sched.c 265.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145 146 147 148 149
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
183 184
	spin_lock_init(&rt_b->rt_runtime_lock);

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221 222 223 224 225 226 227 228 229 230 231
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

238
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
#ifdef CONFIG_CGROUP_SCHED
249 250
	struct cgroup_subsys_state css;
#endif
251

252 253 254 255
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

256
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257 258 259 260 261
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
P
Peter Zijlstra 已提交
273 274 275 276

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
277 278
};

D
Dhaval Giani 已提交
279
#ifdef CONFIG_USER_SCHED
280

281 282 283 284 285 286
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

287 288
/*
 * Root task group.
289 290
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
291 292 293
 */
struct task_group root_task_group;

294
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
295 296 297
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
298
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
299
#endif /* CONFIG_FAIR_GROUP_SCHED */
300 301 302 303

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
304
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
305
#else /* !CONFIG_USER_SCHED */
306
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
307
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
308

309
/* task_group_lock serializes add/remove of task groups and also changes to
310 311
 * a task group's cpu shares.
 */
312
static DEFINE_SPINLOCK(task_group_lock);
313

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322 323
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
324
#else /* !CONFIG_USER_SCHED */
325
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
326
#endif /* CONFIG_USER_SCHED */
327

328
/*
329 330 331 332
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
333 334 335
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
336
#define MIN_SHARES	2
337
#define MAX_SHARES	(1UL << 18)
338

339 340 341
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
342
/* Default task group.
I
Ingo Molnar 已提交
343
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
344
 */
345
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
346 347

/* return group to which a task belongs */
348
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
349
{
350
	struct task_group *tg;
351

352
#ifdef CONFIG_USER_SCHED
353 354 355
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
356
#elif defined(CONFIG_CGROUP_SCHED)
357 358
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
359
#else
I
Ingo Molnar 已提交
360
	tg = &init_task_group;
361
#endif
362
	return tg;
S
Srivatsa Vaddagiri 已提交
363 364 365
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
366
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
367
{
368
#ifdef CONFIG_FAIR_GROUP_SCHED
369 370
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
371
#endif
P
Peter Zijlstra 已提交
372

373
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
374 375
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
376
#endif
S
Srivatsa Vaddagiri 已提交
377 378 379 380
}

#else

381 382 383 384 385 386 387
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
388
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
389 390 391 392
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
393

394
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
395

I
Ingo Molnar 已提交
396 397 398 399 400 401
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
402
	u64 min_vruntime;
I
Ingo Molnar 已提交
403 404 405

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
406 407 408 409 410 411

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
412 413
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
414
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
415

P
Peter Zijlstra 已提交
416
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
417

418
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
419 420
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
421 422
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
423 424 425 426 427 428
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
429 430
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
431 432 433

#ifdef CONFIG_SMP
	/*
434
	 * the part of load.weight contributed by tasks
435
	 */
436
	unsigned long task_weight;
437

438 439 440 441 442 443 444
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
445

446 447 448 449
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
450 451 452 453 454

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
455
#endif
I
Ingo Molnar 已提交
456 457
#endif
};
L
Linus Torvalds 已提交
458

I
Ingo Molnar 已提交
459 460 461
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
462
	unsigned long rt_nr_running;
463
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
464 465
	struct {
		int curr; /* highest queued rt task prio */
466
#ifdef CONFIG_SMP
467
		int next; /* next highest */
468
#endif
469
	} highest_prio;
P
Peter Zijlstra 已提交
470
#endif
P
Peter Zijlstra 已提交
471
#ifdef CONFIG_SMP
472
	unsigned long rt_nr_migratory;
473
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
474
	int overloaded;
475
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
476
#endif
P
Peter Zijlstra 已提交
477
	int rt_throttled;
P
Peter Zijlstra 已提交
478
	u64 rt_time;
P
Peter Zijlstra 已提交
479
	u64 rt_runtime;
I
Ingo Molnar 已提交
480
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
481
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
482

483
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
484 485
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
486 487 488 489 490
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
491 492
};

G
Gregory Haskins 已提交
493 494 495 496
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
497 498
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
499 500 501 502 503 504
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
505 506
	cpumask_var_t span;
	cpumask_var_t online;
507

I
Ingo Molnar 已提交
508
	/*
509 510 511
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
512
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
513
	atomic_t rto_count;
514 515 516
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
517 518 519 520 521 522 523 524
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
525 526
};

527 528 529 530
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
531 532 533 534
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
535 536 537 538 539 540 541
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
542
struct rq {
543 544
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
545 546 547 548 549 550

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
551 552
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553
#ifdef CONFIG_NO_HZ
554
	unsigned long last_tick_seen;
555 556
	unsigned char in_nohz_recently;
#endif
557 558
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
559 560
	unsigned long nr_load_updates;
	u64 nr_switches;
561
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
562 563

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
564 565
	struct rt_rq rt;

I
Ingo Molnar 已提交
566
#ifdef CONFIG_FAIR_GROUP_SCHED
567 568
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
569 570
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
571
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
572 573 574 575 576 577 578 579 580 581
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

582
	struct task_struct *curr, *idle;
583
	unsigned long next_balance;
L
Linus Torvalds 已提交
584
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
585

586
	u64 clock;
I
Ingo Molnar 已提交
587

L
Linus Torvalds 已提交
588 589 590
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
591
	struct root_domain *rd;
L
Linus Torvalds 已提交
592 593
	struct sched_domain *sd;

594
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
595
	/* For active balancing */
596
	int post_schedule;
L
Linus Torvalds 已提交
597 598
	int active_balance;
	int push_cpu;
599 600
	/* cpu of this runqueue: */
	int cpu;
601
	int online;
L
Linus Torvalds 已提交
602

603
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
604

605
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
606
	struct list_head migration_queue;
607 608 609

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
610 611
#endif

612 613 614 615
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
616
#ifdef CONFIG_SCHED_HRTICK
617 618 619 620
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
621 622 623
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
624 625 626
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
627 628
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
629 630

	/* sys_sched_yield() stats */
631
	unsigned int yld_count;
L
Linus Torvalds 已提交
632 633

	/* schedule() stats */
634 635 636
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
637 638

	/* try_to_wake_up() stats */
639 640
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
641 642

	/* BKL stats */
643
	unsigned int bkl_count;
L
Linus Torvalds 已提交
644 645 646
#endif
};

647
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
648

649
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
650
{
651
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
652 653
}

654 655 656 657 658 659 660 661 662
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
663 664
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
665
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
666 667 668 669
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
670 671
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
672 673 674 675 676

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
677
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
678

I
Ingo Molnar 已提交
679
inline void update_rq_clock(struct rq *rq)
680 681 682 683
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
684 685 686 687 688 689 690 691 692
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
711 712 713
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
714 715 716 717

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
718
enum {
P
Peter Zijlstra 已提交
719
#include "sched_features.h"
I
Ingo Molnar 已提交
720 721
};

P
Peter Zijlstra 已提交
722 723 724 725 726
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
727
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
728 729 730 731 732 733 734 735 736
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

737
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
738 739 740 741 742 743
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
744
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
745 746 747 748
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
749 750 751
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
752
	}
L
Li Zefan 已提交
753
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
754

L
Li Zefan 已提交
755
	return 0;
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
775
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
800 801 802 803 804
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
805
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
806 807 808 809 810
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
825

826 827 828 829 830 831
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
832 833
/*
 * ratelimit for updating the group shares.
834
 * default: 0.25ms
P
Peter Zijlstra 已提交
835
 */
836
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
837

838 839 840 841 842 843 844
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

845 846 847 848 849 850 851 852
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
853
/*
P
Peter Zijlstra 已提交
854
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
855 856
 * default: 1s
 */
P
Peter Zijlstra 已提交
857
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
858

859 860
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
861 862 863 864 865
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
866

867 868 869 870 871 872 873
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
874
	if (sysctl_sched_rt_runtime < 0)
875 876 877 878
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
879

L
Linus Torvalds 已提交
880
#ifndef prepare_arch_switch
881 882 883 884 885 886
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

887 888 889 890 891
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

892
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894
{
895
	return task_current(rq, p);
896 897
}

898
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
899 900 901
{
}

902
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
903
{
904 905 906 907
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
908 909 910 911 912 913 914
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

915 916 917 918
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
919
static inline int task_running(struct rq *rq, struct task_struct *p)
920 921 922 923
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
924
	return task_current(rq, p);
925 926 927
#endif
}

928
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

945
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
946 947 948 949 950 951 952 953 954 955 956 957
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
958
#endif
959 960
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
961

962 963 964 965
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
966
static inline struct rq *__task_rq_lock(struct task_struct *p)
967 968
	__acquires(rq->lock)
{
969 970 971 972 973
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
974 975 976 977
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
978 979
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
980
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
981 982
 * explicitly disabling preemption.
 */
983
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
984 985
	__acquires(rq->lock)
{
986
	struct rq *rq;
L
Linus Torvalds 已提交
987

988 989 990 991 992 993
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
994 995 996 997
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

998 999 1000 1001 1002 1003 1004 1005
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1006
static void __task_rq_unlock(struct rq *rq)
1007 1008 1009 1010 1011
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1012
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1013 1014 1015 1016 1017 1018
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1019
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1020
 */
A
Alexey Dobriyan 已提交
1021
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1022 1023
	__acquires(rq->lock)
{
1024
	struct rq *rq;
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030 1031 1032

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1054
	if (!cpu_active(cpu_of(rq)))
1055
		return 0;
P
Peter Zijlstra 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1076
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1077 1078 1079 1080 1081 1082
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1083
#ifdef CONFIG_SMP
1084 1085 1086 1087
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1088
{
1089
	struct rq *rq = arg;
1090

1091 1092 1093 1094
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1095 1096
}

1097 1098 1099 1100 1101 1102
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1103
{
1104 1105
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1106

1107
	hrtimer_set_expires(timer, time);
1108 1109 1110 1111

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1112
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1113 1114
		rq->hrtick_csd_pending = 1;
	}
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1129
		hrtick_clear(cpu_rq(cpu));
1130 1131 1132 1133 1134 1135
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1136
static __init void init_hrtick(void)
1137 1138 1139
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1140 1141 1142 1143 1144 1145 1146 1147
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1148
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1149
			HRTIMER_MODE_REL_PINNED, 0);
1150
}
1151

A
Andrew Morton 已提交
1152
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1153 1154
{
}
1155
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1156

1157
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1158
{
1159 1160
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1161

1162 1163 1164 1165
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1166

1167 1168
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1169
}
A
Andrew Morton 已提交
1170
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1171 1172 1173 1174 1175 1176 1177 1178
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1179 1180 1181
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1182
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1197
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1203
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1204 1205
		return;

1206
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1262
	set_tsk_need_resched(rq->idle);
1263 1264 1265 1266 1267 1268

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1292
#else /* !CONFIG_SMP */
1293
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1294 1295
{
	assert_spin_locked(&task_rq(p)->lock);
1296
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1297
}
1298 1299 1300 1301

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1302
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1303

1304 1305 1306 1307 1308 1309 1310 1311
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1312 1313 1314
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1315
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1316

1317 1318 1319
/*
 * delta *= weight / lw
 */
1320
static unsigned long
1321 1322 1323 1324 1325
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1326 1327 1328 1329 1330 1331 1332
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1333 1334 1335 1336 1337

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1338
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1339
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1340 1341
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1342
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1343

1344
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1345 1346
}

1347
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1348 1349
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1350
	lw->inv_weight = 0;
1351 1352
}

1353
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1354 1355
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1356
	lw->inv_weight = 0;
1357 1358
}

1359 1360 1361 1362
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1363
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1364 1365 1366 1367
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1368 1369
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1379 1380 1381
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1382 1383
 */
static const int prio_to_weight[40] = {
1384 1385 1386 1387 1388 1389 1390 1391
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1392 1393
};

1394 1395 1396 1397 1398 1399 1400
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1401
static const u32 prio_to_wmult[40] = {
1402 1403 1404 1405 1406 1407 1408 1409
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1410
};
1411

I
Ingo Molnar 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1437

1438 1439 1440 1441 1442 1443 1444 1445
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1446 1447
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1448 1449
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1450 1451
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1452 1453
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1454 1455
#endif

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1466
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1467
typedef int (*tg_visitor)(struct task_group *, void *);
1468 1469 1470 1471 1472

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1473
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1474 1475
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1476
	int ret;
1477 1478 1479 1480

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1481 1482 1483
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1484 1485 1486 1487 1488 1489 1490
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1491 1492 1493
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1494 1495 1496 1497 1498

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1499
out_unlock:
1500
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1501 1502

	return ret;
1503 1504
}

P
Peter Zijlstra 已提交
1505 1506 1507
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1508
}
P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1519
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1520

1521 1522
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1523 1524
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1525 1526 1527 1528 1529

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1530

1531 1532 1533 1534 1535 1536
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1537 1538 1539 1540 1541
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1542 1543 1544 1545
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1546
{
1547
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1548
	int boost = 0;
1549

1550
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1551 1552 1553 1554
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1555

1556
	/*
P
Peter Zijlstra 已提交
1557 1558 1559
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1560
	 */
1561
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1562
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1563

1564 1565 1566 1567
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1568

1569
		spin_lock_irqsave(&rq->lock, flags);
1570
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1571
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1572 1573 1574
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1575
}
1576 1577

/*
1578 1579 1580
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1581
 */
P
Peter Zijlstra 已提交
1582
static int tg_shares_up(struct task_group *tg, void *data)
1583
{
1584 1585
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1586
	struct sched_domain *sd = data;
1587
	unsigned long flags;
1588
	int i;
1589

1590 1591 1592 1593 1594 1595
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1596
	for_each_cpu(i, sched_domain_span(sd)) {
1597 1598 1599
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1600 1601 1602 1603 1604 1605 1606 1607
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1608
		rq_weight += weight;
1609
		shares += tg->cfs_rq[i]->shares;
1610 1611
	}

1612 1613 1614 1615 1616
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1617

P
Peter Zijlstra 已提交
1618
	for_each_cpu(i, sched_domain_span(sd))
1619 1620 1621
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1622 1623

	return 0;
1624 1625 1626
}

/*
1627 1628 1629
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1630
 */
P
Peter Zijlstra 已提交
1631
static int tg_load_down(struct task_group *tg, void *data)
1632
{
1633
	unsigned long load;
P
Peter Zijlstra 已提交
1634
	long cpu = (long)data;
1635

1636 1637 1638 1639 1640 1641 1642
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1643

1644
	tg->cfs_rq[cpu]->h_load = load;
1645

P
Peter Zijlstra 已提交
1646
	return 0;
1647 1648
}

1649
static void update_shares(struct sched_domain *sd)
1650
{
1651 1652 1653 1654 1655 1656 1657 1658
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1659 1660 1661

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1662
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1663
	}
1664 1665
}

1666 1667
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1668 1669 1670
	if (root_task_group_empty())
		return;

1671 1672 1673 1674 1675
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1676
static void update_h_load(long cpu)
1677
{
1678 1679 1680
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1681
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1682 1683 1684 1685
}

#else

1686
static inline void update_shares(struct sched_domain *sd)
1687 1688 1689
{
}

1690 1691 1692 1693
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1694 1695
#endif

1696 1697
#ifdef CONFIG_PREEMPT

1698
/*
1699 1700 1701 1702 1703 1704
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1705
 */
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1760 1761 1762 1763 1764 1765
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1766 1767
#endif

V
Vegard Nossum 已提交
1768
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1769 1770
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1771
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1772 1773 1774
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1775
#endif
1776

1777 1778
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1779 1780
#include "sched_stats.h"
#include "sched_idletask.c"
1781 1782
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1783 1784 1785 1786 1787
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1788 1789
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1790

1791
static void inc_nr_running(struct rq *rq)
1792 1793 1794 1795
{
	rq->nr_running++;
}

1796
static void dec_nr_running(struct rq *rq)
1797 1798 1799 1800
{
	rq->nr_running--;
}

1801 1802 1803
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1804 1805 1806 1807
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1808

I
Ingo Molnar 已提交
1809 1810 1811 1812 1813 1814 1815 1816
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1817

I
Ingo Molnar 已提交
1818 1819
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1820 1821
}

1822 1823 1824 1825 1826 1827
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1828
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1829
{
P
Peter Zijlstra 已提交
1830 1831 1832
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1833
	sched_info_queued(p);
1834
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1835
	p->se.on_rq = 1;
1836 1837
}

1838
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1839
{
P
Peter Zijlstra 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1849 1850
	}

1851
	sched_info_dequeued(p);
1852
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1853
	p->se.on_rq = 0;
1854 1855
}

1856
/*
I
Ingo Molnar 已提交
1857
 * __normal_prio - return the priority that is based on the static prio
1858 1859 1860
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1861
	return p->static_prio;
1862 1863
}

1864 1865 1866 1867 1868 1869 1870
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1871
static inline int normal_prio(struct task_struct *p)
1872 1873 1874
{
	int prio;

1875
	if (task_has_rt_policy(p))
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1889
static int effective_prio(struct task_struct *p)
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1902
/*
I
Ingo Molnar 已提交
1903
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1904
 */
I
Ingo Molnar 已提交
1905
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1906
{
1907
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1908
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1909

1910
	enqueue_task(rq, p, wakeup);
1911
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1917
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1918
{
1919
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1920 1921
		rq->nr_uninterruptible++;

1922
	dequeue_task(rq, p, sleep);
1923
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1930
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1931 1932 1933 1934
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1935 1936
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1937
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1938
#ifdef CONFIG_SMP
1939 1940 1941 1942 1943 1944
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1945 1946
	task_thread_info(p)->cpu = cpu;
#endif
1947 1948
}

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1961
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1962

1963 1964 1965 1966 1967 1968
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1969 1970 1971
/*
 * Is this task likely cache-hot:
 */
1972
static int
1973 1974 1975 1976
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1977 1978 1979
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1980 1981 1982
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1983 1984
		return 1;

1985 1986 1987
	if (p->sched_class != &fair_sched_class)
		return 0;

1988 1989 1990 1991 1992
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1993 1994 1995 1996 1997 1998
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1999
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2000
{
I
Ingo Molnar 已提交
2001 2002
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2003 2004
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2005
	u64 clock_offset;
I
Ingo Molnar 已提交
2006 2007

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2008

2009
	trace_sched_migrate_task(p, new_cpu);
2010

I
Ingo Molnar 已提交
2011 2012 2013
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2014 2015 2016 2017
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2018
#endif
2019
	if (old_cpu != new_cpu) {
2020
		p->se.nr_migrations++;
2021
		new_rq->nr_migrations_in++;
2022
#ifdef CONFIG_SCHEDSTATS
2023 2024
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2025
#endif
2026 2027
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2028
	}
2029 2030
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2031 2032

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2033 2034
}

2035
struct migration_req {
L
Linus Torvalds 已提交
2036 2037
	struct list_head list;

2038
	struct task_struct *task;
L
Linus Torvalds 已提交
2039 2040 2041
	int dest_cpu;

	struct completion done;
2042
};
L
Linus Torvalds 已提交
2043 2044 2045 2046 2047

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2048
static int
2049
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2050
{
2051
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2052 2053 2054 2055 2056

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2057
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2058 2059 2060 2061 2062 2063 2064 2065
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2066

L
Linus Torvalds 已提交
2067 2068 2069
	return 1;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2113 2114 2115
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2116 2117 2118 2119 2120 2121 2122
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2123 2124 2125 2126 2127 2128
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2129
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2130 2131
{
	unsigned long flags;
I
Ingo Molnar 已提交
2132
	int running, on_rq;
R
Roland McGrath 已提交
2133
	unsigned long ncsw;
2134
	struct rq *rq;
L
Linus Torvalds 已提交
2135

2136 2137 2138 2139 2140 2141 2142 2143
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2144

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2156 2157 2158
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2159
			cpu_relax();
R
Roland McGrath 已提交
2160
		}
2161

2162 2163 2164 2165 2166 2167
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2168
		trace_sched_wait_task(rq, p);
2169 2170
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2171
		ncsw = 0;
2172
		if (!match_state || p->state == match_state)
2173
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2174
		task_rq_unlock(rq, &flags);
2175

R
Roland McGrath 已提交
2176 2177 2178 2179 2180 2181
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2192

2193 2194 2195 2196 2197
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2198
		 * So if it was still runnable (but just not actively
2199 2200 2201 2202 2203 2204 2205
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2206

2207 2208 2209 2210 2211 2212 2213
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2214 2215

	return ncsw;
L
Linus Torvalds 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2231
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2241
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2242 2243

/*
2244 2245
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2246 2247 2248 2249
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2250
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2251
{
2252
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2253
	unsigned long total = weighted_cpuload(cpu);
2254

2255
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2256
		return total;
2257

I
Ingo Molnar 已提交
2258
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2259 2260 2261
}

/*
2262 2263
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2264
 */
A
Alexey Dobriyan 已提交
2265
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2266
{
2267
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2268
	unsigned long total = weighted_cpuload(cpu);
2269

2270
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2271
		return total;
2272

I
Ingo Molnar 已提交
2273
	return max(rq->cpu_load[type-1], total);
2274 2275
}

N
Nick Piggin 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2293
		/* Skip over this group if it has no CPUs allowed */
2294 2295
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2296
			continue;
2297

2298 2299
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2300 2301 2302 2303

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2304
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2315
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
N
Nick Piggin 已提交
2316 2317 2318 2319 2320 2321 2322 2323

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2324
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2325 2326 2327 2328 2329 2330 2331

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2332
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2333
 */
I
Ingo Molnar 已提交
2334
static int
2335
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2336 2337 2338 2339 2340
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2341
	/* Traverse only the allowed CPUs */
2342
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2343
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2369

2370
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2371 2372 2373
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2374 2375
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2376 2377
		if (tmp->flags & flag)
			sd = tmp;
2378
	}
N
Nick Piggin 已提交
2379

2380 2381 2382
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2383 2384
	while (sd) {
		struct sched_group *group;
2385 2386 2387 2388 2389 2390
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2391 2392

		group = find_idlest_group(sd, t, cpu);
2393 2394 2395 2396
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2397

2398
		new_cpu = find_idlest_cpu(group, t, cpu);
2399 2400 2401 2402 2403
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2404

2405
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2406
		cpu = new_cpu;
2407
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2408 2409
		sd = NULL;
		for_each_domain(cpu, tmp) {
2410
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2422

T
Thomas Gleixner 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2458
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2459
{
2460
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2461 2462
	unsigned long flags;
	long old_state;
2463
	struct rq *rq;
L
Linus Torvalds 已提交
2464

2465 2466 2467
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2468
#ifdef CONFIG_SMP
2469
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2470 2471 2472 2473 2474 2475
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2476
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2477 2478 2479 2480 2481 2482 2483
				update_shares(sd);
				break;
			}
		}
	}
#endif

2484
	smp_wmb();
L
Linus Torvalds 已提交
2485
	rq = task_rq_lock(p, &flags);
2486
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2487 2488 2489 2490
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2491
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2492 2493 2494
		goto out_running;

	cpu = task_cpu(p);
2495
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2496 2497 2498 2499 2500 2501
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2502 2503 2504
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2505 2506 2507 2508 2509 2510
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2511
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2512 2513 2514 2515 2516 2517
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2518 2519 2520 2521 2522 2523 2524
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2525
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2526 2527 2528 2529 2530
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2531
#endif /* CONFIG_SCHEDSTATS */
2532

L
Linus Torvalds 已提交
2533 2534
out_activate:
#endif /* CONFIG_SMP */
2535 2536 2537 2538 2539 2540 2541 2542 2543
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2544
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2545 2546
	success = 1;

P
Peter Zijlstra 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2563
out_running:
2564
	trace_sched_wakeup(rq, p, success);
2565
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2566

L
Linus Torvalds 已提交
2567
	p->state = TASK_RUNNING;
2568 2569 2570 2571
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2589
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2590
{
2591
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2592 2593 2594
}
EXPORT_SYMBOL(wake_up_process);

2595
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601 2602
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2603 2604 2605 2606 2607 2608 2609
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2610
	p->se.prev_sum_exec_runtime	= 0;
2611
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2612 2613
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2614 2615
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2616 2617

#ifdef CONFIG_SCHEDSTATS
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2649
#endif
N
Nick Piggin 已提交
2650

P
Peter Zijlstra 已提交
2651
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2652
	p->se.on_rq = 0;
2653
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2654

2655 2656 2657 2658
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2659 2660 2661 2662 2663 2664 2665
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2680
	set_task_cpu(p, cpu);
2681 2682

	/*
2683
	 * Make sure we do not leak PI boosting priority to the child.
2684
	 */
2685
	p->prio = current->normal_prio;
2686

2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2697 2698 2699 2700 2701
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2702 2703 2704 2705 2706 2707
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2708

H
Hiroshi Shimamoto 已提交
2709 2710
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2711

2712
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2713
	if (likely(sched_info_on()))
2714
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2715
#endif
2716
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2717 2718
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2719
#ifdef CONFIG_PREEMPT
2720
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2721
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2722
#endif
2723 2724
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2725
	put_cpu();
L
Linus Torvalds 已提交
2726 2727 2728 2729 2730 2731 2732 2733 2734
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2735
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2736 2737
{
	unsigned long flags;
I
Ingo Molnar 已提交
2738
	struct rq *rq;
L
Linus Torvalds 已提交
2739 2740

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2741
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2742
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2743 2744 2745

	p->prio = effective_prio(p);

2746
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2747
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2748 2749
	} else {
		/*
I
Ingo Molnar 已提交
2750 2751
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2752
		 */
2753
		p->sched_class->task_new(rq, p);
2754
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2755
	}
2756
	trace_sched_wakeup_new(rq, p, 1);
2757
	check_preempt_curr(rq, p, 0);
2758 2759 2760 2761
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2762
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2763 2764
}

2765 2766 2767
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2768
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2769
 * @notifier: notifier struct to register
2770 2771 2772 2773 2774 2775 2776 2777 2778
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2779
 * @notifier: notifier struct to unregister
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2809
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2821
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2822

2823 2824 2825
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2826
 * @prev: the current task that is being switched out
2827 2828 2829 2830 2831 2832 2833 2834 2835
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2836 2837 2838
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2839
{
2840
	fire_sched_out_preempt_notifiers(prev, next);
2841 2842 2843 2844
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2845 2846
/**
 * finish_task_switch - clean up after a task-switch
2847
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2848 2849
 * @prev: the thread we just switched away from.
 *
2850 2851 2852 2853
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2854 2855
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2856
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2857 2858 2859
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
2860
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2861 2862 2863
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2864
	long prev_state;
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2870
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2871 2872
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2873
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2879
	prev_state = prev->state;
2880
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2881
	perf_counter_task_sched_in(current, cpu_of(rq));
2882
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2883

2884
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2885 2886
	if (mm)
		mmdrop(mm);
2887
	if (unlikely(prev_state == TASK_DEAD)) {
2888 2889 2890
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2891
		 */
2892
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2893
		put_task_struct(prev);
2894
	}
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
}

#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2922

2923 2924 2925 2926 2927 2928
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2929 2930
}

2931 2932
#endif

L
Linus Torvalds 已提交
2933 2934 2935 2936
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2937
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2938 2939
	__releases(rq->lock)
{
2940
	struct rq *rq = this_rq();
2941

2942
	finish_task_switch(rq, prev);
2943

2944 2945 2946 2947 2948
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2949

2950 2951 2952 2953
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2954
	if (current->set_child_tid)
2955
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2956 2957 2958 2959 2960 2961
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
2962
static inline void
2963
context_switch(struct rq *rq, struct task_struct *prev,
2964
	       struct task_struct *next)
L
Linus Torvalds 已提交
2965
{
I
Ingo Molnar 已提交
2966
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2967

2968
	prepare_task_switch(rq, prev, next);
2969
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2970 2971
	mm = next->mm;
	oldmm = prev->active_mm;
2972 2973 2974 2975 2976
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2977
	arch_start_context_switch(prev);
2978

I
Ingo Molnar 已提交
2979
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2980 2981 2982 2983 2984 2985
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2986
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2987 2988 2989
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2990 2991 2992 2993 2994 2995 2996
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2997
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2998
#endif
L
Linus Torvalds 已提交
2999 3000 3001 3002

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
3003 3004 3005 3006 3007 3008
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
3009
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

3033
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
3048 3049
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
3050

3051
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3061
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3062 3063 3064 3065 3066
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3067 3068 3069 3070 3071 3072
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3088 3089
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3090
{
3091 3092 3093 3094
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3107

3108 3109
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3133 3134
}

3135 3136 3137 3138 3139 3140 3141 3142 3143
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3144
/*
I
Ingo Molnar 已提交
3145 3146
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3147
 */
I
Ingo Molnar 已提交
3148
static void update_cpu_load(struct rq *this_rq)
3149
{
3150
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3163 3164 3165 3166 3167 3168 3169
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3170 3171
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3172 3173 3174 3175 3176

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3177 3178
}

I
Ingo Molnar 已提交
3179 3180
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3181 3182 3183 3184 3185 3186
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3187
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3188 3189 3190
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3191
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3192 3193 3194 3195
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3196
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3197
			spin_lock(&rq1->lock);
3198
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3199 3200
		} else {
			spin_lock(&rq2->lock);
3201
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3202 3203
		}
	}
3204 3205
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3206 3207 3208 3209 3210 3211 3212 3213
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3214
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3228
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3229 3230
 * the cpu_allowed mask is restored.
 */
3231
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3232
{
3233
	struct migration_req req;
L
Linus Torvalds 已提交
3234
	unsigned long flags;
3235
	struct rq *rq;
L
Linus Torvalds 已提交
3236 3237

	rq = task_rq_lock(p, &flags);
3238
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3239
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3240 3241 3242 3243 3244 3245
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3246

L
Linus Torvalds 已提交
3247 3248 3249 3250 3251
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3252

L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3260 3261
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3262 3263 3264 3265
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3266
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3267
	put_cpu();
N
Nick Piggin 已提交
3268 3269
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3270 3271 3272 3273 3274 3275
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3276 3277
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3278
{
3279
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3280
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3281
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3282 3283 3284 3285
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3286
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3287 3288 3289 3290 3291
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3292
static
3293
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3294
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3295
		     int *all_pinned)
L
Linus Torvalds 已提交
3296
{
3297
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3298 3299 3300 3301 3302 3303
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3304
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3305
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3306
		return 0;
3307
	}
3308 3309
	*all_pinned = 0;

3310 3311
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3312
		return 0;
3313
	}
L
Linus Torvalds 已提交
3314

3315 3316 3317 3318 3319 3320
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3321 3322 3323
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3324
#ifdef CONFIG_SCHEDSTATS
3325
		if (tsk_cache_hot) {
3326
			schedstat_inc(sd, lb_hot_gained[idle]);
3327 3328
			schedstat_inc(p, se.nr_forced_migrations);
		}
3329 3330 3331 3332
#endif
		return 1;
	}

3333
	if (tsk_cache_hot) {
3334
		schedstat_inc(p, se.nr_failed_migrations_hot);
3335
		return 0;
3336
	}
L
Linus Torvalds 已提交
3337 3338 3339
	return 1;
}

3340 3341 3342 3343 3344
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3345
{
3346
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3347 3348
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3349

3350
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3351 3352
		goto out;

3353 3354
	pinned = 1;

L
Linus Torvalds 已提交
3355
	/*
I
Ingo Molnar 已提交
3356
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3357
	 */
I
Ingo Molnar 已提交
3358 3359
	p = iterator->start(iterator->arg);
next:
3360
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3361
		goto out;
3362 3363

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3364 3365 3366
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3367 3368
	}

I
Ingo Molnar 已提交
3369
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3370
	pulled++;
I
Ingo Molnar 已提交
3371
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3372

3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3383
	/*
3384
	 * We only want to steal up to the prescribed amount of weighted load.
3385
	 */
3386
	if (rem_load_move > 0) {
3387 3388
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3389 3390
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3391 3392 3393
	}
out:
	/*
3394
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3395 3396 3397 3398
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3399 3400 3401

	if (all_pinned)
		*all_pinned = pinned;
3402 3403

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3404 3405
}

I
Ingo Molnar 已提交
3406
/*
P
Peter Williams 已提交
3407 3408 3409
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3410 3411 3412 3413
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3414
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3415 3416 3417
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3418
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3419
	unsigned long total_load_moved = 0;
3420
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3421 3422

	do {
P
Peter Williams 已提交
3423 3424
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3425
				max_load_move - total_load_moved,
3426
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3427
		class = class->next;
3428

3429 3430 3431 3432 3433 3434
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3435 3436
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3437
#endif
P
Peter Williams 已提交
3438
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3439

P
Peter Williams 已提交
3440 3441 3442
	return total_load_moved > 0;
}

3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3479
	const struct sched_class *class;
P
Peter Williams 已提交
3480

3481
	for_each_class(class) {
3482
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3483
			return 1;
3484
	}
P
Peter Williams 已提交
3485 3486

	return 0;
I
Ingo Molnar 已提交
3487
}
3488
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3489
/*
3490 3491
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3492
 */
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3511
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3512 3513 3514 3515 3516 3517
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3518
#endif
3519
};
L
Linus Torvalds 已提交
3520

3521
/*
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3532

3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3554
		load_idx = sd->busy_idx;
3555 3556 3557
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3558
		load_idx = sd->newidle_idx;
3559 3560
		break;
	default:
N
Nick Piggin 已提交
3561
		load_idx = sd->idle_idx;
3562 3563
		break;
	}
L
Linus Torvalds 已提交
3564

3565 3566
	return load_idx;
}
L
Linus Torvalds 已提交
3567 3568


3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3593

3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3607

3608 3609
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3610

3611 3612 3613 3614 3615 3616 3617
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3618

3619 3620 3621 3622 3623 3624 3625 3626
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3641

3642 3643 3644 3645 3646
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3647
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3648
		return;
L
Linus Torvalds 已提交
3649

3650 3651 3652 3653 3654 3655 3656
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3657

3658
/**
3659
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3660 3661 3662 3663 3664
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3665 3666 3667 3668 3669
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3670 3671 3672 3673 3674 3675 3676 3677
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3678

3679 3680 3681
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3682

3683 3684
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3685

3686 3687 3688 3689 3690 3691
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3692

3693 3694 3695 3696 3697 3698 3699
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3700

3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3714
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3715 3716 3717 3718 3719 3720 3721 3722 3723
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3742 3743 3744 3745 3746 3747 3748 3749 3750
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

	/* here we could scale based on cpufreq */

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3751
		power *= arch_scale_smt_power(sd, cpu);
3752 3753 3754
		power >>= SCHED_LOAD_SHIFT;
	}

3755 3756 3757 3758 3759
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3760

3761
	sdg->cpu_power = power;
3762 3763 3764
}

static void update_group_power(struct sched_domain *sd, int cpu)
3765 3766 3767 3768 3769
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;

	if (!child) {
3770
		update_cpu_power(sd, cpu);
3771 3772 3773
		return;
	}

3774
	sdg->cpu_power = 0;
3775 3776 3777

	group = child->groups;
	do {
3778
		sdg->cpu_power += group->cpu_power;
3779 3780 3781
		group = group->next;
	} while (group != child->groups);
}
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3795 3796
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3807
	if (local_group) {
3808
		balance_cpu = group_first_cpu(group);
3809
		if (balance_cpu == this_cpu)
3810
			update_group_power(sd, this_cpu);
3811
	}
3812 3813 3814 3815 3816

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3817

3818 3819
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3820

3821 3822
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3823

3824
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3825
		if (local_group) {
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3838
		}
3839

3840 3841 3842
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3843

3844 3845
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3846

3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3858

3859
	/* Adjust by relative CPU power of the group */
3860
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3872 3873
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3874 3875 3876 3877

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3878
	sgs->group_capacity =
3879
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3880
}
I
Ingo Molnar 已提交
3881

3882 3883 3884 3885 3886 3887 3888 3889 3890
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3891
 */
3892 3893 3894 3895
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3896
{
P
Peter Zijlstra 已提交
3897
	struct sched_domain *child = sd->child;
3898
	struct sched_group *group = sd->groups;
3899
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3900 3901 3902 3903
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3904

3905
	init_sd_power_savings_stats(sd, sds, idle);
3906
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3907 3908 3909 3910

	do {
		int local_group;

3911 3912
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3913
		memset(&sgs, 0, sizeof(sgs));
3914
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3915
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3916

3917 3918
		if (local_group && balance && !(*balance))
			return;
3919

3920
		sds->total_load += sgs.group_load;
3921
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3922

P
Peter Zijlstra 已提交
3923 3924 3925 3926 3927 3928
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3929
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
P
Peter Zijlstra 已提交
3930

L
Linus Torvalds 已提交
3931
		if (local_group) {
3932 3933 3934 3935 3936
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3937 3938
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3939 3940 3941 3942 3943
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3944
		}
3945

3946
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3947 3948
		group = group->next;
	} while (group != sd->groups);
3949
}
L
Linus Torvalds 已提交
3950

3951 3952
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3953 3954
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3973

3974 3975 3976 3977 3978
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3979

L
Linus Torvalds 已提交
3980
	/*
3981 3982 3983
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3984
	 */
3985

3986
	pwr_now += sds->busiest->cpu_power *
3987
			min(sds->busiest_load_per_task, sds->max_load);
3988
	pwr_now += sds->this->cpu_power *
3989 3990 3991 3992
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3993 3994
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3995
	if (sds->max_load > tmp)
3996
		pwr_move += sds->busiest->cpu_power *
3997 3998 3999
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
4000
	if (sds->max_load * sds->busiest->cpu_power <
4001
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
4002 4003
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
4004
	else
4005 4006 4007
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
4008 4009 4010 4011 4012 4013 4014
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
4027 4028 4029 4030 4031
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
4032
	if (sds->max_load < sds->avg_load) {
4033
		*imbalance = 0;
4034
		return fix_small_imbalance(sds, this_cpu, imbalance);
4035
	}
4036 4037

	/* Don't want to pull so many tasks that a group would go idle */
4038 4039
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
4040

L
Linus Torvalds 已提交
4041
	/* How much load to actually move to equalise the imbalance */
4042 4043
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
4044 4045
			/ SCHED_LOAD_SCALE;

4046 4047 4048 4049 4050 4051
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
4052 4053
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
4054

4055
}
4056
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
4082 4083 4084 4085 4086 4087 4088
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
4089

4090
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
4091

4092 4093 4094 4095 4096 4097 4098
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4109 4110
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4111

4112 4113
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4114

4115
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4116 4117
		goto out_balanced;

4118
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4119

4120 4121 4122 4123
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4124 4125
		goto out_balanced;

4126 4127 4128 4129
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4130

L
Linus Torvalds 已提交
4131 4132 4133 4134 4135 4136 4137 4138
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4139
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4140 4141
	 * appear as very large values with unsigned longs.
	 */
4142
	if (sds.max_load <= sds.busiest_load_per_task)
4143 4144
		goto out_balanced;

4145 4146
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4147
	return sds.busiest;
L
Linus Torvalds 已提交
4148 4149

out_balanced:
4150 4151 4152 4153 4154 4155
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4156
ret:
L
Linus Torvalds 已提交
4157 4158 4159 4160
	*imbalance = 0;
	return NULL;
}

4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

4178
	return group->cpu_power;
4179 4180
}

L
Linus Torvalds 已提交
4181 4182 4183
/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4184
static struct rq *
I
Ingo Molnar 已提交
4185
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4186
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4187
{
4188
	struct rq *busiest = NULL, *rq;
4189
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4190 4191
	int i;

4192
	for_each_cpu(i, sched_group_cpus(group)) {
4193 4194
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4195
		unsigned long wl;
4196

4197
		if (!cpumask_test_cpu(i, cpus))
4198 4199
			continue;

4200
		rq = cpu_rq(i);
4201 4202
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4203

4204
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4205
			continue;
L
Linus Torvalds 已提交
4206

I
Ingo Molnar 已提交
4207 4208
		if (wl > max_load) {
			max_load = wl;
4209
			busiest = rq;
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215
		}
	}

	return busiest;
}

4216 4217 4218 4219 4220 4221
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4222 4223 4224
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4225 4226 4227 4228
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4229
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4230
			struct sched_domain *sd, enum cpu_idle_type idle,
4231
			int *balance)
L
Linus Torvalds 已提交
4232
{
P
Peter Williams 已提交
4233
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4234 4235
	struct sched_group *group;
	unsigned long imbalance;
4236
	struct rq *busiest;
4237
	unsigned long flags;
4238
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4239

4240
	cpumask_setall(cpus);
4241

4242 4243 4244
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4245
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4246
	 * portraying it as CPU_NOT_IDLE.
4247
	 */
I
Ingo Molnar 已提交
4248
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4249
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4250
		sd_idle = 1;
L
Linus Torvalds 已提交
4251

4252
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4253

4254
redo:
4255
	update_shares(sd);
4256
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4257
				   cpus, balance);
4258

4259
	if (*balance == 0)
4260 4261
		goto out_balanced;

L
Linus Torvalds 已提交
4262 4263 4264 4265 4266
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4267
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4268 4269 4270 4271 4272
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4273
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4274 4275 4276

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4277
	ld_moved = 0;
L
Linus Torvalds 已提交
4278 4279 4280 4281
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4282
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4283 4284
		 * correctly treated as an imbalance.
		 */
4285
		local_irq_save(flags);
N
Nick Piggin 已提交
4286
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4287
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4288
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4289
		double_rq_unlock(this_rq, busiest);
4290
		local_irq_restore(flags);
4291

4292 4293 4294
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4295
		if (ld_moved && this_cpu != smp_processor_id())
4296 4297
			resched_cpu(this_cpu);

4298
		/* All tasks on this runqueue were pinned by CPU affinity */
4299
		if (unlikely(all_pinned)) {
4300 4301
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4302
				goto redo;
4303
			goto out_balanced;
4304
		}
L
Linus Torvalds 已提交
4305
	}
4306

P
Peter Williams 已提交
4307
	if (!ld_moved) {
L
Linus Torvalds 已提交
4308 4309 4310 4311 4312
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4313
			spin_lock_irqsave(&busiest->lock, flags);
4314 4315 4316 4317

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4318 4319
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4320
				spin_unlock_irqrestore(&busiest->lock, flags);
4321 4322 4323 4324
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4325 4326 4327
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4328
				active_balance = 1;
L
Linus Torvalds 已提交
4329
			}
4330
			spin_unlock_irqrestore(&busiest->lock, flags);
4331
			if (active_balance)
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336 4337
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4338
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4339
		}
4340
	} else
L
Linus Torvalds 已提交
4341 4342
		sd->nr_balance_failed = 0;

4343
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4344 4345
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4346 4347 4348 4349 4350 4351 4352 4353 4354
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4355 4356
	}

P
Peter Williams 已提交
4357
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4358
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4359 4360 4361
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4362 4363 4364 4365

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4366
	sd->nr_balance_failed = 0;
4367 4368

out_one_pinned:
L
Linus Torvalds 已提交
4369
	/* tune up the balancing interval */
4370 4371
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4372 4373
		sd->balance_interval *= 2;

4374
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4375
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4376 4377 4378 4379
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4380 4381
	if (ld_moved)
		update_shares(sd);
4382
	return ld_moved;
L
Linus Torvalds 已提交
4383 4384 4385 4386 4387 4388
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4389
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4390 4391
 * this_rq is locked.
 */
4392
static int
4393
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4394 4395
{
	struct sched_group *group;
4396
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4397
	unsigned long imbalance;
P
Peter Williams 已提交
4398
	int ld_moved = 0;
N
Nick Piggin 已提交
4399
	int sd_idle = 0;
4400
	int all_pinned = 0;
4401
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4402

4403
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4404

4405 4406 4407 4408
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4409
	 * portraying it as CPU_NOT_IDLE.
4410 4411 4412
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4413
		sd_idle = 1;
L
Linus Torvalds 已提交
4414

4415
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4416
redo:
4417
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4418
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4419
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4420
	if (!group) {
I
Ingo Molnar 已提交
4421
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4422
		goto out_balanced;
L
Linus Torvalds 已提交
4423 4424
	}

4425
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4426
	if (!busiest) {
I
Ingo Molnar 已提交
4427
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4428
		goto out_balanced;
L
Linus Torvalds 已提交
4429 4430
	}

N
Nick Piggin 已提交
4431 4432
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4433
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4434

P
Peter Williams 已提交
4435
	ld_moved = 0;
4436 4437 4438
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4439 4440
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4441
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4442 4443
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4444
		double_unlock_balance(this_rq, busiest);
4445

4446
		if (unlikely(all_pinned)) {
4447 4448
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4449 4450
				goto redo;
		}
4451 4452
	}

P
Peter Williams 已提交
4453
	if (!ld_moved) {
4454
		int active_balance = 0;
4455

I
Ingo Molnar 已提交
4456
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4457 4458
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4459
			return -1;
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4496
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4509 4510 4511 4512
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4513 4514
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4515
		spin_lock(&this_rq->lock);
4516

N
Nick Piggin 已提交
4517
	} else
4518
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4519

4520
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4521
	return ld_moved;
4522 4523

out_balanced:
I
Ingo Molnar 已提交
4524
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4525
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4526
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4527
		return -1;
4528
	sd->nr_balance_failed = 0;
4529

4530
	return 0;
L
Linus Torvalds 已提交
4531 4532 4533 4534 4535 4536
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4537
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4538 4539
{
	struct sched_domain *sd;
4540
	int pulled_task = 0;
I
Ingo Molnar 已提交
4541
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4542 4543

	for_each_domain(this_cpu, sd) {
4544 4545 4546 4547 4548 4549
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4550
			/* If we've pulled tasks over stop searching: */
4551
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4552
							   sd);
4553 4554 4555 4556 4557 4558

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4559
	}
I
Ingo Molnar 已提交
4560
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4561 4562 4563 4564 4565
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4566
	}
L
Linus Torvalds 已提交
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4577
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4578
{
4579
	int target_cpu = busiest_rq->push_cpu;
4580 4581
	struct sched_domain *sd;
	struct rq *target_rq;
4582

4583
	/* Is there any task to move? */
4584 4585 4586 4587
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4588 4589

	/*
4590
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4591
	 * we need to fix it. Originally reported by
4592
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4593
	 */
4594
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4595

4596 4597
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4598 4599
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4600 4601

	/* Search for an sd spanning us and the target CPU. */
4602
	for_each_domain(target_cpu, sd) {
4603
		if ((sd->flags & SD_LOAD_BALANCE) &&
4604
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4605
				break;
4606
	}
4607

4608
	if (likely(sd)) {
4609
		schedstat_inc(sd, alb_count);
4610

P
Peter Williams 已提交
4611 4612
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4613 4614 4615 4616
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4617
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4618 4619
}

4620 4621 4622
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4623
	cpumask_var_t cpu_mask;
4624
	cpumask_var_t ilb_grp_nohz_mask;
4625 4626 4627 4628
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4629 4630 4631 4632 4633
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4745
	return cpumask_first(nohz.cpu_mask);
4746 4747 4748
}
#endif

4749
/*
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4760
 *
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4776 4777 4778 4779 4780 4781 4782 4783
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4784 4785
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4786

4787 4788 4789
			return 0;
		}

4790 4791
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4792
		/* time for ilb owner also to sleep */
4793
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4794 4795 4796 4797 4798 4799 4800 4801 4802
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4819
			return 1;
4820
		}
4821
	} else {
4822
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4823 4824
			return 0;

4825
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4838 4839 4840 4841 4842
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4843
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4844
{
4845 4846
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4847 4848
	unsigned long interval;
	struct sched_domain *sd;
4849
	/* Earliest time when we have to do rebalance again */
4850
	unsigned long next_balance = jiffies + 60*HZ;
4851
	int update_next_balance = 0;
4852
	int need_serialize;
L
Linus Torvalds 已提交
4853

4854
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4855 4856 4857 4858
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4859
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4860 4861 4862 4863 4864 4865
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4866 4867 4868
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4869
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4870

4871
		if (need_serialize) {
4872 4873 4874 4875
			if (!spin_trylock(&balancing))
				goto out;
		}

4876
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4877
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4878 4879
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4880 4881 4882
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4883
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4884
			}
4885
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4886
		}
4887
		if (need_serialize)
4888 4889
			spin_unlock(&balancing);
out:
4890
		if (time_after(next_balance, sd->last_balance + interval)) {
4891
			next_balance = sd->last_balance + interval;
4892 4893
			update_next_balance = 1;
		}
4894 4895 4896 4897 4898 4899 4900 4901

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4902
	}
4903 4904 4905 4906 4907 4908 4909 4910

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4911 4912 4913 4914 4915 4916 4917 4918 4919
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4920 4921 4922 4923
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4924

I
Ingo Molnar 已提交
4925
	rebalance_domains(this_cpu, idle);
4926 4927 4928 4929 4930 4931 4932

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4933 4934
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4935 4936 4937
		struct rq *rq;
		int balance_cpu;

4938 4939 4940 4941
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4942 4943 4944 4945 4946 4947 4948 4949
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4950
			rebalance_domains(balance_cpu, CPU_IDLE);
4951 4952

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4953 4954
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4955 4956 4957 4958 4959
		}
	}
#endif
}

4960 4961 4962 4963 4964
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4965 4966 4967 4968 4969 4970 4971
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4972
static inline void trigger_load_balance(struct rq *rq, int cpu)
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4984
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4985 4986 4987 4988
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4989
			int ilb = find_new_ilb(cpu);
4990

4991
			if (ilb < nr_cpu_ids)
4992 4993 4994 4995 4996 4997 4998 4999 5000
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5001
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5002 5003 5004 5005 5006 5007 5008 5009 5010
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5011
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
5012 5013
		return;
#endif
5014 5015 5016
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
5017
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
5018
}
I
Ingo Molnar 已提交
5019 5020 5021

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
5022 5023 5024
/*
 * on UP we do not need to balance between CPUs:
 */
5025
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
5026 5027
{
}
I
Ingo Molnar 已提交
5028

L
Linus Torvalds 已提交
5029 5030 5031 5032 5033 5034 5035
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
5036
 * Return any ns on the sched_clock that have not yet been accounted in
5037
 * @p in case that task is currently running.
5038 5039
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
5040
 */
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

5055
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
5056 5057
{
	unsigned long flags;
5058
	struct rq *rq;
5059
	u64 ns = 0;
5060

5061
	rq = task_rq_lock(p, &flags);
5062 5063
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
5064

5065 5066
	return ns;
}
5067

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
5085

5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5105
	task_rq_unlock(rq, &flags);
5106

L
Linus Torvalds 已提交
5107 5108 5109 5110 5111 5112 5113
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5114
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5115
 */
5116 5117
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5118 5119 5120 5121
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5122
	/* Add user time to process. */
L
Linus Torvalds 已提交
5123
	p->utime = cputime_add(p->utime, cputime);
5124
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5125
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5126 5127 5128 5129 5130 5131 5132

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5133 5134

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5135 5136
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5137 5138
}

5139 5140 5141 5142
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5143
 * @cputime_scaled: cputime scaled by cpu frequency
5144
 */
5145 5146
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5147 5148 5149 5150 5151 5152
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5153
	/* Add guest time to process. */
5154
	p->utime = cputime_add(p->utime, cputime);
5155
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5156
	account_group_user_time(p, cputime);
5157 5158
	p->gtime = cputime_add(p->gtime, cputime);

5159
	/* Add guest time to cpustat. */
5160 5161 5162 5163
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5164 5165 5166 5167 5168
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5169
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5170 5171
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5172
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5173 5174 5175 5176
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5177
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5178
		account_guest_time(p, cputime, cputime_scaled);
5179 5180
		return;
	}
5181

5182
	/* Add system time to process. */
L
Linus Torvalds 已提交
5183
	p->stime = cputime_add(p->stime, cputime);
5184
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5185
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192 5193

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5194 5195
		cpustat->system = cputime64_add(cpustat->system, tmp);

5196 5197
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5198 5199 5200 5201
	/* Account for system time used */
	acct_update_integrals(p);
}

5202
/*
L
Linus Torvalds 已提交
5203 5204
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5205
 */
5206
void account_steal_time(cputime_t cputime)
5207
{
5208 5209 5210 5211
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5212 5213
}

L
Linus Torvalds 已提交
5214
/*
5215 5216
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5217
 */
5218
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5219 5220
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5221
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5222
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5223

5224 5225 5226 5227
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5228 5229
}

5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5245
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5269 5270
}

5271 5272
#endif

5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5343
	struct task_struct *curr = rq->curr;
5344 5345

	sched_clock_tick();
I
Ingo Molnar 已提交
5346 5347

	spin_lock(&rq->lock);
5348
	update_rq_clock(rq);
5349
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5350
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5351
	spin_unlock(&rq->lock);
5352

5353 5354
	perf_counter_task_tick(curr, cpu);

5355
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5356 5357
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5358
#endif
L
Linus Torvalds 已提交
5359 5360
}

5361
notrace unsigned long get_parent_ip(unsigned long addr)
5362 5363 5364 5365 5366 5367 5368 5369
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5370

5371 5372 5373
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5374
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5375
{
5376
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5377 5378 5379
	/*
	 * Underflow?
	 */
5380 5381
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5382
#endif
L
Linus Torvalds 已提交
5383
	preempt_count() += val;
5384
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5385 5386 5387
	/*
	 * Spinlock count overflowing soon?
	 */
5388 5389
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5390 5391 5392
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5393 5394 5395
}
EXPORT_SYMBOL(add_preempt_count);

5396
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5397
{
5398
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5399 5400 5401
	/*
	 * Underflow?
	 */
5402
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5403
		return;
L
Linus Torvalds 已提交
5404 5405 5406
	/*
	 * Is the spinlock portion underflowing?
	 */
5407 5408 5409
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5410
#endif
5411

5412 5413
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5414 5415 5416 5417 5418 5419 5420
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5421
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5422
 */
I
Ingo Molnar 已提交
5423
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5424
{
5425 5426 5427 5428 5429
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5430
	debug_show_held_locks(prev);
5431
	print_modules();
I
Ingo Molnar 已提交
5432 5433
	if (irqs_disabled())
		print_irqtrace_events(prev);
5434 5435 5436 5437 5438

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5439
}
L
Linus Torvalds 已提交
5440

I
Ingo Molnar 已提交
5441 5442 5443 5444 5445
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5446
	/*
I
Ingo Molnar 已提交
5447
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5448 5449 5450
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5451
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5452 5453
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5454 5455
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5456
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5457 5458
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5459 5460
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5461 5462
	}
#endif
I
Ingo Molnar 已提交
5463 5464
}

M
Mike Galbraith 已提交
5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5487 5488 5489 5490
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5491
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5492
{
5493
	const struct sched_class *class;
I
Ingo Molnar 已提交
5494
	struct task_struct *p;
L
Linus Torvalds 已提交
5495 5496

	/*
I
Ingo Molnar 已提交
5497 5498
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5499
	 */
I
Ingo Molnar 已提交
5500
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5501
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5502 5503
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5504 5505
	}

I
Ingo Molnar 已提交
5506 5507
	class = sched_class_highest;
	for ( ; ; ) {
5508
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5509 5510 5511 5512 5513 5514 5515 5516 5517
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5518

I
Ingo Molnar 已提交
5519 5520 5521
/*
 * schedule() is the main scheduler function.
 */
5522
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5523 5524
{
	struct task_struct *prev, *next;
5525
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5526
	struct rq *rq;
5527
	int cpu;
I
Ingo Molnar 已提交
5528

5529 5530
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5541

5542
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5543
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5544

5545
	spin_lock_irq(&rq->lock);
5546
	update_rq_clock(rq);
5547
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5548 5549

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5550
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5551
			prev->state = TASK_RUNNING;
5552
		else
5553
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5554
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5555 5556
	}

5557
	pre_schedule(rq, prev);
5558

I
Ingo Molnar 已提交
5559
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5560 5561
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5562
	put_prev_task(rq, prev);
5563
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5564 5565

	if (likely(prev != next)) {
5566
		sched_info_switch(prev, next);
5567
		perf_counter_task_sched_out(prev, next, cpu);
5568

L
Linus Torvalds 已提交
5569 5570 5571 5572
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

5573
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5574 5575 5576 5577 5578 5579
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
5580
	} else
L
Linus Torvalds 已提交
5581
		spin_unlock_irq(&rq->lock);
5582

5583
	post_schedule(rq);
L
Linus Torvalds 已提交
5584

P
Peter Zijlstra 已提交
5585
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5586
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5587

L
Linus Torvalds 已提交
5588
	preempt_enable_no_resched();
5589
	if (need_resched())
L
Linus Torvalds 已提交
5590 5591 5592 5593
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5655 5656
#ifdef CONFIG_PREEMPT
/*
5657
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5658
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5659 5660 5661 5662 5663
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5664

L
Linus Torvalds 已提交
5665 5666
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5667
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5668
	 */
N
Nick Piggin 已提交
5669
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5670 5671
		return;

5672 5673 5674 5675
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5676

5677 5678 5679 5680 5681
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5682
	} while (need_resched());
L
Linus Torvalds 已提交
5683 5684 5685 5686
}
EXPORT_SYMBOL(preempt_schedule);

/*
5687
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692 5693 5694
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5695

5696
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5697 5698
	BUG_ON(ti->preempt_count || !irqs_disabled());

5699 5700 5701 5702 5703 5704
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5705

5706 5707 5708 5709 5710
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5711
	} while (need_resched());
L
Linus Torvalds 已提交
5712 5713 5714 5715
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5716 5717
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5718
{
5719
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5720 5721 5722 5723
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5724 5725
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5726 5727 5728
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5729
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5730 5731
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5732
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5733
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5734
{
5735
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5736

5737
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5738 5739
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5740
		if (curr->func(curr, mode, sync, key) &&
5741
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5751
 * @key: is directly passed to the wakeup function
5752 5753 5754
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5755
 */
5756
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5757
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5770
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5771 5772 5773 5774
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5775 5776 5777 5778 5779
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5780
/**
5781
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5782 5783 5784
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5785
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5786 5787 5788 5789 5790 5791 5792
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5793 5794 5795
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5796
 */
5797 5798
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5810
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5811 5812
	spin_unlock_irqrestore(&q->lock, flags);
}
5813 5814 5815 5816 5817 5818 5819 5820 5821
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5822 5823
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5824 5825 5826 5827 5828 5829 5830 5831
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5832 5833 5834
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5835
 */
5836
void complete(struct completion *x)
L
Linus Torvalds 已提交
5837 5838 5839 5840 5841
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5842
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5843 5844 5845 5846
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5847 5848 5849 5850 5851
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5852 5853 5854
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5855
 */
5856
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5857 5858 5859 5860 5861
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5862
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5863 5864 5865 5866
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5867 5868
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873 5874 5875
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5876
			if (signal_pending_state(state, current)) {
5877 5878
				timeout = -ERESTARTSYS;
				break;
5879 5880
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5881 5882 5883
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5884
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5885
		__remove_wait_queue(&x->wait, &wait);
5886 5887
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5888 5889
	}
	x->done--;
5890
	return timeout ?: 1;
L
Linus Torvalds 已提交
5891 5892
}

5893 5894
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5895 5896 5897 5898
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5899
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5900
	spin_unlock_irq(&x->wait.lock);
5901 5902
	return timeout;
}
L
Linus Torvalds 已提交
5903

5904 5905 5906 5907 5908 5909 5910 5911 5912 5913
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5914
void __sched wait_for_completion(struct completion *x)
5915 5916
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5917
}
5918
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5919

5920 5921 5922 5923 5924 5925 5926 5927 5928
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5929
unsigned long __sched
5930
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5931
{
5932
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5933
}
5934
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5935

5936 5937 5938 5939 5940 5941 5942
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5943
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5944
{
5945 5946 5947 5948
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5949
}
5950
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5951

5952 5953 5954 5955 5956 5957 5958 5959
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5960
unsigned long __sched
5961 5962
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5963
{
5964
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5965
}
5966
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5967

5968 5969 5970 5971 5972 5973 5974
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5975 5976 5977 5978 5979 5980 5981 5982 5983
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

6030 6031
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
6032
{
I
Ingo Molnar 已提交
6033 6034 6035 6036
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
6037

6038
	__set_current_state(state);
L
Linus Torvalds 已提交
6039

6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6054 6055 6056
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
6057
long __sched
I
Ingo Molnar 已提交
6058
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6059
{
6060
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6061 6062 6063
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
6064
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
6065
{
6066
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
6067 6068 6069
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
6070
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
6071
{
6072
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
6073 6074 6075
}
EXPORT_SYMBOL(sleep_on_timeout);

6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6088
void rt_mutex_setprio(struct task_struct *p, int prio)
6089 6090
{
	unsigned long flags;
6091
	int oldprio, on_rq, running;
6092
	struct rq *rq;
6093
	const struct sched_class *prev_class = p->sched_class;
6094 6095 6096 6097

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6098
	update_rq_clock(rq);
6099

6100
	oldprio = p->prio;
I
Ingo Molnar 已提交
6101
	on_rq = p->se.on_rq;
6102
	running = task_current(rq, p);
6103
	if (on_rq)
6104
		dequeue_task(rq, p, 0);
6105 6106
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6107 6108 6109 6110 6111 6112

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6113 6114
	p->prio = prio;

6115 6116
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6117
	if (on_rq) {
6118
		enqueue_task(rq, p, 0);
6119 6120

		check_class_changed(rq, p, prev_class, oldprio, running);
6121 6122 6123 6124 6125 6126
	}
	task_rq_unlock(rq, &flags);
}

#endif

6127
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6128
{
I
Ingo Molnar 已提交
6129
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6130
	unsigned long flags;
6131
	struct rq *rq;
L
Linus Torvalds 已提交
6132 6133 6134 6135 6136 6137 6138 6139

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6140
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6141 6142 6143 6144
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6145
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6146
	 */
6147
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6148 6149 6150
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6151
	on_rq = p->se.on_rq;
6152
	if (on_rq)
6153
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6154 6155

	p->static_prio = NICE_TO_PRIO(nice);
6156
	set_load_weight(p);
6157 6158 6159
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6160

I
Ingo Molnar 已提交
6161
	if (on_rq) {
6162
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6163
		/*
6164 6165
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6166
		 */
6167
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6168 6169 6170 6171 6172 6173 6174
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6175 6176 6177 6178 6179
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6180
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6181
{
6182 6183
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6184

M
Matt Mackall 已提交
6185 6186 6187 6188
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6198
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6199
{
6200
	long nice, retval;
L
Linus Torvalds 已提交
6201 6202 6203 6204 6205 6206

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6207 6208
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6209 6210 6211
	if (increment > 40)
		increment = 40;

6212
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6213 6214 6215 6216 6217
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6218 6219 6220
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6239
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6240 6241 6242 6243 6244 6245 6246 6247
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6248
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6249 6250 6251
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6252
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6267
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6268 6269 6270 6271 6272 6273 6274 6275
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6276
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6277
{
6278
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6279 6280 6281
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6282 6283
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6284
{
I
Ingo Molnar 已提交
6285
	BUG_ON(p->se.on_rq);
6286

L
Linus Torvalds 已提交
6287
	p->policy = policy;
I
Ingo Molnar 已提交
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6300
	p->rt_priority = prio;
6301 6302 6303
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6304
	set_load_weight(p);
L
Linus Torvalds 已提交
6305 6306
}

6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6323 6324
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6325
{
6326
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6327
	unsigned long flags;
6328
	const struct sched_class *prev_class = p->sched_class;
6329
	struct rq *rq;
6330
	int reset_on_fork;
L
Linus Torvalds 已提交
6331

6332 6333
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6334 6335
recheck:
	/* double check policy once rq lock held */
6336 6337
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6338
		policy = oldpolicy = p->policy;
6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6349 6350
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6351 6352
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6353 6354
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6355
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6356
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6357
		return -EINVAL;
6358
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6359 6360
		return -EINVAL;

6361 6362 6363
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6364
	if (user && !capable(CAP_SYS_NICE)) {
6365
		if (rt_policy(policy)) {
6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6382 6383 6384 6385 6386 6387
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6388

6389
		/* can't change other user's priorities */
6390
		if (!check_same_owner(p))
6391
			return -EPERM;
6392 6393 6394 6395

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6396
	}
L
Linus Torvalds 已提交
6397

6398
	if (user) {
6399
#ifdef CONFIG_RT_GROUP_SCHED
6400 6401 6402 6403
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6404 6405
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6406
			return -EPERM;
6407 6408
#endif

6409 6410 6411 6412 6413
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6414 6415 6416 6417 6418
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6419 6420 6421 6422
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6423
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6424 6425 6426
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6427 6428
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6429 6430
		goto recheck;
	}
I
Ingo Molnar 已提交
6431
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6432
	on_rq = p->se.on_rq;
6433
	running = task_current(rq, p);
6434
	if (on_rq)
6435
		deactivate_task(rq, p, 0);
6436 6437
	if (running)
		p->sched_class->put_prev_task(rq, p);
6438

6439 6440
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6441
	oldprio = p->prio;
I
Ingo Molnar 已提交
6442
	__setscheduler(rq, p, policy, param->sched_priority);
6443

6444 6445
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6446 6447
	if (on_rq) {
		activate_task(rq, p, 0);
6448 6449

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6450
	}
6451 6452 6453
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6454 6455
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6456 6457
	return 0;
}
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6472 6473
EXPORT_SYMBOL_GPL(sched_setscheduler);

6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6491 6492
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6493 6494 6495
{
	struct sched_param lparam;
	struct task_struct *p;
6496
	int retval;
L
Linus Torvalds 已提交
6497 6498 6499 6500 6501

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6502 6503 6504

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6505
	p = find_process_by_pid(pid);
6506 6507 6508
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6509

L
Linus Torvalds 已提交
6510 6511 6512 6513 6514 6515 6516 6517 6518
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6519 6520
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6521
{
6522 6523 6524 6525
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6526 6527 6528 6529 6530 6531 6532 6533
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6534
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6535 6536 6537 6538 6539 6540 6541 6542
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6543
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6544
{
6545
	struct task_struct *p;
6546
	int retval;
L
Linus Torvalds 已提交
6547 6548

	if (pid < 0)
6549
		return -EINVAL;
L
Linus Torvalds 已提交
6550 6551 6552 6553 6554 6555 6556

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6557 6558
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6559 6560 6561 6562 6563 6564
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6565
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6566 6567 6568
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6569
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6570 6571
{
	struct sched_param lp;
6572
	struct task_struct *p;
6573
	int retval;
L
Linus Torvalds 已提交
6574 6575

	if (!param || pid < 0)
6576
		return -EINVAL;
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6603
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6604
{
6605
	cpumask_var_t cpus_allowed, new_mask;
6606 6607
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6608

6609
	get_online_cpus();
L
Linus Torvalds 已提交
6610 6611 6612 6613 6614
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6615
		put_online_cpus();
L
Linus Torvalds 已提交
6616 6617 6618 6619 6620
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6621
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6627 6628 6629 6630 6631 6632 6633 6634
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6635
	retval = -EPERM;
6636
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6637 6638
		goto out_unlock;

6639 6640 6641 6642
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6643 6644
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6645
 again:
6646
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6647

P
Paul Menage 已提交
6648
	if (!retval) {
6649 6650
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6651 6652 6653 6654 6655
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6656
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6657 6658 6659
			goto again;
		}
	}
L
Linus Torvalds 已提交
6660
out_unlock:
6661 6662 6663 6664
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6665
	put_task_struct(p);
6666
	put_online_cpus();
L
Linus Torvalds 已提交
6667 6668 6669 6670
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6671
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6672
{
6673 6674 6675 6676 6677
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6687 6688
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6689
{
6690
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6691 6692
	int retval;

6693 6694
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6695

6696 6697 6698 6699 6700
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6701 6702
}

6703
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6704
{
6705
	struct task_struct *p;
L
Linus Torvalds 已提交
6706 6707
	int retval;

6708
	get_online_cpus();
L
Linus Torvalds 已提交
6709 6710 6711 6712 6713 6714 6715
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6716 6717 6718 6719
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6720
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6721 6722 6723

out_unlock:
	read_unlock(&tasklist_lock);
6724
	put_online_cpus();
L
Linus Torvalds 已提交
6725

6726
	return retval;
L
Linus Torvalds 已提交
6727 6728 6729 6730 6731 6732 6733 6734
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6735 6736
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6737 6738
{
	int ret;
6739
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6740

6741
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6742 6743
		return -EINVAL;

6744 6745
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6746

6747 6748 6749 6750 6751 6752 6753 6754
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6755

6756
	return ret;
L
Linus Torvalds 已提交
6757 6758 6759 6760 6761
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6762 6763
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6764
 */
6765
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6766
{
6767
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6768

6769
	schedstat_inc(rq, yld_count);
6770
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6771 6772 6773 6774 6775 6776

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6777
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6778 6779 6780 6781 6782 6783 6784 6785
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6786 6787 6788 6789 6790
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6791
static void __cond_resched(void)
L
Linus Torvalds 已提交
6792
{
6793 6794 6795
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6796 6797
}

6798
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6799
{
P
Peter Zijlstra 已提交
6800
	if (should_resched()) {
L
Linus Torvalds 已提交
6801 6802 6803 6804 6805
		__cond_resched();
		return 1;
	}
	return 0;
}
6806
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6807 6808

/*
6809
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6810 6811
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6812
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6813 6814 6815
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6816
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6817
{
P
Peter Zijlstra 已提交
6818
	int resched = should_resched();
J
Jan Kara 已提交
6819 6820
	int ret = 0;

N
Nick Piggin 已提交
6821
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6822
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6823
		if (resched)
N
Nick Piggin 已提交
6824 6825 6826
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6827
		ret = 1;
L
Linus Torvalds 已提交
6828 6829
		spin_lock(lock);
	}
J
Jan Kara 已提交
6830
	return ret;
L
Linus Torvalds 已提交
6831
}
6832
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6833

6834
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6835 6836 6837
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6838
	if (should_resched()) {
6839
		local_bh_enable();
L
Linus Torvalds 已提交
6840 6841 6842 6843 6844 6845
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6846
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6847 6848 6849 6850

/**
 * yield - yield the current processor to other threads.
 *
6851
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6862
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6863 6864 6865 6866 6867 6868 6869
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6870
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6871

6872
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6873
	atomic_inc(&rq->nr_iowait);
6874
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6875
	schedule();
6876
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6877
	atomic_dec(&rq->nr_iowait);
6878
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6879 6880 6881 6882 6883
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6884
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6885 6886
	long ret;

6887
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6888
	atomic_inc(&rq->nr_iowait);
6889
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6890
	ret = schedule_timeout(timeout);
6891
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6892
	atomic_dec(&rq->nr_iowait);
6893
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6904
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6914
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6915
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6929
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6930 6931 6932 6933 6934 6935 6936 6937 6938
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6939
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6940
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6954
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6955
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6956
{
6957
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6958
	unsigned int time_slice;
6959
	int retval;
L
Linus Torvalds 已提交
6960 6961 6962
	struct timespec t;

	if (pid < 0)
6963
		return -EINVAL;
L
Linus Torvalds 已提交
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6975 6976 6977 6978 6979 6980
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6981
		time_slice = DEF_TIMESLICE;
6982
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6983 6984 6985 6986 6987
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6988 6989
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6990 6991
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6992
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6993
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6994 6995
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6996

L
Linus Torvalds 已提交
6997 6998 6999 7000 7001
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

7002
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7003

7004
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
7005 7006
{
	unsigned long free = 0;
7007
	unsigned state;
L
Linus Torvalds 已提交
7008 7009

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
7010
	printk(KERN_INFO "%-13.13s %c", p->comm,
7011
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7012
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
7013
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
7014
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
7015
	else
I
Ingo Molnar 已提交
7016
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
7017 7018
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
7019
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
7020
	else
I
Ingo Molnar 已提交
7021
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
7022 7023
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
7024
	free = stack_not_used(p);
L
Linus Torvalds 已提交
7025
#endif
7026 7027 7028
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
7029

7030
	show_stack(p, NULL);
L
Linus Torvalds 已提交
7031 7032
}

I
Ingo Molnar 已提交
7033
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
7034
{
7035
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7036

7037 7038 7039
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
7040
#else
7041 7042
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
7043 7044 7045 7046 7047 7048 7049 7050
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
7051
		if (!state_filter || (p->state & state_filter))
7052
			sched_show_task(p);
L
Linus Torvalds 已提交
7053 7054
	} while_each_thread(g, p);

7055 7056
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
7057 7058 7059
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
7060
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
7061 7062 7063 7064 7065
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
7066 7067
}

I
Ingo Molnar 已提交
7068 7069
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
7070
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
7071 7072
}

7073 7074 7075 7076 7077 7078 7079 7080
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
7081
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
7082
{
7083
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
7084 7085
	unsigned long flags;

7086 7087
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7088 7089 7090
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

7091
	idle->prio = idle->normal_prio = MAX_PRIO;
7092
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
7093
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
7094 7095

	rq->curr = rq->idle = idle;
7096 7097 7098
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7099 7100 7101
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7102 7103 7104
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7105
	task_thread_info(idle)->preempt_count = 0;
7106
#endif
I
Ingo Molnar 已提交
7107 7108 7109 7110
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7111
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7112 7113 7114 7115 7116 7117 7118
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7119
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7120
 */
7121
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7122

I
Ingo Molnar 已提交
7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7146 7147

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7148 7149
}

L
Linus Torvalds 已提交
7150 7151 7152 7153
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7154
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7173
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7174 7175
 * call is not atomic; no spinlocks may be held.
 */
7176
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7177
{
7178
	struct migration_req req;
L
Linus Torvalds 已提交
7179
	unsigned long flags;
7180
	struct rq *rq;
7181
	int ret = 0;
L
Linus Torvalds 已提交
7182 7183

	rq = task_rq_lock(p, &flags);
7184
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7185 7186 7187 7188
		ret = -EINVAL;
		goto out;
	}

7189
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7190
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7191 7192 7193 7194
		ret = -EINVAL;
		goto out;
	}

7195
	if (p->sched_class->set_cpus_allowed)
7196
		p->sched_class->set_cpus_allowed(p, new_mask);
7197
	else {
7198 7199
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7200 7201
	}

L
Linus Torvalds 已提交
7202
	/* Can the task run on the task's current CPU? If so, we're done */
7203
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7204 7205
		goto out;

R
Rusty Russell 已提交
7206
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7207
		/* Need help from migration thread: drop lock and wait. */
7208 7209 7210
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7211 7212
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7213
		put_task_struct(mt);
L
Linus Torvalds 已提交
7214 7215 7216 7217 7218 7219
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7220

L
Linus Torvalds 已提交
7221 7222
	return ret;
}
7223
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7224 7225

/*
I
Ingo Molnar 已提交
7226
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7227 7228 7229 7230 7231 7232
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7233 7234
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7235
 */
7236
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7237
{
7238
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7239
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7240

7241
	if (unlikely(!cpu_active(dest_cpu)))
7242
		return ret;
L
Linus Torvalds 已提交
7243 7244 7245 7246 7247 7248 7249

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7250
		goto done;
L
Linus Torvalds 已提交
7251
	/* Affinity changed (again). */
7252
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7253
		goto fail;
L
Linus Torvalds 已提交
7254

I
Ingo Molnar 已提交
7255
	on_rq = p->se.on_rq;
7256
	if (on_rq)
7257
		deactivate_task(rq_src, p, 0);
7258

L
Linus Torvalds 已提交
7259
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7260 7261
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7262
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7263
	}
L
Linus Torvalds 已提交
7264
done:
7265
	ret = 1;
L
Linus Torvalds 已提交
7266
fail:
L
Linus Torvalds 已提交
7267
	double_rq_unlock(rq_src, rq_dest);
7268
	return ret;
L
Linus Torvalds 已提交
7269 7270 7271 7272 7273 7274 7275
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7276
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7277 7278
{
	int cpu = (long)data;
7279
	struct rq *rq;
L
Linus Torvalds 已提交
7280 7281 7282 7283 7284 7285

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7286
		struct migration_req *req;
L
Linus Torvalds 已提交
7287 7288 7289 7290 7291 7292
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7293
			break;
L
Linus Torvalds 已提交
7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7309
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7310 7311
		list_del_init(head->next);

N
Nick Piggin 已提交
7312 7313 7314
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7315 7316 7317 7318 7319 7320 7321 7322 7323

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7335
/*
7336
 * Figure out where task on dead CPU should go, use force if necessary.
7337
 */
7338
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7339
{
7340
	int dest_cpu;
7341
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7358

7359 7360 7361 7362 7363 7364 7365 7366 7367
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7368
		}
7369 7370 7371 7372 7373 7374
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7384
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7385
{
R
Rusty Russell 已提交
7386
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7400
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7401

7402
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7403

7404 7405
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7406 7407
			continue;

7408 7409 7410
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7411

7412
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7413 7414
}

I
Ingo Molnar 已提交
7415 7416
/*
 * Schedules idle task to be the next runnable task on current CPU.
7417 7418
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7419 7420 7421
 */
void sched_idle_next(void)
{
7422
	int this_cpu = smp_processor_id();
7423
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7424 7425 7426 7427
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7428
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7429

7430 7431 7432
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7433 7434 7435
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7436
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7437

7438 7439
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7440 7441 7442 7443

	spin_unlock_irqrestore(&rq->lock, flags);
}

7444 7445
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7459
/* called under rq->lock with disabled interrupts */
7460
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7461
{
7462
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7463 7464

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7465
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7466 7467

	/* Cannot have done final schedule yet: would have vanished. */
7468
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7469

7470
	get_task_struct(p);
L
Linus Torvalds 已提交
7471 7472 7473

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7474
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7475 7476
	 * fine.
	 */
7477
	spin_unlock_irq(&rq->lock);
7478
	move_task_off_dead_cpu(dead_cpu, p);
7479
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7480

7481
	put_task_struct(p);
L
Linus Torvalds 已提交
7482 7483 7484 7485 7486
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7487
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7488
	struct task_struct *next;
7489

I
Ingo Molnar 已提交
7490 7491 7492
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7493
		update_rq_clock(rq);
7494
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7495 7496
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7497
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7498
		migrate_dead(dead_cpu, next);
7499

L
Linus Torvalds 已提交
7500 7501
	}
}
7502 7503 7504 7505 7506 7507 7508

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7509
	rq->calc_load_active = 0;
7510
}
L
Linus Torvalds 已提交
7511 7512
#endif /* CONFIG_HOTPLUG_CPU */

7513 7514 7515
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7516 7517
	{
		.procname	= "sched_domain",
7518
		.mode		= 0555,
7519
	},
I
Ingo Molnar 已提交
7520
	{0, },
7521 7522 7523
};

static struct ctl_table sd_ctl_root[] = {
7524
	{
7525
		.ctl_name	= CTL_KERN,
7526
		.procname	= "kernel",
7527
		.mode		= 0555,
7528 7529
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7530
	{0, },
7531 7532 7533 7534 7535
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7536
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7537 7538 7539 7540

	return entry;
}

7541 7542
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7543
	struct ctl_table *entry;
7544

7545 7546 7547
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7548
	 * will always be set. In the lowest directory the names are
7549 7550 7551
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7552 7553
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7554 7555 7556
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7557 7558 7559 7560 7561

	kfree(*tablep);
	*tablep = NULL;
}

7562
static void
7563
set_table_entry(struct ctl_table *entry,
7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7577
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7578

7579 7580 7581
	if (table == NULL)
		return NULL;

7582
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7583
		sizeof(long), 0644, proc_doulongvec_minmax);
7584
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7585
		sizeof(long), 0644, proc_doulongvec_minmax);
7586
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7587
		sizeof(int), 0644, proc_dointvec_minmax);
7588
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7589
		sizeof(int), 0644, proc_dointvec_minmax);
7590
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7591
		sizeof(int), 0644, proc_dointvec_minmax);
7592
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7593
		sizeof(int), 0644, proc_dointvec_minmax);
7594
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7595
		sizeof(int), 0644, proc_dointvec_minmax);
7596
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7597
		sizeof(int), 0644, proc_dointvec_minmax);
7598
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7599
		sizeof(int), 0644, proc_dointvec_minmax);
7600
	set_table_entry(&table[9], "cache_nice_tries",
7601 7602
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7603
	set_table_entry(&table[10], "flags", &sd->flags,
7604
		sizeof(int), 0644, proc_dointvec_minmax);
7605 7606 7607
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7608 7609 7610 7611

	return table;
}

7612
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7613 7614 7615 7616 7617 7618 7619 7620 7621
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7622 7623
	if (table == NULL)
		return NULL;
7624 7625 7626 7627 7628

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7629
		entry->mode = 0555;
7630 7631 7632 7633 7634 7635 7636 7637
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7638
static void register_sched_domain_sysctl(void)
7639 7640 7641 7642 7643
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7644 7645 7646
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7647 7648 7649
	if (entry == NULL)
		return;

7650
	for_each_online_cpu(i) {
7651 7652
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7653
		entry->mode = 0555;
7654
		entry->child = sd_alloc_ctl_cpu_table(i);
7655
		entry++;
7656
	}
7657 7658

	WARN_ON(sd_sysctl_header);
7659 7660
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7661

7662
/* may be called multiple times per register */
7663 7664
static void unregister_sched_domain_sysctl(void)
{
7665 7666
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7667
	sd_sysctl_header = NULL;
7668 7669
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7670
}
7671
#else
7672 7673 7674 7675
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7676 7677 7678 7679
{
}
#endif

7680 7681 7682 7683 7684
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7685
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7705
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7706 7707 7708 7709
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7710 7711 7712 7713
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7714 7715
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7716 7717
{
	struct task_struct *p;
7718
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7719
	unsigned long flags;
7720
	struct rq *rq;
L
Linus Torvalds 已提交
7721 7722

	switch (action) {
7723

L
Linus Torvalds 已提交
7724
	case CPU_UP_PREPARE:
7725
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7726
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7727 7728 7729 7730 7731
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7732
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7733
		task_rq_unlock(rq, &flags);
7734
		get_task_struct(p);
L
Linus Torvalds 已提交
7735
		cpu_rq(cpu)->migration_thread = p;
7736
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7737
		break;
7738

L
Linus Torvalds 已提交
7739
	case CPU_ONLINE:
7740
	case CPU_ONLINE_FROZEN:
7741
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7742
		wake_up_process(cpu_rq(cpu)->migration_thread);
7743 7744 7745 7746 7747

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7748
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7749 7750

			set_rq_online(rq);
7751 7752
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7753
		break;
7754

L
Linus Torvalds 已提交
7755 7756
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7757
	case CPU_UP_CANCELED_FROZEN:
7758 7759
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7760
		/* Unbind it from offline cpu so it can run. Fall thru. */
7761
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7762
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7763
		kthread_stop(cpu_rq(cpu)->migration_thread);
7764
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7765 7766
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7767

L
Linus Torvalds 已提交
7768
	case CPU_DEAD:
7769
	case CPU_DEAD_FROZEN:
7770
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7771 7772 7773
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7774
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7775 7776
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7777
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7778
		update_rq_clock(rq);
7779
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7780
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7781 7782
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7783
		migrate_dead_tasks(cpu);
7784
		spin_unlock_irq(&rq->lock);
7785
		cpuset_unlock();
L
Linus Torvalds 已提交
7786 7787
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7788
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7789 7790 7791 7792 7793
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7794 7795
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7796 7797
			struct migration_req *req;

L
Linus Torvalds 已提交
7798
			req = list_entry(rq->migration_queue.next,
7799
					 struct migration_req, list);
L
Linus Torvalds 已提交
7800
			list_del_init(&req->list);
B
Brian King 已提交
7801
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7802
			complete(&req->done);
B
Brian King 已提交
7803
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7804 7805 7806
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7807

7808 7809
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7810 7811 7812 7813
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7814
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7815
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7816 7817 7818
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7819 7820 7821 7822 7823
#endif
	}
	return NOTIFY_OK;
}

7824 7825 7826 7827
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7828
 */
7829
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7830 7831 7832 7833
	.notifier_call = migration_call,
	.priority = 10
};

7834
static int __init migration_init(void)
L
Linus Torvalds 已提交
7835 7836
{
	void *cpu = (void *)(long)smp_processor_id();
7837
	int err;
7838 7839

	/* Start one for the boot CPU: */
7840 7841
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7842 7843
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7844

7845
	return 0;
L
Linus Torvalds 已提交
7846
}
7847
early_initcall(migration_init);
L
Linus Torvalds 已提交
7848 7849 7850
#endif

#ifdef CONFIG_SMP
7851

7852
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7853

7854
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7855
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7856
{
I
Ingo Molnar 已提交
7857
	struct sched_group *group = sd->groups;
7858
	char str[256];
L
Linus Torvalds 已提交
7859

R
Rusty Russell 已提交
7860
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7861
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7862 7863 7864 7865 7866 7867 7868 7869 7870

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7871 7872
	}

7873
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7874

7875
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7876 7877 7878
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7879
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7880 7881 7882
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7883

I
Ingo Molnar 已提交
7884
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7885
	do {
I
Ingo Molnar 已提交
7886 7887 7888
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7889 7890 7891
			break;
		}

7892
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7893 7894 7895 7896 7897
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7898

7899
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7900 7901 7902 7903
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7904

7905
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7906 7907 7908 7909
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7910

7911
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7912

R
Rusty Russell 已提交
7913
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7914 7915

		printk(KERN_CONT " %s", str);
7916 7917 7918
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7919
		}
L
Linus Torvalds 已提交
7920

I
Ingo Molnar 已提交
7921 7922 7923
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7924

7925
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7926
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7927

7928 7929
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7930 7931 7932 7933
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7934

I
Ingo Molnar 已提交
7935 7936
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7937
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7938
	int level = 0;
L
Linus Torvalds 已提交
7939

I
Ingo Molnar 已提交
7940 7941 7942 7943
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7944

I
Ingo Molnar 已提交
7945 7946
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7947
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7948 7949 7950 7951
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7952
	for (;;) {
7953
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7954
			break;
L
Linus Torvalds 已提交
7955 7956
		level++;
		sd = sd->parent;
7957
		if (!sd)
I
Ingo Molnar 已提交
7958 7959
			break;
	}
7960
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7961
}
7962
#else /* !CONFIG_SCHED_DEBUG */
7963
# define sched_domain_debug(sd, cpu) do { } while (0)
7964
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7965

7966
static int sd_degenerate(struct sched_domain *sd)
7967
{
7968
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7969 7970 7971 7972 7973 7974
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7975 7976 7977
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7991 7992
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7993 7994 7995 7996 7997 7998
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7999
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
8011 8012 8013
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
8014 8015
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
8016 8017 8018 8019 8020 8021 8022
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

8023 8024
static void free_rootdomain(struct root_domain *rd)
{
8025 8026
	cpupri_cleanup(&rd->cpupri);

8027 8028 8029 8030 8031 8032
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
8033 8034
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
8035
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
8036 8037 8038 8039 8040
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
8041
		old_rd = rq->rd;
G
Gregory Haskins 已提交
8042

8043
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
8044
			set_rq_offline(rq);
G
Gregory Haskins 已提交
8045

8046
		cpumask_clear_cpu(rq->cpu, old_rd->span);
8047

I
Ingo Molnar 已提交
8048 8049 8050 8051 8052 8053 8054
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
8055 8056 8057 8058 8059
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

8060
	cpumask_set_cpu(rq->cpu, rd->span);
8061
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8062
		set_rq_online(rq);
G
Gregory Haskins 已提交
8063 8064

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
8065 8066 8067

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
8068 8069
}

L
Li Zefan 已提交
8070
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8071
{
8072 8073
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8074 8075
	memset(rd, 0, sizeof(*rd));

8076 8077
	if (bootmem)
		gfp = GFP_NOWAIT;
8078

8079
	if (!alloc_cpumask_var(&rd->span, gfp))
8080
		goto out;
8081
	if (!alloc_cpumask_var(&rd->online, gfp))
8082
		goto free_span;
8083
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8084
		goto free_online;
8085

P
Pekka Enberg 已提交
8086
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8087
		goto free_rto_mask;
8088
	return 0;
8089

8090 8091
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8092 8093 8094 8095
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8096
out:
8097
	return -ENOMEM;
G
Gregory Haskins 已提交
8098 8099 8100 8101
}

static void init_defrootdomain(void)
{
8102 8103
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8104 8105 8106
	atomic_set(&def_root_domain.refcount, 1);
}

8107
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8108 8109 8110 8111 8112 8113 8114
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8115 8116 8117 8118
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8119 8120 8121 8122

	return rd;
}

L
Linus Torvalds 已提交
8123
/*
I
Ingo Molnar 已提交
8124
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8125 8126
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8127 8128
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8129
{
8130
	struct rq *rq = cpu_rq(cpu);
8131 8132 8133
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8134
	for (tmp = sd; tmp; ) {
8135 8136 8137
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8138

8139
		if (sd_parent_degenerate(tmp, parent)) {
8140
			tmp->parent = parent->parent;
8141 8142
			if (parent->parent)
				parent->parent->child = tmp;
8143 8144
		} else
			tmp = tmp->parent;
8145 8146
	}

8147
	if (sd && sd_degenerate(sd)) {
8148
		sd = sd->parent;
8149 8150 8151
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8152 8153 8154

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8155
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8156
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8157 8158 8159
}

/* cpus with isolated domains */
8160
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8161 8162 8163 8164

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8165
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8166 8167 8168
	return 1;
}

I
Ingo Molnar 已提交
8169
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8170 8171

/*
8172 8173
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8174 8175
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8176 8177 8178 8179 8180
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8181
static void
8182 8183 8184
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8185
					struct sched_group **sg,
8186 8187
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8188 8189 8190 8191
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8192
	cpumask_clear(covered);
8193

8194
	for_each_cpu(i, span) {
8195
		struct sched_group *sg;
8196
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8197 8198
		int j;

8199
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8200 8201
			continue;

8202
		cpumask_clear(sched_group_cpus(sg));
8203
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8204

8205
		for_each_cpu(j, span) {
8206
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8207 8208
				continue;

8209
			cpumask_set_cpu(j, covered);
8210
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8211 8212 8213 8214 8215 8216 8217 8218 8219 8220
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8221
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8222

8223
#ifdef CONFIG_NUMA
8224

8225 8226 8227 8228 8229
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8230
 * Find the next node to include in a given scheduling domain. Simply
8231 8232 8233 8234
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8235
static int find_next_best_node(int node, nodemask_t *used_nodes)
8236 8237 8238 8239 8240
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8241
	for (i = 0; i < nr_node_ids; i++) {
8242
		/* Start at @node */
8243
		n = (node + i) % nr_node_ids;
8244 8245 8246 8247 8248

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8249
		if (node_isset(n, *used_nodes))
8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8261
	node_set(best_node, *used_nodes);
8262 8263 8264 8265 8266 8267
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8268
 * @span: resulting cpumask
8269
 *
I
Ingo Molnar 已提交
8270
 * Given a node, construct a good cpumask for its sched_domain to span. It
8271 8272 8273
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8274
static void sched_domain_node_span(int node, struct cpumask *span)
8275
{
8276
	nodemask_t used_nodes;
8277
	int i;
8278

8279
	cpumask_clear(span);
8280
	nodes_clear(used_nodes);
8281

8282
	cpumask_or(span, span, cpumask_of_node(node));
8283
	node_set(node, used_nodes);
8284 8285

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8286
		int next_node = find_next_best_node(node, &used_nodes);
8287

8288
		cpumask_or(span, span, cpumask_of_node(next_node));
8289 8290
	}
}
8291
#endif /* CONFIG_NUMA */
8292

8293
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8294

8295 8296
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8297 8298 8299
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8344
/*
8345
 * SMT sched-domains:
8346
 */
L
Linus Torvalds 已提交
8347
#ifdef CONFIG_SCHED_SMT
8348 8349
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8350

I
Ingo Molnar 已提交
8351
static int
8352 8353
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8354
{
8355
	if (sg)
8356
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8357 8358
	return cpu;
}
8359
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8360

8361 8362 8363
/*
 * multi-core sched-domains:
 */
8364
#ifdef CONFIG_SCHED_MC
8365 8366
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8367
#endif /* CONFIG_SCHED_MC */
8368 8369

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8370
static int
8371 8372
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8373
{
8374
	int group;
8375

8376
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8377
	group = cpumask_first(mask);
8378
	if (sg)
8379
		*sg = &per_cpu(sched_group_core, group).sg;
8380
	return group;
8381 8382
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8383
static int
8384 8385
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8386
{
8387
	if (sg)
8388
		*sg = &per_cpu(sched_group_core, cpu).sg;
8389 8390 8391 8392
	return cpu;
}
#endif

8393 8394
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8395

I
Ingo Molnar 已提交
8396
static int
8397 8398
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8399
{
8400
	int group;
8401
#ifdef CONFIG_SCHED_MC
8402
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8403
	group = cpumask_first(mask);
8404
#elif defined(CONFIG_SCHED_SMT)
8405
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8406
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8407
#else
8408
	group = cpu;
L
Linus Torvalds 已提交
8409
#endif
8410
	if (sg)
8411
		*sg = &per_cpu(sched_group_phys, group).sg;
8412
	return group;
L
Linus Torvalds 已提交
8413 8414 8415 8416
}

#ifdef CONFIG_NUMA
/*
8417 8418 8419
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8420
 */
8421
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8422
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8423

8424
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8425
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8426

8427 8428 8429
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8430
{
8431 8432
	int group;

8433
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8434
	group = cpumask_first(nodemask);
8435 8436

	if (sg)
8437
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8438
	return group;
L
Linus Torvalds 已提交
8439
}
8440

8441 8442 8443 8444 8445 8446 8447
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8448
	do {
8449
		for_each_cpu(j, sched_group_cpus(sg)) {
8450
			struct sched_domain *sd;
8451

8452
			sd = &per_cpu(phys_domains, j).sd;
8453
			if (j != group_first_cpu(sd->groups)) {
8454 8455 8456 8457 8458 8459
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8460

8461
			sg->cpu_power += sd->groups->cpu_power;
8462 8463 8464
		}
		sg = sg->next;
	} while (sg != group_head);
8465
}
8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8498
	sg->cpu_power = 0;
8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8521
		sg->cpu_power = 0;
8522 8523 8524 8525 8526 8527 8528 8529 8530
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8531
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8532

8533
#ifdef CONFIG_NUMA
8534
/* Free memory allocated for various sched_group structures */
8535 8536
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8537
{
8538
	int cpu, i;
8539

8540
	for_each_cpu(cpu, cpu_map) {
8541 8542 8543 8544 8545 8546
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8547
		for (i = 0; i < nr_node_ids; i++) {
8548 8549
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8550
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8551
			if (cpumask_empty(nodemask))
8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8568
#else /* !CONFIG_NUMA */
8569 8570
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8571 8572
{
}
8573
#endif /* CONFIG_NUMA */
8574

8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8589 8590
	long power;
	int weight;
8591 8592 8593

	WARN_ON(!sd || !sd->groups);

8594
	if (cpu != group_first_cpu(sd->groups))
8595 8596 8597 8598
		return;

	child = sd->child;

8599
	sd->groups->cpu_power = 0;
8600

8601 8602 8603 8604 8605
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8606 8607 8608
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8609
		 */
P
Peter Zijlstra 已提交
8610 8611
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8612
			power /= weight;
P
Peter Zijlstra 已提交
8613 8614
			power >>= SCHED_LOAD_SHIFT;
		}
8615
		sd->groups->cpu_power += power;
8616 8617 8618 8619
		return;
	}

	/*
8620
	 * Add cpu_power of each child group to this groups cpu_power.
8621 8622 8623
	 */
	group = child->groups;
	do {
8624
		sd->groups->cpu_power += group->cpu_power;
8625 8626 8627 8628
		group = group->next;
	} while (group != child->groups);
}

8629 8630 8631 8632 8633
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8634 8635 8636 8637 8638 8639
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8640
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8641

8642 8643 8644 8645 8646
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8647
	sd->level = SD_LV_##type;				\
8648
	SD_INIT_NAME(sd, type);					\
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8663 8664 8665 8666
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8667 8668 8669 8670 8671 8672
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8718
#ifdef CONFIG_NUMA
8719 8720 8721 8722 8723 8724 8725
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8726
#endif
8727 8728 8729 8730
	case sa_none:
		break;
	}
}
8731

8732 8733 8734
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8735
#ifdef CONFIG_NUMA
8736 8737 8738 8739 8740 8741 8742 8743 8744 8745
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8746
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8747
		return sa_notcovered;
8748
	}
8749
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8750
#endif
8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8763
		printk(KERN_WARNING "Cannot alloc root domain\n");
8764
		return sa_tmpmask;
G
Gregory Haskins 已提交
8765
	}
8766 8767
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8768

8769 8770 8771 8772
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8773
#ifdef CONFIG_NUMA
8774
	struct sched_domain *parent;
8775

8776 8777 8778 8779 8780
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8781
		set_domain_attribute(sd, attr);
8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8796
#endif
8797 8798
	return sd;
}
L
Linus Torvalds 已提交
8799

8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8815

8816 8817 8818 8819 8820
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8821
#ifdef CONFIG_SCHED_MC
8822 8823 8824 8825 8826 8827 8828
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8829
#endif
8830 8831
	return sd;
}
8832

8833 8834 8835 8836 8837
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8838
#ifdef CONFIG_SCHED_SMT
8839 8840 8841 8842 8843 8844 8845
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8846
#endif
8847 8848
	return sd;
}
L
Linus Torvalds 已提交
8849

8850 8851 8852 8853
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8854
#ifdef CONFIG_SCHED_SMT
8855 8856 8857 8858 8859 8860 8861 8862
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8863
#endif
8864
#ifdef CONFIG_SCHED_MC
8865 8866 8867 8868 8869 8870 8871
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8872
#endif
8873 8874 8875 8876 8877 8878 8879
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8880
#ifdef CONFIG_NUMA
8881 8882 8883 8884 8885
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8886 8887
	default:
		break;
8888
	}
8889
}
8890

8891 8892 8893 8894 8895 8896 8897 8898 8899
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8900
	struct sched_domain *sd;
8901
	int i;
8902
#ifdef CONFIG_NUMA
8903
	d.sd_allnodes = 0;
8904
#endif
8905

8906 8907 8908 8909
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8910

L
Linus Torvalds 已提交
8911
	/*
8912
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8913
	 */
8914
	for_each_cpu(i, cpu_map) {
8915 8916
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8917

8918
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8919
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8920
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8921
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8922
	}
8923

8924
	for_each_cpu(i, cpu_map) {
8925
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8926
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8927
	}
8928

L
Linus Torvalds 已提交
8929
	/* Set up physical groups */
8930 8931
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8932

L
Linus Torvalds 已提交
8933 8934
#ifdef CONFIG_NUMA
	/* Set up node groups */
8935 8936
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8937

8938 8939
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8940
			goto error;
L
Linus Torvalds 已提交
8941 8942 8943
#endif

	/* Calculate CPU power for physical packages and nodes */
8944
#ifdef CONFIG_SCHED_SMT
8945
	for_each_cpu(i, cpu_map) {
8946
		sd = &per_cpu(cpu_domains, i).sd;
8947
		init_sched_groups_power(i, sd);
8948
	}
L
Linus Torvalds 已提交
8949
#endif
8950
#ifdef CONFIG_SCHED_MC
8951
	for_each_cpu(i, cpu_map) {
8952
		sd = &per_cpu(core_domains, i).sd;
8953
		init_sched_groups_power(i, sd);
8954 8955
	}
#endif
8956

8957
	for_each_cpu(i, cpu_map) {
8958
		sd = &per_cpu(phys_domains, i).sd;
8959
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8960 8961
	}

8962
#ifdef CONFIG_NUMA
8963
	for (i = 0; i < nr_node_ids; i++)
8964
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8965

8966
	if (d.sd_allnodes) {
8967
		struct sched_group *sg;
8968

8969
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8970
								d.tmpmask);
8971 8972
		init_numa_sched_groups_power(sg);
	}
8973 8974
#endif

L
Linus Torvalds 已提交
8975
	/* Attach the domains */
8976
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8977
#ifdef CONFIG_SCHED_SMT
8978
		sd = &per_cpu(cpu_domains, i).sd;
8979
#elif defined(CONFIG_SCHED_MC)
8980
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8981
#else
8982
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8983
#endif
8984
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8985
	}
8986

8987 8988 8989
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8990 8991

error:
8992 8993
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8994
}
P
Paul Jackson 已提交
8995

8996
static int build_sched_domains(const struct cpumask *cpu_map)
8997 8998 8999 9000
{
	return __build_sched_domains(cpu_map, NULL);
}

9001
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
9002
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
9003 9004
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
9005 9006 9007

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
9008 9009
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
9010
 */
9011
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
9012

9013 9014 9015 9016 9017 9018
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
9019
{
9020
	return 0;
9021 9022
}

9023
/*
I
Ingo Molnar 已提交
9024
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
9025 9026
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
9027
 */
9028
static int arch_init_sched_domains(const struct cpumask *cpu_map)
9029
{
9030 9031
	int err;

9032
	arch_update_cpu_topology();
P
Paul Jackson 已提交
9033
	ndoms_cur = 1;
9034
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
9035
	if (!doms_cur)
9036
		doms_cur = fallback_doms;
9037
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9038
	dattr_cur = NULL;
9039
	err = build_sched_domains(doms_cur);
9040
	register_sched_domain_sysctl();
9041 9042

	return err;
9043 9044
}

9045 9046
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9047
{
9048
	free_sched_groups(cpu_map, tmpmask);
9049
}
L
Linus Torvalds 已提交
9050

9051 9052 9053 9054
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9055
static void detach_destroy_domains(const struct cpumask *cpu_map)
9056
{
9057 9058
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9059 9060
	int i;

9061
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9062
		cpu_attach_domain(NULL, &def_root_domain, i);
9063
	synchronize_sched();
9064
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9065 9066
}

9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9083 9084
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9085
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9086 9087 9088
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9089
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9090 9091 9092
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9093 9094 9095
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
9096 9097
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
9098 9099 9100 9101
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
9102
 *
9103
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9104 9105
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9106
 *
P
Paul Jackson 已提交
9107 9108
 * Call with hotplug lock held
 */
9109 9110
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9111
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9112
{
9113
	int i, j, n;
9114
	int new_topology;
P
Paul Jackson 已提交
9115

9116
	mutex_lock(&sched_domains_mutex);
9117

9118 9119 9120
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9121 9122 9123
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9124
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9125 9126 9127

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9128
		for (j = 0; j < n && !new_topology; j++) {
9129
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
9130
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9131 9132 9133 9134 9135 9136 9137 9138
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

9139 9140
	if (doms_new == NULL) {
		ndoms_cur = 0;
9141
		doms_new = fallback_doms;
9142
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9143
		WARN_ON_ONCE(dattr_new);
9144 9145
	}

P
Paul Jackson 已提交
9146 9147
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9148
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9149
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9150
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9151 9152 9153
				goto match2;
		}
		/* no match - add a new doms_new */
9154 9155
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9156 9157 9158 9159 9160
match2:
		;
	}

	/* Remember the new sched domains */
9161
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9162
		kfree(doms_cur);
9163
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9164
	doms_cur = doms_new;
9165
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9166
	ndoms_cur = ndoms_new;
9167 9168

	register_sched_domain_sysctl();
9169

9170
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9171 9172
}

9173
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9174
static void arch_reinit_sched_domains(void)
9175
{
9176
	get_online_cpus();
9177 9178 9179 9180

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9181
	rebuild_sched_domains();
9182
	put_online_cpus();
9183 9184 9185 9186
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9187
	unsigned int level = 0;
9188

9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9200 9201 9202
		return -EINVAL;

	if (smt)
9203
		sched_smt_power_savings = level;
9204
	else
9205
		sched_mc_power_savings = level;
9206

9207
	arch_reinit_sched_domains();
9208

9209
	return count;
9210 9211 9212
}

#ifdef CONFIG_SCHED_MC
9213 9214
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9215 9216 9217
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9218
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9219
					    const char *buf, size_t count)
9220 9221 9222
{
	return sched_power_savings_store(buf, count, 0);
}
9223 9224 9225
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9226 9227 9228
#endif

#ifdef CONFIG_SCHED_SMT
9229 9230
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9231 9232 9233
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9234
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9235
					     const char *buf, size_t count)
9236 9237 9238
{
	return sched_power_savings_store(buf, count, 1);
}
9239 9240
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9241 9242 9243
		   sched_smt_power_savings_store);
#endif

9244
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9260
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9261

9262
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9263
/*
9264 9265
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9266 9267 9268
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9269 9270 9271 9272 9273 9274
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9275
		partition_sched_domains(1, NULL, NULL);
9276 9277 9278 9279 9280 9281 9282 9283 9284 9285
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9286
{
P
Peter Zijlstra 已提交
9287 9288
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9289 9290
	switch (action) {
	case CPU_DOWN_PREPARE:
9291
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9292
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9293 9294 9295
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9296
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9297
	case CPU_ONLINE:
9298
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9299
		enable_runtime(cpu_rq(cpu));
9300 9301
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9302 9303 9304 9305 9306 9307 9308
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9309 9310 9311
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9312

9313 9314 9315 9316 9317
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9318
	get_online_cpus();
9319
	mutex_lock(&sched_domains_mutex);
9320 9321 9322 9323
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9324
	mutex_unlock(&sched_domains_mutex);
9325
	put_online_cpus();
9326 9327

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9328 9329
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9330 9331 9332 9333 9334
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9335
	init_hrtick();
9336 9337

	/* Move init over to a non-isolated CPU */
9338
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9339
		BUG();
I
Ingo Molnar 已提交
9340
	sched_init_granularity();
9341
	free_cpumask_var(non_isolated_cpus);
9342 9343

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9344
	init_sched_rt_class();
L
Linus Torvalds 已提交
9345 9346 9347 9348
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9349
	sched_init_granularity();
L
Linus Torvalds 已提交
9350 9351 9352
}
#endif /* CONFIG_SMP */

9353 9354
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9355 9356 9357 9358 9359 9360 9361
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9362
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9363 9364
{
	cfs_rq->tasks_timeline = RB_ROOT;
9365
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9366 9367 9368
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9369
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9370 9371
}

P
Peter Zijlstra 已提交
9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9385
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9386
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9387
#ifdef CONFIG_SMP
9388
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9389 9390
#endif
#endif
P
Peter Zijlstra 已提交
9391 9392 9393
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9394
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9395 9396 9397 9398
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9399 9400
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9401

9402
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9403
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9404 9405
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9406 9407
}

P
Peter Zijlstra 已提交
9408
#ifdef CONFIG_FAIR_GROUP_SCHED
9409 9410 9411
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9412
{
9413
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9414 9415 9416 9417 9418 9419 9420
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9421 9422 9423 9424
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9425 9426 9427 9428 9429
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9430 9431
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9432
	se->load.inv_weight = 0;
9433
	se->parent = parent;
P
Peter Zijlstra 已提交
9434
}
9435
#endif
P
Peter Zijlstra 已提交
9436

9437
#ifdef CONFIG_RT_GROUP_SCHED
9438 9439 9440
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9441
{
9442 9443
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9444 9445 9446 9447
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9448
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9449 9450 9451 9452
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9453 9454 9455
	if (!rt_se)
		return;

9456 9457 9458 9459 9460
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9461
	rt_se->my_q = rt_rq;
9462
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9463 9464 9465 9466
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9467 9468
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9469
	int i, j;
9470 9471 9472 9473 9474 9475 9476
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9477 9478 9479
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9480 9481
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9482
	alloc_size += num_possible_cpus() * cpumask_size();
9483 9484 9485 9486 9487 9488
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9489
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9490 9491 9492 9493 9494 9495 9496

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9497 9498 9499 9500 9501 9502 9503

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9504 9505
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9506 9507 9508 9509 9510
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9511 9512 9513 9514 9515 9516 9517 9518
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9519 9520
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9521 9522 9523 9524 9525 9526
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9527
	}
I
Ingo Molnar 已提交
9528

G
Gregory Haskins 已提交
9529 9530 9531 9532
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9533 9534 9535 9536 9537 9538
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9539 9540 9541
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9542 9543
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9544

9545
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9546
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9547 9548 9549 9550 9551 9552
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9553 9554
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9555

9556
	for_each_possible_cpu(i) {
9557
		struct rq *rq;
L
Linus Torvalds 已提交
9558 9559 9560

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9561
		rq->nr_running = 0;
9562 9563
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9564
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9565
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9566
#ifdef CONFIG_FAIR_GROUP_SCHED
9567
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9568
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9584
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9585 9586 9587 9588
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9589
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9590
#elif defined CONFIG_USER_SCHED
9591 9592
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9593 9594 9595 9596 9597 9598 9599 9600
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9601
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9602 9603
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9604
		init_tg_cfs_entry(&init_task_group,
9605
				&per_cpu(init_tg_cfs_rq, i),
9606 9607
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9608

9609
#endif
D
Dhaval Giani 已提交
9610 9611 9612
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9613
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9614
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9615
#ifdef CONFIG_CGROUP_SCHED
9616
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9617
#elif defined CONFIG_USER_SCHED
9618
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9619
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9620
				&per_cpu(init_rt_rq, i),
9621 9622
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9623
#endif
I
Ingo Molnar 已提交
9624
#endif
L
Linus Torvalds 已提交
9625

I
Ingo Molnar 已提交
9626 9627
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9628
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9629
		rq->sd = NULL;
G
Gregory Haskins 已提交
9630
		rq->rd = NULL;
9631
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9632
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9633
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9634
		rq->push_cpu = 0;
9635
		rq->cpu = i;
9636
		rq->online = 0;
L
Linus Torvalds 已提交
9637 9638
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9639
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9640
#endif
P
Peter Zijlstra 已提交
9641
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9642 9643 9644
		atomic_set(&rq->nr_iowait, 0);
	}

9645
	set_load_weight(&init_task);
9646

9647 9648 9649 9650
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9651
#ifdef CONFIG_SMP
9652
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9653 9654
#endif

9655 9656 9657 9658
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9672 9673 9674

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9675 9676 9677 9678
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9679

9680
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9681
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9682
#ifdef CONFIG_SMP
9683
#ifdef CONFIG_NO_HZ
9684 9685
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9686
#endif
9687
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9688
#endif /* SMP */
9689

9690 9691
	perf_counter_init();

9692
	scheduler_running = 1;
L
Linus Torvalds 已提交
9693 9694 9695
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9696 9697 9698 9699 9700 9701 9702 9703
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9704
{
9705
#ifdef in_atomic
L
Linus Torvalds 已提交
9706 9707
	static unsigned long prev_jiffy;	/* ratelimiting */

9708 9709
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9727 9728 9729 9730 9731 9732
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9733 9734 9735
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9736

9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9748 9749
void normalize_rt_tasks(void)
{
9750
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9751
	unsigned long flags;
9752
	struct rq *rq;
L
Linus Torvalds 已提交
9753

9754
	read_lock_irqsave(&tasklist_lock, flags);
9755
	do_each_thread(g, p) {
9756 9757 9758 9759 9760 9761
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9762 9763
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9764 9765 9766
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9767
#endif
I
Ingo Molnar 已提交
9768 9769 9770 9771 9772 9773 9774 9775

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9776
			continue;
I
Ingo Molnar 已提交
9777
		}
L
Linus Torvalds 已提交
9778

9779
		spin_lock(&p->pi_lock);
9780
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9781

9782
		normalize_task(rq, p);
9783

9784
		__task_rq_unlock(rq);
9785
		spin_unlock(&p->pi_lock);
9786 9787
	} while_each_thread(g, p);

9788
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9789 9790 9791
}

#endif /* CONFIG_MAGIC_SYSRQ */
9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9810
struct task_struct *curr_task(int cpu)
9811 9812 9813 9814 9815 9816 9817 9818 9819 9820
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9821 9822
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9823 9824 9825 9826 9827 9828 9829
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9830
void set_curr_task(int cpu, struct task_struct *p)
9831 9832 9833 9834 9835
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9836

9837 9838
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9853 9854
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9855 9856
{
	struct cfs_rq *cfs_rq;
9857
	struct sched_entity *se;
9858
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9859 9860
	int i;

9861
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9862 9863
	if (!tg->cfs_rq)
		goto err;
9864
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9865 9866
	if (!tg->se)
		goto err;
9867 9868

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9869 9870

	for_each_possible_cpu(i) {
9871
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9872

9873 9874
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9875 9876 9877
		if (!cfs_rq)
			goto err;

9878 9879
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9880 9881 9882
		if (!se)
			goto err;

9883
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9902
#else /* !CONFG_FAIR_GROUP_SCHED */
9903 9904 9905 9906
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9907 9908
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9920
#endif /* CONFIG_FAIR_GROUP_SCHED */
9921 9922

#ifdef CONFIG_RT_GROUP_SCHED
9923 9924 9925 9926
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9927 9928
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9940 9941
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9942 9943
{
	struct rt_rq *rt_rq;
9944
	struct sched_rt_entity *rt_se;
9945 9946 9947
	struct rq *rq;
	int i;

9948
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9949 9950
	if (!tg->rt_rq)
		goto err;
9951
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9952 9953 9954
	if (!tg->rt_se)
		goto err;

9955 9956
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9957 9958 9959 9960

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9961 9962
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9963 9964
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9965

9966 9967
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9968 9969
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9970

9971
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9972 9973
	}

9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9990
#else /* !CONFIG_RT_GROUP_SCHED */
9991 9992 9993 9994
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9995 9996
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
10008
#endif /* CONFIG_RT_GROUP_SCHED */
10009

10010
#ifdef CONFIG_GROUP_SCHED
10011 10012 10013 10014 10015 10016 10017 10018
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
10019
struct task_group *sched_create_group(struct task_group *parent)
10020 10021 10022 10023 10024 10025 10026 10027 10028
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

10029
	if (!alloc_fair_sched_group(tg, parent))
10030 10031
		goto err;

10032
	if (!alloc_rt_sched_group(tg, parent))
10033 10034
		goto err;

10035
	spin_lock_irqsave(&task_group_lock, flags);
10036
	for_each_possible_cpu(i) {
10037 10038
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10039
	}
P
Peter Zijlstra 已提交
10040
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10041 10042 10043 10044 10045

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10046
	list_add_rcu(&tg->siblings, &parent->children);
10047
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10048

10049
	return tg;
S
Srivatsa Vaddagiri 已提交
10050 10051

err:
P
Peter Zijlstra 已提交
10052
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10053 10054 10055
	return ERR_PTR(-ENOMEM);
}

10056
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10057
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10058 10059
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10060
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10061 10062
}

10063
/* Destroy runqueue etc associated with a task group */
10064
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10065
{
10066
	unsigned long flags;
10067
	int i;
S
Srivatsa Vaddagiri 已提交
10068

10069
	spin_lock_irqsave(&task_group_lock, flags);
10070
	for_each_possible_cpu(i) {
10071 10072
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10073
	}
P
Peter Zijlstra 已提交
10074
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10075
	list_del_rcu(&tg->siblings);
10076
	spin_unlock_irqrestore(&task_group_lock, flags);
10077 10078

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10079
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10080 10081
}

10082
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10083 10084 10085
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10086 10087
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10088 10089 10090 10091 10092 10093 10094 10095 10096
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10097
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10098 10099
	on_rq = tsk->se.on_rq;

10100
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10101
		dequeue_task(rq, tsk, 0);
10102 10103
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10104

P
Peter Zijlstra 已提交
10105
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10106

P
Peter Zijlstra 已提交
10107 10108 10109 10110 10111
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10112 10113 10114
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10115
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10116 10117 10118

	task_rq_unlock(rq, &flags);
}
10119
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10120

10121
#ifdef CONFIG_FAIR_GROUP_SCHED
10122
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10123 10124 10125 10126 10127
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10128
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10129 10130 10131
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10132
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10133

10134
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10135
		enqueue_entity(cfs_rq, se, 0);
10136
}
10137

10138 10139 10140 10141 10142 10143 10144 10145 10146
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10147 10148
}

10149 10150
static DEFINE_MUTEX(shares_mutex);

10151
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10152 10153
{
	int i;
10154
	unsigned long flags;
10155

10156 10157 10158 10159 10160 10161
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10162 10163
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10164 10165
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10166

10167
	mutex_lock(&shares_mutex);
10168
	if (tg->shares == shares)
10169
		goto done;
S
Srivatsa Vaddagiri 已提交
10170

10171
	spin_lock_irqsave(&task_group_lock, flags);
10172 10173
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10174
	list_del_rcu(&tg->siblings);
10175
	spin_unlock_irqrestore(&task_group_lock, flags);
10176 10177 10178 10179 10180 10181 10182 10183

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10184
	tg->shares = shares;
10185 10186 10187 10188 10189
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10190
		set_se_shares(tg->se[i], shares);
10191
	}
S
Srivatsa Vaddagiri 已提交
10192

10193 10194 10195 10196
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10197
	spin_lock_irqsave(&task_group_lock, flags);
10198 10199
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10200
	list_add_rcu(&tg->siblings, &tg->parent->children);
10201
	spin_unlock_irqrestore(&task_group_lock, flags);
10202
done:
10203
	mutex_unlock(&shares_mutex);
10204
	return 0;
S
Srivatsa Vaddagiri 已提交
10205 10206
}

10207 10208 10209 10210
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10211
#endif
10212

10213
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10214
/*
P
Peter Zijlstra 已提交
10215
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10216
 */
P
Peter Zijlstra 已提交
10217 10218 10219 10220 10221
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10222
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10223

P
Peter Zijlstra 已提交
10224
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10225 10226
}

P
Peter Zijlstra 已提交
10227 10228
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10229
{
P
Peter Zijlstra 已提交
10230
	struct task_struct *g, *p;
10231

P
Peter Zijlstra 已提交
10232 10233 10234 10235
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10236

P
Peter Zijlstra 已提交
10237 10238
	return 0;
}
10239

P
Peter Zijlstra 已提交
10240 10241 10242 10243 10244
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10245

P
Peter Zijlstra 已提交
10246 10247 10248 10249 10250 10251
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10252

P
Peter Zijlstra 已提交
10253 10254
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10255

P
Peter Zijlstra 已提交
10256 10257 10258
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10259 10260
	}

10261 10262 10263 10264 10265 10266 10267
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10268 10269 10270 10271 10272
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10273

10274 10275 10276
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10277 10278
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10279

P
Peter Zijlstra 已提交
10280
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10281

10282 10283 10284 10285 10286
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10287

10288 10289 10290
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10291 10292 10293
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10294

P
Peter Zijlstra 已提交
10295 10296 10297 10298
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10299

P
Peter Zijlstra 已提交
10300
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10301
	}
P
Peter Zijlstra 已提交
10302

P
Peter Zijlstra 已提交
10303 10304 10305 10306
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10307 10308
}

P
Peter Zijlstra 已提交
10309
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10310
{
P
Peter Zijlstra 已提交
10311 10312 10313 10314 10315 10316 10317
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10318 10319
}

10320 10321
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10322
{
P
Peter Zijlstra 已提交
10323
	int i, err = 0;
P
Peter Zijlstra 已提交
10324 10325

	mutex_lock(&rt_constraints_mutex);
10326
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10327 10328
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10329
		goto unlock;
P
Peter Zijlstra 已提交
10330 10331

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10332 10333
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10334 10335 10336 10337 10338 10339 10340 10341 10342

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10343
 unlock:
10344
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10345 10346 10347
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10348 10349
}

10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10362 10363 10364 10365
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10366
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10367 10368
		return -1;

10369
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10370 10371 10372
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10373 10374 10375 10376 10377 10378 10379 10380

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10381 10382 10383
	if (rt_period == 0)
		return -EINVAL;

10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10398
	u64 runtime, period;
10399 10400
	int ret = 0;

10401 10402 10403
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10404 10405 10406 10407 10408 10409 10410 10411
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10412

10413
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10414
	read_lock(&tasklist_lock);
10415
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10416
	read_unlock(&tasklist_lock);
10417 10418 10419 10420
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10431
#else /* !CONFIG_RT_GROUP_SCHED */
10432 10433
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10434 10435 10436
	unsigned long flags;
	int i;

10437 10438 10439
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10440 10441 10442 10443 10444 10445 10446
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10447 10448 10449 10450 10451 10452 10453 10454 10455 10456
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10457 10458
	return 0;
}
10459
#endif /* CONFIG_RT_GROUP_SCHED */
10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10490

10491
#ifdef CONFIG_CGROUP_SCHED
10492 10493

/* return corresponding task_group object of a cgroup */
10494
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10495
{
10496 10497
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10498 10499 10500
}

static struct cgroup_subsys_state *
10501
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10502
{
10503
	struct task_group *tg, *parent;
10504

10505
	if (!cgrp->parent) {
10506 10507 10508 10509
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10510 10511
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10512 10513 10514 10515 10516 10517
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10518 10519
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10520
{
10521
	struct task_group *tg = cgroup_tg(cgrp);
10522 10523 10524 10525

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10526 10527 10528
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10529
{
10530
#ifdef CONFIG_RT_GROUP_SCHED
10531
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10532 10533
		return -EINVAL;
#else
10534 10535 10536
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10537
#endif
10538 10539 10540 10541 10542

	return 0;
}

static void
10543
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10544 10545 10546 10547 10548
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10549
#ifdef CONFIG_FAIR_GROUP_SCHED
10550
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10551
				u64 shareval)
10552
{
10553
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10554 10555
}

10556
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10557
{
10558
	struct task_group *tg = cgroup_tg(cgrp);
10559 10560 10561

	return (u64) tg->shares;
}
10562
#endif /* CONFIG_FAIR_GROUP_SCHED */
10563

10564
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10565
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10566
				s64 val)
P
Peter Zijlstra 已提交
10567
{
10568
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10569 10570
}

10571
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10572
{
10573
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10574
}
10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10586
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10587

10588
static struct cftype cpu_files[] = {
10589
#ifdef CONFIG_FAIR_GROUP_SCHED
10590 10591
	{
		.name = "shares",
10592 10593
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10594
	},
10595 10596
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10597
	{
P
Peter Zijlstra 已提交
10598
		.name = "rt_runtime_us",
10599 10600
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10601
	},
10602 10603
	{
		.name = "rt_period_us",
10604 10605
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10606
	},
10607
#endif
10608 10609 10610 10611
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10612
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10613 10614 10615
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10616 10617 10618 10619 10620 10621 10622
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10623 10624 10625
	.early_init	= 1,
};

10626
#endif	/* CONFIG_CGROUP_SCHED */
10627 10628 10629 10630 10631 10632 10633 10634 10635 10636

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10637
/* track cpu usage of a group of tasks and its child groups */
10638 10639 10640 10641
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10642
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10643
	struct cpuacct *parent;
10644 10645 10646 10647 10648
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10649
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10650
{
10651
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10664
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10665 10666
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10667
	int i;
10668 10669

	if (!ca)
10670
		goto out;
10671 10672

	ca->cpuusage = alloc_percpu(u64);
10673 10674 10675 10676 10677 10678
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10679

10680 10681 10682
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10683
	return &ca->css;
10684 10685 10686 10687 10688 10689 10690 10691 10692

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10693 10694 10695
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10696
static void
10697
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10698
{
10699
	struct cpuacct *ca = cgroup_ca(cgrp);
10700
	int i;
10701

10702 10703
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10704 10705 10706 10707
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10708 10709
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10710
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10729
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10743
/* return total cpu usage (in nanoseconds) of a group */
10744
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10745
{
10746
	struct cpuacct *ca = cgroup_ca(cgrp);
10747 10748 10749
	u64 totalcpuusage = 0;
	int i;

10750 10751
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10752 10753 10754 10755

	return totalcpuusage;
}

10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10768 10769
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10770 10771 10772 10773 10774

out:
	return err;
}

10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10809 10810 10811
static struct cftype files[] = {
	{
		.name = "usage",
10812 10813
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10814
	},
10815 10816 10817 10818
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10819 10820 10821 10822
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10823 10824
};

10825
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10826
{
10827
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10828 10829 10830 10831 10832 10833 10834 10835 10836 10837
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10838
	int cpu;
10839

L
Li Zefan 已提交
10840
	if (unlikely(!cpuacct_subsys.active))
10841 10842
		return;

10843
	cpu = task_cpu(tsk);
10844 10845 10846

	rcu_read_lock();

10847 10848
	ca = task_ca(tsk);

10849
	for (; ca; ca = ca->parent) {
10850
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10851 10852
		*cpuusage += cputime;
	}
10853 10854

	rcu_read_unlock();
10855 10856
}

10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10878 10879 10880 10881 10882 10883 10884 10885
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */