sched.c 266.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311
/*
 * Root task group.
312 313
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
314 315 316
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
321
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618
	/* For active balancing */
619
	int post_schedule;
L
Linus Torvalds 已提交
620 621
	int active_balance;
	int push_cpu;
622 623
	/* cpu of this runqueue: */
	int cpu;
624
	int online;
L
Linus Torvalds 已提交
625

626
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
627

628
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
629
	struct list_head migration_queue;
630 631 632

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
633 634
#endif

635 636 637 638
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
639
#ifdef CONFIG_SCHED_HRTICK
640 641 642 643
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
644 645 646
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
647 648 649
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
650 651
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
652 653

	/* sys_sched_yield() stats */
654
	unsigned int yld_count;
L
Linus Torvalds 已提交
655 656

	/* schedule() stats */
657 658 659
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
660 661

	/* try_to_wake_up() stats */
662 663
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
664 665

	/* BKL stats */
666
	unsigned int bkl_count;
L
Linus Torvalds 已提交
667 668 669
#endif
};

670
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
671

672
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
673
{
674
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
675 676
}

677 678 679 680 681 682 683 684 685
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
686 687
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
688
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
689 690 691 692
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
693 694
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
695 696 697 698 699

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
700
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
701

I
Ingo Molnar 已提交
702
inline void update_rq_clock(struct rq *rq)
703 704 705 706
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
707 708 709 710 711 712 713 714 715
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
734 735 736
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
737 738 739 740

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
741
enum {
P
Peter Zijlstra 已提交
742
#include "sched_features.h"
I
Ingo Molnar 已提交
743 744
};

P
Peter Zijlstra 已提交
745 746 747 748 749
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
750
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
751 752 753 754 755 756 757 758 759
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

760
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
761 762 763 764 765 766
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
767
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
768 769 770 771
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
772 773 774
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
775
	}
L
Li Zefan 已提交
776
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
777

L
Li Zefan 已提交
778
	return 0;
P
Peter Zijlstra 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
798
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
823 824 825 826 827
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
828
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
829 830 831 832 833
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
848

849 850 851 852 853 854
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
855 856
/*
 * ratelimit for updating the group shares.
857
 * default: 0.25ms
P
Peter Zijlstra 已提交
858
 */
859
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
860

861 862 863 864 865 866 867
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

868 869 870 871 872 873 874 875
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
876
/*
P
Peter Zijlstra 已提交
877
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
878 879
 * default: 1s
 */
P
Peter Zijlstra 已提交
880
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
881

882 883
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
884 885 886 887 888
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
889

890 891 892 893 894 895 896
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
897
	if (sysctl_sched_rt_runtime < 0)
898 899 900 901
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
902

L
Linus Torvalds 已提交
903
#ifndef prepare_arch_switch
904 905 906 907 908 909
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

910 911 912 913 914
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

915
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
916
static inline int task_running(struct rq *rq, struct task_struct *p)
917
{
918
	return task_current(rq, p);
919 920
}

921
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
922 923 924
{
}

925
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926
{
927 928 929 930
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
931 932 933 934 935 936 937
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

938 939 940 941
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
942
static inline int task_running(struct rq *rq, struct task_struct *p)
943 944 945 946
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
947
	return task_current(rq, p);
948 949 950
#endif
}

951
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

968
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
969 970 971 972 973 974 975 976 977 978 979 980
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
981
#endif
982 983
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
984

985 986 987 988
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
989
static inline struct rq *__task_rq_lock(struct task_struct *p)
990 991
	__acquires(rq->lock)
{
992 993 994 995 996
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
997 998 999 1000
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
1001 1002
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
1003
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
1004 1005
 * explicitly disabling preemption.
 */
1006
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
1007 1008
	__acquires(rq->lock)
{
1009
	struct rq *rq;
L
Linus Torvalds 已提交
1010

1011 1012 1013 1014 1015 1016
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1017 1018 1019 1020
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1021 1022 1023 1024 1025 1026 1027 1028
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1029
static void __task_rq_unlock(struct rq *rq)
1030 1031 1032 1033 1034
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1035
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1036 1037 1038 1039 1040 1041
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1042
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1043
 */
A
Alexey Dobriyan 已提交
1044
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1045 1046
	__acquires(rq->lock)
{
1047
	struct rq *rq;
L
Linus Torvalds 已提交
1048 1049 1050 1051 1052 1053 1054 1055

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1077
	if (!cpu_active(cpu_of(rq)))
1078
		return 0;
P
Peter Zijlstra 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1099
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1100 1101 1102 1103 1104 1105
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1106
#ifdef CONFIG_SMP
1107 1108 1109 1110
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1111
{
1112
	struct rq *rq = arg;
1113

1114 1115 1116 1117
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1118 1119
}

1120 1121 1122 1123 1124 1125
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1126
{
1127 1128
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1129

1130
	hrtimer_set_expires(timer, time);
1131 1132 1133 1134

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1135
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1136 1137
		rq->hrtick_csd_pending = 1;
	}
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1152
		hrtick_clear(cpu_rq(cpu));
1153 1154 1155 1156 1157 1158
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1159
static __init void init_hrtick(void)
1160 1161 1162
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1163 1164 1165 1166 1167 1168 1169 1170
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1171
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1172
			HRTIMER_MODE_REL_PINNED, 0);
1173
}
1174

A
Andrew Morton 已提交
1175
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1176 1177
{
}
1178
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1179

1180
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1181
{
1182 1183
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1184

1185 1186 1187 1188
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1189

1190 1191
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1192
}
A
Andrew Morton 已提交
1193
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1194 1195 1196 1197 1198 1199 1200 1201
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1202 1203 1204
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1205
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1206

I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1220
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1221 1222 1223 1224 1225
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1226
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1227 1228
		return;

1229
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1285
	set_tsk_need_resched(rq->idle);
1286 1287 1288 1289 1290 1291

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1292
#endif /* CONFIG_NO_HZ */
1293

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1315
#else /* !CONFIG_SMP */
1316
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1317 1318
{
	assert_spin_locked(&task_rq(p)->lock);
1319
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1320
}
1321 1322 1323 1324

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1325
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1326

1327 1328 1329 1330 1331 1332 1333 1334
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1335 1336 1337
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1338
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1339

1340 1341 1342
/*
 * delta *= weight / lw
 */
1343
static unsigned long
1344 1345 1346 1347 1348
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1349 1350 1351 1352 1353 1354 1355
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1356 1357 1358 1359 1360

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1361
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1362
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1363 1364
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1365
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1366

1367
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1368 1369
}

1370
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1371 1372
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1373
	lw->inv_weight = 0;
1374 1375
}

1376
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1377 1378
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1379
	lw->inv_weight = 0;
1380 1381
}

1382 1383 1384 1385
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1386
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1387 1388 1389 1390
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1391 1392
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1402 1403 1404
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1405 1406
 */
static const int prio_to_weight[40] = {
1407 1408 1409 1410 1411 1412 1413 1414
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1415 1416
};

1417 1418 1419 1420 1421 1422 1423
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1424
static const u32 prio_to_wmult[40] = {
1425 1426 1427 1428 1429 1430 1431 1432
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1433
};
1434

I
Ingo Molnar 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1460

1461 1462 1463 1464 1465 1466 1467 1468
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1469 1470
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1471 1472
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1473 1474
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1475 1476
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1477 1478
#endif

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1489
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1490
typedef int (*tg_visitor)(struct task_group *, void *);
1491 1492 1493 1494 1495

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1496
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1497 1498
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1499
	int ret;
1500 1501 1502 1503

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1504 1505 1506
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1507 1508 1509 1510 1511 1512 1513
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1514 1515 1516
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1517 1518 1519 1520 1521

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1522
out_unlock:
1523
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1524 1525

	return ret;
1526 1527
}

P
Peter Zijlstra 已提交
1528 1529 1530
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1531
}
P
Peter Zijlstra 已提交
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1542
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1543

1544 1545
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1546 1547
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1553

1554 1555 1556 1557 1558 1559
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1560 1561 1562 1563 1564
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1565 1566 1567 1568
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1569
{
1570
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1571
	int boost = 0;
1572

1573
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1574 1575 1576 1577
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1578

1579
	/*
P
Peter Zijlstra 已提交
1580 1581 1582
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1583
	 */
1584
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1585
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1586

1587 1588 1589 1590
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1591

1592
		spin_lock_irqsave(&rq->lock, flags);
1593
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1594
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1595 1596 1597
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1598
}
1599 1600

/*
1601 1602 1603
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1604
 */
P
Peter Zijlstra 已提交
1605
static int tg_shares_up(struct task_group *tg, void *data)
1606
{
1607 1608
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1609
	struct sched_domain *sd = data;
1610
	unsigned long flags;
1611
	int i;
1612

1613 1614 1615 1616 1617 1618
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1619
	for_each_cpu(i, sched_domain_span(sd)) {
1620 1621 1622
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1623 1624 1625 1626 1627 1628 1629 1630
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1631
		rq_weight += weight;
1632
		shares += tg->cfs_rq[i]->shares;
1633 1634
	}

1635 1636 1637 1638 1639
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1640

P
Peter Zijlstra 已提交
1641
	for_each_cpu(i, sched_domain_span(sd))
1642 1643 1644
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1645 1646

	return 0;
1647 1648 1649
}

/*
1650 1651 1652
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1653
 */
P
Peter Zijlstra 已提交
1654
static int tg_load_down(struct task_group *tg, void *data)
1655
{
1656
	unsigned long load;
P
Peter Zijlstra 已提交
1657
	long cpu = (long)data;
1658

1659 1660 1661 1662 1663 1664 1665
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1666

1667
	tg->cfs_rq[cpu]->h_load = load;
1668

P
Peter Zijlstra 已提交
1669
	return 0;
1670 1671
}

1672
static void update_shares(struct sched_domain *sd)
1673
{
1674 1675 1676 1677 1678 1679 1680 1681
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1682 1683 1684

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1685
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1686
	}
1687 1688
}

1689 1690
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1691 1692 1693
	if (root_task_group_empty())
		return;

1694 1695 1696 1697 1698
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1699
static void update_h_load(long cpu)
1700
{
1701 1702 1703
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1704
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1705 1706 1707 1708
}

#else

1709
static inline void update_shares(struct sched_domain *sd)
1710 1711 1712
{
}

1713 1714 1715 1716
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1717 1718
#endif

1719 1720
#ifdef CONFIG_PREEMPT

1721
/*
1722 1723 1724 1725 1726 1727
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1728
 */
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1783 1784 1785 1786 1787 1788
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1789 1790
#endif

V
Vegard Nossum 已提交
1791
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1792 1793
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1794
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1795 1796 1797
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1798
#endif
1799

1800 1801
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1802 1803
#include "sched_stats.h"
#include "sched_idletask.c"
1804 1805
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1806 1807 1808 1809 1810
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1811 1812
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1813

1814
static void inc_nr_running(struct rq *rq)
1815 1816 1817 1818
{
	rq->nr_running++;
}

1819
static void dec_nr_running(struct rq *rq)
1820 1821 1822 1823
{
	rq->nr_running--;
}

1824 1825 1826
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1827 1828 1829 1830
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1831

I
Ingo Molnar 已提交
1832 1833 1834 1835 1836 1837 1838 1839
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1840

I
Ingo Molnar 已提交
1841 1842
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1843 1844
}

1845 1846 1847 1848 1849 1850
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1851
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1852
{
P
Peter Zijlstra 已提交
1853 1854 1855
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1856
	sched_info_queued(p);
1857
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1858
	p->se.on_rq = 1;
1859 1860
}

1861
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1862
{
P
Peter Zijlstra 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1872 1873
	}

1874
	sched_info_dequeued(p);
1875
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1876
	p->se.on_rq = 0;
1877 1878
}

1879
/*
I
Ingo Molnar 已提交
1880
 * __normal_prio - return the priority that is based on the static prio
1881 1882 1883
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1884
	return p->static_prio;
1885 1886
}

1887 1888 1889 1890 1891 1892 1893
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1894
static inline int normal_prio(struct task_struct *p)
1895 1896 1897
{
	int prio;

1898
	if (task_has_rt_policy(p))
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1912
static int effective_prio(struct task_struct *p)
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1925
/*
I
Ingo Molnar 已提交
1926
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1927
 */
I
Ingo Molnar 已提交
1928
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1929
{
1930
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1931
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1932

1933
	enqueue_task(rq, p, wakeup);
1934
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1935 1936 1937 1938 1939
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1940
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1941
{
1942
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1943 1944
		rq->nr_uninterruptible++;

1945
	dequeue_task(rq, p, sleep);
1946
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1953
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1954 1955 1956 1957
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1958 1959
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1960
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1961
#ifdef CONFIG_SMP
1962 1963 1964 1965 1966 1967
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1968 1969
	task_thread_info(p)->cpu = cpu;
#endif
1970 1971
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1984
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1985

1986 1987 1988 1989 1990 1991
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1992 1993 1994
/*
 * Is this task likely cache-hot:
 */
1995
static int
1996 1997 1998 1999
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2000 2001 2002
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2003 2004 2005
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2006 2007
		return 1;

2008 2009 2010
	if (p->sched_class != &fair_sched_class)
		return 0;

2011 2012 2013 2014 2015
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2016 2017 2018 2019 2020 2021
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2022
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2023
{
I
Ingo Molnar 已提交
2024 2025
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2026 2027
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2028
	u64 clock_offset;
I
Ingo Molnar 已提交
2029 2030

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2031

2032
	trace_sched_migrate_task(p, new_cpu);
2033

I
Ingo Molnar 已提交
2034 2035 2036
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2037 2038 2039 2040
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2041
#endif
2042
	if (old_cpu != new_cpu) {
2043
		p->se.nr_migrations++;
2044
		new_rq->nr_migrations_in++;
2045
#ifdef CONFIG_SCHEDSTATS
2046 2047
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2048
#endif
2049 2050
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2051
	}
2052 2053
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2054 2055

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2056 2057
}

2058
struct migration_req {
L
Linus Torvalds 已提交
2059 2060
	struct list_head list;

2061
	struct task_struct *task;
L
Linus Torvalds 已提交
2062 2063 2064
	int dest_cpu;

	struct completion done;
2065
};
L
Linus Torvalds 已提交
2066 2067 2068 2069 2070

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2071
static int
2072
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2073
{
2074
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2075 2076 2077 2078 2079

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2080
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2089

L
Linus Torvalds 已提交
2090 2091 2092
	return 1;
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2136 2137 2138
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2139 2140 2141 2142 2143 2144 2145
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2152
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2153 2154
{
	unsigned long flags;
I
Ingo Molnar 已提交
2155
	int running, on_rq;
R
Roland McGrath 已提交
2156
	unsigned long ncsw;
2157
	struct rq *rq;
L
Linus Torvalds 已提交
2158

2159 2160 2161 2162 2163 2164 2165 2166
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2167

2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2179 2180 2181
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2182
			cpu_relax();
R
Roland McGrath 已提交
2183
		}
2184

2185 2186 2187 2188 2189 2190
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2191
		trace_sched_wait_task(rq, p);
2192 2193
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2194
		ncsw = 0;
2195
		if (!match_state || p->state == match_state)
2196
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2197
		task_rq_unlock(rq, &flags);
2198

R
Roland McGrath 已提交
2199 2200 2201 2202 2203 2204
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2215

2216 2217 2218 2219 2220
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2221
		 * So if it was still runnable (but just not actively
2222 2223 2224 2225 2226 2227 2228
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2229

2230 2231 2232 2233 2234 2235 2236
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2237 2238

	return ncsw;
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2254
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2264
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2265 2266

/*
2267 2268
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2269 2270 2271 2272
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2273
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2274
{
2275
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2276
	unsigned long total = weighted_cpuload(cpu);
2277

2278
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2279
		return total;
2280

I
Ingo Molnar 已提交
2281
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2282 2283 2284
}

/*
2285 2286
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2287
 */
A
Alexey Dobriyan 已提交
2288
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2289
{
2290
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2291
	unsigned long total = weighted_cpuload(cpu);
2292

2293
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2294
		return total;
2295

I
Ingo Molnar 已提交
2296
	return max(rq->cpu_load[type-1], total);
2297 2298
}

N
Nick Piggin 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2316
		/* Skip over this group if it has no CPUs allowed */
2317 2318
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2319
			continue;
2320

2321 2322
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2323 2324 2325 2326

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2327
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2338 2339
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2340 2341 2342 2343 2344 2345 2346 2347

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2348
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2349 2350 2351 2352 2353 2354 2355

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2356
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2357
 */
I
Ingo Molnar 已提交
2358
static int
2359
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2360 2361 2362 2363 2364
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2365
	/* Traverse only the allowed CPUs */
2366
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2367
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2393

2394
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2395 2396 2397
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2398 2399
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2400 2401
		if (tmp->flags & flag)
			sd = tmp;
2402
	}
N
Nick Piggin 已提交
2403

2404 2405 2406
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2407 2408
	while (sd) {
		struct sched_group *group;
2409 2410 2411 2412 2413 2414
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2415 2416

		group = find_idlest_group(sd, t, cpu);
2417 2418 2419 2420
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2421

2422
		new_cpu = find_idlest_cpu(group, t, cpu);
2423 2424 2425 2426 2427
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2428

2429
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2430
		cpu = new_cpu;
2431
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2432 2433
		sd = NULL;
		for_each_domain(cpu, tmp) {
2434
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2446

T
Thomas Gleixner 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2482
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2483
{
2484
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2485 2486
	unsigned long flags;
	long old_state;
2487
	struct rq *rq;
L
Linus Torvalds 已提交
2488

2489 2490 2491
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2492
#ifdef CONFIG_SMP
2493
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2494 2495 2496 2497 2498 2499
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2500
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2501 2502 2503 2504 2505 2506 2507
				update_shares(sd);
				break;
			}
		}
	}
#endif

2508
	smp_wmb();
L
Linus Torvalds 已提交
2509
	rq = task_rq_lock(p, &flags);
2510
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2511 2512 2513 2514
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2515
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2516 2517 2518
		goto out_running;

	cpu = task_cpu(p);
2519
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524 2525
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2526 2527 2528
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2535
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2542 2543 2544 2545 2546 2547 2548
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2549
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2550 2551 2552 2553 2554
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2555
#endif /* CONFIG_SCHEDSTATS */
2556

L
Linus Torvalds 已提交
2557 2558
out_activate:
#endif /* CONFIG_SMP */
2559 2560 2561 2562 2563 2564 2565 2566 2567
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2568
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2569 2570
	success = 1;

P
Peter Zijlstra 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2587
out_running:
2588
	trace_sched_wakeup(rq, p, success);
2589
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2590

L
Linus Torvalds 已提交
2591
	p->state = TASK_RUNNING;
2592 2593 2594 2595
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2613
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2614
{
2615
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2616 2617 2618
}
EXPORT_SYMBOL(wake_up_process);

2619
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2620 2621 2622 2623 2624 2625 2626
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2627 2628 2629 2630 2631 2632 2633
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2634
	p->se.prev_sum_exec_runtime	= 0;
2635
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2636 2637
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2638 2639
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2640 2641

#ifdef CONFIG_SCHEDSTATS
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2673
#endif
N
Nick Piggin 已提交
2674

P
Peter Zijlstra 已提交
2675
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2676
	p->se.on_rq = 0;
2677
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2678

2679 2680 2681 2682
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2683 2684 2685 2686 2687 2688 2689
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2704
	set_task_cpu(p, cpu);
2705 2706

	/*
2707
	 * Make sure we do not leak PI boosting priority to the child.
2708
	 */
2709
	p->prio = current->normal_prio;
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2721 2722 2723 2724 2725
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2726 2727 2728 2729 2730 2731
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2732

H
Hiroshi Shimamoto 已提交
2733 2734
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2735

2736
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2737
	if (likely(sched_info_on()))
2738
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2739
#endif
2740
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2741 2742
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2743
#ifdef CONFIG_PREEMPT
2744
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2745
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2746
#endif
2747 2748
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2749
	put_cpu();
L
Linus Torvalds 已提交
2750 2751 2752 2753 2754 2755 2756 2757 2758
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2759
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2760 2761
{
	unsigned long flags;
I
Ingo Molnar 已提交
2762
	struct rq *rq;
L
Linus Torvalds 已提交
2763 2764

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2765
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2766
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2767 2768 2769

	p->prio = effective_prio(p);

2770
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2771
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2772 2773
	} else {
		/*
I
Ingo Molnar 已提交
2774 2775
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2776
		 */
2777
		p->sched_class->task_new(rq, p);
2778
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2779
	}
2780
	trace_sched_wakeup_new(rq, p, 1);
2781
	check_preempt_curr(rq, p, 0);
2782 2783 2784 2785
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2786
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2787 2788
}

2789 2790 2791
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2792
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2793
 * @notifier: notifier struct to register
2794 2795 2796 2797 2798 2799 2800 2801 2802
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2803
 * @notifier: notifier struct to unregister
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2833
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2845
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2846

2847 2848 2849
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2850
 * @prev: the current task that is being switched out
2851 2852 2853 2854 2855 2856 2857 2858 2859
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2860 2861 2862
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2863
{
2864
	fire_sched_out_preempt_notifiers(prev, next);
2865 2866 2867 2868
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2869 2870
/**
 * finish_task_switch - clean up after a task-switch
2871
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2872 2873
 * @prev: the thread we just switched away from.
 *
2874 2875 2876 2877
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2878 2879
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2880
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2881 2882 2883
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
2884
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2885 2886 2887
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2888
	long prev_state;
L
Linus Torvalds 已提交
2889 2890 2891 2892 2893

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2894
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2895 2896
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2897
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2898 2899 2900 2901 2902
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2903
	prev_state = prev->state;
2904
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2905
	perf_counter_task_sched_in(current, cpu_of(rq));
2906
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2907

2908
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2909 2910
	if (mm)
		mmdrop(mm);
2911
	if (unlikely(prev_state == TASK_DEAD)) {
2912 2913 2914
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2915
		 */
2916
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2917
		put_task_struct(prev);
2918
	}
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
}

#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2946

2947 2948 2949 2950 2951 2952
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2953 2954
}

2955 2956
#endif

L
Linus Torvalds 已提交
2957 2958 2959 2960
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2961
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2962 2963
	__releases(rq->lock)
{
2964
	struct rq *rq = this_rq();
2965

2966
	finish_task_switch(rq, prev);
2967

2968 2969 2970 2971 2972
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2973

2974 2975 2976 2977
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2978
	if (current->set_child_tid)
2979
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
2986
static inline void
2987
context_switch(struct rq *rq, struct task_struct *prev,
2988
	       struct task_struct *next)
L
Linus Torvalds 已提交
2989
{
I
Ingo Molnar 已提交
2990
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2991

2992
	prepare_task_switch(rq, prev, next);
2993
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2994 2995
	mm = next->mm;
	oldmm = prev->active_mm;
2996 2997 2998 2999 3000
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
3001
	arch_start_context_switch(prev);
3002

I
Ingo Molnar 已提交
3003
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
3004 3005 3006 3007 3008 3009
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
3010
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
3011 3012 3013
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
3014 3015 3016 3017 3018 3019 3020
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
3021
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3022
#endif
L
Linus Torvalds 已提交
3023 3024 3025 3026

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3027 3028 3029 3030 3031 3032
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
3033
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

3057
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
3072 3073
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
3074

3075
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3076 3077 3078 3079 3080 3081 3082 3083 3084
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3085
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3091 3092 3093 3094 3095 3096
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3112 3113
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3114
{
3115 3116 3117 3118
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3119

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3131

3132 3133
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3134

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3157 3158
}

3159 3160 3161 3162 3163 3164 3165 3166 3167
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3168
/*
I
Ingo Molnar 已提交
3169 3170
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3171
 */
I
Ingo Molnar 已提交
3172
static void update_cpu_load(struct rq *this_rq)
3173
{
3174
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3187 3188 3189 3190 3191 3192 3193
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3194 3195
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3196 3197 3198 3199 3200

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3201 3202
}

I
Ingo Molnar 已提交
3203 3204
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3205 3206 3207 3208 3209 3210
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3211
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3212 3213 3214
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3215
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3216 3217 3218 3219
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3220
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3221
			spin_lock(&rq1->lock);
3222
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3223 3224
		} else {
			spin_lock(&rq2->lock);
3225
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3226 3227
		}
	}
3228 3229
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3230 3231 3232 3233 3234 3235 3236 3237
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3238
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3252
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3253 3254
 * the cpu_allowed mask is restored.
 */
3255
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3256
{
3257
	struct migration_req req;
L
Linus Torvalds 已提交
3258
	unsigned long flags;
3259
	struct rq *rq;
L
Linus Torvalds 已提交
3260 3261

	rq = task_rq_lock(p, &flags);
3262
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3263
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3264 3265 3266 3267 3268 3269
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3270

L
Linus Torvalds 已提交
3271 3272 3273 3274 3275
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3276

L
Linus Torvalds 已提交
3277 3278 3279 3280 3281 3282 3283
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3284 3285
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3286 3287 3288 3289
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3290
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3291
	put_cpu();
N
Nick Piggin 已提交
3292 3293
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3294 3295 3296 3297 3298 3299
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3300 3301
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3302
{
3303
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3304
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3305
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3306 3307 3308 3309
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3310
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3311 3312 3313 3314 3315
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3316
static
3317
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3318
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3319
		     int *all_pinned)
L
Linus Torvalds 已提交
3320
{
3321
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3322 3323 3324 3325 3326 3327
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3328
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3329
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3330
		return 0;
3331
	}
3332 3333
	*all_pinned = 0;

3334 3335
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3336
		return 0;
3337
	}
L
Linus Torvalds 已提交
3338

3339 3340 3341 3342 3343 3344
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3345 3346 3347
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3348
#ifdef CONFIG_SCHEDSTATS
3349
		if (tsk_cache_hot) {
3350
			schedstat_inc(sd, lb_hot_gained[idle]);
3351 3352
			schedstat_inc(p, se.nr_forced_migrations);
		}
3353 3354 3355 3356
#endif
		return 1;
	}

3357
	if (tsk_cache_hot) {
3358
		schedstat_inc(p, se.nr_failed_migrations_hot);
3359
		return 0;
3360
	}
L
Linus Torvalds 已提交
3361 3362 3363
	return 1;
}

3364 3365 3366 3367 3368
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3369
{
3370
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3371 3372
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3373

3374
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3375 3376
		goto out;

3377 3378
	pinned = 1;

L
Linus Torvalds 已提交
3379
	/*
I
Ingo Molnar 已提交
3380
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3381
	 */
I
Ingo Molnar 已提交
3382 3383
	p = iterator->start(iterator->arg);
next:
3384
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3385
		goto out;
3386 3387

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3388 3389 3390
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3391 3392
	}

I
Ingo Molnar 已提交
3393
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3394
	pulled++;
I
Ingo Molnar 已提交
3395
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3407
	/*
3408
	 * We only want to steal up to the prescribed amount of weighted load.
3409
	 */
3410
	if (rem_load_move > 0) {
3411 3412
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3413 3414
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3415 3416 3417
	}
out:
	/*
3418
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3419 3420 3421 3422
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3423 3424 3425

	if (all_pinned)
		*all_pinned = pinned;
3426 3427

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3428 3429
}

I
Ingo Molnar 已提交
3430
/*
P
Peter Williams 已提交
3431 3432 3433
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3434 3435 3436 3437
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3438
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3439 3440 3441
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3442
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3443
	unsigned long total_load_moved = 0;
3444
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3445 3446

	do {
P
Peter Williams 已提交
3447 3448
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3449
				max_load_move - total_load_moved,
3450
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3451
		class = class->next;
3452

3453 3454 3455 3456 3457 3458
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3459 3460
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3461
#endif
P
Peter Williams 已提交
3462
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3463

P
Peter Williams 已提交
3464 3465 3466
	return total_load_moved > 0;
}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3503
	const struct sched_class *class;
P
Peter Williams 已提交
3504

3505
	for_each_class(class) {
3506
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3507
			return 1;
3508
	}
P
Peter Williams 已提交
3509 3510

	return 0;
I
Ingo Molnar 已提交
3511
}
3512
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3513
/*
3514 3515
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3516
 */
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3535
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3536 3537 3538 3539 3540 3541
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3542
#endif
3543
};
L
Linus Torvalds 已提交
3544

3545
/*
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3578
		load_idx = sd->busy_idx;
3579 3580 3581
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3582
		load_idx = sd->newidle_idx;
3583 3584
		break;
	default:
N
Nick Piggin 已提交
3585
		load_idx = sd->idle_idx;
3586 3587
		break;
	}
L
Linus Torvalds 已提交
3588

3589 3590
	return load_idx;
}
L
Linus Torvalds 已提交
3591 3592


3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3617

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3631

3632 3633
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3634

3635 3636 3637 3638 3639 3640 3641
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3642

3643 3644 3645 3646 3647 3648 3649 3650
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3665

3666 3667 3668 3669 3670 3671 3672
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3673

3674 3675 3676 3677 3678 3679 3680
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3681

3682
/**
3683
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3684 3685 3686 3687 3688
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3689 3690 3691 3692 3693
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3694 3695 3696 3697 3698 3699 3700 3701
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3702

3703 3704 3705
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3706

3707 3708
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3709

3710 3711 3712 3713 3714 3715
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3716

3717 3718 3719 3720 3721 3722 3723
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3724

3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3738
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3739 3740 3741 3742 3743 3744 3745 3746 3747
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;
	unsigned long old = sdg->__cpu_power;

	/* here we could scale based on cpufreq */

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3776
		power *= arch_scale_smt_power(sd, cpu);
3777 3778 3779
		power >>= SCHED_LOAD_SHIFT;
	}

3780 3781 3782 3783 3784
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3785 3786 3787 3788 3789 3790 3791 3792

	if (power != old) {
		sdg->__cpu_power = power;
		sdg->reciprocal_cpu_power = reciprocal_value(power);
	}
}

static void update_group_power(struct sched_domain *sd, int cpu)
3793 3794 3795 3796 3797 3798
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
	unsigned long power = sdg->__cpu_power;

	if (!child) {
3799
		update_cpu_power(sd, cpu);
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
		return;
	}

	sdg->__cpu_power = 0;

	group = child->groups;
	do {
		sdg->__cpu_power += group->__cpu_power;
		group = group->next;
	} while (group != child->groups);

	if (power != sdg->__cpu_power)
		sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
}
3814

3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3827 3828
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3839
	if (local_group) {
3840
		balance_cpu = group_first_cpu(group);
3841
		if (balance_cpu == this_cpu)
3842
			update_group_power(sd, this_cpu);
3843
	}
3844 3845 3846 3847 3848

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3849

3850 3851
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3852

3853 3854
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3855

3856
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3857
		if (local_group) {
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3870
		}
3871

3872 3873 3874
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3875

3876 3877
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3878

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3890

3891 3892 3893
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3894

3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3911 3912
	sgs->group_capacity =
		DIV_ROUND_CLOSEST(group->__cpu_power, SCHED_LOAD_SCALE);
3913
}
I
Ingo Molnar 已提交
3914

3915 3916 3917 3918 3919 3920 3921 3922 3923
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3924
 */
3925 3926 3927 3928
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3929
{
P
Peter Zijlstra 已提交
3930
	struct sched_domain *child = sd->child;
3931
	struct sched_group *group = sd->groups;
3932
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3933 3934 3935 3936
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3937

3938
	init_sd_power_savings_stats(sd, sds, idle);
3939
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3940 3941 3942 3943

	do {
		int local_group;

3944 3945
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3946
		memset(&sgs, 0, sizeof(sgs));
3947
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3948
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3949

3950 3951
		if (local_group && balance && !(*balance))
			return;
3952

3953 3954
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3955

P
Peter Zijlstra 已提交
3956 3957 3958 3959 3960 3961
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3962
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
P
Peter Zijlstra 已提交
3963

L
Linus Torvalds 已提交
3964
		if (local_group) {
3965 3966 3967 3968 3969
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3970 3971
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3972 3973 3974 3975 3976
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3977
		}
3978

3979
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3980 3981
		group = group->next;
	} while (group != sd->groups);
3982
}
L
Linus Torvalds 已提交
3983

3984 3985
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3986 3987
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
4006

4007 4008 4009 4010 4011
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
4012

L
Linus Torvalds 已提交
4013
	/*
4014 4015 4016
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
4017
	 */
4018

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
4060 4061 4062 4063 4064
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
4065
	if (sds->max_load < sds->avg_load) {
4066
		*imbalance = 0;
4067
		return fix_small_imbalance(sds, this_cpu, imbalance);
4068
	}
4069 4070

	/* Don't want to pull so many tasks that a group would go idle */
4071 4072
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
4073

L
Linus Torvalds 已提交
4074
	/* How much load to actually move to equalise the imbalance */
4075 4076
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
4077 4078
			/ SCHED_LOAD_SCALE;

4079 4080 4081 4082 4083 4084
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4085 4086
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
4087

4088
}
4089
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
4090

4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4115 4116 4117 4118 4119 4120 4121
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4122

4123
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4124

4125 4126 4127 4128 4129 4130 4131
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4142 4143
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4144

4145 4146
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4147

4148
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4149 4150
		goto out_balanced;

4151
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4152

4153 4154 4155 4156
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4157 4158
		goto out_balanced;

4159 4160 4161 4162
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4163

L
Linus Torvalds 已提交
4164 4165 4166 4167 4168 4169 4170 4171
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4172
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4173 4174
	 * appear as very large values with unsigned longs.
	 */
4175
	if (sds.max_load <= sds.busiest_load_per_task)
4176 4177
		goto out_balanced;

4178 4179
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4180
	return sds.busiest;
L
Linus Torvalds 已提交
4181 4182

out_balanced:
4183 4184 4185 4186 4187 4188
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4189
ret:
L
Linus Torvalds 已提交
4190 4191 4192 4193
	*imbalance = 0;
	return NULL;
}

4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->__cpu_power;
}

L
Linus Torvalds 已提交
4214 4215 4216
/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4217
static struct rq *
I
Ingo Molnar 已提交
4218
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4219
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4220
{
4221
	struct rq *busiest = NULL, *rq;
4222
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4223 4224
	int i;

4225
	for_each_cpu(i, sched_group_cpus(group)) {
4226 4227
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4228
		unsigned long wl;
4229

4230
		if (!cpumask_test_cpu(i, cpus))
4231 4232
			continue;

4233
		rq = cpu_rq(i);
4234 4235
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4236

4237
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4238
			continue;
L
Linus Torvalds 已提交
4239

I
Ingo Molnar 已提交
4240 4241
		if (wl > max_load) {
			max_load = wl;
4242
			busiest = rq;
L
Linus Torvalds 已提交
4243 4244 4245 4246 4247 4248
		}
	}

	return busiest;
}

4249 4250 4251 4252 4253 4254
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4255 4256 4257
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4258 4259 4260 4261
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4262
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4263
			struct sched_domain *sd, enum cpu_idle_type idle,
4264
			int *balance)
L
Linus Torvalds 已提交
4265
{
P
Peter Williams 已提交
4266
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4267 4268
	struct sched_group *group;
	unsigned long imbalance;
4269
	struct rq *busiest;
4270
	unsigned long flags;
4271
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4272

4273
	cpumask_setall(cpus);
4274

4275 4276 4277
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4278
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4279
	 * portraying it as CPU_NOT_IDLE.
4280
	 */
I
Ingo Molnar 已提交
4281
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4282
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4283
		sd_idle = 1;
L
Linus Torvalds 已提交
4284

4285
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4286

4287
redo:
4288
	update_shares(sd);
4289
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4290
				   cpus, balance);
4291

4292
	if (*balance == 0)
4293 4294
		goto out_balanced;

L
Linus Torvalds 已提交
4295 4296 4297 4298 4299
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4300
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4306
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4307 4308 4309

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4310
	ld_moved = 0;
L
Linus Torvalds 已提交
4311 4312 4313 4314
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4315
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4316 4317
		 * correctly treated as an imbalance.
		 */
4318
		local_irq_save(flags);
N
Nick Piggin 已提交
4319
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4320
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4321
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4322
		double_rq_unlock(this_rq, busiest);
4323
		local_irq_restore(flags);
4324

4325 4326 4327
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4328
		if (ld_moved && this_cpu != smp_processor_id())
4329 4330
			resched_cpu(this_cpu);

4331
		/* All tasks on this runqueue were pinned by CPU affinity */
4332
		if (unlikely(all_pinned)) {
4333 4334
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4335
				goto redo;
4336
			goto out_balanced;
4337
		}
L
Linus Torvalds 已提交
4338
	}
4339

P
Peter Williams 已提交
4340
	if (!ld_moved) {
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4346
			spin_lock_irqsave(&busiest->lock, flags);
4347 4348 4349 4350

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4351 4352
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4353
				spin_unlock_irqrestore(&busiest->lock, flags);
4354 4355 4356 4357
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4358 4359 4360
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4361
				active_balance = 1;
L
Linus Torvalds 已提交
4362
			}
4363
			spin_unlock_irqrestore(&busiest->lock, flags);
4364
			if (active_balance)
L
Linus Torvalds 已提交
4365 4366 4367 4368 4369 4370
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4371
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4372
		}
4373
	} else
L
Linus Torvalds 已提交
4374 4375
		sd->nr_balance_failed = 0;

4376
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4377 4378
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4379 4380 4381 4382 4383 4384 4385 4386 4387
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4388 4389
	}

P
Peter Williams 已提交
4390
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4391
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4392 4393 4394
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4395 4396 4397 4398

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4399
	sd->nr_balance_failed = 0;
4400 4401

out_one_pinned:
L
Linus Torvalds 已提交
4402
	/* tune up the balancing interval */
4403 4404
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4405 4406
		sd->balance_interval *= 2;

4407
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4408
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4409 4410 4411 4412
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4413 4414
	if (ld_moved)
		update_shares(sd);
4415
	return ld_moved;
L
Linus Torvalds 已提交
4416 4417 4418 4419 4420 4421
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4422
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4423 4424
 * this_rq is locked.
 */
4425
static int
4426
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4427 4428
{
	struct sched_group *group;
4429
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4430
	unsigned long imbalance;
P
Peter Williams 已提交
4431
	int ld_moved = 0;
N
Nick Piggin 已提交
4432
	int sd_idle = 0;
4433
	int all_pinned = 0;
4434
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4435

4436
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4437

4438 4439 4440 4441
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4442
	 * portraying it as CPU_NOT_IDLE.
4443 4444 4445
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4446
		sd_idle = 1;
L
Linus Torvalds 已提交
4447

4448
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4449
redo:
4450
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4451
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4452
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4453
	if (!group) {
I
Ingo Molnar 已提交
4454
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4455
		goto out_balanced;
L
Linus Torvalds 已提交
4456 4457
	}

4458
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4459
	if (!busiest) {
I
Ingo Molnar 已提交
4460
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4461
		goto out_balanced;
L
Linus Torvalds 已提交
4462 4463
	}

N
Nick Piggin 已提交
4464 4465
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4466
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4467

P
Peter Williams 已提交
4468
	ld_moved = 0;
4469 4470 4471
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4472 4473
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4474
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4475 4476
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4477
		double_unlock_balance(this_rq, busiest);
4478

4479
		if (unlikely(all_pinned)) {
4480 4481
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4482 4483
				goto redo;
		}
4484 4485
	}

P
Peter Williams 已提交
4486
	if (!ld_moved) {
4487
		int active_balance = 0;
4488

I
Ingo Molnar 已提交
4489
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4490 4491
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4492
			return -1;
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4529
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4542 4543 4544 4545
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4546 4547
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4548
		spin_lock(&this_rq->lock);
4549

N
Nick Piggin 已提交
4550
	} else
4551
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4552

4553
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4554
	return ld_moved;
4555 4556

out_balanced:
I
Ingo Molnar 已提交
4557
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4558
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4559
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4560
		return -1;
4561
	sd->nr_balance_failed = 0;
4562

4563
	return 0;
L
Linus Torvalds 已提交
4564 4565 4566 4567 4568 4569
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4570
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4571 4572
{
	struct sched_domain *sd;
4573
	int pulled_task = 0;
I
Ingo Molnar 已提交
4574
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4575 4576

	for_each_domain(this_cpu, sd) {
4577 4578 4579 4580 4581 4582
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4583
			/* If we've pulled tasks over stop searching: */
4584
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4585
							   sd);
4586 4587 4588 4589 4590 4591

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4592
	}
I
Ingo Molnar 已提交
4593
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4594 4595 4596 4597 4598
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4599
	}
L
Linus Torvalds 已提交
4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4610
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4611
{
4612
	int target_cpu = busiest_rq->push_cpu;
4613 4614
	struct sched_domain *sd;
	struct rq *target_rq;
4615

4616
	/* Is there any task to move? */
4617 4618 4619 4620
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4621 4622

	/*
4623
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4624
	 * we need to fix it. Originally reported by
4625
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4626
	 */
4627
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4628

4629 4630
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4631 4632
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4633 4634

	/* Search for an sd spanning us and the target CPU. */
4635
	for_each_domain(target_cpu, sd) {
4636
		if ((sd->flags & SD_LOAD_BALANCE) &&
4637
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4638
				break;
4639
	}
4640

4641
	if (likely(sd)) {
4642
		schedstat_inc(sd, alb_count);
4643

P
Peter Williams 已提交
4644 4645
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4646 4647 4648 4649
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4650
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4651 4652
}

4653 4654 4655
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4656
	cpumask_var_t cpu_mask;
4657
	cpumask_var_t ilb_grp_nohz_mask;
4658 4659 4660 4661
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4662 4663 4664 4665 4666
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4778
	return cpumask_first(nohz.cpu_mask);
4779 4780 4781
}
#endif

4782
/*
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4793
 *
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4809 4810 4811 4812 4813 4814 4815 4816
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4817 4818
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4819

4820 4821 4822
			return 0;
		}

4823 4824
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4825
		/* time for ilb owner also to sleep */
4826
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4827 4828 4829 4830 4831 4832 4833 4834 4835
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4852
			return 1;
4853
		}
4854
	} else {
4855
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4856 4857
			return 0;

4858
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4871 4872 4873 4874 4875
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4876
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4877
{
4878 4879
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4880 4881
	unsigned long interval;
	struct sched_domain *sd;
4882
	/* Earliest time when we have to do rebalance again */
4883
	unsigned long next_balance = jiffies + 60*HZ;
4884
	int update_next_balance = 0;
4885
	int need_serialize;
L
Linus Torvalds 已提交
4886

4887
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4888 4889 4890 4891
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4892
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4899 4900 4901
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4902
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4903

4904
		if (need_serialize) {
4905 4906 4907 4908
			if (!spin_trylock(&balancing))
				goto out;
		}

4909
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4910
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4911 4912
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4913 4914 4915
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4916
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4917
			}
4918
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4919
		}
4920
		if (need_serialize)
4921 4922
			spin_unlock(&balancing);
out:
4923
		if (time_after(next_balance, sd->last_balance + interval)) {
4924
			next_balance = sd->last_balance + interval;
4925 4926
			update_next_balance = 1;
		}
4927 4928 4929 4930 4931 4932 4933 4934

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4935
	}
4936 4937 4938 4939 4940 4941 4942 4943

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4944 4945 4946 4947 4948 4949 4950 4951 4952
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4953 4954 4955 4956
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4957

I
Ingo Molnar 已提交
4958
	rebalance_domains(this_cpu, idle);
4959 4960 4961 4962 4963 4964 4965

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4966 4967
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4968 4969 4970
		struct rq *rq;
		int balance_cpu;

4971 4972 4973 4974
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4975 4976 4977 4978 4979 4980 4981 4982
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4983
			rebalance_domains(balance_cpu, CPU_IDLE);
4984 4985

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4986 4987
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4988 4989 4990 4991 4992
		}
	}
#endif
}

4993 4994 4995 4996 4997
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4998 4999 5000 5001 5002 5003 5004
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
5005
static inline void trigger_load_balance(struct rq *rq, int cpu)
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
5017
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
5018 5019 5020 5021
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
5022
			int ilb = find_new_ilb(cpu);
5023

5024
			if (ilb < nr_cpu_ids)
5025 5026 5027 5028 5029 5030 5031 5032 5033
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5034
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5035 5036 5037 5038 5039 5040 5041 5042 5043
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5044
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
5045 5046
		return;
#endif
5047 5048 5049
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
5050
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
5051
}
I
Ingo Molnar 已提交
5052 5053 5054

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
5055 5056 5057
/*
 * on UP we do not need to balance between CPUs:
 */
5058
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
5059 5060
{
}
I
Ingo Molnar 已提交
5061

L
Linus Torvalds 已提交
5062 5063 5064 5065 5066 5067 5068
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
5069
 * Return any ns on the sched_clock that have not yet been accounted in
5070
 * @p in case that task is currently running.
5071 5072
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
5073
 */
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

5088
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
5089 5090
{
	unsigned long flags;
5091
	struct rq *rq;
5092
	u64 ns = 0;
5093

5094
	rq = task_rq_lock(p, &flags);
5095 5096
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
5097

5098 5099
	return ns;
}
5100

5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5118

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5138
	task_rq_unlock(rq, &flags);
5139

L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145 5146
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5147
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5148
 */
5149 5150
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5151 5152 5153 5154
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5155
	/* Add user time to process. */
L
Linus Torvalds 已提交
5156
	p->utime = cputime_add(p->utime, cputime);
5157
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5158
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163 5164 5165

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5166 5167

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5168 5169
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5170 5171
}

5172 5173 5174 5175
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5176
 * @cputime_scaled: cputime scaled by cpu frequency
5177
 */
5178 5179
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5180 5181 5182 5183 5184 5185
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5186
	/* Add guest time to process. */
5187
	p->utime = cputime_add(p->utime, cputime);
5188
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5189
	account_group_user_time(p, cputime);
5190 5191
	p->gtime = cputime_add(p->gtime, cputime);

5192
	/* Add guest time to cpustat. */
5193 5194 5195 5196
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5197 5198 5199 5200 5201
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5202
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5203 5204
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5205
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5206 5207 5208 5209
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5210
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5211
		account_guest_time(p, cputime, cputime_scaled);
5212 5213
		return;
	}
5214

5215
	/* Add system time to process. */
L
Linus Torvalds 已提交
5216
	p->stime = cputime_add(p->stime, cputime);
5217
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5218
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223 5224 5225 5226

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5227 5228
		cpustat->system = cputime64_add(cpustat->system, tmp);

5229 5230
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5231 5232 5233 5234
	/* Account for system time used */
	acct_update_integrals(p);
}

5235
/*
L
Linus Torvalds 已提交
5236 5237
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5238
 */
5239
void account_steal_time(cputime_t cputime)
5240
{
5241 5242 5243 5244
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5245 5246
}

L
Linus Torvalds 已提交
5247
/*
5248 5249
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5250
 */
5251
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5252 5253
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5254
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5255
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5256

5257 5258 5259 5260
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5261 5262
}

5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5278
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5302 5303
}

5304 5305
#endif

5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5376
	struct task_struct *curr = rq->curr;
5377 5378

	sched_clock_tick();
I
Ingo Molnar 已提交
5379 5380

	spin_lock(&rq->lock);
5381
	update_rq_clock(rq);
5382
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5383
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5384
	spin_unlock(&rq->lock);
5385

5386 5387
	perf_counter_task_tick(curr, cpu);

5388
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5389 5390
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5391
#endif
L
Linus Torvalds 已提交
5392 5393
}

5394
notrace unsigned long get_parent_ip(unsigned long addr)
5395 5396 5397 5398 5399 5400 5401 5402
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5403

5404 5405 5406
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5407
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5408
{
5409
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5410 5411 5412
	/*
	 * Underflow?
	 */
5413 5414
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5415
#endif
L
Linus Torvalds 已提交
5416
	preempt_count() += val;
5417
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5418 5419 5420
	/*
	 * Spinlock count overflowing soon?
	 */
5421 5422
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5423 5424 5425
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5426 5427 5428
}
EXPORT_SYMBOL(add_preempt_count);

5429
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5430
{
5431
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5432 5433 5434
	/*
	 * Underflow?
	 */
5435
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5436
		return;
L
Linus Torvalds 已提交
5437 5438 5439
	/*
	 * Is the spinlock portion underflowing?
	 */
5440 5441 5442
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5443
#endif
5444

5445 5446
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5447 5448 5449 5450 5451 5452 5453
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5454
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5455
 */
I
Ingo Molnar 已提交
5456
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5457
{
5458 5459 5460 5461 5462
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5463
	debug_show_held_locks(prev);
5464
	print_modules();
I
Ingo Molnar 已提交
5465 5466
	if (irqs_disabled())
		print_irqtrace_events(prev);
5467 5468 5469 5470 5471

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5472
}
L
Linus Torvalds 已提交
5473

I
Ingo Molnar 已提交
5474 5475 5476 5477 5478
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5479
	/*
I
Ingo Molnar 已提交
5480
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5481 5482 5483
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5484
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5485 5486
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5487 5488
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5489
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5490 5491
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5492 5493
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5494 5495
	}
#endif
I
Ingo Molnar 已提交
5496 5497
}

M
Mike Galbraith 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5520 5521 5522 5523
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5524
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5525
{
5526
	const struct sched_class *class;
I
Ingo Molnar 已提交
5527
	struct task_struct *p;
L
Linus Torvalds 已提交
5528 5529

	/*
I
Ingo Molnar 已提交
5530 5531
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5532
	 */
I
Ingo Molnar 已提交
5533
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5534
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5535 5536
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5537 5538
	}

I
Ingo Molnar 已提交
5539 5540
	class = sched_class_highest;
	for ( ; ; ) {
5541
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5551

I
Ingo Molnar 已提交
5552 5553 5554
/*
 * schedule() is the main scheduler function.
 */
5555
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5556 5557
{
	struct task_struct *prev, *next;
5558
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5559
	struct rq *rq;
5560
	int cpu;
I
Ingo Molnar 已提交
5561

5562 5563
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5574

5575
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5576
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5577

5578
	spin_lock_irq(&rq->lock);
5579
	update_rq_clock(rq);
5580
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5581 5582

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5583
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5584
			prev->state = TASK_RUNNING;
5585
		else
5586
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5587
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5588 5589
	}

5590
	pre_schedule(rq, prev);
5591

I
Ingo Molnar 已提交
5592
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5593 5594
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5595
	put_prev_task(rq, prev);
5596
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5597 5598

	if (likely(prev != next)) {
5599
		sched_info_switch(prev, next);
5600
		perf_counter_task_sched_out(prev, next, cpu);
5601

L
Linus Torvalds 已提交
5602 5603 5604 5605
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

5606
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5607 5608 5609 5610 5611 5612
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
5613
	} else
L
Linus Torvalds 已提交
5614
		spin_unlock_irq(&rq->lock);
5615

5616
	post_schedule(rq);
L
Linus Torvalds 已提交
5617

P
Peter Zijlstra 已提交
5618
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5619
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5620

L
Linus Torvalds 已提交
5621
	preempt_enable_no_resched();
5622
	if (need_resched())
L
Linus Torvalds 已提交
5623 5624 5625 5626
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5688 5689
#ifdef CONFIG_PREEMPT
/*
5690
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5691
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5697

L
Linus Torvalds 已提交
5698 5699
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5700
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5701
	 */
N
Nick Piggin 已提交
5702
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5703 5704
		return;

5705 5706 5707 5708
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5709

5710 5711 5712 5713 5714
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5715
	} while (need_resched());
L
Linus Torvalds 已提交
5716 5717 5718 5719
}
EXPORT_SYMBOL(preempt_schedule);

/*
5720
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5721 5722 5723 5724 5725 5726 5727
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5728

5729
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5730 5731
	BUG_ON(ti->preempt_count || !irqs_disabled());

5732 5733 5734 5735 5736 5737
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5738

5739 5740 5741 5742 5743
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5744
	} while (need_resched());
L
Linus Torvalds 已提交
5745 5746 5747 5748
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5749 5750
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5751
{
5752
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5753 5754 5755 5756
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5757 5758
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5759 5760 5761
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5762
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5763 5764
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5765
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5766
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5767
{
5768
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5769

5770
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5771 5772
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5773
		if (curr->func(curr, mode, sync, key) &&
5774
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779 5780 5781 5782 5783
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5784
 * @key: is directly passed to the wakeup function
5785 5786 5787
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5788
 */
5789
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5790
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5803
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5804 5805 5806 5807
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5808 5809 5810 5811 5812
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5813
/**
5814
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5815 5816 5817
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5818
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823 5824 5825
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5826 5827 5828
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5829
 */
5830 5831
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5843
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5844 5845
	spin_unlock_irqrestore(&q->lock, flags);
}
5846 5847 5848 5849 5850 5851 5852 5853 5854
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5855 5856
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5857 5858 5859 5860 5861 5862 5863 5864
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5865 5866 5867
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5868
 */
5869
void complete(struct completion *x)
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5875
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5876 5877 5878 5879
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5880 5881 5882 5883 5884
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5885 5886 5887
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5888
 */
5889
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5890 5891 5892 5893 5894
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5895
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5896 5897 5898 5899
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5900 5901
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5902 5903 5904 5905 5906 5907 5908
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5909
			if (signal_pending_state(state, current)) {
5910 5911
				timeout = -ERESTARTSYS;
				break;
5912 5913
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5914 5915 5916
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5917
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5918
		__remove_wait_queue(&x->wait, &wait);
5919 5920
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5921 5922
	}
	x->done--;
5923
	return timeout ?: 1;
L
Linus Torvalds 已提交
5924 5925
}

5926 5927
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5928 5929 5930 5931
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5932
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5933
	spin_unlock_irq(&x->wait.lock);
5934 5935
	return timeout;
}
L
Linus Torvalds 已提交
5936

5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5947
void __sched wait_for_completion(struct completion *x)
5948 5949
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5950
}
5951
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5952

5953 5954 5955 5956 5957 5958 5959 5960 5961
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5962
unsigned long __sched
5963
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5964
{
5965
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5966
}
5967
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5968

5969 5970 5971 5972 5973 5974 5975
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5976
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5977
{
5978 5979 5980 5981
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5982
}
5983
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5984

5985 5986 5987 5988 5989 5990 5991 5992
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5993
unsigned long __sched
5994 5995
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5996
{
5997
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5998
}
5999
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
6000

6001 6002 6003 6004 6005 6006 6007
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
6008 6009 6010 6011 6012 6013 6014 6015 6016
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

6063 6064
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
6065
{
I
Ingo Molnar 已提交
6066 6067 6068 6069
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
6070

6071
	__set_current_state(state);
L
Linus Torvalds 已提交
6072

6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6087 6088 6089
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6090
long __sched
I
Ingo Molnar 已提交
6091
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6092
{
6093
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6094 6095 6096
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6097
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6098
{
6099
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6100 6101 6102
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6103
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6104
{
6105
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6106 6107 6108
}
EXPORT_SYMBOL(sleep_on_timeout);

6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6121
void rt_mutex_setprio(struct task_struct *p, int prio)
6122 6123
{
	unsigned long flags;
6124
	int oldprio, on_rq, running;
6125
	struct rq *rq;
6126
	const struct sched_class *prev_class = p->sched_class;
6127 6128 6129 6130

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6131
	update_rq_clock(rq);
6132

6133
	oldprio = p->prio;
I
Ingo Molnar 已提交
6134
	on_rq = p->se.on_rq;
6135
	running = task_current(rq, p);
6136
	if (on_rq)
6137
		dequeue_task(rq, p, 0);
6138 6139
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6140 6141 6142 6143 6144 6145

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6146 6147
	p->prio = prio;

6148 6149
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6150
	if (on_rq) {
6151
		enqueue_task(rq, p, 0);
6152 6153

		check_class_changed(rq, p, prev_class, oldprio, running);
6154 6155 6156 6157 6158 6159
	}
	task_rq_unlock(rq, &flags);
}

#endif

6160
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6161
{
I
Ingo Molnar 已提交
6162
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6163
	unsigned long flags;
6164
	struct rq *rq;
L
Linus Torvalds 已提交
6165 6166 6167 6168 6169 6170 6171 6172

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6173
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6174 6175 6176 6177
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6178
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6179
	 */
6180
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6181 6182 6183
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6184
	on_rq = p->se.on_rq;
6185
	if (on_rq)
6186
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6187 6188

	p->static_prio = NICE_TO_PRIO(nice);
6189
	set_load_weight(p);
6190 6191 6192
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6193

I
Ingo Molnar 已提交
6194
	if (on_rq) {
6195
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6196
		/*
6197 6198
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6199
		 */
6200
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6201 6202 6203 6204 6205 6206 6207
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6208 6209 6210 6211 6212
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6213
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6214
{
6215 6216
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6217

M
Matt Mackall 已提交
6218 6219 6220 6221
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6231
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6232
{
6233
	long nice, retval;
L
Linus Torvalds 已提交
6234 6235 6236 6237 6238 6239

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6240 6241
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6242 6243 6244
	if (increment > 40)
		increment = 40;

6245
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6246 6247 6248 6249 6250
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6251 6252 6253
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6272
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6273 6274 6275 6276 6277 6278 6279 6280
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6281
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6282 6283 6284
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6285
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6300
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6301 6302 6303 6304 6305 6306 6307 6308
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6309
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6310
{
6311
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6312 6313 6314
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6315 6316
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6317
{
I
Ingo Molnar 已提交
6318
	BUG_ON(p->se.on_rq);
6319

L
Linus Torvalds 已提交
6320
	p->policy = policy;
I
Ingo Molnar 已提交
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6333
	p->rt_priority = prio;
6334 6335 6336
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6337
	set_load_weight(p);
L
Linus Torvalds 已提交
6338 6339
}

6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6356 6357
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6358
{
6359
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6360
	unsigned long flags;
6361
	const struct sched_class *prev_class = p->sched_class;
6362
	struct rq *rq;
6363
	int reset_on_fork;
L
Linus Torvalds 已提交
6364

6365 6366
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6367 6368
recheck:
	/* double check policy once rq lock held */
6369 6370
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6371
		policy = oldpolicy = p->policy;
6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6382 6383
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6384 6385
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6386 6387
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6388
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6389
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6390
		return -EINVAL;
6391
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6392 6393
		return -EINVAL;

6394 6395 6396
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6397
	if (user && !capable(CAP_SYS_NICE)) {
6398
		if (rt_policy(policy)) {
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6415 6416 6417 6418 6419 6420
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6421

6422
		/* can't change other user's priorities */
6423
		if (!check_same_owner(p))
6424
			return -EPERM;
6425 6426 6427 6428

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6429
	}
L
Linus Torvalds 已提交
6430

6431
	if (user) {
6432
#ifdef CONFIG_RT_GROUP_SCHED
6433 6434 6435 6436
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6437 6438
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6439
			return -EPERM;
6440 6441
#endif

6442 6443 6444 6445 6446
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6447 6448 6449 6450 6451
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6452 6453 6454 6455
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6456
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6457 6458 6459
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6460 6461
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6462 6463
		goto recheck;
	}
I
Ingo Molnar 已提交
6464
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6465
	on_rq = p->se.on_rq;
6466
	running = task_current(rq, p);
6467
	if (on_rq)
6468
		deactivate_task(rq, p, 0);
6469 6470
	if (running)
		p->sched_class->put_prev_task(rq, p);
6471

6472 6473
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6474
	oldprio = p->prio;
I
Ingo Molnar 已提交
6475
	__setscheduler(rq, p, policy, param->sched_priority);
6476

6477 6478
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6479 6480
	if (on_rq) {
		activate_task(rq, p, 0);
6481 6482

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6483
	}
6484 6485 6486
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6487 6488
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6489 6490
	return 0;
}
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6505 6506
EXPORT_SYMBOL_GPL(sched_setscheduler);

6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6524 6525
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6526 6527 6528
{
	struct sched_param lparam;
	struct task_struct *p;
6529
	int retval;
L
Linus Torvalds 已提交
6530 6531 6532 6533 6534

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6535 6536 6537

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6538
	p = find_process_by_pid(pid);
6539 6540 6541
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6542

L
Linus Torvalds 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6552 6553
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6554
{
6555 6556 6557 6558
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6559 6560 6561 6562 6563 6564 6565 6566
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6567
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6568 6569 6570 6571 6572 6573 6574 6575
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6576
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6577
{
6578
	struct task_struct *p;
6579
	int retval;
L
Linus Torvalds 已提交
6580 6581

	if (pid < 0)
6582
		return -EINVAL;
L
Linus Torvalds 已提交
6583 6584 6585 6586 6587 6588 6589

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6590 6591
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6592 6593 6594 6595 6596 6597
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6598
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6599 6600 6601
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6602
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6603 6604
{
	struct sched_param lp;
6605
	struct task_struct *p;
6606
	int retval;
L
Linus Torvalds 已提交
6607 6608

	if (!param || pid < 0)
6609
		return -EINVAL;
L
Linus Torvalds 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6636
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6637
{
6638
	cpumask_var_t cpus_allowed, new_mask;
6639 6640
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6641

6642
	get_online_cpus();
L
Linus Torvalds 已提交
6643 6644 6645 6646 6647
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6648
		put_online_cpus();
L
Linus Torvalds 已提交
6649 6650 6651 6652 6653
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6654
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6655 6656 6657 6658 6659
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6660 6661 6662 6663 6664 6665 6666 6667
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6668
	retval = -EPERM;
6669
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6670 6671
		goto out_unlock;

6672 6673 6674 6675
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6676 6677
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6678
 again:
6679
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6680

P
Paul Menage 已提交
6681
	if (!retval) {
6682 6683
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6684 6685 6686 6687 6688
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6689
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6690 6691 6692
			goto again;
		}
	}
L
Linus Torvalds 已提交
6693
out_unlock:
6694 6695 6696 6697
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6698
	put_task_struct(p);
6699
	put_online_cpus();
L
Linus Torvalds 已提交
6700 6701 6702 6703
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6704
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6705
{
6706 6707 6708 6709 6710
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6711 6712 6713 6714 6715 6716 6717 6718 6719
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6720 6721
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6722
{
6723
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6724 6725
	int retval;

6726 6727
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6728

6729 6730 6731 6732 6733
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6734 6735
}

6736
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6737
{
6738
	struct task_struct *p;
L
Linus Torvalds 已提交
6739 6740
	int retval;

6741
	get_online_cpus();
L
Linus Torvalds 已提交
6742 6743 6744 6745 6746 6747 6748
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6749 6750 6751 6752
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6753
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6754 6755 6756

out_unlock:
	read_unlock(&tasklist_lock);
6757
	put_online_cpus();
L
Linus Torvalds 已提交
6758

6759
	return retval;
L
Linus Torvalds 已提交
6760 6761 6762 6763 6764 6765 6766 6767
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6768 6769
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6770 6771
{
	int ret;
6772
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6773

6774
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6775 6776
		return -EINVAL;

6777 6778
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6779

6780 6781 6782 6783 6784 6785 6786 6787
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6788

6789
	return ret;
L
Linus Torvalds 已提交
6790 6791 6792 6793 6794
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6795 6796
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6797
 */
6798
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6799
{
6800
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6801

6802
	schedstat_inc(rq, yld_count);
6803
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6804 6805 6806 6807 6808 6809

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6810
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6811 6812 6813 6814 6815 6816 6817 6818
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6819 6820 6821 6822 6823
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6824
static void __cond_resched(void)
L
Linus Torvalds 已提交
6825
{
6826 6827 6828
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6829 6830
}

6831
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6832
{
P
Peter Zijlstra 已提交
6833
	if (should_resched()) {
L
Linus Torvalds 已提交
6834 6835 6836 6837 6838
		__cond_resched();
		return 1;
	}
	return 0;
}
6839
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6840 6841

/*
6842
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6843 6844
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6845
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6846 6847 6848
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6849
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6850
{
P
Peter Zijlstra 已提交
6851
	int resched = should_resched();
J
Jan Kara 已提交
6852 6853
	int ret = 0;

N
Nick Piggin 已提交
6854
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6855
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6856
		if (resched)
N
Nick Piggin 已提交
6857 6858 6859
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6860
		ret = 1;
L
Linus Torvalds 已提交
6861 6862
		spin_lock(lock);
	}
J
Jan Kara 已提交
6863
	return ret;
L
Linus Torvalds 已提交
6864
}
6865
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6866

6867
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6868 6869 6870
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6871
	if (should_resched()) {
6872
		local_bh_enable();
L
Linus Torvalds 已提交
6873 6874 6875 6876 6877 6878
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6879
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6880 6881 6882 6883

/**
 * yield - yield the current processor to other threads.
 *
6884
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6885 6886 6887 6888 6889 6890 6891 6892 6893 6894
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6895
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6896 6897 6898 6899 6900 6901 6902
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6903
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6904

6905
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6906
	atomic_inc(&rq->nr_iowait);
6907
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6908
	schedule();
6909
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6910
	atomic_dec(&rq->nr_iowait);
6911
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6912 6913 6914 6915 6916
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6917
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6918 6919
	long ret;

6920
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6921
	atomic_inc(&rq->nr_iowait);
6922
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6923
	ret = schedule_timeout(timeout);
6924
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6925
	atomic_dec(&rq->nr_iowait);
6926
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6937
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6947
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6948
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6962
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6972
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6973
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6987
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6988
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6989
{
6990
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6991
	unsigned int time_slice;
6992
	int retval;
L
Linus Torvalds 已提交
6993 6994 6995
	struct timespec t;

	if (pid < 0)
6996
		return -EINVAL;
L
Linus Torvalds 已提交
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

7008 7009 7010 7011 7012 7013
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
7014
		time_slice = DEF_TIMESLICE;
7015
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
7016 7017 7018 7019 7020
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
7021 7022
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
7023 7024
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
7025
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
7026
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
7027 7028
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
7029

L
Linus Torvalds 已提交
7030 7031 7032 7033 7034
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

7035
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7036

7037
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
7038 7039
{
	unsigned long free = 0;
7040
	unsigned state;
L
Linus Torvalds 已提交
7041 7042

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
7043
	printk(KERN_INFO "%-13.13s %c", p->comm,
7044
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7045
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
7046
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
7047
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
7048
	else
I
Ingo Molnar 已提交
7049
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
7050 7051
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
7052
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
7053
	else
I
Ingo Molnar 已提交
7054
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
7055 7056
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
7057
	free = stack_not_used(p);
L
Linus Torvalds 已提交
7058
#endif
7059 7060 7061
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
7062

7063
	show_stack(p, NULL);
L
Linus Torvalds 已提交
7064 7065
}

I
Ingo Molnar 已提交
7066
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
7067
{
7068
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7069

7070 7071 7072
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
7073
#else
7074 7075
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
7076 7077 7078 7079 7080 7081 7082 7083
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
7084
		if (!state_filter || (p->state & state_filter))
7085
			sched_show_task(p);
L
Linus Torvalds 已提交
7086 7087
	} while_each_thread(g, p);

7088 7089
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
7090 7091 7092
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
7093
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
7094 7095 7096 7097 7098
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
7099 7100
}

I
Ingo Molnar 已提交
7101 7102
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7103
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7104 7105
}

7106 7107 7108 7109 7110 7111 7112 7113
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7114
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7115
{
7116
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7117 7118
	unsigned long flags;

7119 7120
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7121 7122 7123
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

7124
	idle->prio = idle->normal_prio = MAX_PRIO;
7125
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7126
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7127 7128

	rq->curr = rq->idle = idle;
7129 7130 7131
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7132 7133 7134
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7135 7136 7137
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7138
	task_thread_info(idle)->preempt_count = 0;
7139
#endif
I
Ingo Molnar 已提交
7140 7141 7142 7143
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7144
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7145 7146 7147 7148 7149 7150 7151
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7152
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7153
 */
7154
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7155

I
Ingo Molnar 已提交
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7179 7180

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7181 7182
}

L
Linus Torvalds 已提交
7183 7184 7185 7186
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7187
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7206
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7207 7208
 * call is not atomic; no spinlocks may be held.
 */
7209
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7210
{
7211
	struct migration_req req;
L
Linus Torvalds 已提交
7212
	unsigned long flags;
7213
	struct rq *rq;
7214
	int ret = 0;
L
Linus Torvalds 已提交
7215 7216

	rq = task_rq_lock(p, &flags);
7217
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7218 7219 7220 7221
		ret = -EINVAL;
		goto out;
	}

7222
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7223
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7224 7225 7226 7227
		ret = -EINVAL;
		goto out;
	}

7228
	if (p->sched_class->set_cpus_allowed)
7229
		p->sched_class->set_cpus_allowed(p, new_mask);
7230
	else {
7231 7232
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7233 7234
	}

L
Linus Torvalds 已提交
7235
	/* Can the task run on the task's current CPU? If so, we're done */
7236
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7237 7238
		goto out;

R
Rusty Russell 已提交
7239
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7240
		/* Need help from migration thread: drop lock and wait. */
7241 7242 7243
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7244 7245
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7246
		put_task_struct(mt);
L
Linus Torvalds 已提交
7247 7248 7249 7250 7251 7252
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7253

L
Linus Torvalds 已提交
7254 7255
	return ret;
}
7256
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7257 7258

/*
I
Ingo Molnar 已提交
7259
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7260 7261 7262 7263 7264 7265
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7266 7267
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7268
 */
7269
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7270
{
7271
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7272
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7273

7274
	if (unlikely(!cpu_active(dest_cpu)))
7275
		return ret;
L
Linus Torvalds 已提交
7276 7277 7278 7279 7280 7281 7282

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7283
		goto done;
L
Linus Torvalds 已提交
7284
	/* Affinity changed (again). */
7285
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7286
		goto fail;
L
Linus Torvalds 已提交
7287

I
Ingo Molnar 已提交
7288
	on_rq = p->se.on_rq;
7289
	if (on_rq)
7290
		deactivate_task(rq_src, p, 0);
7291

L
Linus Torvalds 已提交
7292
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7293 7294
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7295
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7296
	}
L
Linus Torvalds 已提交
7297
done:
7298
	ret = 1;
L
Linus Torvalds 已提交
7299
fail:
L
Linus Torvalds 已提交
7300
	double_rq_unlock(rq_src, rq_dest);
7301
	return ret;
L
Linus Torvalds 已提交
7302 7303 7304 7305 7306 7307 7308
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7309
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7310 7311
{
	int cpu = (long)data;
7312
	struct rq *rq;
L
Linus Torvalds 已提交
7313 7314 7315 7316 7317 7318

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7319
		struct migration_req *req;
L
Linus Torvalds 已提交
7320 7321 7322 7323 7324 7325
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7326
			break;
L
Linus Torvalds 已提交
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7342
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7343 7344
		list_del_init(head->next);

N
Nick Piggin 已提交
7345 7346 7347
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7368
/*
7369
 * Figure out where task on dead CPU should go, use force if necessary.
7370
 */
7371
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7372
{
7373
	int dest_cpu;
7374
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7391

7392 7393 7394 7395 7396 7397 7398 7399 7400
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7401
		}
7402 7403 7404 7405 7406 7407
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7408 7409 7410 7411 7412 7413 7414 7415 7416
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7417
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7418
{
R
Rusty Russell 已提交
7419
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7433
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7434

7435
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7436

7437 7438
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7439 7440
			continue;

7441 7442 7443
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7444

7445
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7446 7447
}

I
Ingo Molnar 已提交
7448 7449
/*
 * Schedules idle task to be the next runnable task on current CPU.
7450 7451
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7452 7453 7454
 */
void sched_idle_next(void)
{
7455
	int this_cpu = smp_processor_id();
7456
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7457 7458 7459 7460
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7461
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7462

7463 7464 7465
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7466 7467 7468
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7469
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7470

7471 7472
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7473 7474 7475 7476

	spin_unlock_irqrestore(&rq->lock, flags);
}

7477 7478
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7492
/* called under rq->lock with disabled interrupts */
7493
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7494
{
7495
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7496 7497

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7498
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7499 7500

	/* Cannot have done final schedule yet: would have vanished. */
7501
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7502

7503
	get_task_struct(p);
L
Linus Torvalds 已提交
7504 7505 7506

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7507
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7508 7509
	 * fine.
	 */
7510
	spin_unlock_irq(&rq->lock);
7511
	move_task_off_dead_cpu(dead_cpu, p);
7512
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7513

7514
	put_task_struct(p);
L
Linus Torvalds 已提交
7515 7516 7517 7518 7519
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7520
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7521
	struct task_struct *next;
7522

I
Ingo Molnar 已提交
7523 7524 7525
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7526
		update_rq_clock(rq);
7527
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7528 7529
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7530
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7531
		migrate_dead(dead_cpu, next);
7532

L
Linus Torvalds 已提交
7533 7534
	}
}
7535 7536 7537 7538 7539 7540 7541

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7542
	rq->calc_load_active = 0;
7543
}
L
Linus Torvalds 已提交
7544 7545
#endif /* CONFIG_HOTPLUG_CPU */

7546 7547 7548
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7549 7550
	{
		.procname	= "sched_domain",
7551
		.mode		= 0555,
7552
	},
I
Ingo Molnar 已提交
7553
	{0, },
7554 7555 7556
};

static struct ctl_table sd_ctl_root[] = {
7557
	{
7558
		.ctl_name	= CTL_KERN,
7559
		.procname	= "kernel",
7560
		.mode		= 0555,
7561 7562
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7563
	{0, },
7564 7565 7566 7567 7568
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7569
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7570 7571 7572 7573

	return entry;
}

7574 7575
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7576
	struct ctl_table *entry;
7577

7578 7579 7580
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7581
	 * will always be set. In the lowest directory the names are
7582 7583 7584
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7585 7586
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7587 7588 7589
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7590 7591 7592 7593 7594

	kfree(*tablep);
	*tablep = NULL;
}

7595
static void
7596
set_table_entry(struct ctl_table *entry,
7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7610
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7611

7612 7613 7614
	if (table == NULL)
		return NULL;

7615
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7616
		sizeof(long), 0644, proc_doulongvec_minmax);
7617
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7618
		sizeof(long), 0644, proc_doulongvec_minmax);
7619
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7620
		sizeof(int), 0644, proc_dointvec_minmax);
7621
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7622
		sizeof(int), 0644, proc_dointvec_minmax);
7623
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7624
		sizeof(int), 0644, proc_dointvec_minmax);
7625
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7626
		sizeof(int), 0644, proc_dointvec_minmax);
7627
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7628
		sizeof(int), 0644, proc_dointvec_minmax);
7629
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7630
		sizeof(int), 0644, proc_dointvec_minmax);
7631
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7632
		sizeof(int), 0644, proc_dointvec_minmax);
7633
	set_table_entry(&table[9], "cache_nice_tries",
7634 7635
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7636
	set_table_entry(&table[10], "flags", &sd->flags,
7637
		sizeof(int), 0644, proc_dointvec_minmax);
7638 7639 7640
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7641 7642 7643 7644

	return table;
}

7645
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7646 7647 7648 7649 7650 7651 7652 7653 7654
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7655 7656
	if (table == NULL)
		return NULL;
7657 7658 7659 7660 7661

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7662
		entry->mode = 0555;
7663 7664 7665 7666 7667 7668 7669 7670
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7671
static void register_sched_domain_sysctl(void)
7672 7673 7674 7675 7676
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7677 7678 7679
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7680 7681 7682
	if (entry == NULL)
		return;

7683
	for_each_online_cpu(i) {
7684 7685
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7686
		entry->mode = 0555;
7687
		entry->child = sd_alloc_ctl_cpu_table(i);
7688
		entry++;
7689
	}
7690 7691

	WARN_ON(sd_sysctl_header);
7692 7693
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7694

7695
/* may be called multiple times per register */
7696 7697
static void unregister_sched_domain_sysctl(void)
{
7698 7699
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7700
	sd_sysctl_header = NULL;
7701 7702
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7703
}
7704
#else
7705 7706 7707 7708
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7709 7710 7711 7712
{
}
#endif

7713 7714 7715 7716 7717
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7718
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7738
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7739 7740 7741 7742
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7743 7744 7745 7746
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7747 7748
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7749 7750
{
	struct task_struct *p;
7751
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7752
	unsigned long flags;
7753
	struct rq *rq;
L
Linus Torvalds 已提交
7754 7755

	switch (action) {
7756

L
Linus Torvalds 已提交
7757
	case CPU_UP_PREPARE:
7758
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7759
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7760 7761 7762 7763 7764
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7765
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7766
		task_rq_unlock(rq, &flags);
7767
		get_task_struct(p);
L
Linus Torvalds 已提交
7768
		cpu_rq(cpu)->migration_thread = p;
7769
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7770
		break;
7771

L
Linus Torvalds 已提交
7772
	case CPU_ONLINE:
7773
	case CPU_ONLINE_FROZEN:
7774
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7775
		wake_up_process(cpu_rq(cpu)->migration_thread);
7776 7777 7778 7779 7780

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7781
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7782 7783

			set_rq_online(rq);
7784 7785
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7786
		break;
7787

L
Linus Torvalds 已提交
7788 7789
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7790
	case CPU_UP_CANCELED_FROZEN:
7791 7792
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7793
		/* Unbind it from offline cpu so it can run. Fall thru. */
7794
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7795
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7796
		kthread_stop(cpu_rq(cpu)->migration_thread);
7797
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7798 7799
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7800

L
Linus Torvalds 已提交
7801
	case CPU_DEAD:
7802
	case CPU_DEAD_FROZEN:
7803
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7804 7805 7806
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7807
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7808 7809
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7810
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7811
		update_rq_clock(rq);
7812
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7813
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7814 7815
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7816
		migrate_dead_tasks(cpu);
7817
		spin_unlock_irq(&rq->lock);
7818
		cpuset_unlock();
L
Linus Torvalds 已提交
7819 7820
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7821
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7822 7823 7824 7825 7826
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7827 7828
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7829 7830
			struct migration_req *req;

L
Linus Torvalds 已提交
7831
			req = list_entry(rq->migration_queue.next,
7832
					 struct migration_req, list);
L
Linus Torvalds 已提交
7833
			list_del_init(&req->list);
B
Brian King 已提交
7834
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7835
			complete(&req->done);
B
Brian King 已提交
7836
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7837 7838 7839
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7840

7841 7842
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7843 7844 7845 7846
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7847
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7848
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7849 7850 7851
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7852 7853 7854 7855 7856
#endif
	}
	return NOTIFY_OK;
}

7857 7858 7859 7860
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7861
 */
7862
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7863 7864 7865 7866
	.notifier_call = migration_call,
	.priority = 10
};

7867
static int __init migration_init(void)
L
Linus Torvalds 已提交
7868 7869
{
	void *cpu = (void *)(long)smp_processor_id();
7870
	int err;
7871 7872

	/* Start one for the boot CPU: */
7873 7874
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7875 7876
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7877

7878
	return 0;
L
Linus Torvalds 已提交
7879
}
7880
early_initcall(migration_init);
L
Linus Torvalds 已提交
7881 7882 7883
#endif

#ifdef CONFIG_SMP
7884

7885
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7886

7887
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7888
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7889
{
I
Ingo Molnar 已提交
7890
	struct sched_group *group = sd->groups;
7891
	char str[256];
L
Linus Torvalds 已提交
7892

R
Rusty Russell 已提交
7893
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7894
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7895 7896 7897 7898 7899 7900 7901 7902 7903

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7904 7905
	}

7906
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7907

7908
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7909 7910 7911
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7912
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7913 7914 7915
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7916

I
Ingo Molnar 已提交
7917
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7918
	do {
I
Ingo Molnar 已提交
7919 7920 7921
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7922 7923 7924
			break;
		}

I
Ingo Molnar 已提交
7925 7926 7927 7928 7929 7930
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7931

7932
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7933 7934 7935 7936
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7937

7938
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7939 7940 7941 7942
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7943

7944
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7945

R
Rusty Russell 已提交
7946
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7947 7948 7949 7950 7951 7952

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7953

I
Ingo Molnar 已提交
7954 7955 7956
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7957

7958
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7959
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7960

7961 7962
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7963 7964 7965 7966
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7967

I
Ingo Molnar 已提交
7968 7969
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7970
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7971
	int level = 0;
L
Linus Torvalds 已提交
7972

I
Ingo Molnar 已提交
7973 7974 7975 7976
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7977

I
Ingo Molnar 已提交
7978 7979
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7980
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7981 7982 7983 7984
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7985
	for (;;) {
7986
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7987
			break;
L
Linus Torvalds 已提交
7988 7989
		level++;
		sd = sd->parent;
7990
		if (!sd)
I
Ingo Molnar 已提交
7991 7992
			break;
	}
7993
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7994
}
7995
#else /* !CONFIG_SCHED_DEBUG */
7996
# define sched_domain_debug(sd, cpu) do { } while (0)
7997
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7998

7999
static int sd_degenerate(struct sched_domain *sd)
8000
{
8001
	if (cpumask_weight(sched_domain_span(sd)) == 1)
8002 8003 8004 8005 8006 8007
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
8008 8009 8010
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

8024 8025
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8026 8027 8028 8029 8030 8031
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

8032
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
8044 8045 8046
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
8047 8048
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
8049 8050 8051 8052 8053 8054 8055
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

8056 8057
static void free_rootdomain(struct root_domain *rd)
{
8058 8059
	cpupri_cleanup(&rd->cpupri);

8060 8061 8062 8063 8064 8065
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
8066 8067
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
8068
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
8069 8070 8071 8072 8073
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
8074
		old_rd = rq->rd;
G
Gregory Haskins 已提交
8075

8076
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
8077
			set_rq_offline(rq);
G
Gregory Haskins 已提交
8078

8079
		cpumask_clear_cpu(rq->cpu, old_rd->span);
8080

I
Ingo Molnar 已提交
8081 8082 8083 8084 8085 8086 8087
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8088 8089 8090 8091 8092
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8093
	cpumask_set_cpu(rq->cpu, rd->span);
8094
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8095
		set_rq_online(rq);
G
Gregory Haskins 已提交
8096 8097

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8098 8099 8100

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8101 8102
}

L
Li Zefan 已提交
8103
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8104
{
8105 8106
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8107 8108
	memset(rd, 0, sizeof(*rd));

8109 8110
	if (bootmem)
		gfp = GFP_NOWAIT;
8111

8112
	if (!alloc_cpumask_var(&rd->span, gfp))
8113
		goto out;
8114
	if (!alloc_cpumask_var(&rd->online, gfp))
8115
		goto free_span;
8116
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8117
		goto free_online;
8118

P
Pekka Enberg 已提交
8119
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8120
		goto free_rto_mask;
8121
	return 0;
8122

8123 8124
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8125 8126 8127 8128
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8129
out:
8130
	return -ENOMEM;
G
Gregory Haskins 已提交
8131 8132 8133 8134
}

static void init_defrootdomain(void)
{
8135 8136
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8137 8138 8139
	atomic_set(&def_root_domain.refcount, 1);
}

8140
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8141 8142 8143 8144 8145 8146 8147
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8148 8149 8150 8151
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8152 8153 8154 8155

	return rd;
}

L
Linus Torvalds 已提交
8156
/*
I
Ingo Molnar 已提交
8157
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8158 8159
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8160 8161
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8162
{
8163
	struct rq *rq = cpu_rq(cpu);
8164 8165 8166
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8167
	for (tmp = sd; tmp; ) {
8168 8169 8170
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8171

8172
		if (sd_parent_degenerate(tmp, parent)) {
8173
			tmp->parent = parent->parent;
8174 8175
			if (parent->parent)
				parent->parent->child = tmp;
8176 8177
		} else
			tmp = tmp->parent;
8178 8179
	}

8180
	if (sd && sd_degenerate(sd)) {
8181
		sd = sd->parent;
8182 8183 8184
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8185 8186 8187

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8188
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8189
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8190 8191 8192
}

/* cpus with isolated domains */
8193
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8194 8195 8196 8197

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8198
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8199 8200 8201
	return 1;
}

I
Ingo Molnar 已提交
8202
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8203 8204

/*
8205 8206
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8207 8208
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8209 8210 8211 8212 8213
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8214
static void
8215 8216 8217
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8218
					struct sched_group **sg,
8219 8220
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8221 8222 8223 8224
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8225
	cpumask_clear(covered);
8226

8227
	for_each_cpu(i, span) {
8228
		struct sched_group *sg;
8229
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8230 8231
		int j;

8232
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8233 8234
			continue;

8235
		cpumask_clear(sched_group_cpus(sg));
8236
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8237

8238
		for_each_cpu(j, span) {
8239
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8240 8241
				continue;

8242
			cpumask_set_cpu(j, covered);
8243
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8254
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8255

8256
#ifdef CONFIG_NUMA
8257

8258 8259 8260 8261 8262
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8263
 * Find the next node to include in a given scheduling domain. Simply
8264 8265 8266 8267
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8268
static int find_next_best_node(int node, nodemask_t *used_nodes)
8269 8270 8271 8272 8273
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8274
	for (i = 0; i < nr_node_ids; i++) {
8275
		/* Start at @node */
8276
		n = (node + i) % nr_node_ids;
8277 8278 8279 8280 8281

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8282
		if (node_isset(n, *used_nodes))
8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8294
	node_set(best_node, *used_nodes);
8295 8296 8297 8298 8299 8300
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8301
 * @span: resulting cpumask
8302
 *
I
Ingo Molnar 已提交
8303
 * Given a node, construct a good cpumask for its sched_domain to span. It
8304 8305 8306
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8307
static void sched_domain_node_span(int node, struct cpumask *span)
8308
{
8309
	nodemask_t used_nodes;
8310
	int i;
8311

8312
	cpumask_clear(span);
8313
	nodes_clear(used_nodes);
8314

8315
	cpumask_or(span, span, cpumask_of_node(node));
8316
	node_set(node, used_nodes);
8317 8318

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8319
		int next_node = find_next_best_node(node, &used_nodes);
8320

8321
		cpumask_or(span, span, cpumask_of_node(next_node));
8322 8323
	}
}
8324
#endif /* CONFIG_NUMA */
8325

8326
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8327

8328 8329
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8330 8331 8332
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8377
/*
8378
 * SMT sched-domains:
8379
 */
L
Linus Torvalds 已提交
8380
#ifdef CONFIG_SCHED_SMT
8381 8382
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8383

I
Ingo Molnar 已提交
8384
static int
8385 8386
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8387
{
8388
	if (sg)
8389
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8390 8391
	return cpu;
}
8392
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8393

8394 8395 8396
/*
 * multi-core sched-domains:
 */
8397
#ifdef CONFIG_SCHED_MC
8398 8399
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8400
#endif /* CONFIG_SCHED_MC */
8401 8402

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8403
static int
8404 8405
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8406
{
8407
	int group;
8408

8409
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8410
	group = cpumask_first(mask);
8411
	if (sg)
8412
		*sg = &per_cpu(sched_group_core, group).sg;
8413
	return group;
8414 8415
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8416
static int
8417 8418
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8419
{
8420
	if (sg)
8421
		*sg = &per_cpu(sched_group_core, cpu).sg;
8422 8423 8424 8425
	return cpu;
}
#endif

8426 8427
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8428

I
Ingo Molnar 已提交
8429
static int
8430 8431
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8432
{
8433
	int group;
8434
#ifdef CONFIG_SCHED_MC
8435
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8436
	group = cpumask_first(mask);
8437
#elif defined(CONFIG_SCHED_SMT)
8438
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8439
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8440
#else
8441
	group = cpu;
L
Linus Torvalds 已提交
8442
#endif
8443
	if (sg)
8444
		*sg = &per_cpu(sched_group_phys, group).sg;
8445
	return group;
L
Linus Torvalds 已提交
8446 8447 8448 8449
}

#ifdef CONFIG_NUMA
/*
8450 8451 8452
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8453
 */
8454
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8455
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8456

8457
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8458
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8459

8460 8461 8462
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8463
{
8464 8465
	int group;

8466
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8467
	group = cpumask_first(nodemask);
8468 8469

	if (sg)
8470
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8471
	return group;
L
Linus Torvalds 已提交
8472
}
8473

8474 8475 8476 8477 8478 8479 8480
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8481
	do {
8482
		for_each_cpu(j, sched_group_cpus(sg)) {
8483
			struct sched_domain *sd;
8484

8485
			sd = &per_cpu(phys_domains, j).sd;
8486
			if (j != group_first_cpu(sd->groups)) {
8487 8488 8489 8490 8491 8492
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8493

8494 8495 8496 8497
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8498
}
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

	sg->__cpu_power = 0;
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
		sg->__cpu_power = 0;
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8564
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8565

8566
#ifdef CONFIG_NUMA
8567
/* Free memory allocated for various sched_group structures */
8568 8569
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8570
{
8571
	int cpu, i;
8572

8573
	for_each_cpu(cpu, cpu_map) {
8574 8575 8576 8577 8578 8579
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8580
		for (i = 0; i < nr_node_ids; i++) {
8581 8582
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8583
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8584
			if (cpumask_empty(nodemask))
8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8601
#else /* !CONFIG_NUMA */
8602 8603
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8604 8605
{
}
8606
#endif /* CONFIG_NUMA */
8607

8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8622 8623
	long power;
	int weight;
8624 8625 8626

	WARN_ON(!sd || !sd->groups);

8627
	if (cpu != group_first_cpu(sd->groups))
8628 8629 8630 8631
		return;

	child = sd->child;

8632 8633
	sd->groups->__cpu_power = 0;

8634 8635 8636 8637 8638
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8639 8640 8641
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8642
		 */
P
Peter Zijlstra 已提交
8643 8644
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8645
			power /= weight;
P
Peter Zijlstra 已提交
8646 8647
			power >>= SCHED_LOAD_SHIFT;
		}
8648
		sg_inc_cpu_power(sd->groups, power);
8649 8650 8651 8652
		return;
	}

	/*
8653
	 * Add cpu_power of each child group to this groups cpu_power.
8654 8655 8656
	 */
	group = child->groups;
	do {
8657
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8658 8659 8660 8661
		group = group->next;
	} while (group != child->groups);
}

8662 8663 8664 8665 8666
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8667 8668 8669 8670 8671 8672
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8673
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8674

8675 8676 8677 8678 8679
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8680
	sd->level = SD_LV_##type;				\
8681
	SD_INIT_NAME(sd, type);					\
8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8696 8697 8698 8699
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8700 8701 8702 8703 8704 8705
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8751
#ifdef CONFIG_NUMA
8752 8753 8754 8755 8756 8757 8758
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8759
#endif
8760 8761 8762 8763
	case sa_none:
		break;
	}
}
8764

8765 8766 8767
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8768
#ifdef CONFIG_NUMA
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8779
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8780
		return sa_notcovered;
8781
	}
8782
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8783
#endif
8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8796
		printk(KERN_WARNING "Cannot alloc root domain\n");
8797
		return sa_tmpmask;
G
Gregory Haskins 已提交
8798
	}
8799 8800
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8801

8802 8803 8804 8805
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8806
#ifdef CONFIG_NUMA
8807
	struct sched_domain *parent;
8808

8809 8810 8811 8812 8813
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8814
		set_domain_attribute(sd, attr);
8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8829
#endif
8830 8831
	return sd;
}
L
Linus Torvalds 已提交
8832

8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8848

8849 8850 8851 8852 8853
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8854
#ifdef CONFIG_SCHED_MC
8855 8856 8857 8858 8859 8860 8861
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8862
#endif
8863 8864
	return sd;
}
8865

8866 8867 8868 8869 8870
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8871
#ifdef CONFIG_SCHED_SMT
8872 8873 8874 8875 8876 8877 8878
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8879
#endif
8880 8881
	return sd;
}
L
Linus Torvalds 已提交
8882

8883 8884 8885 8886
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8887
#ifdef CONFIG_SCHED_SMT
8888 8889 8890 8891 8892 8893 8894 8895
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8896
#endif
8897
#ifdef CONFIG_SCHED_MC
8898 8899 8900 8901 8902 8903 8904
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8905
#endif
8906 8907 8908 8909 8910 8911 8912
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8913
#ifdef CONFIG_NUMA
8914 8915 8916 8917 8918
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8919 8920
	default:
		break;
8921
	}
8922
}
8923

8924 8925 8926 8927 8928 8929 8930 8931 8932
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8933
	struct sched_domain *sd;
8934
	int i;
8935
#ifdef CONFIG_NUMA
8936
	d.sd_allnodes = 0;
8937
#endif
8938

8939 8940 8941 8942
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8943

L
Linus Torvalds 已提交
8944
	/*
8945
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8946
	 */
8947
	for_each_cpu(i, cpu_map) {
8948 8949
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8950

8951
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8952
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8953
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8954
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8955
	}
8956

8957
	for_each_cpu(i, cpu_map) {
8958
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8959
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8960
	}
8961

L
Linus Torvalds 已提交
8962
	/* Set up physical groups */
8963 8964
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8965

L
Linus Torvalds 已提交
8966 8967
#ifdef CONFIG_NUMA
	/* Set up node groups */
8968 8969
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8970

8971 8972
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8973
			goto error;
L
Linus Torvalds 已提交
8974 8975 8976
#endif

	/* Calculate CPU power for physical packages and nodes */
8977
#ifdef CONFIG_SCHED_SMT
8978
	for_each_cpu(i, cpu_map) {
8979
		sd = &per_cpu(cpu_domains, i).sd;
8980
		init_sched_groups_power(i, sd);
8981
	}
L
Linus Torvalds 已提交
8982
#endif
8983
#ifdef CONFIG_SCHED_MC
8984
	for_each_cpu(i, cpu_map) {
8985
		sd = &per_cpu(core_domains, i).sd;
8986
		init_sched_groups_power(i, sd);
8987 8988
	}
#endif
8989

8990
	for_each_cpu(i, cpu_map) {
8991
		sd = &per_cpu(phys_domains, i).sd;
8992
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8993 8994
	}

8995
#ifdef CONFIG_NUMA
8996
	for (i = 0; i < nr_node_ids; i++)
8997
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8998

8999
	if (d.sd_allnodes) {
9000
		struct sched_group *sg;
9001

9002
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
9003
								d.tmpmask);
9004 9005
		init_numa_sched_groups_power(sg);
	}
9006 9007
#endif

L
Linus Torvalds 已提交
9008
	/* Attach the domains */
9009
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
9010
#ifdef CONFIG_SCHED_SMT
9011
		sd = &per_cpu(cpu_domains, i).sd;
9012
#elif defined(CONFIG_SCHED_MC)
9013
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
9014
#else
9015
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
9016
#endif
9017
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
9018
	}
9019

9020 9021 9022
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
9023 9024

error:
9025 9026
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
9027
}
P
Paul Jackson 已提交
9028

9029
static int build_sched_domains(const struct cpumask *cpu_map)
9030 9031 9032 9033
{
	return __build_sched_domains(cpu_map, NULL);
}

9034
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
9035
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
9036 9037
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
9038 9039 9040

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
9041 9042
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
9043
 */
9044
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
9045

9046 9047 9048 9049 9050 9051
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
9052
{
9053
	return 0;
9054 9055
}

9056
/*
I
Ingo Molnar 已提交
9057
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
9058 9059
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
9060
 */
9061
static int arch_init_sched_domains(const struct cpumask *cpu_map)
9062
{
9063 9064
	int err;

9065
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9066
	ndoms_cur = 1;
9067
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
9068
	if (!doms_cur)
9069
		doms_cur = fallback_doms;
9070
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9071
	dattr_cur = NULL;
9072
	err = build_sched_domains(doms_cur);
9073
	register_sched_domain_sysctl();
9074 9075

	return err;
9076 9077
}

9078 9079
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9080
{
9081
	free_sched_groups(cpu_map, tmpmask);
9082
}
L
Linus Torvalds 已提交
9083

9084 9085 9086 9087
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9088
static void detach_destroy_domains(const struct cpumask *cpu_map)
9089
{
9090 9091
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9092 9093
	int i;

9094
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9095
		cpu_attach_domain(NULL, &def_root_domain, i);
9096
	synchronize_sched();
9097
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9098 9099
}

9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9116 9117
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9118
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9119 9120 9121
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9122
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9123 9124 9125
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9126 9127 9128
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
9129 9130
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
9131 9132 9133 9134
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
9135
 *
9136
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9137 9138
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9139
 *
P
Paul Jackson 已提交
9140 9141
 * Call with hotplug lock held
 */
9142 9143
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9144
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9145
{
9146
	int i, j, n;
9147
	int new_topology;
P
Paul Jackson 已提交
9148

9149
	mutex_lock(&sched_domains_mutex);
9150

9151 9152 9153
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9154 9155 9156
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9157
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9158 9159 9160

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9161
		for (j = 0; j < n && !new_topology; j++) {
9162
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9163
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9164 9165 9166 9167 9168 9169 9170 9171
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9172 9173
	if (doms_new == NULL) {
		ndoms_cur = 0;
9174
		doms_new = fallback_doms;
9175
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9176
		WARN_ON_ONCE(dattr_new);
9177 9178
	}

P
Paul Jackson 已提交
9179 9180
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9181
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9182
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9183
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9184 9185 9186
				goto match2;
		}
		/* no match - add a new doms_new */
9187 9188
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9189 9190 9191 9192 9193
match2:
		;
	}

	/* Remember the new sched domains */
9194
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9195
		kfree(doms_cur);
9196
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9197
	doms_cur = doms_new;
9198
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9199
	ndoms_cur = ndoms_new;
9200 9201

	register_sched_domain_sysctl();
9202

9203
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9204 9205
}

9206
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9207
static void arch_reinit_sched_domains(void)
9208
{
9209
	get_online_cpus();
9210 9211 9212 9213

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9214
	rebuild_sched_domains();
9215
	put_online_cpus();
9216 9217 9218 9219
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9220
	unsigned int level = 0;
9221

9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9233 9234 9235
		return -EINVAL;

	if (smt)
9236
		sched_smt_power_savings = level;
9237
	else
9238
		sched_mc_power_savings = level;
9239

9240
	arch_reinit_sched_domains();
9241

9242
	return count;
9243 9244 9245
}

#ifdef CONFIG_SCHED_MC
9246 9247
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9248 9249 9250
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9251
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9252
					    const char *buf, size_t count)
9253 9254 9255
{
	return sched_power_savings_store(buf, count, 0);
}
9256 9257 9258
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9259 9260 9261
#endif

#ifdef CONFIG_SCHED_SMT
9262 9263
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9264 9265 9266
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9267
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9268
					     const char *buf, size_t count)
9269 9270 9271
{
	return sched_power_savings_store(buf, count, 1);
}
9272 9273
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9274 9275 9276
		   sched_smt_power_savings_store);
#endif

9277
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9293
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9294

9295
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9296
/*
9297 9298
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9299 9300 9301
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9302 9303 9304 9305 9306 9307
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9308
		partition_sched_domains(1, NULL, NULL);
9309 9310 9311 9312 9313 9314 9315 9316 9317 9318
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9319
{
P
Peter Zijlstra 已提交
9320 9321
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9322 9323
	switch (action) {
	case CPU_DOWN_PREPARE:
9324
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9325
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9326 9327 9328
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9329
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9330
	case CPU_ONLINE:
9331
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9332
		enable_runtime(cpu_rq(cpu));
9333 9334
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9335 9336 9337 9338 9339 9340 9341
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9342 9343 9344
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9345

9346 9347 9348 9349 9350
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9351
	get_online_cpus();
9352
	mutex_lock(&sched_domains_mutex);
9353 9354 9355 9356
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9357
	mutex_unlock(&sched_domains_mutex);
9358
	put_online_cpus();
9359 9360

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9361 9362
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9363 9364 9365 9366 9367
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9368
	init_hrtick();
9369 9370

	/* Move init over to a non-isolated CPU */
9371
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9372
		BUG();
I
Ingo Molnar 已提交
9373
	sched_init_granularity();
9374
	free_cpumask_var(non_isolated_cpus);
9375 9376

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9377
	init_sched_rt_class();
L
Linus Torvalds 已提交
9378 9379 9380 9381
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9382
	sched_init_granularity();
L
Linus Torvalds 已提交
9383 9384 9385
}
#endif /* CONFIG_SMP */

9386 9387
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9388 9389 9390 9391 9392 9393 9394
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9395
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9396 9397
{
	cfs_rq->tasks_timeline = RB_ROOT;
9398
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9399 9400 9401
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9402
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9403 9404
}

P
Peter Zijlstra 已提交
9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9418
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9419
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9420
#ifdef CONFIG_SMP
9421
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9422 9423
#endif
#endif
P
Peter Zijlstra 已提交
9424 9425 9426
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9427
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9428 9429 9430 9431
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9432 9433
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9434

9435
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9436
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9437 9438
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9439 9440
}

P
Peter Zijlstra 已提交
9441
#ifdef CONFIG_FAIR_GROUP_SCHED
9442 9443 9444
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9445
{
9446
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9447 9448 9449 9450 9451 9452 9453
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9454 9455 9456 9457
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9458 9459 9460 9461 9462
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9463 9464
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9465
	se->load.inv_weight = 0;
9466
	se->parent = parent;
P
Peter Zijlstra 已提交
9467
}
9468
#endif
P
Peter Zijlstra 已提交
9469

9470
#ifdef CONFIG_RT_GROUP_SCHED
9471 9472 9473
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9474
{
9475 9476
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9477 9478 9479 9480
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9481
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9482 9483 9484 9485
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9486 9487 9488
	if (!rt_se)
		return;

9489 9490 9491 9492 9493
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9494
	rt_se->my_q = rt_rq;
9495
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9496 9497 9498 9499
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9500 9501
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9502
	int i, j;
9503 9504 9505 9506 9507 9508 9509
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9510 9511 9512
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9513 9514
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9515
	alloc_size += num_possible_cpus() * cpumask_size();
9516 9517 9518 9519 9520 9521
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9522
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9523 9524 9525 9526 9527 9528 9529

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9530 9531 9532 9533 9534 9535 9536

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9537 9538
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9539 9540 9541 9542 9543
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9544 9545 9546 9547 9548 9549 9550 9551
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9552 9553
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9554 9555 9556 9557 9558 9559
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9560
	}
I
Ingo Molnar 已提交
9561

G
Gregory Haskins 已提交
9562 9563 9564 9565
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9566 9567 9568 9569 9570 9571
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9572 9573 9574
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9575 9576
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9577

9578
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9579
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9580 9581 9582 9583 9584 9585
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9586 9587
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9588

9589
	for_each_possible_cpu(i) {
9590
		struct rq *rq;
L
Linus Torvalds 已提交
9591 9592 9593

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9594
		rq->nr_running = 0;
9595 9596
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9597
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9598
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9599
#ifdef CONFIG_FAIR_GROUP_SCHED
9600
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9601
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9617
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9618 9619 9620 9621
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9622
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9623
#elif defined CONFIG_USER_SCHED
9624 9625
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9626 9627 9628 9629 9630 9631 9632 9633
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9634
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9635 9636
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9637
		init_tg_cfs_entry(&init_task_group,
9638
				&per_cpu(init_tg_cfs_rq, i),
9639 9640
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9641

9642
#endif
D
Dhaval Giani 已提交
9643 9644 9645
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9646
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9647
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9648
#ifdef CONFIG_CGROUP_SCHED
9649
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9650
#elif defined CONFIG_USER_SCHED
9651
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9652
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9653
				&per_cpu(init_rt_rq, i),
9654 9655
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9656
#endif
I
Ingo Molnar 已提交
9657
#endif
L
Linus Torvalds 已提交
9658

I
Ingo Molnar 已提交
9659 9660
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9661
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9662
		rq->sd = NULL;
G
Gregory Haskins 已提交
9663
		rq->rd = NULL;
9664
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9665
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9666
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9667
		rq->push_cpu = 0;
9668
		rq->cpu = i;
9669
		rq->online = 0;
L
Linus Torvalds 已提交
9670 9671
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9672
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9673
#endif
P
Peter Zijlstra 已提交
9674
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9675 9676 9677
		atomic_set(&rq->nr_iowait, 0);
	}

9678
	set_load_weight(&init_task);
9679

9680 9681 9682 9683
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9684
#ifdef CONFIG_SMP
9685
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9686 9687
#endif

9688 9689 9690 9691
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9705 9706 9707

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9708 9709 9710 9711
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9712

9713
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9714
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9715
#ifdef CONFIG_SMP
9716
#ifdef CONFIG_NO_HZ
9717 9718
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9719
#endif
9720
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9721
#endif /* SMP */
9722

9723 9724
	perf_counter_init();

9725
	scheduler_running = 1;
L
Linus Torvalds 已提交
9726 9727 9728
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9729 9730 9731 9732 9733 9734 9735 9736
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9737
{
9738
#ifdef in_atomic
L
Linus Torvalds 已提交
9739 9740
	static unsigned long prev_jiffy;	/* ratelimiting */

9741 9742
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9760 9761 9762 9763 9764 9765
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9766 9767 9768
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9769

9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9781 9782
void normalize_rt_tasks(void)
{
9783
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9784
	unsigned long flags;
9785
	struct rq *rq;
L
Linus Torvalds 已提交
9786

9787
	read_lock_irqsave(&tasklist_lock, flags);
9788
	do_each_thread(g, p) {
9789 9790 9791 9792 9793 9794
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9795 9796
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9797 9798 9799
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9800
#endif
I
Ingo Molnar 已提交
9801 9802 9803 9804 9805 9806 9807 9808

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9809
			continue;
I
Ingo Molnar 已提交
9810
		}
L
Linus Torvalds 已提交
9811

9812
		spin_lock(&p->pi_lock);
9813
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9814

9815
		normalize_task(rq, p);
9816

9817
		__task_rq_unlock(rq);
9818
		spin_unlock(&p->pi_lock);
9819 9820
	} while_each_thread(g, p);

9821
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9822 9823 9824
}

#endif /* CONFIG_MAGIC_SYSRQ */
9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9843
struct task_struct *curr_task(int cpu)
9844 9845 9846 9847 9848 9849 9850 9851 9852 9853
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9854 9855
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9856 9857 9858 9859 9860 9861 9862
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9863
void set_curr_task(int cpu, struct task_struct *p)
9864 9865 9866 9867 9868
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9869

9870 9871
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9886 9887
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9888 9889
{
	struct cfs_rq *cfs_rq;
9890
	struct sched_entity *se;
9891
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9892 9893
	int i;

9894
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9895 9896
	if (!tg->cfs_rq)
		goto err;
9897
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9898 9899
	if (!tg->se)
		goto err;
9900 9901

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9902 9903

	for_each_possible_cpu(i) {
9904
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9905

9906 9907
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9908 9909 9910
		if (!cfs_rq)
			goto err;

9911 9912
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9913 9914 9915
		if (!se)
			goto err;

9916
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9935
#else /* !CONFG_FAIR_GROUP_SCHED */
9936 9937 9938 9939
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9940 9941
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9953
#endif /* CONFIG_FAIR_GROUP_SCHED */
9954 9955

#ifdef CONFIG_RT_GROUP_SCHED
9956 9957 9958 9959
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9960 9961
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9973 9974
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9975 9976
{
	struct rt_rq *rt_rq;
9977
	struct sched_rt_entity *rt_se;
9978 9979 9980
	struct rq *rq;
	int i;

9981
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9982 9983
	if (!tg->rt_rq)
		goto err;
9984
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9985 9986 9987
	if (!tg->rt_se)
		goto err;

9988 9989
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9990 9991 9992 9993

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9994 9995
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9996 9997
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9998

9999 10000
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
10001 10002
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
10003

10004
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
10005 10006
	}

10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
10023
#else /* !CONFIG_RT_GROUP_SCHED */
10024 10025 10026 10027
static inline void free_rt_sched_group(struct task_group *tg)
{
}

10028 10029
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
10041
#endif /* CONFIG_RT_GROUP_SCHED */
10042

10043
#ifdef CONFIG_GROUP_SCHED
10044 10045 10046 10047 10048 10049 10050 10051
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
10052
struct task_group *sched_create_group(struct task_group *parent)
10053 10054 10055 10056 10057 10058 10059 10060 10061
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10062
	if (!alloc_fair_sched_group(tg, parent))
10063 10064
		goto err;

10065
	if (!alloc_rt_sched_group(tg, parent))
10066 10067
		goto err;

10068
	spin_lock_irqsave(&task_group_lock, flags);
10069
	for_each_possible_cpu(i) {
10070 10071
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10072
	}
P
Peter Zijlstra 已提交
10073
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10074 10075 10076 10077 10078

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10079
	list_add_rcu(&tg->siblings, &parent->children);
10080
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10081

10082
	return tg;
S
Srivatsa Vaddagiri 已提交
10083 10084

err:
P
Peter Zijlstra 已提交
10085
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10086 10087 10088
	return ERR_PTR(-ENOMEM);
}

10089
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10090
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10091 10092
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10093
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10094 10095
}

10096
/* Destroy runqueue etc associated with a task group */
10097
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10098
{
10099
	unsigned long flags;
10100
	int i;
S
Srivatsa Vaddagiri 已提交
10101

10102
	spin_lock_irqsave(&task_group_lock, flags);
10103
	for_each_possible_cpu(i) {
10104 10105
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10106
	}
P
Peter Zijlstra 已提交
10107
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10108
	list_del_rcu(&tg->siblings);
10109
	spin_unlock_irqrestore(&task_group_lock, flags);
10110 10111

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10112
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10113 10114
}

10115
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10116 10117 10118
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10119 10120
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10121 10122 10123 10124 10125 10126 10127 10128 10129
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10130
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10131 10132
	on_rq = tsk->se.on_rq;

10133
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10134
		dequeue_task(rq, tsk, 0);
10135 10136
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10137

P
Peter Zijlstra 已提交
10138
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10139

P
Peter Zijlstra 已提交
10140 10141 10142 10143 10144
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10145 10146 10147
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10148
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10149 10150 10151

	task_rq_unlock(rq, &flags);
}
10152
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10153

10154
#ifdef CONFIG_FAIR_GROUP_SCHED
10155
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10156 10157 10158 10159 10160
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10161
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10162 10163 10164
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10165
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10166

10167
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10168
		enqueue_entity(cfs_rq, se, 0);
10169
}
10170

10171 10172 10173 10174 10175 10176 10177 10178 10179
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10180 10181
}

10182 10183
static DEFINE_MUTEX(shares_mutex);

10184
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10185 10186
{
	int i;
10187
	unsigned long flags;
10188

10189 10190 10191 10192 10193 10194
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10195 10196
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10197 10198
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10199

10200
	mutex_lock(&shares_mutex);
10201
	if (tg->shares == shares)
10202
		goto done;
S
Srivatsa Vaddagiri 已提交
10203

10204
	spin_lock_irqsave(&task_group_lock, flags);
10205 10206
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10207
	list_del_rcu(&tg->siblings);
10208
	spin_unlock_irqrestore(&task_group_lock, flags);
10209 10210 10211 10212 10213 10214 10215 10216

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10217
	tg->shares = shares;
10218 10219 10220 10221 10222
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10223
		set_se_shares(tg->se[i], shares);
10224
	}
S
Srivatsa Vaddagiri 已提交
10225

10226 10227 10228 10229
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10230
	spin_lock_irqsave(&task_group_lock, flags);
10231 10232
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10233
	list_add_rcu(&tg->siblings, &tg->parent->children);
10234
	spin_unlock_irqrestore(&task_group_lock, flags);
10235
done:
10236
	mutex_unlock(&shares_mutex);
10237
	return 0;
S
Srivatsa Vaddagiri 已提交
10238 10239
}

10240 10241 10242 10243
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10244
#endif
10245

10246
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10247
/*
P
Peter Zijlstra 已提交
10248
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10249
 */
P
Peter Zijlstra 已提交
10250 10251 10252 10253 10254
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10255
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10256

P
Peter Zijlstra 已提交
10257
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10258 10259
}

P
Peter Zijlstra 已提交
10260 10261
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10262
{
P
Peter Zijlstra 已提交
10263
	struct task_struct *g, *p;
10264

P
Peter Zijlstra 已提交
10265 10266 10267 10268
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10269

P
Peter Zijlstra 已提交
10270 10271
	return 0;
}
10272

P
Peter Zijlstra 已提交
10273 10274 10275 10276 10277
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10278

P
Peter Zijlstra 已提交
10279 10280 10281 10282 10283 10284
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10285

P
Peter Zijlstra 已提交
10286 10287
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10288

P
Peter Zijlstra 已提交
10289 10290 10291
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10292 10293
	}

10294 10295 10296 10297 10298 10299 10300
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10301 10302 10303 10304 10305
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10306

10307 10308 10309
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10310 10311
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10312

P
Peter Zijlstra 已提交
10313
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10314

10315 10316 10317 10318 10319
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10320

10321 10322 10323
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10324 10325 10326
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10327

P
Peter Zijlstra 已提交
10328 10329 10330 10331
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10332

P
Peter Zijlstra 已提交
10333
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10334
	}
P
Peter Zijlstra 已提交
10335

P
Peter Zijlstra 已提交
10336 10337 10338 10339
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10340 10341
}

P
Peter Zijlstra 已提交
10342
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10343
{
P
Peter Zijlstra 已提交
10344 10345 10346 10347 10348 10349 10350
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10351 10352
}

10353 10354
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10355
{
P
Peter Zijlstra 已提交
10356
	int i, err = 0;
P
Peter Zijlstra 已提交
10357 10358

	mutex_lock(&rt_constraints_mutex);
10359
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10360 10361
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10362
		goto unlock;
P
Peter Zijlstra 已提交
10363 10364

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10365 10366
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10367 10368 10369 10370 10371 10372 10373 10374 10375

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10376
 unlock:
10377
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10378 10379 10380
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10381 10382
}

10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10395 10396 10397 10398
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10399
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10400 10401
		return -1;

10402
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10403 10404 10405
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10406 10407 10408 10409 10410 10411 10412 10413

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10414 10415 10416
	if (rt_period == 0)
		return -EINVAL;

10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10431
	u64 runtime, period;
10432 10433
	int ret = 0;

10434 10435 10436
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10437 10438 10439 10440 10441 10442 10443 10444
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10445

10446
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10447
	read_lock(&tasklist_lock);
10448
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10449
	read_unlock(&tasklist_lock);
10450 10451 10452 10453
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10454 10455 10456 10457 10458 10459 10460 10461 10462 10463

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10464
#else /* !CONFIG_RT_GROUP_SCHED */
10465 10466
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10467 10468 10469
	unsigned long flags;
	int i;

10470 10471 10472
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10473 10474 10475 10476 10477 10478 10479
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10490 10491
	return 0;
}
10492
#endif /* CONFIG_RT_GROUP_SCHED */
10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10523

10524
#ifdef CONFIG_CGROUP_SCHED
10525 10526

/* return corresponding task_group object of a cgroup */
10527
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10528
{
10529 10530
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10531 10532 10533
}

static struct cgroup_subsys_state *
10534
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10535
{
10536
	struct task_group *tg, *parent;
10537

10538
	if (!cgrp->parent) {
10539 10540 10541 10542
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10543 10544
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10545 10546 10547 10548 10549 10550
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10551 10552
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10553
{
10554
	struct task_group *tg = cgroup_tg(cgrp);
10555 10556 10557 10558

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10559 10560 10561
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10562
{
10563
#ifdef CONFIG_RT_GROUP_SCHED
10564
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10565 10566
		return -EINVAL;
#else
10567 10568 10569
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10570
#endif
10571 10572 10573 10574 10575

	return 0;
}

static void
10576
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10577 10578 10579 10580 10581
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10582
#ifdef CONFIG_FAIR_GROUP_SCHED
10583
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10584
				u64 shareval)
10585
{
10586
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10587 10588
}

10589
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10590
{
10591
	struct task_group *tg = cgroup_tg(cgrp);
10592 10593 10594

	return (u64) tg->shares;
}
10595
#endif /* CONFIG_FAIR_GROUP_SCHED */
10596

10597
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10598
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10599
				s64 val)
P
Peter Zijlstra 已提交
10600
{
10601
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10602 10603
}

10604
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10605
{
10606
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10607
}
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10619
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10620

10621
static struct cftype cpu_files[] = {
10622
#ifdef CONFIG_FAIR_GROUP_SCHED
10623 10624
	{
		.name = "shares",
10625 10626
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10627
	},
10628 10629
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10630
	{
P
Peter Zijlstra 已提交
10631
		.name = "rt_runtime_us",
10632 10633
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10634
	},
10635 10636
	{
		.name = "rt_period_us",
10637 10638
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10639
	},
10640
#endif
10641 10642 10643 10644
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10645
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10646 10647 10648
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10649 10650 10651 10652 10653 10654 10655
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10656 10657 10658
	.early_init	= 1,
};

10659
#endif	/* CONFIG_CGROUP_SCHED */
10660 10661 10662 10663 10664 10665 10666 10667 10668 10669

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10670
/* track cpu usage of a group of tasks and its child groups */
10671 10672 10673 10674
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10675
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10676
	struct cpuacct *parent;
10677 10678 10679 10680 10681
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10682
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10683
{
10684
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10697
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10698 10699
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10700
	int i;
10701 10702

	if (!ca)
10703
		goto out;
10704 10705

	ca->cpuusage = alloc_percpu(u64);
10706 10707 10708 10709 10710 10711
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10712

10713 10714 10715
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10716
	return &ca->css;
10717 10718 10719 10720 10721 10722 10723 10724 10725

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10726 10727 10728
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10729
static void
10730
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10731
{
10732
	struct cpuacct *ca = cgroup_ca(cgrp);
10733
	int i;
10734

10735 10736
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10737 10738 10739 10740
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10741 10742
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10743
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10762
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10776
/* return total cpu usage (in nanoseconds) of a group */
10777
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10778
{
10779
	struct cpuacct *ca = cgroup_ca(cgrp);
10780 10781 10782
	u64 totalcpuusage = 0;
	int i;

10783 10784
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10785 10786 10787 10788

	return totalcpuusage;
}

10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10801 10802
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10803 10804 10805 10806 10807

out:
	return err;
}

10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10842 10843 10844
static struct cftype files[] = {
	{
		.name = "usage",
10845 10846
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10847
	},
10848 10849 10850 10851
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10852 10853 10854 10855
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10856 10857
};

10858
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10859
{
10860
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10861 10862 10863 10864 10865 10866 10867 10868 10869 10870
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10871
	int cpu;
10872

L
Li Zefan 已提交
10873
	if (unlikely(!cpuacct_subsys.active))
10874 10875
		return;

10876
	cpu = task_cpu(tsk);
10877 10878 10879

	rcu_read_lock();

10880 10881
	ca = task_ca(tsk);

10882
	for (; ca; ca = ca->parent) {
10883
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10884 10885
		*cpuusage += cputime;
	}
10886 10887

	rcu_read_unlock();
10888 10889
}

10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10911 10912 10913 10914 10915 10916 10917 10918
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */