (p->state & state_filter))
4903
			sched_show_task(p);
L
Linus Torvalds 已提交
4904 4905
	} while_each_thread(g, p);

4906 4907
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4908 4909 4910
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4911
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4912 4913 4914 4915 4916
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4917 4918
}

I
Ingo Molnar 已提交
4919 4920
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4921
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4922 4923
}

4924 4925 4926 4927 4928 4929 4930 4931
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4932
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4933
{
4934
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4935 4936
	unsigned long flags;

I
Ingo Molnar 已提交
4937 4938 4939
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4940
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4941
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4942
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4943 4944 4945

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4946 4947 4948
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4949 4950 4951 4952
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4953
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4954
#else
A
Al Viro 已提交
4955
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4956
#endif
I
Ingo Molnar 已提交
4957 4958 4959 4960
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
4998 4999 5000 5001
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5002
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5021
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5022 5023
 * call is not atomic; no spinlocks may be held.
 */
5024
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5025
{
5026
	struct migration_req req;
L
Linus Torvalds 已提交
5027
	unsigned long flags;
5028
	struct rq *rq;
5029
	int ret = 0;
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5037 5038 5039 5040 5041 5042 5043
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
		p->cpus_allowed    = new_mask;
		p->nr_cpus_allowed = cpus_weight(new_mask);
	}

L
Linus Torvalds 已提交
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5058

L
Linus Torvalds 已提交
5059 5060 5061 5062 5063
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5064
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5065 5066 5067 5068 5069 5070
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5071 5072
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5073
 */
5074
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5075
{
5076
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5077
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5078 5079

	if (unlikely(cpu_is_offline(dest_cpu)))
5080
		return ret;
L
Linus Torvalds 已提交
5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5093
	on_rq = p->se.on_rq;
5094
	if (on_rq)
5095
		deactivate_task(rq_src, p, 0);
5096

L
Linus Torvalds 已提交
5097
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5098 5099 5100
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5101
	}
5102
	ret = 1;
L
Linus Torvalds 已提交
5103 5104
out:
	double_rq_unlock(rq_src, rq_dest);
5105
	return ret;
L
Linus Torvalds 已提交
5106 5107 5108 5109 5110 5111 5112
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5113
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5114 5115
{
	int cpu = (long)data;
5116
	struct rq *rq;
L
Linus Torvalds 已提交
5117 5118 5119 5120 5121 5122

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5123
		struct migration_req *req;
L
Linus Torvalds 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5146
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5147 5148
		list_del_init(head->next);

N
Nick Piggin 已提交
5149 5150 5151
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5181
/*
5182
 * Figure out where task on dead CPU should go, use force if necessary.
5183 5184
 * NOTE: interrupts should be disabled by the caller
 */
5185
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5186
{
5187
	unsigned long flags;
L
Linus Torvalds 已提交
5188
	cpumask_t mask;
5189 5190
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5191

5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5204 5205 5206 5207 5208
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5209
			 * cpuset_cpus_allowed() will not block. It must be
5210 5211
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5212
			rq = task_rq_lock(p, &flags);
5213
			p->cpus_allowed = cpus_allowed;
5214 5215
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5216

5217 5218 5219 5220 5221
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5222
			if (p->mm && printk_ratelimit()) {
5223 5224
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5225 5226
					task_pid_nr(p), p->comm, dead_cpu);
			}
5227
		}
5228
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5229 5230 5231 5232 5233 5234 5235 5236 5237
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5238
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5239
{
5240
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5254
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5255

5256
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5257

5258 5259
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5260 5261
			continue;

5262 5263 5264
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5265

5266
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5267 5268
}

I
Ingo Molnar 已提交
5269 5270
/*
 * Schedules idle task to be the next runnable task on current CPU.
5271 5272
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5273 5274 5275
 */
void sched_idle_next(void)
{
5276
	int this_cpu = smp_processor_id();
5277
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5278 5279 5280 5281
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5282
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5283

5284 5285 5286
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5287 5288 5289
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5290
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5291

5292 5293
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5294 5295 5296 5297

	spin_unlock_irqrestore(&rq->lock, flags);
}

5298 5299
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5313
/* called under rq->lock with disabled interrupts */
5314
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5315
{
5316
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5317 5318

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5319
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5320 5321

	/* Cannot have done final schedule yet: would have vanished. */
5322
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5323

5324
	get_task_struct(p);
L
Linus Torvalds 已提交
5325 5326 5327

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5328
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5329 5330
	 * fine.
	 */
5331
	spin_unlock_irq(&rq->lock);
5332
	move_task_off_dead_cpu(dead_cpu, p);
5333
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5334

5335
	put_task_struct(p);
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5341
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5342
	struct task_struct *next;
5343

I
Ingo Molnar 已提交
5344 5345 5346
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5347
		update_rq_clock(rq);
5348
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5349 5350 5351
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5352

L
Linus Torvalds 已提交
5353 5354 5355 5356
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5357 5358 5359
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5360 5361
	{
		.procname	= "sched_domain",
5362
		.mode		= 0555,
5363
	},
I
Ingo Molnar 已提交
5364
	{0, },
5365 5366 5367
};

static struct ctl_table sd_ctl_root[] = {
5368
	{
5369
		.ctl_name	= CTL_KERN,
5370
		.procname	= "kernel",
5371
		.mode		= 0555,
5372 5373
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5374
	{0, },
5375 5376 5377 5378 5379
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5380
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5381 5382 5383 5384

	return entry;
}

5385 5386
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5387
	struct ctl_table *entry;
5388

5389 5390 5391
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5392
	 * will always be set. In the lowest directory the names are
5393 5394 5395
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5396 5397
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5398 5399 5400
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5401 5402 5403 5404 5405

	kfree(*tablep);
	*tablep = NULL;
}

5406
static void
5407
set_table_entry(struct ctl_table *entry,
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5421
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5422

5423 5424 5425
	if (table == NULL)
		return NULL;

5426
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5427
		sizeof(long), 0644, proc_doulongvec_minmax);
5428
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5429
		sizeof(long), 0644, proc_doulongvec_minmax);
5430
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5431
		sizeof(int), 0644, proc_dointvec_minmax);
5432
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5433
		sizeof(int), 0644, proc_dointvec_minmax);
5434
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5435
		sizeof(int), 0644, proc_dointvec_minmax);
5436
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5437
		sizeof(int), 0644, proc_dointvec_minmax);
5438
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5439
		sizeof(int), 0644, proc_dointvec_minmax);
5440
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5441
		sizeof(int), 0644, proc_dointvec_minmax);
5442
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5443
		sizeof(int), 0644, proc_dointvec_minmax);
5444
	set_table_entry(&table[9], "cache_nice_tries",
5445 5446
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5447
	set_table_entry(&table[10], "flags", &sd->flags,
5448
		sizeof(int), 0644, proc_dointvec_minmax);
5449
	/* &table[11] is terminator */
5450 5451 5452 5453

	return table;
}

5454
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5455 5456 5457 5458 5459 5460 5461 5462 5463
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5464 5465
	if (table == NULL)
		return NULL;
5466 5467 5468 5469 5470

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5471
		entry->mode = 0555;
5472 5473 5474 5475 5476 5477 5478 5479
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5480
static void register_sched_domain_sysctl(void)
5481 5482 5483 5484 5485
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5486 5487 5488
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5489 5490 5491
	if (entry == NULL)
		return;

5492
	for_each_online_cpu(i) {
5493 5494
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5495
		entry->mode = 0555;
5496
		entry->child = sd_alloc_ctl_cpu_table(i);
5497
		entry++;
5498
	}
5499 5500

	WARN_ON(sd_sysctl_header);
5501 5502
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5503

5504
/* may be called multiple times per register */
5505 5506
static void unregister_sched_domain_sysctl(void)
{
5507 5508
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5509
	sd_sysctl_header = NULL;
5510 5511
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5512
}
5513
#else
5514 5515 5516 5517
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5518 5519 5520 5521
{
}
#endif

L
Linus Torvalds 已提交
5522 5523 5524 5525
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5526 5527
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5528 5529
{
	struct task_struct *p;
5530
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5531
	unsigned long flags;
5532
	struct rq *rq;
L
Linus Torvalds 已提交
5533 5534

	switch (action) {
5535

L
Linus Torvalds 已提交
5536
	case CPU_UP_PREPARE:
5537
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5538
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5539 5540 5541 5542 5543
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5544
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5545 5546 5547
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5548

L
Linus Torvalds 已提交
5549
	case CPU_ONLINE:
5550
	case CPU_ONLINE_FROZEN:
5551
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5552 5553
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5554

L
Linus Torvalds 已提交
5555 5556
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5557
	case CPU_UP_CANCELED_FROZEN:
5558 5559
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5560
		/* Unbind it from offline cpu so it can run. Fall thru. */
5561 5562
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5563 5564 5565
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5566

L
Linus Torvalds 已提交
5567
	case CPU_DEAD:
5568
	case CPU_DEAD_FROZEN:
5569
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5570 5571 5572 5573 5574
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5575
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5576
		update_rq_clock(rq);
5577
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5578
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5579 5580
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5581
		migrate_dead_tasks(cpu);
5582
		spin_unlock_irq(&rq->lock);
5583
		cpuset_unlock();
L
Linus Torvalds 已提交
5584 5585 5586
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5587 5588 5589 5590 5591
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5592 5593
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5594 5595
			struct migration_req *req;

L
Linus Torvalds 已提交
5596
			req = list_entry(rq->migration_queue.next,
5597
					 struct migration_req, list);
L
Linus Torvalds 已提交
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5611
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5612 5613 5614 5615
	.notifier_call = migration_call,
	.priority = 10
};

5616
void __init migration_init(void)
L
Linus Torvalds 已提交
5617 5618
{
	void *cpu = (void *)(long)smp_processor_id();
5619
	int err;
5620 5621

	/* Start one for the boot CPU: */
5622 5623
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5630 5631 5632 5633 5634

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5635
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5636 5637

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5638
{
I
Ingo Molnar 已提交
5639 5640 5641
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5642

I
Ingo Molnar 已提交
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5654 5655
	}

I
Ingo Molnar 已提交
5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5666

I
Ingo Molnar 已提交
5667
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5668
	do {
I
Ingo Molnar 已提交
5669 5670 5671
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5672 5673 5674
			break;
		}

I
Ingo Molnar 已提交
5675 5676 5677 5678 5679 5680
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5681

I
Ingo Molnar 已提交
5682 5683 5684 5685 5686
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5687

I
Ingo Molnar 已提交
5688 5689 5690 5691 5692
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5693

I
Ingo Molnar 已提交
5694
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5695

I
Ingo Molnar 已提交
5696 5697
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5698

I
Ingo Molnar 已提交
5699 5700 5701
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5702

I
Ingo Molnar 已提交
5703 5704
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5705

I
Ingo Molnar 已提交
5706 5707 5708 5709 5710
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5711

I
Ingo Molnar 已提交
5712 5713 5714
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5715

I
Ingo Molnar 已提交
5716 5717 5718 5719
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5720

I
Ingo Molnar 已提交
5721 5722 5723 5724 5725
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5726 5727
		level++;
		sd = sd->parent;
5728
		if (!sd)
I
Ingo Molnar 已提交
5729 5730
			break;
	}
L
Linus Torvalds 已提交
5731 5732
}
#else
5733
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5734 5735
#endif

5736
static int sd_degenerate(struct sched_domain *sd)
5737 5738 5739 5740 5741 5742 5743 5744
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5745 5746 5747
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5761 5762
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5781 5782 5783
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5784 5785 5786 5787 5788 5789 5790
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5791 5792 5793 5794
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5795
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5796
{
5797
	struct rq *rq = cpu_rq(cpu);
5798 5799 5800 5801 5802 5803 5804
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5805
		if (sd_parent_degenerate(tmp, parent)) {
5806
			tmp->parent = parent->parent;
5807 5808 5809
			if (parent->parent)
				parent->parent->child = tmp;
		}
5810 5811
	}

5812
	if (sd && sd_degenerate(sd)) {
5813
		sd = sd->parent;
5814 5815 5816
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5817 5818 5819

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5820
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5821 5822 5823
}

/* cpus with isolated domains */
5824
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5839
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5840 5841

/*
5842 5843 5844 5845
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5846 5847 5848 5849 5850
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5851
static void
5852 5853 5854
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5855 5856 5857 5858 5859 5860
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5861 5862
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867 5868
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5869
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5870 5871

		for_each_cpu_mask(j, span) {
5872
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5887
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5888

5889
#ifdef CONFIG_NUMA
5890

5891 5892 5893 5894 5895
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5896
 * Find the next node to include in a given scheduling domain. Simply
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
5936
 * Given a node, construct a good cpumask for its sched_domain to span. It
5937 5938 5939 5940 5941 5942
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5943 5944
	cpumask_t span, nodemask;
	int i;
5945 5946 5947 5948 5949 5950 5951 5952 5953 5954

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5955

5956 5957 5958 5959 5960 5961 5962 5963
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5964
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5965

5966
/*
5967
 * SMT sched-domains:
5968
 */
L
Linus Torvalds 已提交
5969 5970
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5971
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5972

I
Ingo Molnar 已提交
5973 5974
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
5975
{
5976 5977
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5978 5979 5980 5981
	return cpu;
}
#endif

5982 5983 5984
/*
 * multi-core sched-domains:
 */
5985 5986
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5987
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5988 5989 5990
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
5991 5992
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
5993
{
5994
	int group;
5995
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5996
	cpus_and(mask, mask, *cpu_map);
5997 5998 5999 6000
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6001 6002
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6003 6004
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6005
{
6006 6007
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6008 6009 6010 6011
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6012
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6013
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6014

I
Ingo Molnar 已提交
6015 6016
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6017
{
6018
	int group;
6019
#ifdef CONFIG_SCHED_MC
6020
	cpumask_t mask = cpu_coregroup_map(cpu);
6021
	cpus_and(mask, mask, *cpu_map);
6022
	group = first_cpu(mask);
6023
#elif defined(CONFIG_SCHED_SMT)
6024
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6025
	cpus_and(mask, mask, *cpu_map);
6026
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6027
#else
6028
	group = cpu;
L
Linus Torvalds 已提交
6029
#endif
6030 6031 6032
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6033 6034 6035 6036
}

#ifdef CONFIG_NUMA
/*
6037 6038 6039
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6040
 */
6041
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6042
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6043

6044
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6045
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6046

6047 6048
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6049
{
6050 6051 6052 6053 6054 6055 6056 6057 6058
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6059
}
6060

6061 6062 6063 6064 6065 6066 6067
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6068 6069 6070
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6071

6072 6073 6074 6075 6076 6077 6078 6079
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6080

6081 6082 6083 6084
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6085
}
L
Linus Torvalds 已提交
6086 6087
#endif

6088
#ifdef CONFIG_NUMA
6089 6090 6091
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6092
	int cpu, i;
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6123 6124 6125 6126 6127
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6128

6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6155 6156
	sd->groups->__cpu_power = 0;

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6167
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6168 6169 6170 6171 6172 6173 6174 6175
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6176
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6177 6178 6179 6180
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6181
/*
6182 6183
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6184
 */
6185
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6186 6187
{
	int i;
6188 6189
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6190
	int sd_allnodes = 0;
6191 6192 6193 6194

	/*
	 * Allocate the per-node list of sched groups
	 */
6195
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6196
				    GFP_KERNEL);
6197 6198
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6199
		return -ENOMEM;
6200 6201 6202
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6203 6204

	/*
6205
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6206
	 */
6207
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6208 6209 6210
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6211
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6212 6213

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6214 6215
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6216 6217 6218
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6219
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6220
			p = sd;
6221
			sd_allnodes = 1;
6222 6223 6224
		} else
			p = NULL;

L
Linus Torvalds 已提交
6225 6226
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6227 6228
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6229 6230
		if (p)
			p->child = sd;
6231
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6232 6233 6234 6235 6236 6237 6238
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6239 6240
		if (p)
			p->child = sd;
6241
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6242

6243 6244 6245 6246 6247 6248 6249
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6250
		p->child = sd;
6251
		cpu_to_core_group(i, cpu_map, &sd->groups);
6252 6253
#endif

L
Linus Torvalds 已提交
6254 6255 6256 6257
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6258
		sd->span = per_cpu(cpu_sibling_map, i);
6259
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6260
		sd->parent = p;
6261
		p->child = sd;
6262
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6268
	for_each_cpu_mask(i, *cpu_map) {
6269
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6270
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6271 6272 6273
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6274 6275
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6276 6277 6278
	}
#endif

6279 6280 6281 6282 6283 6284 6285
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6286 6287
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6288 6289 6290
	}
#endif

L
Linus Torvalds 已提交
6291 6292 6293 6294
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6295
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6296 6297 6298
		if (cpus_empty(nodemask))
			continue;

6299
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6300 6301 6302 6303
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6304
	if (sd_allnodes)
I
Ingo Molnar 已提交
6305 6306
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6307 6308 6309 6310 6311 6312 6313 6314 6315 6316

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6317 6318
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6319
			continue;
6320
		}
6321 6322 6323 6324

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6325
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6326 6327 6328 6329 6330
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6331 6332 6333
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6334

6335 6336 6337
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6338
		sg->__cpu_power = 0;
6339
		sg->cpumask = nodemask;
6340
		sg->next = sg;
6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6359 6360
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6361 6362 6363
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6364
				goto error;
6365
			}
6366
			sg->__cpu_power = 0;
6367
			sg->cpumask = tmp;
6368
			sg->next = prev->next;
6369 6370 6371 6372 6373
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6374 6375 6376
#endif

	/* Calculate CPU power for physical packages and nodes */
6377
#ifdef CONFIG_SCHED_SMT
6378
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6379 6380
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6381
		init_sched_groups_power(i, sd);
6382
	}
L
Linus Torvalds 已提交
6383
#endif
6384
#ifdef CONFIG_SCHED_MC
6385
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6386 6387
		struct sched_domain *sd = &per_cpu(core_domains, i);

6388
		init_sched_groups_power(i, sd);
6389 6390
	}
#endif
6391

6392
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6393 6394
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6395
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6396 6397
	}

6398
#ifdef CONFIG_NUMA
6399 6400
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6401

6402 6403
	if (sd_allnodes) {
		struct sched_group *sg;
6404

6405
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6406 6407
		init_numa_sched_groups_power(sg);
	}
6408 6409
#endif

L
Linus Torvalds 已提交
6410
	/* Attach the domains */
6411
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6412 6413 6414
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6415 6416
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6417 6418 6419 6420 6421
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6422 6423 6424

	return 0;

6425
#ifdef CONFIG_NUMA
6426 6427 6428
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6429
#endif
L
Linus Torvalds 已提交
6430
}
P
Paul Jackson 已提交
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6442
/*
I
Ingo Molnar 已提交
6443
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6444 6445
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6446
 */
6447
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6448
{
6449 6450
	int err;

P
Paul Jackson 已提交
6451 6452 6453 6454 6455
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6456
	err = build_sched_domains(doms_cur);
6457
	register_sched_domain_sysctl();
6458 6459

	return err;
6460 6461 6462
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6463
{
6464
	free_sched_groups(cpu_map);
6465
}
L
Linus Torvalds 已提交
6466

6467 6468 6469 6470
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6471
static void detach_destroy_domains(const cpumask_t *cpu_map)
6472 6473 6474
{
	int i;

6475 6476
	unregister_sched_domain_sysctl();

6477 6478 6479 6480 6481 6482
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6483 6484
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6485
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6486 6487 6488 6489
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6490 6491 6492
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6493 6494 6495
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6496 6497
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6508 6509
	lock_doms_cur();

6510 6511 6512
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6548 6549

	register_sched_domain_sysctl();
6550 6551

	unlock_doms_cur();
P
Paul Jackson 已提交
6552 6553
}

6554
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6555
static int arch_reinit_sched_domains(void)
6556 6557 6558
{
	int err;

6559
	get_online_cpus();
6560 6561
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6562
	put_online_cpus();
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6589 6590
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6591 6592 6593
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6594 6595
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6596 6597 6598 6599 6600 6601 6602
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6603 6604
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6605 6606 6607
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6628 6629
#endif

L
Linus Torvalds 已提交
6630
/*
I
Ingo Molnar 已提交
6631
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6632
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6633
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6634 6635 6636 6637 6638 6639 6640
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6641
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6642
	case CPU_DOWN_PREPARE:
6643
	case CPU_DOWN_PREPARE_FROZEN:
6644
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6645 6646 6647
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6648
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6649
	case CPU_DOWN_FAILED:
6650
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6651
	case CPU_ONLINE:
6652
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6653
	case CPU_DEAD:
6654
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6655 6656 6657 6658 6659 6660 6661 6662 6663
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6664
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6665 6666 6667 6668 6669 6670

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6671 6672
	cpumask_t non_isolated_cpus;

6673
	get_online_cpus();
6674
	arch_init_sched_domains(&cpu_online_map);
6675
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6676 6677
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6678
	put_online_cpus();
L
Linus Torvalds 已提交
6679 6680
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6681 6682 6683 6684

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6685
	sched_init_granularity();
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
6701 6702 6703 6704
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6705
	sched_init_granularity();
L
Linus Torvalds 已提交
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6716
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6717 6718 6719 6720 6721
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6722
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6723 6724
}

L
Linus Torvalds 已提交
6725 6726
void __init sched_init(void)
{
6727
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6728 6729
	int i, j;

6730
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6731
		struct rt_prio_array *array;
6732
		struct rq *rq;
L
Linus Torvalds 已提交
6733 6734 6735

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6736
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6737
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6738 6739 6740 6741
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6742 6743 6744 6745 6746 6747 6748
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6749
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6750
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6751 6752
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6753 6754 6755
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6756
			se->load.weight = init_task_group_load;
6757
			se->load.inv_weight =
6758
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6759 6760
			se->parent = NULL;
		}
6761
		init_task_group.shares = init_task_group_load;
I
Ingo Molnar 已提交
6762
#endif
L
Linus Torvalds 已提交
6763

I
Ingo Molnar 已提交
6764 6765
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6766
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6767
		rq->sd = NULL;
L
Linus Torvalds 已提交
6768
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6769
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6770
		rq->push_cpu = 0;
6771
		rq->cpu = i;
L
Linus Torvalds 已提交
6772 6773
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
6774
		rq->rt.highest_prio = MAX_RT_PRIO;
G
Gregory Haskins 已提交
6775
		rq->rt.overloaded = 0;
L
Linus Torvalds 已提交
6776 6777 6778
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6779 6780 6781 6782
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6783
		}
6784
		highest_cpu = i;
I
Ingo Molnar 已提交
6785 6786
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6787 6788
	}

6789
	set_load_weight(&init_task);
6790

6791 6792 6793 6794
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6795
#ifdef CONFIG_SMP
6796
	nr_cpu_ids = highest_cpu + 1;
6797 6798 6799
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6800 6801 6802 6803
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6817 6818 6819 6820
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6821 6822 6823 6824 6825
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6826
#ifdef in_atomic
L
Linus Torvalds 已提交
6827 6828 6829 6830 6831 6832 6833
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6834
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6835 6836 6837
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6838
		debug_show_held_locks(current);
6839 6840
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6841 6842 6843 6844 6845 6846 6847 6848
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6863 6864
void normalize_rt_tasks(void)
{
6865
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6866
	unsigned long flags;
6867
	struct rq *rq;
L
Linus Torvalds 已提交
6868 6869

	read_lock_irq(&tasklist_lock);
6870
	do_each_thread(g, p) {
6871 6872 6873 6874 6875 6876
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6877 6878
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6879 6880 6881
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6882
#endif
I
Ingo Molnar 已提交
6883 6884 6885 6886 6887 6888 6889 6890 6891
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6892
			continue;
I
Ingo Molnar 已提交
6893
		}
L
Linus Torvalds 已提交
6894

6895 6896
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6897

6898
		normalize_task(rq, p);
6899

6900 6901
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6902 6903
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6904 6905 6906 6907
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6926
struct task_struct *curr_task(int cpu)
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6937 6938
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6939 6940 6941 6942 6943 6944 6945
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6946
void set_curr_task(int cpu, struct task_struct *p)
6947 6948 6949 6950 6951
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6952 6953 6954

#ifdef CONFIG_FAIR_GROUP_SCHED

6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057
#ifdef CONFIG_SMP
/*
 * distribute shares of all task groups among their schedulable entities,
 * to reflect load distrbution across cpus.
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

		/* Nothing to do if this group has no load  */
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * These settings allows for the appropriate tradeoff between accuracy of
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7058
		get_online_cpus();
7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7092
		put_online_cpus();
7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

S
Srivatsa Vaddagiri 已提交
7106
/* allocate runqueue etc for a new task group */
7107
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
7108
{
7109
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7110 7111
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7112
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7113 7114 7115 7116 7117 7118
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7119
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7120 7121
	if (!tg->cfs_rq)
		goto err;
7122
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7123 7124 7125 7126
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
7127
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7154 7155 7156
	tg->shares = NICE_0_LOAD;

	lock_task_group_list();
7157 7158 7159 7160 7161
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7162
	unlock_task_group_list();
S
Srivatsa Vaddagiri 已提交
7163

7164
	return tg;
S
Srivatsa Vaddagiri 已提交
7165 7166 7167

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7168
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7169
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7170
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7171 7172
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7173 7174 7175
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7176 7177 7178 7179

	return ERR_PTR(-ENOMEM);
}

7180 7181
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7182
{
7183 7184
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7202
/* Destroy runqueue etc associated with a task group */
7203
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7204
{
7205
	struct cfs_rq *cfs_rq = NULL;
7206
	int i;
S
Srivatsa Vaddagiri 已提交
7207

7208
	lock_task_group_list();
7209 7210 7211 7212
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}
7213
	unlock_task_group_list();
7214

7215
	BUG_ON(!cfs_rq);
7216 7217

	/* wait for possible concurrent references to cfs_rqs complete */
7218
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7219 7220
}

7221
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7222 7223 7224
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7225 7226
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7227 7228 7229 7230 7231 7232 7233
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7234
	if (tsk->sched_class != &fair_sched_class) {
7235
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7236
		goto done;
7237
	}
S
Srivatsa Vaddagiri 已提交
7238 7239 7240

	update_rq_clock(rq);

7241
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7242 7243
	on_rq = tsk->se.on_rq;

7244
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7245
		dequeue_task(rq, tsk, 0);
7246 7247 7248
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7249

7250
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7251

7252 7253 7254
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7255
		enqueue_task(rq, tsk, 0);
7256
	}
S
Srivatsa Vaddagiri 已提交
7257 7258 7259 7260 7261

done:
	task_rq_unlock(rq, &flags);
}

7262
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7263 7264 7265 7266 7267 7268
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7269 7270
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7271 7272

	on_rq = se->on_rq;
7273
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7274
		dequeue_entity(cfs_rq, se, 0);
7275 7276
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7277 7278 7279 7280

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7281
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7282
		enqueue_entity(cfs_rq, se, 0);
7283 7284
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7285 7286
}

7287
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7288 7289
{
	int i;
7290 7291
	struct cfs_rq *cfs_rq;
	struct rq *rq;
7292

7293
	lock_task_group_list();
7294
	if (tg->shares == shares)
7295
		goto done;
S
Srivatsa Vaddagiri 已提交
7296

7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7317
	tg->shares = shares;
7318 7319
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7320
		set_se_shares(tg->se[i], shares);
7321 7322
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7323

7324 7325 7326 7327 7328 7329 7330 7331 7332
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
7333
done:
7334
	unlock_task_group_list();
7335
	return 0;
S
Srivatsa Vaddagiri 已提交
7336 7337
}

7338 7339 7340 7341 7342
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7343
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7344 7345 7346 7347

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7348
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7349
{
7350 7351
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7352 7353 7354
}

static struct cgroup_subsys_state *
7355
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7356 7357 7358
{
	struct task_group *tg;

7359
	if (!cgrp->parent) {
7360
		/* This is early initialization for the top cgroup */
7361
		init_task_group.css.cgroup = cgrp;
7362 7363 7364 7365
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7366
	if (cgrp->parent->parent)
7367 7368 7369 7370 7371 7372 7373
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7374
	tg->css.cgroup = cgrp;
7375 7376 7377 7378

	return &tg->css;
}

I
Ingo Molnar 已提交
7379 7380
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7381
{
7382
	struct task_group *tg = cgroup_tg(cgrp);
7383 7384 7385 7386

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7387 7388 7389
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7390 7391 7392 7393 7394 7395 7396 7397 7398
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7399
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7400 7401 7402 7403 7404
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7405 7406
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7407
{
7408
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7409 7410
}

7411
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7412
{
7413
	struct task_group *tg = cgroup_tg(cgrp);
7414 7415 7416 7417

	return (u64) tg->shares;
}

7418 7419 7420 7421 7422 7423
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7424 7425 7426 7427
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7428
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7429 7430 7431
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7432 7433 7434 7435 7436 7437 7438
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7439 7440 7441 7442
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7495 7496
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */