sched.c 265.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300 301

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313 314 315 316 317 318
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

319 320 321
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
322
#else /* !CONFIG_USER_SCHED */
323
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
324
#endif /* CONFIG_USER_SCHED */
325

326
/*
327 328 329 330
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
331 332 333
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
334
#define MIN_SHARES	2
335
#define MAX_SHARES	(1UL << 18)
336

337 338 339
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
340
/* Default task group.
I
Ingo Molnar 已提交
341
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
342
 */
343
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
344 345

/* return group to which a task belongs */
346
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
347
{
348
	struct task_group *tg;
349

350
#ifdef CONFIG_USER_SCHED
351 352 353
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
354
#elif defined(CONFIG_CGROUP_SCHED)
355 356
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
357
#else
I
Ingo Molnar 已提交
358
	tg = &init_task_group;
359
#endif
360
	return tg;
S
Srivatsa Vaddagiri 已提交
361 362 363
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
364
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
365
{
366
#ifdef CONFIG_FAIR_GROUP_SCHED
367 368
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
369
#endif
P
Peter Zijlstra 已提交
370

371
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
372 373
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
374
#endif
S
Srivatsa Vaddagiri 已提交
375 376 377 378
}

#else

P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 381 382 383
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
384

385
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
386

I
Ingo Molnar 已提交
387 388 389 390 391 392
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
393
	u64 min_vruntime;
I
Ingo Molnar 已提交
394 395 396

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
397 398 399 400 401 402

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
403 404
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
405
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
406

P
Peter Zijlstra 已提交
407
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
408

409
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
410 411
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
412 413
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
414 415 416 417 418 419
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
420 421
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
422 423 424

#ifdef CONFIG_SMP
	/*
425
	 * the part of load.weight contributed by tasks
426
	 */
427
	unsigned long task_weight;
428

429 430 431 432 433 434 435
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
436

437 438 439 440
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
441 442 443 444 445

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
446
#endif
I
Ingo Molnar 已提交
447 448
#endif
};
L
Linus Torvalds 已提交
449

I
Ingo Molnar 已提交
450 451 452
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
453
	unsigned long rt_nr_running;
454
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 456
	struct {
		int curr; /* highest queued rt task prio */
457
#ifdef CONFIG_SMP
458
		int next; /* next highest */
459
#endif
460
	} highest_prio;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
#ifdef CONFIG_SMP
463
	unsigned long rt_nr_migratory;
464
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
465
	int overloaded;
466
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
467
#endif
P
Peter Zijlstra 已提交
468
	int rt_throttled;
P
Peter Zijlstra 已提交
469
	u64 rt_time;
P
Peter Zijlstra 已提交
470
	u64 rt_runtime;
I
Ingo Molnar 已提交
471
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
472
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
473

474
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
475 476
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
477 478 479 480 481
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
482 483
};

G
Gregory Haskins 已提交
484 485 486 487
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
488 489
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
490 491 492 493 494 495
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
496 497
	cpumask_var_t span;
	cpumask_var_t online;
498

I
Ingo Molnar 已提交
499
	/*
500 501 502
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
503
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
504
	atomic_t rto_count;
505 506 507
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
508 509
};

510 511 512 513
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
514 515 516 517
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
518 519 520 521 522 523 524
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
525
struct rq {
526 527
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
528 529 530 531 532 533

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
534 535
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536
#ifdef CONFIG_NO_HZ
537
	unsigned long last_tick_seen;
538 539
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543
	unsigned long nr_load_updates;
	u64 nr_switches;
544
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
545 546

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
547 548
	struct rt_rq rt;

I
Ingo Molnar 已提交
549
#ifdef CONFIG_FAIR_GROUP_SCHED
550 551
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
552 553
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
554
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

565
	struct task_struct *curr, *idle;
566
	unsigned long next_balance;
L
Linus Torvalds 已提交
567
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
568

569
	u64 clock;
I
Ingo Molnar 已提交
570

L
Linus Torvalds 已提交
571 572 573
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
574
	struct root_domain *rd;
L
Linus Torvalds 已提交
575 576
	struct sched_domain *sd;

577
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
578
	/* For active balancing */
579
	int post_schedule;
L
Linus Torvalds 已提交
580 581
	int active_balance;
	int push_cpu;
582 583
	/* cpu of this runqueue: */
	int cpu;
584
	int online;
L
Linus Torvalds 已提交
585

586
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
587

588
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
589
	struct list_head migration_queue;
590 591 592

	u64 rt_avg;
	u64 age_stamp;
L
Linus Torvalds 已提交
593 594
#endif

595 596 597 598
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
599
#ifdef CONFIG_SCHED_HRTICK
600 601 602 603
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
604 605 606
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
607 608 609
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
610 611
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
612 613

	/* sys_sched_yield() stats */
614
	unsigned int yld_count;
L
Linus Torvalds 已提交
615 616

	/* schedule() stats */
617 618 619
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
620 621

	/* try_to_wake_up() stats */
622 623
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
624 625

	/* BKL stats */
626
	unsigned int bkl_count;
L
Linus Torvalds 已提交
627 628 629
#endif
};

630
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
631

P
Peter Zijlstra 已提交
632 633
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
634
{
P
Peter Zijlstra 已提交
635
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
636 637
}

638 639 640 641 642 643 644 645 646
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
661
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
662

I
Ingo Molnar 已提交
663
inline void update_rq_clock(struct rq *rq)
664 665 666 667
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
668 669 670 671 672 673 674 675 676
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
695 696 697
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
698 699 700 701

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
702
enum {
P
Peter Zijlstra 已提交
703
#include "sched_features.h"
I
Ingo Molnar 已提交
704 705
};

P
Peter Zijlstra 已提交
706 707 708 709 710
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
711
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
712 713 714 715 716 717 718 719 720
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

721
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
722 723 724 725 726 727
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
728
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
729 730 731 732
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
733 734 735
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
736
	}
L
Li Zefan 已提交
737
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
738

L
Li Zefan 已提交
739
	return 0;
P
Peter Zijlstra 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
759
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
784 785 786 787 788
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
789
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
790 791 792 793 794
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
809

810 811 812 813 814 815
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
816 817
/*
 * ratelimit for updating the group shares.
818
 * default: 0.25ms
P
Peter Zijlstra 已提交
819
 */
820
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
821

822 823 824 825 826 827 828
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

829 830 831 832 833 834 835 836
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
837
/*
P
Peter Zijlstra 已提交
838
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
839 840
 * default: 1s
 */
P
Peter Zijlstra 已提交
841
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
842

843 844
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
845 846 847 848 849
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
850

851 852 853 854 855 856 857
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
858
	if (sysctl_sched_rt_runtime < 0)
859 860 861 862
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
863

L
Linus Torvalds 已提交
864
#ifndef prepare_arch_switch
865 866 867 868 869 870
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

871 872 873 874 875
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

876
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
877
static inline int task_running(struct rq *rq, struct task_struct *p)
878
{
879
	return task_current(rq, p);
880 881
}

882
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 884 885
{
}

886
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
887
{
888 889 890 891
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
892 893 894 895 896 897 898
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

899 900 901 902
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
903
static inline int task_running(struct rq *rq, struct task_struct *p)
904 905 906 907
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
908
	return task_current(rq, p);
909 910 911
#endif
}

912
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

929
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
930 931 932 933 934 935 936 937 938 939 940 941
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
942
#endif
943 944
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
945

946 947 948 949
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
950
static inline struct rq *__task_rq_lock(struct task_struct *p)
951 952
	__acquires(rq->lock)
{
953 954 955 956 957
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
958 959 960 961
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
962 963
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
964
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
965 966
 * explicitly disabling preemption.
 */
967
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
968 969
	__acquires(rq->lock)
{
970
	struct rq *rq;
L
Linus Torvalds 已提交
971

972 973 974 975 976 977
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
978 979 980 981
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

982 983 984 985 986 987 988 989
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
990
static void __task_rq_unlock(struct rq *rq)
991 992 993 994 995
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

996
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
997 998 999 1000 1001 1002
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1003
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1004
 */
A
Alexey Dobriyan 已提交
1005
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1006 1007
	__acquires(rq->lock)
{
1008
	struct rq *rq;
L
Linus Torvalds 已提交
1009 1010 1011 1012 1013 1014 1015 1016

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1038
	if (!cpu_active(cpu_of(rq)))
1039
		return 0;
P
Peter Zijlstra 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1060
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1061 1062 1063 1064 1065 1066
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1067
#ifdef CONFIG_SMP
1068 1069 1070 1071
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1072
{
1073
	struct rq *rq = arg;
1074

1075 1076 1077 1078
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1079 1080
}

1081 1082 1083 1084 1085 1086
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1087
{
1088 1089
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1090

1091
	hrtimer_set_expires(timer, time);
1092 1093 1094 1095

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1096
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1097 1098
		rq->hrtick_csd_pending = 1;
	}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1113
		hrtick_clear(cpu_rq(cpu));
1114 1115 1116 1117 1118 1119
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1120
static __init void init_hrtick(void)
1121 1122 1123
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1124 1125 1126 1127 1128 1129 1130 1131
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1132
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1133
			HRTIMER_MODE_REL_PINNED, 0);
1134
}
1135

A
Andrew Morton 已提交
1136
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1137 1138
{
}
1139
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1140

1141
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1142
{
1143 1144
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1145

1146 1147 1148 1149
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1150

1151 1152
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1153
}
A
Andrew Morton 已提交
1154
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1155 1156 1157 1158 1159 1160 1161 1162
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1163 1164 1165
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1166
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1167

I
Ingo Molnar 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1181
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1182 1183 1184 1185 1186
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1187
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1188 1189
		return;

1190
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1246
	set_tsk_need_resched(rq->idle);
1247 1248 1249 1250 1251 1252

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1253
#endif /* CONFIG_NO_HZ */
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1276
#else /* !CONFIG_SMP */
1277
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1278 1279
{
	assert_spin_locked(&task_rq(p)->lock);
1280
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1281
}
1282 1283 1284 1285

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1430 1431
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 1433
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1434 1435
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 1437
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1438 1439
#endif

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1450
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1451
typedef int (*tg_visitor)(struct task_group *, void *);
1452 1453 1454 1455 1456

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1457
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 1459
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1460
	int ret;
1461 1462 1463 1464

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1465 1466 1467
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1468 1469 1470 1471 1472 1473 1474
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1475 1476 1477
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1483
out_unlock:
1484
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1485 1486

	return ret;
1487 1488
}

P
Peter Zijlstra 已提交
1489 1490 1491
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1492
}
P
Peter Zijlstra 已提交
1493 1494 1495
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1555 1556 1557 1558 1559
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1560
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1561

1562 1563
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1564 1565
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1566 1567 1568 1569 1570

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1571

1572 1573 1574 1575 1576 1577
struct update_shares_data {
	unsigned long rq_weight[NR_CPUS];
};

static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);

1578 1579 1580 1581 1582
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1583 1584 1585 1586
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
				    struct update_shares_data *usd)
1587
{
1588
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1589
	int boost = 0;
1590

1591
	rq_weight = usd->rq_weight[cpu];
P
Peter Zijlstra 已提交
1592 1593 1594 1595
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1596

1597
	/*
P
Peter Zijlstra 已提交
1598 1599 1600
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1601
	 */
1602
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1603
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1604

1605 1606 1607 1608
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1609

1610
		spin_lock_irqsave(&rq->lock, flags);
1611
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1612
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1613 1614 1615
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1616
}
1617 1618

/*
1619 1620 1621
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1622
 */
P
Peter Zijlstra 已提交
1623
static int tg_shares_up(struct task_group *tg, void *data)
1624
{
1625 1626
	unsigned long weight, rq_weight = 0, shares = 0;
	struct update_shares_data *usd;
P
Peter Zijlstra 已提交
1627
	struct sched_domain *sd = data;
1628
	unsigned long flags;
1629
	int i;
1630

1631 1632 1633 1634 1635 1636
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
	usd = &__get_cpu_var(update_shares_data);

1637
	for_each_cpu(i, sched_domain_span(sd)) {
1638 1639 1640
		weight = tg->cfs_rq[i]->load.weight;
		usd->rq_weight[i] = weight;

1641 1642 1643 1644 1645 1646 1647 1648 1649
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

		rq_weight += weight;
1650
		shares += tg->cfs_rq[i]->shares;
1651 1652
	}

1653 1654 1655 1656 1657
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1658

1659
	for_each_cpu(i, sched_domain_span(sd))
1660 1661 1662
		update_group_shares_cpu(tg, i, shares, rq_weight, usd);

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1663 1664

	return 0;
1665 1666 1667
}

/*
1668 1669 1670
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1671
 */
P
Peter Zijlstra 已提交
1672
static int tg_load_down(struct task_group *tg, void *data)
1673
{
1674
	unsigned long load;
P
Peter Zijlstra 已提交
1675
	long cpu = (long)data;
1676

1677 1678 1679 1680 1681 1682 1683
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1684

1685
	tg->cfs_rq[cpu]->h_load = load;
1686

P
Peter Zijlstra 已提交
1687
	return 0;
1688 1689
}

1690
static void update_shares(struct sched_domain *sd)
1691
{
1692 1693 1694 1695 1696 1697 1698 1699
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1700 1701 1702

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1703
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1704
	}
1705 1706
}

1707 1708
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1709 1710 1711
	if (root_task_group_empty())
		return;

1712 1713 1714 1715 1716
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1717
static void update_h_load(long cpu)
1718
{
1719 1720 1721
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1722
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1723 1724 1725 1726
}

#else

1727
static inline void update_shares(struct sched_domain *sd)
1728 1729 1730
{
}

1731 1732 1733 1734
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1735 1736
#endif

1737 1738
#ifdef CONFIG_PREEMPT

1739 1740
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1741
/*
1742 1743 1744 1745 1746 1747
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1748
 */
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1803 1804 1805 1806 1807 1808
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1809 1810
#endif

V
Vegard Nossum 已提交
1811
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1812 1813
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1814
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1815 1816 1817
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1818
#endif
1819

1820 1821
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1822 1823
#include "sched_stats.h"
#include "sched_idletask.c"
1824 1825
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1826 1827 1828 1829 1830
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1831 1832
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1833

1834
static void inc_nr_running(struct rq *rq)
1835 1836 1837 1838
{
	rq->nr_running++;
}

1839
static void dec_nr_running(struct rq *rq)
1840 1841 1842 1843
{
	rq->nr_running--;
}

1844 1845 1846
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1847 1848 1849 1850
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1851

I
Ingo Molnar 已提交
1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1860

I
Ingo Molnar 已提交
1861 1862
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1863 1864
}

1865 1866 1867 1868 1869 1870
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1871
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1872
{
P
Peter Zijlstra 已提交
1873 1874 1875
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1876
	sched_info_queued(p);
1877
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1878
	p->se.on_rq = 1;
1879 1880
}

1881
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1882
{
P
Peter Zijlstra 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1892 1893
	}

1894
	sched_info_dequeued(p);
1895
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1896
	p->se.on_rq = 0;
1897 1898
}

1899
/*
I
Ingo Molnar 已提交
1900
 * __normal_prio - return the priority that is based on the static prio
1901 1902 1903
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1904
	return p->static_prio;
1905 1906
}

1907 1908 1909 1910 1911 1912 1913
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1914
static inline int normal_prio(struct task_struct *p)
1915 1916 1917
{
	int prio;

1918
	if (task_has_rt_policy(p))
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1932
static int effective_prio(struct task_struct *p)
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1945
/*
I
Ingo Molnar 已提交
1946
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1947
 */
I
Ingo Molnar 已提交
1948
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1949
{
1950
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1951
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1952

1953
	enqueue_task(rq, p, wakeup);
1954
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1960
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1961
{
1962
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1963 1964
		rq->nr_uninterruptible++;

1965
	dequeue_task(rq, p, sleep);
1966
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971 1972
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1973
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1974 1975 1976 1977
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1978 1979
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1980
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1981
#ifdef CONFIG_SMP
1982 1983 1984 1985 1986 1987
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1988 1989
	task_thread_info(p)->cpu = cpu;
#endif
1990 1991
}

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
2004
#ifdef CONFIG_SMP
2005 2006 2007
/*
 * Is this task likely cache-hot:
 */
2008
static int
2009 2010 2011 2012
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2013 2014 2015
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
2016 2017 2018
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2019 2020
		return 1;

2021 2022 2023
	if (p->sched_class != &fair_sched_class)
		return 0;

2024 2025 2026 2027 2028
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2029 2030 2031 2032 2033 2034
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2035
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2036
{
I
Ingo Molnar 已提交
2037 2038
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2039 2040
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2041
	u64 clock_offset;
I
Ingo Molnar 已提交
2042 2043

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
2044

2045
	trace_sched_migrate_task(p, new_cpu);
2046

I
Ingo Molnar 已提交
2047 2048 2049
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
2050 2051 2052 2053
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
2054
#endif
2055
	if (old_cpu != new_cpu) {
2056
		p->se.nr_migrations++;
2057
		new_rq->nr_migrations_in++;
2058
#ifdef CONFIG_SCHEDSTATS
2059 2060
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2061
#endif
2062 2063
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2064
	}
2065 2066
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2067 2068

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2069 2070
}

2071
struct migration_req {
L
Linus Torvalds 已提交
2072 2073
	struct list_head list;

2074
	struct task_struct *task;
L
Linus Torvalds 已提交
2075 2076 2077
	int dest_cpu;

	struct completion done;
2078
};
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2084
static int
2085
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2086
{
2087
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2093
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099 2100 2101
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2102

L
Linus Torvalds 已提交
2103 2104 2105
	return 1;
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2149 2150 2151
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2152 2153 2154 2155 2156 2157 2158
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2159 2160 2161 2162 2163 2164
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2165
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2166 2167
{
	unsigned long flags;
I
Ingo Molnar 已提交
2168
	int running, on_rq;
R
Roland McGrath 已提交
2169
	unsigned long ncsw;
2170
	struct rq *rq;
L
Linus Torvalds 已提交
2171

2172 2173 2174 2175 2176 2177 2178 2179
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2180

2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2192 2193 2194
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2195
			cpu_relax();
R
Roland McGrath 已提交
2196
		}
2197

2198 2199 2200 2201 2202 2203
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2204
		trace_sched_wait_task(rq, p);
2205 2206
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2207
		ncsw = 0;
2208
		if (!match_state || p->state == match_state)
2209
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2210
		task_rq_unlock(rq, &flags);
2211

R
Roland McGrath 已提交
2212 2213 2214 2215 2216 2217
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2228

2229 2230 2231 2232 2233
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2234
		 * So if it was still runnable (but just not actively
2235 2236 2237 2238 2239 2240 2241
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2242

2243 2244 2245 2246 2247 2248 2249
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2250 2251

	return ncsw;
L
Linus Torvalds 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2267
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2277
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2278
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2279

T
Thomas Gleixner 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2315 2316
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2317
{
2318
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2319
	unsigned long flags;
2320
	struct rq *rq;
L
Linus Torvalds 已提交
2321

2322
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2323
		wake_flags &= ~WF_SYNC;
2324

P
Peter Zijlstra 已提交
2325 2326
	this_cpu = get_cpu();

2327
	smp_wmb();
L
Linus Torvalds 已提交
2328
	rq = task_rq_lock(p, &flags);
2329
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2330
	if (!(p->state & state))
L
Linus Torvalds 已提交
2331 2332
		goto out;

I
Ingo Molnar 已提交
2333
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2334 2335 2336
		goto out_running;

	cpu = task_cpu(p);
2337
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2338 2339 2340 2341 2342

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2343 2344 2345 2346 2347 2348 2349
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
	 */
	p->state = TASK_WAKING;
	task_rq_unlock(rq, &flags);

P
Peter Zijlstra 已提交
2350
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2351
	if (cpu != orig_cpu)
2352
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2353

P
Peter Zijlstra 已提交
2354 2355 2356
	rq = task_rq_lock(p, &flags);
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2357

2358 2359 2360 2361 2362 2363 2364
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2365
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2366 2367 2368 2369 2370
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2371
#endif /* CONFIG_SCHEDSTATS */
2372

L
Linus Torvalds 已提交
2373 2374
out_activate:
#endif /* CONFIG_SMP */
2375
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2376
	if (wake_flags & WF_SYNC)
2377 2378 2379 2380 2381 2382 2383
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2384
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2385 2386
	success = 1;

P
Peter Zijlstra 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2403
out_running:
2404
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2405
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2406

L
Linus Torvalds 已提交
2407
	p->state = TASK_RUNNING;
2408 2409 2410 2411
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2412 2413
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2414
	put_cpu();
L
Linus Torvalds 已提交
2415 2416 2417 2418

	return success;
}

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2430
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2431
{
2432
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2433 2434 2435
}
EXPORT_SYMBOL(wake_up_process);

2436
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2444 2445 2446 2447 2448 2449 2450
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2451
	p->se.prev_sum_exec_runtime	= 0;
2452
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2453 2454
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2455 2456
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2457 2458

#ifdef CONFIG_SCHEDSTATS
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2490
#endif
N
Nick Piggin 已提交
2491

P
Peter Zijlstra 已提交
2492
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2493
	p->se.on_rq = 0;
2494
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2495

2496 2497 2498 2499
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2518
	/*
2519
	 * Make sure we do not leak PI boosting priority to the child.
2520 2521
	 */
	p->prio = current->normal_prio;
2522

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2533 2534 2535 2536 2537
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2538 2539 2540 2541 2542 2543
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2544

H
Hiroshi Shimamoto 已提交
2545 2546
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2547

2548 2549 2550 2551 2552
#ifdef CONFIG_SMP
	cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
#endif
	set_task_cpu(p, cpu);

2553
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2554
	if (likely(sched_info_on()))
2555
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2556
#endif
2557
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2558 2559
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2560
#ifdef CONFIG_PREEMPT
2561
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2562
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2563
#endif
2564 2565
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2566
	put_cpu();
L
Linus Torvalds 已提交
2567 2568 2569 2570 2571 2572 2573 2574 2575
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2576
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2577 2578
{
	unsigned long flags;
I
Ingo Molnar 已提交
2579
	struct rq *rq;
L
Linus Torvalds 已提交
2580 2581

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2582
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2583
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2584 2585 2586

	p->prio = effective_prio(p);

2587
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2588
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2589 2590
	} else {
		/*
I
Ingo Molnar 已提交
2591 2592
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2593
		 */
2594
		p->sched_class->task_new(rq, p);
2595
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2596
	}
2597
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2598
	check_preempt_curr(rq, p, WF_FORK);
2599 2600 2601 2602
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2603
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2604 2605
}

2606 2607 2608
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2609
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2610
 * @notifier: notifier struct to register
2611 2612 2613 2614 2615 2616 2617 2618 2619
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2620
 * @notifier: notifier struct to unregister
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2650
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2662
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2663

2664 2665 2666
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2667
 * @prev: the current task that is being switched out
2668 2669 2670 2671 2672 2673 2674 2675 2676
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2677 2678 2679
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2680
{
2681
	fire_sched_out_preempt_notifiers(prev, next);
2682 2683 2684 2685
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2686 2687
/**
 * finish_task_switch - clean up after a task-switch
2688
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2689 2690
 * @prev: the thread we just switched away from.
 *
2691 2692 2693 2694
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2695 2696
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2697
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2698 2699 2700
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2701
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2702 2703 2704
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2705
	long prev_state;
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2711
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2712 2713
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2714
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2715 2716 2717 2718 2719
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2720
	prev_state = prev->state;
2721
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2722
	perf_counter_task_sched_in(current, cpu_of(rq));
2723
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2724

2725
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2726 2727
	if (mm)
		mmdrop(mm);
2728
	if (unlikely(prev_state == TASK_DEAD)) {
2729 2730 2731
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2732
		 */
2733
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2734
		put_task_struct(prev);
2735
	}
L
Linus Torvalds 已提交
2736 2737
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2763

2764 2765 2766 2767 2768 2769
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2770 2771
}

2772 2773
#endif

L
Linus Torvalds 已提交
2774 2775 2776 2777
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2778
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2779 2780
	__releases(rq->lock)
{
2781 2782
	struct rq *rq = this_rq();

2783
	finish_task_switch(rq, prev);
2784

2785 2786 2787 2788 2789
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2790

2791 2792 2793 2794
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2795
	if (current->set_child_tid)
2796
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2803
static inline void
2804
context_switch(struct rq *rq, struct task_struct *prev,
2805
	       struct task_struct *next)
L
Linus Torvalds 已提交
2806
{
I
Ingo Molnar 已提交
2807
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2808

2809
	prepare_task_switch(rq, prev, next);
2810
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2811 2812
	mm = next->mm;
	oldmm = prev->active_mm;
2813 2814 2815 2816 2817
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2818
	arch_start_context_switch(prev);
2819

I
Ingo Molnar 已提交
2820
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2827
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2828 2829 2830
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2831 2832 2833 2834 2835 2836 2837
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2838
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2839
#endif
L
Linus Torvalds 已提交
2840 2841 2842 2843

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2844 2845 2846 2847 2848 2849 2850
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2874
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2889 2890
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2891

2892
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2893 2894 2895 2896 2897 2898 2899 2900 2901
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2902
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2903 2904 2905 2906 2907
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2908 2909 2910 2911 2912 2913
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2929 2930
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2931
{
2932 2933 2934 2935
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2948

2949 2950
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2951

2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
2974 2975
}

2976 2977 2978 2979 2980 2981 2982 2983 2984
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

2985
/*
I
Ingo Molnar 已提交
2986 2987
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2988
 */
I
Ingo Molnar 已提交
2989
static void update_cpu_load(struct rq *this_rq)
2990
{
2991
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3004 3005 3006 3007 3008 3009 3010
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3011 3012
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3013 3014 3015 3016 3017

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3018 3019
}

I
Ingo Molnar 已提交
3020 3021
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3022 3023 3024 3025 3026 3027
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3028
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3029 3030 3031
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3032
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3033 3034 3035 3036
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3037
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3038
			spin_lock(&rq1->lock);
3039
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3040 3041
		} else {
			spin_lock(&rq2->lock);
3042
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3043 3044
		}
	}
3045 3046
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3047 3048 3049 3050 3051 3052 3053 3054
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3055
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3069
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3070 3071
 * the cpu_allowed mask is restored.
 */
3072
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3073
{
3074
	struct migration_req req;
L
Linus Torvalds 已提交
3075
	unsigned long flags;
3076
	struct rq *rq;
L
Linus Torvalds 已提交
3077 3078

	rq = task_rq_lock(p, &flags);
3079
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3080
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3081 3082 3083 3084 3085 3086
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3087

L
Linus Torvalds 已提交
3088 3089 3090 3091 3092
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3093

L
Linus Torvalds 已提交
3094 3095 3096 3097 3098 3099 3100
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3101 3102
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3103 3104 3105 3106
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3107
	new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3108
	put_cpu();
N
Nick Piggin 已提交
3109 3110
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3117 3118
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3119
{
3120
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3121
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3122
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3123 3124 3125 3126
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3127
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3128 3129 3130 3131 3132
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3133
static
3134
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3135
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3136
		     int *all_pinned)
L
Linus Torvalds 已提交
3137
{
3138
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3145
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3146
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3147
		return 0;
3148
	}
3149 3150
	*all_pinned = 0;

3151 3152
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3153
		return 0;
3154
	}
L
Linus Torvalds 已提交
3155

3156 3157 3158 3159 3160 3161
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3162 3163 3164
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3165
#ifdef CONFIG_SCHEDSTATS
3166
		if (tsk_cache_hot) {
3167
			schedstat_inc(sd, lb_hot_gained[idle]);
3168 3169
			schedstat_inc(p, se.nr_forced_migrations);
		}
3170 3171 3172 3173
#endif
		return 1;
	}

3174
	if (tsk_cache_hot) {
3175
		schedstat_inc(p, se.nr_failed_migrations_hot);
3176
		return 0;
3177
	}
L
Linus Torvalds 已提交
3178 3179 3180
	return 1;
}

3181 3182 3183 3184 3185
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3186
{
3187
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3188 3189
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3190

3191
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3192 3193
		goto out;

3194 3195
	pinned = 1;

L
Linus Torvalds 已提交
3196
	/*
I
Ingo Molnar 已提交
3197
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3198
	 */
I
Ingo Molnar 已提交
3199 3200
	p = iterator->start(iterator->arg);
next:
3201
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3202
		goto out;
3203 3204

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3205 3206 3207
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3208 3209
	}

I
Ingo Molnar 已提交
3210
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3211
	pulled++;
I
Ingo Molnar 已提交
3212
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3213

3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3224
	/*
3225
	 * We only want to steal up to the prescribed amount of weighted load.
3226
	 */
3227
	if (rem_load_move > 0) {
3228 3229
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3230 3231
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3232 3233 3234
	}
out:
	/*
3235
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3236 3237 3238 3239
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3240 3241 3242

	if (all_pinned)
		*all_pinned = pinned;
3243 3244

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3245 3246
}

I
Ingo Molnar 已提交
3247
/*
P
Peter Williams 已提交
3248 3249 3250
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3251 3252 3253 3254
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3255
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3256 3257 3258
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3259
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3260
	unsigned long total_load_moved = 0;
3261
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3262 3263

	do {
P
Peter Williams 已提交
3264 3265
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3266
				max_load_move - total_load_moved,
3267
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3268
		class = class->next;
3269

3270 3271 3272 3273 3274 3275
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3276 3277
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3278
#endif
P
Peter Williams 已提交
3279
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3280

P
Peter Williams 已提交
3281 3282 3283
	return total_load_moved > 0;
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3320
	const struct sched_class *class;
P
Peter Williams 已提交
3321

3322
	for_each_class(class) {
3323
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3324
			return 1;
3325
	}
P
Peter Williams 已提交
3326 3327

	return 0;
I
Ingo Molnar 已提交
3328
}
3329
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3330
/*
3331 3332
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3333
 */
3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3352
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3353 3354 3355 3356 3357 3358
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3359
#endif
3360
};
L
Linus Torvalds 已提交
3361

3362
/*
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3395
		load_idx = sd->busy_idx;
3396 3397 3398
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3399
		load_idx = sd->newidle_idx;
3400 3401
		break;
	default:
N
Nick Piggin 已提交
3402
		load_idx = sd->idle_idx;
3403 3404
		break;
	}
L
Linus Torvalds 已提交
3405

3406 3407
	return load_idx;
}
L
Linus Torvalds 已提交
3408 3409


3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3434

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3448

3449 3450
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3451

3452 3453 3454 3455 3456 3457 3458
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3459

3460 3461 3462 3463 3464 3465 3466 3467
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3468

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3482

3483 3484 3485 3486 3487
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3488
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3489
		return;
L
Linus Torvalds 已提交
3490

3491 3492 3493 3494 3495 3496 3497
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3498

3499
/**
3500
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3501 3502 3503 3504 3505
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3506 3507 3508 3509 3510
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3511 3512 3513 3514 3515 3516 3517 3518
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3519

3520 3521 3522
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3523

3524 3525
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3526

3527
	return 1;
L
Linus Torvalds 已提交
3528

3529 3530 3531 3532 3533 3534 3535
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3536

3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3562 3563 3564 3565 3566 3567 3568 3569 3570
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3571 3572 3573 3574 3575
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3594 3595 3596 3597 3598 3599
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3600 3601 3602 3603 3604
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3605
	power >>= SCHED_LOAD_SHIFT;
3606 3607

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3608 3609 3610 3611 3612
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3613 3614 3615
		power >>= SCHED_LOAD_SHIFT;
	}

3616 3617 3618 3619 3620
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3621

3622
	sdg->cpu_power = power;
3623 3624 3625
}

static void update_group_power(struct sched_domain *sd, int cpu)
3626 3627 3628
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3629
	unsigned long power;
3630 3631

	if (!child) {
3632
		update_cpu_power(sd, cpu);
3633 3634 3635
		return;
	}

3636
	power = 0;
3637 3638 3639

	group = child->groups;
	do {
3640
		power += group->cpu_power;
3641 3642
		group = group->next;
	} while (group != child->groups);
3643 3644

	sdg->cpu_power = power;
3645
}
3646

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3659 3660
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3671
	if (local_group) {
3672
		balance_cpu = group_first_cpu(group);
3673
		if (balance_cpu == this_cpu)
3674
			update_group_power(sd, this_cpu);
3675
	}
3676 3677 3678 3679 3680

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3681

3682 3683
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3684

3685 3686
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3687

3688
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3689
		if (local_group) {
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3702
		}
3703

3704 3705 3706
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3707

3708 3709
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3722

3723
	/* Adjust by relative CPU power of the group */
3724
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3725

3726 3727 3728 3729 3730 3731 3732 3733 3734 3735

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3736 3737
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3738 3739 3740 3741

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3742
	sgs->group_capacity =
3743
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3744
}
I
Ingo Molnar 已提交
3745

3746 3747 3748 3749 3750 3751 3752 3753 3754
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3755
 */
3756 3757 3758 3759
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3760
{
P
Peter Zijlstra 已提交
3761
	struct sched_domain *child = sd->child;
3762
	struct sched_group *group = sd->groups;
3763
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3764 3765 3766 3767
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3768

3769
	init_sd_power_savings_stats(sd, sds, idle);
3770
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3771 3772 3773 3774

	do {
		int local_group;

3775 3776
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3777
		memset(&sgs, 0, sizeof(sgs));
3778
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3779
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3780

3781 3782
		if (local_group && balance && !(*balance))
			return;
3783

3784
		sds->total_load += sgs.group_load;
3785
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3786

P
Peter Zijlstra 已提交
3787 3788 3789 3790 3791 3792
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3793
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3794 3795

		if (local_group) {
3796 3797 3798 3799 3800
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3801 3802
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3803 3804 3805 3806 3807
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3808
		}
3809

3810
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3811 3812
		group = group->next;
	} while (group != sd->groups);
3813
}
L
Linus Torvalds 已提交
3814

3815 3816
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3817 3818
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3837

3838 3839 3840 3841 3842
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3843

L
Linus Torvalds 已提交
3844
	/*
3845 3846 3847
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3848
	 */
3849

3850
	pwr_now += sds->busiest->cpu_power *
3851
			min(sds->busiest_load_per_task, sds->max_load);
3852
	pwr_now += sds->this->cpu_power *
3853 3854 3855 3856
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3857 3858
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3859
	if (sds->max_load > tmp)
3860
		pwr_move += sds->busiest->cpu_power *
3861 3862 3863
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3864
	if (sds->max_load * sds->busiest->cpu_power <
3865
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3866 3867
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3868
	else
3869 3870 3871
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3872 3873 3874 3875 3876 3877 3878
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3891 3892 3893 3894 3895
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3896
	if (sds->max_load < sds->avg_load) {
3897
		*imbalance = 0;
3898
		return fix_small_imbalance(sds, this_cpu, imbalance);
3899
	}
3900 3901

	/* Don't want to pull so many tasks that a group would go idle */
3902 3903
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3904

L
Linus Torvalds 已提交
3905
	/* How much load to actually move to equalise the imbalance */
3906 3907
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3908 3909
			/ SCHED_LOAD_SCALE;

3910 3911 3912 3913 3914 3915
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3916 3917
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3918

3919
}
3920
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3921

3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3946 3947 3948 3949 3950 3951 3952
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3953

3954
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960 3961 3962
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3973 3974
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3975

3976 3977
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3978

3979
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3980 3981
		goto out_balanced;

3982
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3983

3984 3985 3986 3987
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3988 3989
		goto out_balanced;

3990 3991 3992 3993
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3994

L
Linus Torvalds 已提交
3995 3996 3997 3998 3999 4000 4001 4002
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4003
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4004 4005
	 * appear as very large values with unsigned longs.
	 */
4006
	if (sds.max_load <= sds.busiest_load_per_task)
4007 4008
		goto out_balanced;

4009 4010
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4011
	return sds.busiest;
L
Linus Torvalds 已提交
4012 4013

out_balanced:
4014 4015 4016 4017 4018 4019
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4020
ret:
L
Linus Torvalds 已提交
4021 4022 4023 4024 4025 4026 4027
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4028
static struct rq *
I
Ingo Molnar 已提交
4029
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4030
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4031
{
4032
	struct rq *busiest = NULL, *rq;
4033
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4034 4035
	int i;

4036
	for_each_cpu(i, sched_group_cpus(group)) {
4037 4038
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4039
		unsigned long wl;
4040

4041
		if (!cpumask_test_cpu(i, cpus))
4042 4043
			continue;

4044
		rq = cpu_rq(i);
4045 4046
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4047

4048
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4049
			continue;
L
Linus Torvalds 已提交
4050

I
Ingo Molnar 已提交
4051 4052
		if (wl > max_load) {
			max_load = wl;
4053
			busiest = rq;
L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059
		}
	}

	return busiest;
}

4060 4061 4062 4063 4064 4065
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4066 4067 4068
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4069 4070 4071 4072
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4073
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4074
			struct sched_domain *sd, enum cpu_idle_type idle,
4075
			int *balance)
L
Linus Torvalds 已提交
4076
{
P
Peter Williams 已提交
4077
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4078 4079
	struct sched_group *group;
	unsigned long imbalance;
4080
	struct rq *busiest;
4081
	unsigned long flags;
4082
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4083

4084
	cpumask_setall(cpus);
4085

4086 4087 4088
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4089
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4090
	 * portraying it as CPU_NOT_IDLE.
4091
	 */
I
Ingo Molnar 已提交
4092
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4093
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4094
		sd_idle = 1;
L
Linus Torvalds 已提交
4095

4096
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4097

4098
redo:
4099
	update_shares(sd);
4100
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4101
				   cpus, balance);
4102

4103
	if (*balance == 0)
4104 4105
		goto out_balanced;

L
Linus Torvalds 已提交
4106 4107 4108 4109 4110
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4111
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4112 4113 4114 4115 4116
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4117
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4118 4119 4120

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4121
	ld_moved = 0;
L
Linus Torvalds 已提交
4122 4123 4124 4125
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4126
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4127 4128
		 * correctly treated as an imbalance.
		 */
4129
		local_irq_save(flags);
N
Nick Piggin 已提交
4130
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4131
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4132
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4133
		double_rq_unlock(this_rq, busiest);
4134
		local_irq_restore(flags);
4135

4136 4137 4138
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4139
		if (ld_moved && this_cpu != smp_processor_id())
4140 4141
			resched_cpu(this_cpu);

4142
		/* All tasks on this runqueue were pinned by CPU affinity */
4143
		if (unlikely(all_pinned)) {
4144 4145
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4146
				goto redo;
4147
			goto out_balanced;
4148
		}
L
Linus Torvalds 已提交
4149
	}
4150

P
Peter Williams 已提交
4151
	if (!ld_moved) {
L
Linus Torvalds 已提交
4152 4153 4154 4155 4156
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4157
			spin_lock_irqsave(&busiest->lock, flags);
4158 4159 4160 4161

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4162 4163
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4164
				spin_unlock_irqrestore(&busiest->lock, flags);
4165 4166 4167 4168
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4169 4170 4171
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4172
				active_balance = 1;
L
Linus Torvalds 已提交
4173
			}
4174
			spin_unlock_irqrestore(&busiest->lock, flags);
4175
			if (active_balance)
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4182
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4183
		}
4184
	} else
L
Linus Torvalds 已提交
4185 4186
		sd->nr_balance_failed = 0;

4187
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4188 4189
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4190 4191 4192 4193 4194 4195 4196 4197 4198
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4199 4200
	}

P
Peter Williams 已提交
4201
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4202
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4203 4204 4205
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4206 4207 4208 4209

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4210
	sd->nr_balance_failed = 0;
4211 4212

out_one_pinned:
L
Linus Torvalds 已提交
4213
	/* tune up the balancing interval */
4214 4215
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4216 4217
		sd->balance_interval *= 2;

4218
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4219
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4220 4221 4222 4223
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4224 4225
	if (ld_moved)
		update_shares(sd);
4226
	return ld_moved;
L
Linus Torvalds 已提交
4227 4228 4229 4230 4231 4232
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4233
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4234 4235
 * this_rq is locked.
 */
4236
static int
4237
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4238 4239
{
	struct sched_group *group;
4240
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4241
	unsigned long imbalance;
P
Peter Williams 已提交
4242
	int ld_moved = 0;
N
Nick Piggin 已提交
4243
	int sd_idle = 0;
4244
	int all_pinned = 0;
4245
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4246

4247
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4248

4249 4250 4251 4252
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4253
	 * portraying it as CPU_NOT_IDLE.
4254 4255 4256
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4257
		sd_idle = 1;
L
Linus Torvalds 已提交
4258

4259
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4260
redo:
4261
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4262
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4263
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4264
	if (!group) {
I
Ingo Molnar 已提交
4265
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4266
		goto out_balanced;
L
Linus Torvalds 已提交
4267 4268
	}

4269
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4270
	if (!busiest) {
I
Ingo Molnar 已提交
4271
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4272
		goto out_balanced;
L
Linus Torvalds 已提交
4273 4274
	}

N
Nick Piggin 已提交
4275 4276
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4277
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4278

P
Peter Williams 已提交
4279
	ld_moved = 0;
4280 4281 4282
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4283 4284
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4285
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4286 4287
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4288
		double_unlock_balance(this_rq, busiest);
4289

4290
		if (unlikely(all_pinned)) {
4291 4292
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4293 4294
				goto redo;
		}
4295 4296
	}

P
Peter Williams 已提交
4297
	if (!ld_moved) {
4298
		int active_balance = 0;
4299

I
Ingo Molnar 已提交
4300
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4301 4302
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4303
			return -1;
4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4340
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4353 4354 4355 4356
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4357 4358
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4359
		spin_lock(&this_rq->lock);
4360

N
Nick Piggin 已提交
4361
	} else
4362
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4363

4364
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4365
	return ld_moved;
4366 4367

out_balanced:
I
Ingo Molnar 已提交
4368
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4369
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4370
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4371
		return -1;
4372
	sd->nr_balance_failed = 0;
4373

4374
	return 0;
L
Linus Torvalds 已提交
4375 4376 4377 4378 4379 4380
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4381
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4382 4383
{
	struct sched_domain *sd;
4384
	int pulled_task = 0;
I
Ingo Molnar 已提交
4385
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4386 4387

	for_each_domain(this_cpu, sd) {
4388 4389 4390 4391 4392 4393
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4394
			/* If we've pulled tasks over stop searching: */
4395
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4396
							   sd);
4397 4398 4399 4400 4401 4402

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4403
	}
I
Ingo Molnar 已提交
4404
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4405 4406 4407 4408 4409
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4410
	}
L
Linus Torvalds 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4421
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4422
{
4423
	int target_cpu = busiest_rq->push_cpu;
4424 4425
	struct sched_domain *sd;
	struct rq *target_rq;
4426

4427
	/* Is there any task to move? */
4428 4429 4430 4431
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4432 4433

	/*
4434
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4435
	 * we need to fix it. Originally reported by
4436
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4437
	 */
4438
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4439

4440 4441
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4442 4443
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4444 4445

	/* Search for an sd spanning us and the target CPU. */
4446
	for_each_domain(target_cpu, sd) {
4447
		if ((sd->flags & SD_LOAD_BALANCE) &&
4448
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4449
				break;
4450
	}
4451

4452
	if (likely(sd)) {
4453
		schedstat_inc(sd, alb_count);
4454

P
Peter Williams 已提交
4455 4456
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4457 4458 4459 4460
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4461
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4462 4463
}

4464 4465 4466
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4467
	cpumask_var_t cpu_mask;
4468
	cpumask_var_t ilb_grp_nohz_mask;
4469 4470 4471 4472
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4473 4474 4475 4476 4477
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4589
	return cpumask_first(nohz.cpu_mask);
4590 4591 4592
}
#endif

4593
/*
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4604
 *
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4620 4621 4622 4623 4624 4625 4626 4627
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4628 4629
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4630

4631 4632 4633
			return 0;
		}

4634 4635
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4636
		/* time for ilb owner also to sleep */
4637
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4638 4639 4640 4641 4642 4643 4644 4645 4646
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4663
			return 1;
4664
		}
4665
	} else {
4666
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4667 4668
			return 0;

4669
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4682 4683 4684 4685 4686
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4687
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4688
{
4689 4690
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4691 4692
	unsigned long interval;
	struct sched_domain *sd;
4693
	/* Earliest time when we have to do rebalance again */
4694
	unsigned long next_balance = jiffies + 60*HZ;
4695
	int update_next_balance = 0;
4696
	int need_serialize;
L
Linus Torvalds 已提交
4697

4698
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4699 4700 4701 4702
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4703
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4704 4705 4706 4707 4708 4709
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4710 4711 4712
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4713
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4714

4715
		if (need_serialize) {
4716 4717 4718 4719
			if (!spin_trylock(&balancing))
				goto out;
		}

4720
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4721
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4722 4723
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4724 4725 4726
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4727
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4728
			}
4729
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4730
		}
4731
		if (need_serialize)
4732 4733
			spin_unlock(&balancing);
out:
4734
		if (time_after(next_balance, sd->last_balance + interval)) {
4735
			next_balance = sd->last_balance + interval;
4736 4737
			update_next_balance = 1;
		}
4738 4739 4740 4741 4742 4743 4744 4745

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4746
	}
4747 4748 4749 4750 4751 4752 4753 4754

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4755 4756 4757 4758 4759 4760 4761 4762 4763
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4764 4765 4766 4767
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4768

I
Ingo Molnar 已提交
4769
	rebalance_domains(this_cpu, idle);
4770 4771 4772 4773 4774 4775 4776

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4777 4778
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4779 4780 4781
		struct rq *rq;
		int balance_cpu;

4782 4783 4784 4785
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4786 4787 4788 4789 4790 4791 4792 4793
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4794
			rebalance_domains(balance_cpu, CPU_IDLE);
4795 4796

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4797 4798
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4799 4800 4801 4802 4803
		}
	}
#endif
}

4804 4805 4806 4807 4808
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4809 4810 4811 4812 4813 4814 4815
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4816
static inline void trigger_load_balance(struct rq *rq, int cpu)
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4828
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4829 4830 4831 4832
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4833
			int ilb = find_new_ilb(cpu);
4834

4835
			if (ilb < nr_cpu_ids)
4836 4837 4838 4839 4840 4841 4842 4843 4844
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4845
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4846 4847 4848 4849 4850 4851 4852 4853 4854
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4855
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4856 4857
		return;
#endif
4858 4859 4860
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4861
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4862
}
I
Ingo Molnar 已提交
4863 4864 4865

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4866 4867 4868
/*
 * on UP we do not need to balance between CPUs:
 */
4869
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4870 4871
{
}
I
Ingo Molnar 已提交
4872

L
Linus Torvalds 已提交
4873 4874 4875 4876 4877 4878 4879
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4880
 * Return any ns on the sched_clock that have not yet been accounted in
4881
 * @p in case that task is currently running.
4882 4883
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4884
 */
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4899
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4900 4901
{
	unsigned long flags;
4902
	struct rq *rq;
4903
	u64 ns = 0;
4904

4905
	rq = task_rq_lock(p, &flags);
4906 4907
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4908

4909 4910
	return ns;
}
4911

4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4929

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4949
	task_rq_unlock(rq, &flags);
4950

L
Linus Torvalds 已提交
4951 4952 4953 4954 4955 4956 4957
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4958
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4959
 */
4960 4961
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4962 4963 4964 4965
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4966
	/* Add user time to process. */
L
Linus Torvalds 已提交
4967
	p->utime = cputime_add(p->utime, cputime);
4968
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4969
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4970 4971 4972 4973 4974 4975 4976

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4977 4978

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4979 4980
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4981 4982
}

4983 4984 4985 4986
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4987
 * @cputime_scaled: cputime scaled by cpu frequency
4988
 */
4989 4990
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4991 4992 4993 4994 4995 4996
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4997
	/* Add guest time to process. */
4998
	p->utime = cputime_add(p->utime, cputime);
4999
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5000
	account_group_user_time(p, cputime);
5001 5002
	p->gtime = cputime_add(p->gtime, cputime);

5003
	/* Add guest time to cpustat. */
5004 5005 5006 5007
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5008 5009 5010 5011 5012
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5013
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5014 5015
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5016
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5017 5018 5019 5020
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5021
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5022
		account_guest_time(p, cputime, cputime_scaled);
5023 5024
		return;
	}
5025

5026
	/* Add system time to process. */
L
Linus Torvalds 已提交
5027
	p->stime = cputime_add(p->stime, cputime);
5028
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5029
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5030 5031 5032 5033 5034 5035 5036 5037

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5038 5039
		cpustat->system = cputime64_add(cpustat->system, tmp);

5040 5041
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5042 5043 5044 5045
	/* Account for system time used */
	acct_update_integrals(p);
}

5046
/*
L
Linus Torvalds 已提交
5047 5048
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5049
 */
5050
void account_steal_time(cputime_t cputime)
5051
{
5052 5053 5054 5055
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5056 5057
}

L
Linus Torvalds 已提交
5058
/*
5059 5060
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5061
 */
5062
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5063 5064
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5065
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5066
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5067

5068 5069 5070 5071
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5072 5073
}

5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5089
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5113 5114
}

5115 5116
#endif

5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5187
	struct task_struct *curr = rq->curr;
5188 5189

	sched_clock_tick();
I
Ingo Molnar 已提交
5190 5191

	spin_lock(&rq->lock);
5192
	update_rq_clock(rq);
5193
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5194
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5195
	spin_unlock(&rq->lock);
5196

5197 5198
	perf_counter_task_tick(curr, cpu);

5199
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5200 5201
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5202
#endif
L
Linus Torvalds 已提交
5203 5204
}

5205
notrace unsigned long get_parent_ip(unsigned long addr)
5206 5207 5208 5209 5210 5211 5212 5213
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5214

5215 5216 5217
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5218
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5219
{
5220
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5221 5222 5223
	/*
	 * Underflow?
	 */
5224 5225
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5226
#endif
L
Linus Torvalds 已提交
5227
	preempt_count() += val;
5228
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5229 5230 5231
	/*
	 * Spinlock count overflowing soon?
	 */
5232 5233
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5234 5235 5236
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5237 5238 5239
}
EXPORT_SYMBOL(add_preempt_count);

5240
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5241
{
5242
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5243 5244 5245
	/*
	 * Underflow?
	 */
5246
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5247
		return;
L
Linus Torvalds 已提交
5248 5249 5250
	/*
	 * Is the spinlock portion underflowing?
	 */
5251 5252 5253
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5254
#endif
5255

5256 5257
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5258 5259 5260 5261 5262 5263 5264
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5265
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5266
 */
I
Ingo Molnar 已提交
5267
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5268
{
5269 5270 5271 5272 5273
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5274
	debug_show_held_locks(prev);
5275
	print_modules();
I
Ingo Molnar 已提交
5276 5277
	if (irqs_disabled())
		print_irqtrace_events(prev);
5278 5279 5280 5281 5282

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5283
}
L
Linus Torvalds 已提交
5284

I
Ingo Molnar 已提交
5285 5286 5287 5288 5289
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5290
	/*
I
Ingo Molnar 已提交
5291
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5292 5293 5294
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5295
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5296 5297
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5298 5299
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5300
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5301 5302
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5303 5304
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5305 5306
	}
#endif
I
Ingo Molnar 已提交
5307 5308
}

M
Mike Galbraith 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5331 5332 5333 5334
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5335
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5336
{
5337
	const struct sched_class *class;
I
Ingo Molnar 已提交
5338
	struct task_struct *p;
L
Linus Torvalds 已提交
5339 5340

	/*
I
Ingo Molnar 已提交
5341 5342
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5343
	 */
I
Ingo Molnar 已提交
5344
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5345
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5346 5347
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5348 5349
	}

I
Ingo Molnar 已提交
5350 5351
	class = sched_class_highest;
	for ( ; ; ) {
5352
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5362

I
Ingo Molnar 已提交
5363 5364 5365
/*
 * schedule() is the main scheduler function.
 */
5366
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5367 5368
{
	struct task_struct *prev, *next;
5369
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5370
	struct rq *rq;
5371
	int cpu;
I
Ingo Molnar 已提交
5372

5373 5374
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5375 5376
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5377
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5378 5379 5380 5381 5382 5383 5384
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5385

5386
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5387
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5388

5389
	spin_lock_irq(&rq->lock);
5390
	update_rq_clock(rq);
5391
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5392 5393

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5394
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5395
			prev->state = TASK_RUNNING;
5396
		else
5397
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5398
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5399 5400
	}

5401
	pre_schedule(rq, prev);
5402

I
Ingo Molnar 已提交
5403
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5404 5405
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5406
	put_prev_task(rq, prev);
5407
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5408 5409

	if (likely(prev != next)) {
5410
		sched_info_switch(prev, next);
5411
		perf_counter_task_sched_out(prev, next, cpu);
5412

L
Linus Torvalds 已提交
5413 5414 5415 5416
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5417
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5418 5419 5420 5421 5422 5423
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5424 5425 5426
	} else
		spin_unlock_irq(&rq->lock);

5427
	post_schedule(rq);
L
Linus Torvalds 已提交
5428

P
Peter Zijlstra 已提交
5429
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5430
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5431

L
Linus Torvalds 已提交
5432
	preempt_enable_no_resched();
5433
	if (need_resched())
L
Linus Torvalds 已提交
5434 5435 5436 5437
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5499 5500
#ifdef CONFIG_PREEMPT
/*
5501
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5502
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5503 5504 5505 5506 5507
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5508

L
Linus Torvalds 已提交
5509 5510
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5511
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5512
	 */
N
Nick Piggin 已提交
5513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5514 5515
		return;

5516 5517 5518 5519
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5520

5521 5522 5523 5524 5525
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5526
	} while (need_resched());
L
Linus Torvalds 已提交
5527 5528 5529 5530
}
EXPORT_SYMBOL(preempt_schedule);

/*
5531
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5532 5533 5534 5535 5536 5537 5538
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5539

5540
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5541 5542
	BUG_ON(ti->preempt_count || !irqs_disabled());

5543 5544 5545 5546 5547 5548
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5549

5550 5551 5552 5553 5554
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5555
	} while (need_resched());
L
Linus Torvalds 已提交
5556 5557 5558 5559
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5560
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5561
			  void *key)
L
Linus Torvalds 已提交
5562
{
P
Peter Zijlstra 已提交
5563
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5564 5565 5566 5567
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5568 5569
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5570 5571 5572
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5573
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5574 5575
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5576
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5577
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5578
{
5579
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5580

5581
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5582 5583
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5584
		if (curr->func(curr, mode, wake_flags, key) &&
5585
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5595
 * @key: is directly passed to the wakeup function
5596 5597 5598
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5599
 */
5600
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5601
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5614
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5615 5616 5617 5618
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5619 5620 5621 5622 5623
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5624
/**
5625
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5626 5627 5628
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5630 5631 5632 5633 5634 5635 5636
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5637 5638 5639
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5640
 */
5641 5642
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5643 5644
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5645
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5646 5647 5648 5649 5650

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5651
		wake_flags = 0;
L
Linus Torvalds 已提交
5652 5653

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5654
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5655 5656
	spin_unlock_irqrestore(&q->lock, flags);
}
5657 5658 5659 5660 5661 5662 5663 5664 5665
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5666 5667
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5668 5669 5670 5671 5672 5673 5674 5675
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5676 5677 5678
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5679
 */
5680
void complete(struct completion *x)
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5686
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5687 5688 5689 5690
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5691 5692 5693 5694 5695
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5696 5697 5698
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5699
 */
5700
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5701 5702 5703 5704 5705
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5706
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5707 5708 5709 5710
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5711 5712
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718 5719
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5720
			if (signal_pending_state(state, current)) {
5721 5722
				timeout = -ERESTARTSYS;
				break;
5723 5724
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5725 5726 5727
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5728
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5729
		__remove_wait_queue(&x->wait, &wait);
5730 5731
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5732 5733
	}
	x->done--;
5734
	return timeout ?: 1;
L
Linus Torvalds 已提交
5735 5736
}

5737 5738
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5739 5740 5741 5742
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5743
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5744
	spin_unlock_irq(&x->wait.lock);
5745 5746
	return timeout;
}
L
Linus Torvalds 已提交
5747

5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5758
void __sched wait_for_completion(struct completion *x)
5759 5760
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5761
}
5762
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5763

5764 5765 5766 5767 5768 5769 5770 5771 5772
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5773
unsigned long __sched
5774
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5775
{
5776
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5777
}
5778
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5779

5780 5781 5782 5783 5784 5785 5786
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5787
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5788
{
5789 5790 5791 5792
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5793
}
5794
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5795

5796 5797 5798 5799 5800 5801 5802 5803
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5804
unsigned long __sched
5805 5806
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5807
{
5808
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5809
}
5810
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5811

5812 5813 5814 5815 5816 5817 5818
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5874 5875
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5876
{
I
Ingo Molnar 已提交
5877 5878 5879 5880
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5881

5882
	__set_current_state(state);
L
Linus Torvalds 已提交
5883

5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5898 5899 5900
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5901
long __sched
I
Ingo Molnar 已提交
5902
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5903
{
5904
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5905 5906 5907
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5908
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5909
{
5910
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5911 5912 5913
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5914
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5915
{
5916
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5917 5918 5919
}
EXPORT_SYMBOL(sleep_on_timeout);

5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5932
void rt_mutex_setprio(struct task_struct *p, int prio)
5933 5934
{
	unsigned long flags;
5935
	int oldprio, on_rq, running;
5936
	struct rq *rq;
5937
	const struct sched_class *prev_class = p->sched_class;
5938 5939 5940 5941

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5942
	update_rq_clock(rq);
5943

5944
	oldprio = p->prio;
I
Ingo Molnar 已提交
5945
	on_rq = p->se.on_rq;
5946
	running = task_current(rq, p);
5947
	if (on_rq)
5948
		dequeue_task(rq, p, 0);
5949 5950
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5951 5952 5953 5954 5955 5956

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5957 5958
	p->prio = prio;

5959 5960
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5961
	if (on_rq) {
5962
		enqueue_task(rq, p, 0);
5963 5964

		check_class_changed(rq, p, prev_class, oldprio, running);
5965 5966 5967 5968 5969 5970
	}
	task_rq_unlock(rq, &flags);
}

#endif

5971
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5972
{
I
Ingo Molnar 已提交
5973
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5974
	unsigned long flags;
5975
	struct rq *rq;
L
Linus Torvalds 已提交
5976 5977 5978 5979 5980 5981 5982 5983

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5984
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5985 5986 5987 5988
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5989
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5990
	 */
5991
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5992 5993 5994
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5995
	on_rq = p->se.on_rq;
5996
	if (on_rq)
5997
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5998 5999

	p->static_prio = NICE_TO_PRIO(nice);
6000
	set_load_weight(p);
6001 6002 6003
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6004

I
Ingo Molnar 已提交
6005
	if (on_rq) {
6006
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6007
		/*
6008 6009
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6010
		 */
6011
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016 6017 6018
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6019 6020 6021 6022 6023
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6024
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6025
{
6026 6027
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6028

M
Matt Mackall 已提交
6029 6030 6031 6032
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6042
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6043
{
6044
	long nice, retval;
L
Linus Torvalds 已提交
6045 6046 6047 6048 6049 6050

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6051 6052
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6053 6054 6055
	if (increment > 40)
		increment = 40;

6056
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6057 6058 6059 6060 6061
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6062 6063 6064
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6083
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088 6089 6090 6091
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6092
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6093 6094 6095
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6096
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6111
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6112 6113 6114 6115 6116 6117 6118 6119
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6120
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6121
{
6122
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6123 6124 6125
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6126 6127
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6128
{
I
Ingo Molnar 已提交
6129
	BUG_ON(p->se.on_rq);
6130

L
Linus Torvalds 已提交
6131
	p->policy = policy;
I
Ingo Molnar 已提交
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6144
	p->rt_priority = prio;
6145 6146 6147
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6148
	set_load_weight(p);
L
Linus Torvalds 已提交
6149 6150
}

6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6167 6168
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6169
{
6170
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6171
	unsigned long flags;
6172
	const struct sched_class *prev_class = p->sched_class;
6173
	struct rq *rq;
6174
	int reset_on_fork;
L
Linus Torvalds 已提交
6175

6176 6177
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6178 6179
recheck:
	/* double check policy once rq lock held */
6180 6181
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6182
		policy = oldpolicy = p->policy;
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6193 6194
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6195 6196
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6197 6198
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6199
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6200
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6201
		return -EINVAL;
6202
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6203 6204
		return -EINVAL;

6205 6206 6207
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6208
	if (user && !capable(CAP_SYS_NICE)) {
6209
		if (rt_policy(policy)) {
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6226 6227 6228 6229 6230 6231
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6232

6233
		/* can't change other user's priorities */
6234
		if (!check_same_owner(p))
6235
			return -EPERM;
6236 6237 6238 6239

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6240
	}
L
Linus Torvalds 已提交
6241

6242
	if (user) {
6243
#ifdef CONFIG_RT_GROUP_SCHED
6244 6245 6246 6247
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6248 6249
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6250
			return -EPERM;
6251 6252
#endif

6253 6254 6255 6256 6257
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6258 6259 6260 6261 6262
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6263 6264 6265 6266
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6267
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6268 6269 6270
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6271 6272
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6273 6274
		goto recheck;
	}
I
Ingo Molnar 已提交
6275
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6276
	on_rq = p->se.on_rq;
6277
	running = task_current(rq, p);
6278
	if (on_rq)
6279
		deactivate_task(rq, p, 0);
6280 6281
	if (running)
		p->sched_class->put_prev_task(rq, p);
6282

6283 6284
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6285
	oldprio = p->prio;
I
Ingo Molnar 已提交
6286
	__setscheduler(rq, p, policy, param->sched_priority);
6287

6288 6289
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6290 6291
	if (on_rq) {
		activate_task(rq, p, 0);
6292 6293

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6294
	}
6295 6296 6297
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6298 6299
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6300 6301
	return 0;
}
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6316 6317
EXPORT_SYMBOL_GPL(sched_setscheduler);

6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6335 6336
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6337 6338 6339
{
	struct sched_param lparam;
	struct task_struct *p;
6340
	int retval;
L
Linus Torvalds 已提交
6341 6342 6343 6344 6345

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6346 6347 6348

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6349
	p = find_process_by_pid(pid);
6350 6351 6352
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6353

L
Linus Torvalds 已提交
6354 6355 6356 6357 6358 6359 6360 6361 6362
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6363 6364
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6365
{
6366 6367 6368 6369
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6370 6371 6372 6373 6374 6375 6376 6377
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6378
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6379 6380 6381 6382 6383 6384 6385 6386
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6387
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6388
{
6389
	struct task_struct *p;
6390
	int retval;
L
Linus Torvalds 已提交
6391 6392

	if (pid < 0)
6393
		return -EINVAL;
L
Linus Torvalds 已提交
6394 6395 6396 6397 6398 6399 6400

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6401 6402
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6409
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6410 6411 6412
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6413
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6414 6415
{
	struct sched_param lp;
6416
	struct task_struct *p;
6417
	int retval;
L
Linus Torvalds 已提交
6418 6419

	if (!param || pid < 0)
6420
		return -EINVAL;
L
Linus Torvalds 已提交
6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6447
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6448
{
6449
	cpumask_var_t cpus_allowed, new_mask;
6450 6451
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6452

6453
	get_online_cpus();
L
Linus Torvalds 已提交
6454 6455 6456 6457 6458
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6459
		put_online_cpus();
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6465
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6466 6467 6468 6469 6470
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6471 6472 6473 6474 6475 6476 6477 6478
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6479
	retval = -EPERM;
6480
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6481 6482
		goto out_unlock;

6483 6484 6485 6486
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6487 6488
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6489
 again:
6490
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6491

P
Paul Menage 已提交
6492
	if (!retval) {
6493 6494
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6495 6496 6497 6498 6499
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6500
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6501 6502 6503
			goto again;
		}
	}
L
Linus Torvalds 已提交
6504
out_unlock:
6505 6506 6507 6508
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6509
	put_task_struct(p);
6510
	put_online_cpus();
L
Linus Torvalds 已提交
6511 6512 6513 6514
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6515
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6516
{
6517 6518 6519 6520 6521
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6522 6523 6524 6525 6526 6527 6528 6529 6530
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6531 6532
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6533
{
6534
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6535 6536
	int retval;

6537 6538
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6539

6540 6541 6542 6543 6544
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6545 6546
}

6547
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6548
{
6549
	struct task_struct *p;
L
Linus Torvalds 已提交
6550 6551
	int retval;

6552
	get_online_cpus();
L
Linus Torvalds 已提交
6553 6554 6555 6556 6557 6558 6559
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6560 6561 6562 6563
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6564
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6565 6566 6567

out_unlock:
	read_unlock(&tasklist_lock);
6568
	put_online_cpus();
L
Linus Torvalds 已提交
6569

6570
	return retval;
L
Linus Torvalds 已提交
6571 6572 6573 6574 6575 6576 6577 6578
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6579 6580
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6581 6582
{
	int ret;
6583
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6584

6585
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6586 6587
		return -EINVAL;

6588 6589
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6590

6591 6592 6593 6594 6595 6596 6597 6598
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6599

6600
	return ret;
L
Linus Torvalds 已提交
6601 6602 6603 6604 6605
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6606 6607
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6608
 */
6609
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6610
{
6611
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6612

6613
	schedstat_inc(rq, yld_count);
6614
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6615 6616 6617 6618 6619 6620

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6621
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6622 6623 6624 6625 6626 6627 6628 6629
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6630 6631 6632 6633 6634
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6635
static void __cond_resched(void)
L
Linus Torvalds 已提交
6636
{
6637 6638 6639
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6640 6641
}

6642
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6643
{
P
Peter Zijlstra 已提交
6644
	if (should_resched()) {
L
Linus Torvalds 已提交
6645 6646 6647 6648 6649
		__cond_resched();
		return 1;
	}
	return 0;
}
6650
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6651 6652

/*
6653
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6654 6655
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6656
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6657 6658 6659
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6660
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6661
{
P
Peter Zijlstra 已提交
6662
	int resched = should_resched();
J
Jan Kara 已提交
6663 6664
	int ret = 0;

6665 6666
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6667
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6668
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6669
		if (resched)
N
Nick Piggin 已提交
6670 6671 6672
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6673
		ret = 1;
L
Linus Torvalds 已提交
6674 6675
		spin_lock(lock);
	}
J
Jan Kara 已提交
6676
	return ret;
L
Linus Torvalds 已提交
6677
}
6678
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6679

6680
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6681 6682 6683
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6684
	if (should_resched()) {
6685
		local_bh_enable();
L
Linus Torvalds 已提交
6686 6687 6688 6689 6690 6691
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6692
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6693 6694 6695 6696

/**
 * yield - yield the current processor to other threads.
 *
6697
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6698 6699 6700 6701 6702 6703 6704 6705 6706 6707
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6708
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6709 6710 6711 6712 6713 6714 6715
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6716
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6717

6718
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6719
	atomic_inc(&rq->nr_iowait);
6720
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6721
	schedule();
6722
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6723
	atomic_dec(&rq->nr_iowait);
6724
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6725 6726 6727 6728 6729
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6730
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6731 6732
	long ret;

6733
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6734
	atomic_inc(&rq->nr_iowait);
6735
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6736
	ret = schedule_timeout(timeout);
6737
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6738
	atomic_dec(&rq->nr_iowait);
6739
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6750
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6751 6752 6753 6754 6755 6756 6757 6758 6759
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6760
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6761
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6775
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6776 6777 6778 6779 6780 6781 6782 6783 6784
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6785
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6786
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6800
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6801
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6802
{
6803
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6804
	unsigned int time_slice;
6805
	int retval;
L
Linus Torvalds 已提交
6806 6807 6808
	struct timespec t;

	if (pid < 0)
6809
		return -EINVAL;
L
Linus Torvalds 已提交
6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6821 6822 6823 6824 6825 6826
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6827
		time_slice = DEF_TIMESLICE;
6828
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6829 6830 6831 6832 6833
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6834 6835
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6836 6837
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6838
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6839
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6840 6841
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6842

L
Linus Torvalds 已提交
6843 6844 6845 6846 6847
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6848
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6849

6850
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6851 6852
{
	unsigned long free = 0;
6853
	unsigned state;
L
Linus Torvalds 已提交
6854 6855

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6856
	printk(KERN_INFO "%-13.13s %c", p->comm,
6857
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6858
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6859
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6860
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6861
	else
I
Ingo Molnar 已提交
6862
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6863 6864
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6865
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6866
	else
I
Ingo Molnar 已提交
6867
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6868 6869
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6870
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6871
#endif
6872 6873 6874
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6875

6876
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6877 6878
}

I
Ingo Molnar 已提交
6879
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6880
{
6881
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6882

6883 6884 6885
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6886
#else
6887 6888
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6889 6890 6891 6892 6893 6894 6895 6896
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6897
		if (!state_filter || (p->state & state_filter))
6898
			sched_show_task(p);
L
Linus Torvalds 已提交
6899 6900
	} while_each_thread(g, p);

6901 6902
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6903 6904 6905
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6906
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6907 6908 6909 6910 6911
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6912 6913
}

I
Ingo Molnar 已提交
6914 6915
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6916
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6917 6918
}

6919 6920 6921 6922 6923 6924 6925 6926
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6927
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6928
{
6929
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6930 6931
	unsigned long flags;

6932 6933
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6934 6935 6936
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6937
	idle->prio = idle->normal_prio = MAX_PRIO;
6938
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6939
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6940 6941

	rq->curr = rq->idle = idle;
6942 6943 6944
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6945 6946 6947
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6948 6949 6950
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6951
	task_thread_info(idle)->preempt_count = 0;
6952
#endif
I
Ingo Molnar 已提交
6953 6954 6955 6956
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6957
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6958 6959 6960 6961 6962 6963 6964
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6965
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6966
 */
6967
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6968

I
Ingo Molnar 已提交
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6992 6993

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6994 6995
}

L
Linus Torvalds 已提交
6996 6997 6998 6999
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7000
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7019
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7020 7021
 * call is not atomic; no spinlocks may be held.
 */
7022
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7023
{
7024
	struct migration_req req;
L
Linus Torvalds 已提交
7025
	unsigned long flags;
7026
	struct rq *rq;
7027
	int ret = 0;
L
Linus Torvalds 已提交
7028 7029

	rq = task_rq_lock(p, &flags);
7030
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7031 7032 7033 7034
		ret = -EINVAL;
		goto out;
	}

7035
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7036
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7037 7038 7039 7040
		ret = -EINVAL;
		goto out;
	}

7041
	if (p->sched_class->set_cpus_allowed)
7042
		p->sched_class->set_cpus_allowed(p, new_mask);
7043
	else {
7044 7045
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7046 7047
	}

L
Linus Torvalds 已提交
7048
	/* Can the task run on the task's current CPU? If so, we're done */
7049
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7050 7051
		goto out;

R
Rusty Russell 已提交
7052
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7053
		/* Need help from migration thread: drop lock and wait. */
7054 7055 7056
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7057 7058
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7059
		put_task_struct(mt);
L
Linus Torvalds 已提交
7060 7061 7062 7063 7064 7065
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7066

L
Linus Torvalds 已提交
7067 7068
	return ret;
}
7069
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7070 7071

/*
I
Ingo Molnar 已提交
7072
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7073 7074 7075 7076 7077 7078
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7079 7080
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7081
 */
7082
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7083
{
7084
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7085
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7086

7087
	if (unlikely(!cpu_active(dest_cpu)))
7088
		return ret;
L
Linus Torvalds 已提交
7089 7090 7091 7092 7093 7094 7095

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7096
		goto done;
L
Linus Torvalds 已提交
7097
	/* Affinity changed (again). */
7098
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7099
		goto fail;
L
Linus Torvalds 已提交
7100

I
Ingo Molnar 已提交
7101
	on_rq = p->se.on_rq;
7102
	if (on_rq)
7103
		deactivate_task(rq_src, p, 0);
7104

L
Linus Torvalds 已提交
7105
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7106 7107
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7108
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7109
	}
L
Linus Torvalds 已提交
7110
done:
7111
	ret = 1;
L
Linus Torvalds 已提交
7112
fail:
L
Linus Torvalds 已提交
7113
	double_rq_unlock(rq_src, rq_dest);
7114
	return ret;
L
Linus Torvalds 已提交
7115 7116
}

7117 7118 7119 7120 7121
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7122 7123 7124 7125 7126
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7127
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7128
{
7129
	int badcpu;
L
Linus Torvalds 已提交
7130
	int cpu = (long)data;
7131
	struct rq *rq;
L
Linus Torvalds 已提交
7132 7133 7134 7135 7136 7137

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7138
		struct migration_req *req;
L
Linus Torvalds 已提交
7139 7140 7141 7142 7143 7144
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7145
			break;
L
Linus Torvalds 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7161
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7162 7163
		list_del_init(head->next);

7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7175
		local_irq_enable();
L
Linus Torvalds 已提交
7176 7177 7178 7179 7180 7181 7182 7183 7184

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7196
/*
7197
 * Figure out where task on dead CPU should go, use force if necessary.
7198
 */
7199
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7200
{
7201
	int dest_cpu;
7202
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7219

7220 7221 7222 7223 7224 7225 7226 7227 7228
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7229
		}
7230 7231 7232 7233 7234 7235
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7236 7237 7238 7239 7240 7241 7242 7243 7244
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7245
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7246
{
R
Rusty Russell 已提交
7247
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7261
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7262

7263
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7264

7265 7266
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7267 7268
			continue;

7269 7270 7271
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7272

7273
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7274 7275
}

I
Ingo Molnar 已提交
7276 7277
/*
 * Schedules idle task to be the next runnable task on current CPU.
7278 7279
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7280 7281 7282
 */
void sched_idle_next(void)
{
7283
	int this_cpu = smp_processor_id();
7284
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7285 7286 7287 7288
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7289
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7290

7291 7292 7293
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7294 7295 7296
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7297
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7298

7299 7300
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7301 7302 7303 7304

	spin_unlock_irqrestore(&rq->lock, flags);
}

7305 7306
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7320
/* called under rq->lock with disabled interrupts */
7321
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7322
{
7323
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7324 7325

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7326
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7327 7328

	/* Cannot have done final schedule yet: would have vanished. */
7329
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7330

7331
	get_task_struct(p);
L
Linus Torvalds 已提交
7332 7333 7334

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7335
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7336 7337
	 * fine.
	 */
7338
	spin_unlock_irq(&rq->lock);
7339
	move_task_off_dead_cpu(dead_cpu, p);
7340
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7341

7342
	put_task_struct(p);
L
Linus Torvalds 已提交
7343 7344 7345 7346 7347
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7348
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7349
	struct task_struct *next;
7350

I
Ingo Molnar 已提交
7351 7352 7353
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7354
		update_rq_clock(rq);
7355
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7356 7357
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7358
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7359
		migrate_dead(dead_cpu, next);
7360

L
Linus Torvalds 已提交
7361 7362
	}
}
7363 7364 7365 7366 7367 7368 7369

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7370
	rq->calc_load_active = 0;
7371
}
L
Linus Torvalds 已提交
7372 7373
#endif /* CONFIG_HOTPLUG_CPU */

7374 7375 7376
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7377 7378
	{
		.procname	= "sched_domain",
7379
		.mode		= 0555,
7380
	},
I
Ingo Molnar 已提交
7381
	{0, },
7382 7383 7384
};

static struct ctl_table sd_ctl_root[] = {
7385
	{
7386
		.ctl_name	= CTL_KERN,
7387
		.procname	= "kernel",
7388
		.mode		= 0555,
7389 7390
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7391
	{0, },
7392 7393 7394 7395 7396
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7397
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7398 7399 7400 7401

	return entry;
}

7402 7403
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7404
	struct ctl_table *entry;
7405

7406 7407 7408
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7409
	 * will always be set. In the lowest directory the names are
7410 7411 7412
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7413 7414
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7415 7416 7417
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7418 7419 7420 7421 7422

	kfree(*tablep);
	*tablep = NULL;
}

7423
static void
7424
set_table_entry(struct ctl_table *entry,
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7438
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7439

7440 7441 7442
	if (table == NULL)
		return NULL;

7443
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7444
		sizeof(long), 0644, proc_doulongvec_minmax);
7445
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7446
		sizeof(long), 0644, proc_doulongvec_minmax);
7447
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7448
		sizeof(int), 0644, proc_dointvec_minmax);
7449
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7450
		sizeof(int), 0644, proc_dointvec_minmax);
7451
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7452
		sizeof(int), 0644, proc_dointvec_minmax);
7453
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7454
		sizeof(int), 0644, proc_dointvec_minmax);
7455
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7456
		sizeof(int), 0644, proc_dointvec_minmax);
7457
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7458
		sizeof(int), 0644, proc_dointvec_minmax);
7459
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7460
		sizeof(int), 0644, proc_dointvec_minmax);
7461
	set_table_entry(&table[9], "cache_nice_tries",
7462 7463
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7464
	set_table_entry(&table[10], "flags", &sd->flags,
7465
		sizeof(int), 0644, proc_dointvec_minmax);
7466 7467 7468
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7469 7470 7471 7472

	return table;
}

7473
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7474 7475 7476 7477 7478 7479 7480 7481 7482
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7483 7484
	if (table == NULL)
		return NULL;
7485 7486 7487 7488 7489

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7490
		entry->mode = 0555;
7491 7492 7493 7494 7495 7496 7497 7498
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7499
static void register_sched_domain_sysctl(void)
7500 7501 7502 7503 7504
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7505 7506 7507
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7508 7509 7510
	if (entry == NULL)
		return;

7511
	for_each_online_cpu(i) {
7512 7513
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7514
		entry->mode = 0555;
7515
		entry->child = sd_alloc_ctl_cpu_table(i);
7516
		entry++;
7517
	}
7518 7519

	WARN_ON(sd_sysctl_header);
7520 7521
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7522

7523
/* may be called multiple times per register */
7524 7525
static void unregister_sched_domain_sysctl(void)
{
7526 7527
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7528
	sd_sysctl_header = NULL;
7529 7530
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7531
}
7532
#else
7533 7534 7535 7536
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7537 7538 7539 7540
{
}
#endif

7541 7542 7543 7544 7545
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7546
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7566
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7567 7568 7569 7570
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7571 7572 7573 7574
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7575 7576
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7577 7578
{
	struct task_struct *p;
7579
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7580
	unsigned long flags;
7581
	struct rq *rq;
L
Linus Torvalds 已提交
7582 7583

	switch (action) {
7584

L
Linus Torvalds 已提交
7585
	case CPU_UP_PREPARE:
7586
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7587
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7588 7589 7590 7591 7592
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7593
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7594
		task_rq_unlock(rq, &flags);
7595
		get_task_struct(p);
L
Linus Torvalds 已提交
7596
		cpu_rq(cpu)->migration_thread = p;
7597
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7598
		break;
7599

L
Linus Torvalds 已提交
7600
	case CPU_ONLINE:
7601
	case CPU_ONLINE_FROZEN:
7602
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7603
		wake_up_process(cpu_rq(cpu)->migration_thread);
7604 7605 7606 7607 7608

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7609
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7610 7611

			set_rq_online(rq);
7612 7613
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7614
		break;
7615

L
Linus Torvalds 已提交
7616 7617
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7618
	case CPU_UP_CANCELED_FROZEN:
7619 7620
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7621
		/* Unbind it from offline cpu so it can run. Fall thru. */
7622
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7623
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7624
		kthread_stop(cpu_rq(cpu)->migration_thread);
7625
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7626 7627
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7628

L
Linus Torvalds 已提交
7629
	case CPU_DEAD:
7630
	case CPU_DEAD_FROZEN:
7631
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7632 7633 7634
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7635
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7636 7637
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7638
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7639
		update_rq_clock(rq);
7640
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7641
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7642 7643
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7644
		migrate_dead_tasks(cpu);
7645
		spin_unlock_irq(&rq->lock);
7646
		cpuset_unlock();
L
Linus Torvalds 已提交
7647 7648
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7649
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7650 7651 7652 7653 7654
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7655 7656
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7657 7658
			struct migration_req *req;

L
Linus Torvalds 已提交
7659
			req = list_entry(rq->migration_queue.next,
7660
					 struct migration_req, list);
L
Linus Torvalds 已提交
7661
			list_del_init(&req->list);
B
Brian King 已提交
7662
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7663
			complete(&req->done);
B
Brian King 已提交
7664
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7665 7666 7667
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7668

7669 7670
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7671 7672 7673 7674
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7675
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7676
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7677 7678 7679
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7680 7681 7682 7683 7684
#endif
	}
	return NOTIFY_OK;
}

7685 7686 7687 7688
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7689
 */
7690
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7691 7692 7693 7694
	.notifier_call = migration_call,
	.priority = 10
};

7695
static int __init migration_init(void)
L
Linus Torvalds 已提交
7696 7697
{
	void *cpu = (void *)(long)smp_processor_id();
7698
	int err;
7699 7700

	/* Start one for the boot CPU: */
7701 7702
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7703 7704
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7705

7706
	return 0;
L
Linus Torvalds 已提交
7707
}
7708
early_initcall(migration_init);
L
Linus Torvalds 已提交
7709 7710 7711
#endif

#ifdef CONFIG_SMP
7712

7713
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7714

7715
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7716
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7717
{
I
Ingo Molnar 已提交
7718
	struct sched_group *group = sd->groups;
7719
	char str[256];
L
Linus Torvalds 已提交
7720

R
Rusty Russell 已提交
7721
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7722
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7723 7724 7725 7726 7727 7728 7729 7730 7731

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7732 7733
	}

7734
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7735

7736
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7737 7738 7739
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7740
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7741 7742 7743
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7744

I
Ingo Molnar 已提交
7745
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7746
	do {
I
Ingo Molnar 已提交
7747 7748 7749
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7750 7751 7752
			break;
		}

7753
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7754 7755 7756 7757 7758
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7759

7760
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7761 7762 7763 7764
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7765

7766
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7767 7768 7769 7770
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7771

7772
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7773

R
Rusty Russell 已提交
7774
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7775 7776

		printk(KERN_CONT " %s", str);
7777 7778 7779
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7780
		}
L
Linus Torvalds 已提交
7781

I
Ingo Molnar 已提交
7782 7783 7784
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7785

7786
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7787
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7788

7789 7790
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7791 7792 7793 7794
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7795

I
Ingo Molnar 已提交
7796 7797
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7798
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7799
	int level = 0;
L
Linus Torvalds 已提交
7800

I
Ingo Molnar 已提交
7801 7802 7803 7804
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7805

I
Ingo Molnar 已提交
7806 7807
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7808
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7809 7810 7811 7812
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7813
	for (;;) {
7814
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7815
			break;
L
Linus Torvalds 已提交
7816 7817
		level++;
		sd = sd->parent;
7818
		if (!sd)
I
Ingo Molnar 已提交
7819 7820
			break;
	}
7821
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7822
}
7823
#else /* !CONFIG_SCHED_DEBUG */
7824
# define sched_domain_debug(sd, cpu) do { } while (0)
7825
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7826

7827
static int sd_degenerate(struct sched_domain *sd)
7828
{
7829
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7830 7831 7832 7833 7834 7835
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7836 7837 7838
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7839 7840 7841 7842 7843
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7844
	if (sd->flags & (SD_WAKE_AFFINE))
7845 7846 7847 7848 7849
		return 0;

	return 1;
}

7850 7851
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7852 7853 7854 7855 7856 7857
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7858
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7859 7860 7861 7862 7863 7864 7865
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7866 7867 7868
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7869 7870
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7871 7872 7873 7874 7875 7876 7877
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7878 7879
static void free_rootdomain(struct root_domain *rd)
{
7880 7881
	cpupri_cleanup(&rd->cpupri);

7882 7883 7884 7885 7886 7887
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7888 7889
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7890
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7891 7892 7893 7894 7895
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7896
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7897

7898
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7899
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7900

7901
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7902

I
Ingo Molnar 已提交
7903 7904 7905 7906 7907 7908 7909
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7910 7911 7912 7913 7914
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7915
	cpumask_set_cpu(rq->cpu, rd->span);
7916
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7917
		set_rq_online(rq);
G
Gregory Haskins 已提交
7918 7919

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7920 7921 7922

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7923 7924
}

L
Li Zefan 已提交
7925
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7926
{
7927 7928
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7929 7930
	memset(rd, 0, sizeof(*rd));

7931 7932
	if (bootmem)
		gfp = GFP_NOWAIT;
7933

7934
	if (!alloc_cpumask_var(&rd->span, gfp))
7935
		goto out;
7936
	if (!alloc_cpumask_var(&rd->online, gfp))
7937
		goto free_span;
7938
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7939
		goto free_online;
7940

P
Pekka Enberg 已提交
7941
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7942
		goto free_rto_mask;
7943
	return 0;
7944

7945 7946
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7947 7948 7949 7950
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7951
out:
7952
	return -ENOMEM;
G
Gregory Haskins 已提交
7953 7954 7955 7956
}

static void init_defrootdomain(void)
{
7957 7958
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7959 7960 7961
	atomic_set(&def_root_domain.refcount, 1);
}

7962
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7963 7964 7965 7966 7967 7968 7969
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7970 7971 7972 7973
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7974 7975 7976 7977

	return rd;
}

L
Linus Torvalds 已提交
7978
/*
I
Ingo Molnar 已提交
7979
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7980 7981
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7982 7983
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7984
{
7985
	struct rq *rq = cpu_rq(cpu);
7986 7987 7988
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7989
	for (tmp = sd; tmp; ) {
7990 7991 7992
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7993

7994
		if (sd_parent_degenerate(tmp, parent)) {
7995
			tmp->parent = parent->parent;
7996 7997
			if (parent->parent)
				parent->parent->child = tmp;
7998 7999
		} else
			tmp = tmp->parent;
8000 8001
	}

8002
	if (sd && sd_degenerate(sd)) {
8003
		sd = sd->parent;
8004 8005 8006
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8007 8008 8009

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8010
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8011
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8012 8013 8014
}

/* cpus with isolated domains */
8015
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8016 8017 8018 8019

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8020
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8021 8022 8023
	return 1;
}

I
Ingo Molnar 已提交
8024
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8025 8026

/*
8027 8028
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8029 8030
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8031 8032 8033 8034 8035
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8036
static void
8037 8038 8039
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8040
					struct sched_group **sg,
8041 8042
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8043 8044 8045 8046
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8047
	cpumask_clear(covered);
8048

8049
	for_each_cpu(i, span) {
8050
		struct sched_group *sg;
8051
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8052 8053
		int j;

8054
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8055 8056
			continue;

8057
		cpumask_clear(sched_group_cpus(sg));
8058
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8059

8060
		for_each_cpu(j, span) {
8061
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8062 8063
				continue;

8064
			cpumask_set_cpu(j, covered);
8065
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8066 8067 8068 8069 8070 8071 8072 8073 8074 8075
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8076
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8077

8078
#ifdef CONFIG_NUMA
8079

8080 8081 8082 8083 8084
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8085
 * Find the next node to include in a given scheduling domain. Simply
8086 8087 8088 8089
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8090
static int find_next_best_node(int node, nodemask_t *used_nodes)
8091 8092 8093 8094 8095
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8096
	for (i = 0; i < nr_node_ids; i++) {
8097
		/* Start at @node */
8098
		n = (node + i) % nr_node_ids;
8099 8100 8101 8102 8103

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8104
		if (node_isset(n, *used_nodes))
8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8116
	node_set(best_node, *used_nodes);
8117 8118 8119 8120 8121 8122
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8123
 * @span: resulting cpumask
8124
 *
I
Ingo Molnar 已提交
8125
 * Given a node, construct a good cpumask for its sched_domain to span. It
8126 8127 8128
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8129
static void sched_domain_node_span(int node, struct cpumask *span)
8130
{
8131
	nodemask_t used_nodes;
8132
	int i;
8133

8134
	cpumask_clear(span);
8135
	nodes_clear(used_nodes);
8136

8137
	cpumask_or(span, span, cpumask_of_node(node));
8138
	node_set(node, used_nodes);
8139 8140

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8141
		int next_node = find_next_best_node(node, &used_nodes);
8142

8143
		cpumask_or(span, span, cpumask_of_node(next_node));
8144 8145
	}
}
8146
#endif /* CONFIG_NUMA */
8147

8148
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8149

8150 8151
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8152 8153 8154
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8199
/*
8200
 * SMT sched-domains:
8201
 */
L
Linus Torvalds 已提交
8202
#ifdef CONFIG_SCHED_SMT
8203 8204
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8205

I
Ingo Molnar 已提交
8206
static int
8207 8208
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8209
{
8210
	if (sg)
8211
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8212 8213
	return cpu;
}
8214
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8215

8216 8217 8218
/*
 * multi-core sched-domains:
 */
8219
#ifdef CONFIG_SCHED_MC
8220 8221
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8222
#endif /* CONFIG_SCHED_MC */
8223 8224

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8225
static int
8226 8227
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8228
{
8229
	int group;
8230

8231
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8232
	group = cpumask_first(mask);
8233
	if (sg)
8234
		*sg = &per_cpu(sched_group_core, group).sg;
8235
	return group;
8236 8237
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8238
static int
8239 8240
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8241
{
8242
	if (sg)
8243
		*sg = &per_cpu(sched_group_core, cpu).sg;
8244 8245 8246 8247
	return cpu;
}
#endif

8248 8249
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8250

I
Ingo Molnar 已提交
8251
static int
8252 8253
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8254
{
8255
	int group;
8256
#ifdef CONFIG_SCHED_MC
8257
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8258
	group = cpumask_first(mask);
8259
#elif defined(CONFIG_SCHED_SMT)
8260
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8261
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8262
#else
8263
	group = cpu;
L
Linus Torvalds 已提交
8264
#endif
8265
	if (sg)
8266
		*sg = &per_cpu(sched_group_phys, group).sg;
8267
	return group;
L
Linus Torvalds 已提交
8268 8269 8270 8271
}

#ifdef CONFIG_NUMA
/*
8272 8273 8274
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8275
 */
8276
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8277
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8278

8279
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8280
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8281

8282 8283 8284
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8285
{
8286 8287
	int group;

8288
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8289
	group = cpumask_first(nodemask);
8290 8291

	if (sg)
8292
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8293
	return group;
L
Linus Torvalds 已提交
8294
}
8295

8296 8297 8298 8299 8300 8301 8302
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8303
	do {
8304
		for_each_cpu(j, sched_group_cpus(sg)) {
8305
			struct sched_domain *sd;
8306

8307
			sd = &per_cpu(phys_domains, j).sd;
8308
			if (j != group_first_cpu(sd->groups)) {
8309 8310 8311 8312 8313 8314
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8315

8316
			sg->cpu_power += sd->groups->cpu_power;
8317 8318 8319
		}
		sg = sg->next;
	} while (sg != group_head);
8320
}
8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8353
	sg->cpu_power = 0;
8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8376
		sg->cpu_power = 0;
8377 8378 8379 8380 8381 8382 8383 8384 8385
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8386
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8387

8388
#ifdef CONFIG_NUMA
8389
/* Free memory allocated for various sched_group structures */
8390 8391
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8392
{
8393
	int cpu, i;
8394

8395
	for_each_cpu(cpu, cpu_map) {
8396 8397 8398 8399 8400 8401
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8402
		for (i = 0; i < nr_node_ids; i++) {
8403 8404
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8405
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8406
			if (cpumask_empty(nodemask))
8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8423
#else /* !CONFIG_NUMA */
8424 8425
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8426 8427
{
}
8428
#endif /* CONFIG_NUMA */
8429

8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8444 8445
	long power;
	int weight;
8446 8447 8448

	WARN_ON(!sd || !sd->groups);

8449
	if (cpu != group_first_cpu(sd->groups))
8450 8451 8452 8453
		return;

	child = sd->child;

8454
	sd->groups->cpu_power = 0;
8455

8456 8457 8458 8459 8460
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8461 8462 8463
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8464
		 */
P
Peter Zijlstra 已提交
8465 8466
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8467
			power /= weight;
P
Peter Zijlstra 已提交
8468 8469
			power >>= SCHED_LOAD_SHIFT;
		}
8470
		sd->groups->cpu_power += power;
8471 8472 8473 8474
		return;
	}

	/*
8475
	 * Add cpu_power of each child group to this groups cpu_power.
8476 8477 8478
	 */
	group = child->groups;
	do {
8479
		sd->groups->cpu_power += group->cpu_power;
8480 8481 8482 8483
		group = group->next;
	} while (group != child->groups);
}

8484 8485 8486 8487 8488
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8489 8490 8491 8492 8493 8494
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8495
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8496

8497 8498 8499 8500 8501
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8502
	sd->level = SD_LV_##type;				\
8503
	SD_INIT_NAME(sd, type);					\
8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8518 8519 8520 8521
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8522 8523 8524 8525 8526 8527
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8546
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8547 8548
	} else {
		/* turn on idle balance on this domain */
8549
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8550 8551 8552
	}
}

8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8573
#ifdef CONFIG_NUMA
8574 8575 8576 8577 8578 8579 8580
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8581
#endif
8582 8583 8584 8585
	case sa_none:
		break;
	}
}
8586

8587 8588 8589
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8590
#ifdef CONFIG_NUMA
8591 8592 8593 8594 8595 8596 8597 8598 8599 8600
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8601
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8602
		return sa_notcovered;
8603
	}
8604
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8605
#endif
8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8618
		printk(KERN_WARNING "Cannot alloc root domain\n");
8619
		return sa_tmpmask;
G
Gregory Haskins 已提交
8620
	}
8621 8622
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8623

8624 8625 8626 8627
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8628
#ifdef CONFIG_NUMA
8629
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8630

8631 8632 8633 8634 8635
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8636
		set_domain_attribute(sd, attr);
8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8651
#endif
8652 8653
	return sd;
}
L
Linus Torvalds 已提交
8654

8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8670

8671 8672 8673 8674 8675
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8676
#ifdef CONFIG_SCHED_MC
8677 8678 8679 8680 8681 8682 8683
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8684
#endif
8685 8686
	return sd;
}
8687

8688 8689 8690 8691 8692
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8693
#ifdef CONFIG_SCHED_SMT
8694 8695 8696 8697 8698 8699 8700
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8701
#endif
8702 8703
	return sd;
}
L
Linus Torvalds 已提交
8704

8705 8706 8707 8708
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8709
#ifdef CONFIG_SCHED_SMT
8710 8711 8712 8713 8714 8715 8716 8717
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8718
#endif
8719
#ifdef CONFIG_SCHED_MC
8720 8721 8722 8723 8724 8725 8726
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8727
#endif
8728 8729 8730 8731 8732 8733 8734
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8735
#ifdef CONFIG_NUMA
8736 8737 8738 8739 8740
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8741 8742
	default:
		break;
8743
	}
8744
}
8745

8746 8747 8748 8749 8750 8751 8752 8753 8754
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8755
	struct sched_domain *sd;
8756
	int i;
8757
#ifdef CONFIG_NUMA
8758
	d.sd_allnodes = 0;
8759
#endif
8760

8761 8762 8763 8764
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8765

L
Linus Torvalds 已提交
8766
	/*
8767
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8768
	 */
8769
	for_each_cpu(i, cpu_map) {
8770 8771
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8772

8773
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8774
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8775
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8776
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8777
	}
8778

8779
	for_each_cpu(i, cpu_map) {
8780
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8781
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8782
	}
8783

L
Linus Torvalds 已提交
8784
	/* Set up physical groups */
8785 8786
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8787

L
Linus Torvalds 已提交
8788 8789
#ifdef CONFIG_NUMA
	/* Set up node groups */
8790 8791
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8792

8793 8794
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8795
			goto error;
L
Linus Torvalds 已提交
8796 8797 8798
#endif

	/* Calculate CPU power for physical packages and nodes */
8799
#ifdef CONFIG_SCHED_SMT
8800
	for_each_cpu(i, cpu_map) {
8801
		sd = &per_cpu(cpu_domains, i).sd;
8802
		init_sched_groups_power(i, sd);
8803
	}
L
Linus Torvalds 已提交
8804
#endif
8805
#ifdef CONFIG_SCHED_MC
8806
	for_each_cpu(i, cpu_map) {
8807
		sd = &per_cpu(core_domains, i).sd;
8808
		init_sched_groups_power(i, sd);
8809 8810
	}
#endif
8811

8812
	for_each_cpu(i, cpu_map) {
8813
		sd = &per_cpu(phys_domains, i).sd;
8814
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8815 8816
	}

8817
#ifdef CONFIG_NUMA
8818
	for (i = 0; i < nr_node_ids; i++)
8819
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8820

8821
	if (d.sd_allnodes) {
8822
		struct sched_group *sg;
8823

8824
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8825
								d.tmpmask);
8826 8827
		init_numa_sched_groups_power(sg);
	}
8828 8829
#endif

L
Linus Torvalds 已提交
8830
	/* Attach the domains */
8831
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8832
#ifdef CONFIG_SCHED_SMT
8833
		sd = &per_cpu(cpu_domains, i).sd;
8834
#elif defined(CONFIG_SCHED_MC)
8835
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8836
#else
8837
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8838
#endif
8839
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8840
	}
8841

8842 8843 8844
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8845 8846

error:
8847 8848
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8849
}
P
Paul Jackson 已提交
8850

8851
static int build_sched_domains(const struct cpumask *cpu_map)
8852 8853 8854 8855
{
	return __build_sched_domains(cpu_map, NULL);
}

8856
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8857
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8858 8859
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8860 8861 8862

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8863 8864
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8865
 */
8866
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8867

8868 8869 8870 8871 8872 8873
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8874
{
8875
	return 0;
8876 8877
}

8878
/*
I
Ingo Molnar 已提交
8879
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8880 8881
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8882
 */
8883
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8884
{
8885 8886
	int err;

8887
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8888
	ndoms_cur = 1;
8889
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8890
	if (!doms_cur)
8891
		doms_cur = fallback_doms;
8892
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8893
	dattr_cur = NULL;
8894
	err = build_sched_domains(doms_cur);
8895
	register_sched_domain_sysctl();
8896 8897

	return err;
8898 8899
}

8900 8901
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8902
{
8903
	free_sched_groups(cpu_map, tmpmask);
8904
}
L
Linus Torvalds 已提交
8905

8906 8907 8908 8909
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8910
static void detach_destroy_domains(const struct cpumask *cpu_map)
8911
{
8912 8913
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8914 8915
	int i;

8916
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8917
		cpu_attach_domain(NULL, &def_root_domain, i);
8918
	synchronize_sched();
8919
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8920 8921
}

8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8938 8939
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8940
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8941 8942 8943
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8944
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8945 8946 8947
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8948 8949 8950
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8951 8952
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8953 8954 8955 8956
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8957
 *
8958
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8959 8960
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8961
 *
P
Paul Jackson 已提交
8962 8963
 * Call with hotplug lock held
 */
8964 8965
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8966
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8967
{
8968
	int i, j, n;
8969
	int new_topology;
P
Paul Jackson 已提交
8970

8971
	mutex_lock(&sched_domains_mutex);
8972

8973 8974 8975
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8976 8977 8978
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8979
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8980 8981 8982

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8983
		for (j = 0; j < n && !new_topology; j++) {
8984
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8985
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8986 8987 8988 8989 8990 8991 8992 8993
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8994 8995
	if (doms_new == NULL) {
		ndoms_cur = 0;
8996
		doms_new = fallback_doms;
8997
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8998
		WARN_ON_ONCE(dattr_new);
8999 9000
	}

P
Paul Jackson 已提交
9001 9002
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9003
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9004
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
9005
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9006 9007 9008
				goto match2;
		}
		/* no match - add a new doms_new */
9009 9010
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9011 9012 9013 9014 9015
match2:
		;
	}

	/* Remember the new sched domains */
9016
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
9017
		kfree(doms_cur);
9018
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9019
	doms_cur = doms_new;
9020
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9021
	ndoms_cur = ndoms_new;
9022 9023

	register_sched_domain_sysctl();
9024

9025
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9026 9027
}

9028
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9029
static void arch_reinit_sched_domains(void)
9030
{
9031
	get_online_cpus();
9032 9033 9034 9035

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9036
	rebuild_sched_domains();
9037
	put_online_cpus();
9038 9039 9040 9041
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9042
	unsigned int level = 0;
9043

9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9055 9056 9057
		return -EINVAL;

	if (smt)
9058
		sched_smt_power_savings = level;
9059
	else
9060
		sched_mc_power_savings = level;
9061

9062
	arch_reinit_sched_domains();
9063

9064
	return count;
9065 9066 9067
}

#ifdef CONFIG_SCHED_MC
9068 9069
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9070 9071 9072
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9073
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9074
					    const char *buf, size_t count)
9075 9076 9077
{
	return sched_power_savings_store(buf, count, 0);
}
9078 9079 9080
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9081 9082 9083
#endif

#ifdef CONFIG_SCHED_SMT
9084 9085
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9086 9087 9088
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9089
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9090
					     const char *buf, size_t count)
9091 9092 9093
{
	return sched_power_savings_store(buf, count, 1);
}
9094 9095
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9096 9097 9098
		   sched_smt_power_savings_store);
#endif

9099
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9115
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9116

9117
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9118
/*
9119 9120
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9121 9122 9123
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9124 9125 9126 9127 9128 9129
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9130
		partition_sched_domains(1, NULL, NULL);
9131 9132 9133 9134 9135 9136 9137 9138 9139 9140
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9141
{
P
Peter Zijlstra 已提交
9142 9143
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9144 9145
	switch (action) {
	case CPU_DOWN_PREPARE:
9146
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9147
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9148 9149 9150
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9151
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9152
	case CPU_ONLINE:
9153
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9154
		enable_runtime(cpu_rq(cpu));
9155 9156
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9157 9158 9159 9160 9161 9162 9163
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9164 9165 9166
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9167

9168 9169 9170 9171 9172
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9173
	get_online_cpus();
9174
	mutex_lock(&sched_domains_mutex);
9175 9176 9177 9178
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9179
	mutex_unlock(&sched_domains_mutex);
9180
	put_online_cpus();
9181 9182

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9183 9184
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9185 9186 9187 9188 9189
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9190
	init_hrtick();
9191 9192

	/* Move init over to a non-isolated CPU */
9193
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9194
		BUG();
I
Ingo Molnar 已提交
9195
	sched_init_granularity();
9196
	free_cpumask_var(non_isolated_cpus);
9197 9198

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9199
	init_sched_rt_class();
L
Linus Torvalds 已提交
9200 9201 9202 9203
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9204
	sched_init_granularity();
L
Linus Torvalds 已提交
9205 9206 9207
}
#endif /* CONFIG_SMP */

9208 9209
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9210 9211 9212 9213 9214 9215 9216
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9217
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9218 9219
{
	cfs_rq->tasks_timeline = RB_ROOT;
9220
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9221 9222 9223
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9224
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9225 9226
}

P
Peter Zijlstra 已提交
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9240
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9241
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9242
#ifdef CONFIG_SMP
9243
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9244 9245
#endif
#endif
P
Peter Zijlstra 已提交
9246 9247 9248
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9249
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9250 9251 9252 9253
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9254 9255
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9256

9257
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9258
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9259 9260
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9261 9262
}

P
Peter Zijlstra 已提交
9263
#ifdef CONFIG_FAIR_GROUP_SCHED
9264 9265 9266
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9267
{
9268
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9269 9270 9271 9272 9273 9274 9275
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9276 9277 9278 9279
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9280 9281 9282 9283 9284
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9285 9286
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9287
	se->load.inv_weight = 0;
9288
	se->parent = parent;
P
Peter Zijlstra 已提交
9289
}
9290
#endif
P
Peter Zijlstra 已提交
9291

9292
#ifdef CONFIG_RT_GROUP_SCHED
9293 9294 9295
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9296
{
9297 9298
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9299 9300 9301 9302
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9303
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9304 9305 9306 9307
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9308 9309 9310
	if (!rt_se)
		return;

9311 9312 9313 9314 9315
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9316
	rt_se->my_q = rt_rq;
9317
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9318 9319 9320 9321
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9322 9323
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9324
	int i, j;
9325 9326 9327 9328 9329 9330 9331
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9332 9333 9334
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9335 9336
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9337
	alloc_size += num_possible_cpus() * cpumask_size();
9338 9339 9340 9341 9342 9343
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9344
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9345 9346 9347 9348 9349 9350 9351

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9352 9353 9354 9355 9356 9357 9358

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9359 9360
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9361 9362 9363 9364 9365
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9366 9367 9368 9369 9370 9371 9372 9373
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9374 9375
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9376 9377 9378 9379 9380 9381
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9382
	}
I
Ingo Molnar 已提交
9383

G
Gregory Haskins 已提交
9384 9385 9386 9387
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9388 9389 9390 9391 9392 9393
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9394 9395 9396
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9397 9398
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9399

9400
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9401
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9402 9403 9404 9405 9406 9407
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9408 9409
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9410

9411
	for_each_possible_cpu(i) {
9412
		struct rq *rq;
L
Linus Torvalds 已提交
9413 9414 9415

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9416
		rq->nr_running = 0;
9417 9418
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9419
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9420
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9421
#ifdef CONFIG_FAIR_GROUP_SCHED
9422
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9423
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9439
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9440 9441 9442 9443
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9444
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9445
#elif defined CONFIG_USER_SCHED
9446 9447
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9448 9449 9450 9451 9452 9453 9454 9455
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9456
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9457 9458
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9459
		init_tg_cfs_entry(&init_task_group,
9460
				&per_cpu(init_tg_cfs_rq, i),
9461 9462
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9463

9464
#endif
D
Dhaval Giani 已提交
9465 9466 9467
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9468
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9469
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9470
#ifdef CONFIG_CGROUP_SCHED
9471
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9472
#elif defined CONFIG_USER_SCHED
9473
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9474
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9475
				&per_cpu(init_rt_rq, i),
9476 9477
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9478
#endif
I
Ingo Molnar 已提交
9479
#endif
L
Linus Torvalds 已提交
9480

I
Ingo Molnar 已提交
9481 9482
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9483
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9484
		rq->sd = NULL;
G
Gregory Haskins 已提交
9485
		rq->rd = NULL;
9486
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9487
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9488
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9489
		rq->push_cpu = 0;
9490
		rq->cpu = i;
9491
		rq->online = 0;
L
Linus Torvalds 已提交
9492 9493
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9494
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9495
#endif
P
Peter Zijlstra 已提交
9496
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9497 9498 9499
		atomic_set(&rq->nr_iowait, 0);
	}

9500
	set_load_weight(&init_task);
9501

9502 9503 9504 9505
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9506
#ifdef CONFIG_SMP
9507
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9508 9509
#endif

9510 9511 9512 9513
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9527 9528 9529

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9530 9531 9532 9533
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9534

9535
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9536
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9537
#ifdef CONFIG_SMP
9538
#ifdef CONFIG_NO_HZ
9539 9540
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9541
#endif
9542
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9543
#endif /* SMP */
9544

9545 9546
	perf_counter_init();

9547
	scheduler_running = 1;
L
Linus Torvalds 已提交
9548 9549 9550
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9551 9552 9553 9554 9555 9556 9557 9558
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9559
{
9560
#ifdef in_atomic
L
Linus Torvalds 已提交
9561 9562
	static unsigned long prev_jiffy;	/* ratelimiting */

9563 9564
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9582 9583 9584 9585 9586 9587
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9588 9589 9590
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9591

9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9603 9604
void normalize_rt_tasks(void)
{
9605
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9606
	unsigned long flags;
9607
	struct rq *rq;
L
Linus Torvalds 已提交
9608

9609
	read_lock_irqsave(&tasklist_lock, flags);
9610
	do_each_thread(g, p) {
9611 9612 9613 9614 9615 9616
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9617 9618
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9619 9620 9621
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9622
#endif
I
Ingo Molnar 已提交
9623 9624 9625 9626 9627 9628 9629 9630

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9631
			continue;
I
Ingo Molnar 已提交
9632
		}
L
Linus Torvalds 已提交
9633

9634
		spin_lock(&p->pi_lock);
9635
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9636

9637
		normalize_task(rq, p);
9638

9639
		__task_rq_unlock(rq);
9640
		spin_unlock(&p->pi_lock);
9641 9642
	} while_each_thread(g, p);

9643
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9644 9645 9646
}

#endif /* CONFIG_MAGIC_SYSRQ */
9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9665
struct task_struct *curr_task(int cpu)
9666 9667 9668 9669 9670 9671 9672 9673 9674 9675
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9676 9677
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9678 9679 9680 9681 9682 9683 9684
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9685
void set_curr_task(int cpu, struct task_struct *p)
9686 9687 9688 9689 9690
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9691

9692 9693
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9708 9709
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9710 9711
{
	struct cfs_rq *cfs_rq;
9712
	struct sched_entity *se;
9713
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9714 9715
	int i;

9716
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9717 9718
	if (!tg->cfs_rq)
		goto err;
9719
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9720 9721
	if (!tg->se)
		goto err;
9722 9723

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9724 9725

	for_each_possible_cpu(i) {
9726
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9727

9728 9729
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9730 9731 9732
		if (!cfs_rq)
			goto err;

9733 9734
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9735 9736 9737
		if (!se)
			goto err;

9738
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9757
#else /* !CONFG_FAIR_GROUP_SCHED */
9758 9759 9760 9761
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9762 9763
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9775
#endif /* CONFIG_FAIR_GROUP_SCHED */
9776 9777

#ifdef CONFIG_RT_GROUP_SCHED
9778 9779 9780 9781
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9782 9783
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9795 9796
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9797 9798
{
	struct rt_rq *rt_rq;
9799
	struct sched_rt_entity *rt_se;
9800 9801 9802
	struct rq *rq;
	int i;

9803
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9804 9805
	if (!tg->rt_rq)
		goto err;
9806
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9807 9808 9809
	if (!tg->rt_se)
		goto err;

9810 9811
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9812 9813 9814 9815

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9816 9817
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9818 9819
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9820

9821 9822
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9823 9824
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9825

9826
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9827 9828
	}

9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9845
#else /* !CONFIG_RT_GROUP_SCHED */
9846 9847 9848 9849
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9850 9851
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9863
#endif /* CONFIG_RT_GROUP_SCHED */
9864

9865
#ifdef CONFIG_GROUP_SCHED
9866 9867 9868 9869 9870 9871 9872 9873
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9874
struct task_group *sched_create_group(struct task_group *parent)
9875 9876 9877 9878 9879 9880 9881 9882 9883
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9884
	if (!alloc_fair_sched_group(tg, parent))
9885 9886
		goto err;

9887
	if (!alloc_rt_sched_group(tg, parent))
9888 9889
		goto err;

9890
	spin_lock_irqsave(&task_group_lock, flags);
9891
	for_each_possible_cpu(i) {
9892 9893
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9894
	}
P
Peter Zijlstra 已提交
9895
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9896 9897 9898 9899 9900

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9901
	list_add_rcu(&tg->siblings, &parent->children);
9902
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9903

9904
	return tg;
S
Srivatsa Vaddagiri 已提交
9905 9906

err:
P
Peter Zijlstra 已提交
9907
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9908 9909 9910
	return ERR_PTR(-ENOMEM);
}

9911
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9912
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9913 9914
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9915
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9916 9917
}

9918
/* Destroy runqueue etc associated with a task group */
9919
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9920
{
9921
	unsigned long flags;
9922
	int i;
S
Srivatsa Vaddagiri 已提交
9923

9924
	spin_lock_irqsave(&task_group_lock, flags);
9925
	for_each_possible_cpu(i) {
9926 9927
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9928
	}
P
Peter Zijlstra 已提交
9929
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9930
	list_del_rcu(&tg->siblings);
9931
	spin_unlock_irqrestore(&task_group_lock, flags);
9932 9933

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9934
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9935 9936
}

9937
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9938 9939 9940
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9941 9942
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9943 9944 9945 9946 9947 9948 9949 9950 9951
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9952
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9953 9954
	on_rq = tsk->se.on_rq;

9955
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9956
		dequeue_task(rq, tsk, 0);
9957 9958
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9959

P
Peter Zijlstra 已提交
9960
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9961

P
Peter Zijlstra 已提交
9962 9963 9964 9965 9966
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9967 9968 9969
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9970
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9971 9972 9973

	task_rq_unlock(rq, &flags);
}
9974
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9975

9976
#ifdef CONFIG_FAIR_GROUP_SCHED
9977
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9978 9979 9980 9981 9982
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9983
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9984 9985 9986
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9987
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9988

9989
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9990
		enqueue_entity(cfs_rq, se, 0);
9991
}
9992

9993 9994 9995 9996 9997 9998 9999 10000 10001
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10002 10003
}

10004 10005
static DEFINE_MUTEX(shares_mutex);

10006
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10007 10008
{
	int i;
10009
	unsigned long flags;
10010

10011 10012 10013 10014 10015 10016
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10017 10018
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10019 10020
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10021

10022
	mutex_lock(&shares_mutex);
10023
	if (tg->shares == shares)
10024
		goto done;
S
Srivatsa Vaddagiri 已提交
10025

10026
	spin_lock_irqsave(&task_group_lock, flags);
10027 10028
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10029
	list_del_rcu(&tg->siblings);
10030
	spin_unlock_irqrestore(&task_group_lock, flags);
10031 10032 10033 10034 10035 10036 10037 10038

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10039
	tg->shares = shares;
10040 10041 10042 10043 10044
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10045
		set_se_shares(tg->se[i], shares);
10046
	}
S
Srivatsa Vaddagiri 已提交
10047

10048 10049 10050 10051
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10052
	spin_lock_irqsave(&task_group_lock, flags);
10053 10054
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10055
	list_add_rcu(&tg->siblings, &tg->parent->children);
10056
	spin_unlock_irqrestore(&task_group_lock, flags);
10057
done:
10058
	mutex_unlock(&shares_mutex);
10059
	return 0;
S
Srivatsa Vaddagiri 已提交
10060 10061
}

10062 10063 10064 10065
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10066
#endif
10067

10068
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10069
/*
P
Peter Zijlstra 已提交
10070
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10071
 */
P
Peter Zijlstra 已提交
10072 10073 10074 10075 10076
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10077
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10078

P
Peter Zijlstra 已提交
10079
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10080 10081
}

P
Peter Zijlstra 已提交
10082 10083
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10084
{
P
Peter Zijlstra 已提交
10085
	struct task_struct *g, *p;
10086

P
Peter Zijlstra 已提交
10087 10088 10089 10090
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10091

P
Peter Zijlstra 已提交
10092 10093
	return 0;
}
10094

P
Peter Zijlstra 已提交
10095 10096 10097 10098 10099
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10100

P
Peter Zijlstra 已提交
10101 10102 10103 10104 10105 10106
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10107

P
Peter Zijlstra 已提交
10108 10109
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10110

P
Peter Zijlstra 已提交
10111 10112 10113
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10114 10115
	}

10116 10117 10118 10119 10120 10121 10122
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10123 10124 10125 10126 10127
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10128

10129 10130 10131
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10132 10133
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10134

P
Peter Zijlstra 已提交
10135
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10136

10137 10138 10139 10140 10141
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10142

10143 10144 10145
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10146 10147 10148
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10149

P
Peter Zijlstra 已提交
10150 10151 10152 10153
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10154

P
Peter Zijlstra 已提交
10155
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10156
	}
P
Peter Zijlstra 已提交
10157

P
Peter Zijlstra 已提交
10158 10159 10160 10161
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10162 10163
}

P
Peter Zijlstra 已提交
10164
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10165
{
P
Peter Zijlstra 已提交
10166 10167 10168 10169 10170 10171 10172
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10173 10174
}

10175 10176
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10177
{
P
Peter Zijlstra 已提交
10178
	int i, err = 0;
P
Peter Zijlstra 已提交
10179 10180

	mutex_lock(&rt_constraints_mutex);
10181
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10182 10183
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10184
		goto unlock;
P
Peter Zijlstra 已提交
10185 10186

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10187 10188
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10189 10190 10191 10192 10193 10194 10195 10196 10197

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10198
 unlock:
10199
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10200 10201 10202
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10203 10204
}

10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10217 10218 10219 10220
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10221
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10222 10223
		return -1;

10224
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10225 10226 10227
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10228 10229 10230 10231 10232 10233 10234 10235

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10236 10237 10238
	if (rt_period == 0)
		return -EINVAL;

10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10253
	u64 runtime, period;
10254 10255
	int ret = 0;

10256 10257 10258
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10259 10260 10261 10262 10263 10264 10265 10266
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10267

10268
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10269
	read_lock(&tasklist_lock);
10270
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10271
	read_unlock(&tasklist_lock);
10272 10273 10274 10275
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10276 10277 10278 10279 10280 10281 10282 10283 10284 10285

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10286
#else /* !CONFIG_RT_GROUP_SCHED */
10287 10288
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10289 10290 10291
	unsigned long flags;
	int i;

10292 10293 10294
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10295 10296 10297 10298 10299 10300 10301
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10302 10303 10304 10305 10306 10307 10308 10309 10310 10311
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10312 10313
	return 0;
}
10314
#endif /* CONFIG_RT_GROUP_SCHED */
10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10345

10346
#ifdef CONFIG_CGROUP_SCHED
10347 10348

/* return corresponding task_group object of a cgroup */
10349
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10350
{
10351 10352
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10353 10354 10355
}

static struct cgroup_subsys_state *
10356
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10357
{
10358
	struct task_group *tg, *parent;
10359

10360
	if (!cgrp->parent) {
10361 10362 10363 10364
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10365 10366
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10367 10368 10369 10370 10371 10372
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10373 10374
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10375
{
10376
	struct task_group *tg = cgroup_tg(cgrp);
10377 10378 10379 10380

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10381 10382 10383
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10384
{
10385
#ifdef CONFIG_RT_GROUP_SCHED
10386
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10387 10388
		return -EINVAL;
#else
10389 10390 10391
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10392
#endif
10393 10394 10395 10396 10397

	return 0;
}

static void
10398
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10399 10400 10401 10402 10403
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10404
#ifdef CONFIG_FAIR_GROUP_SCHED
10405
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10406
				u64 shareval)
10407
{
10408
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10409 10410
}

10411
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10412
{
10413
	struct task_group *tg = cgroup_tg(cgrp);
10414 10415 10416

	return (u64) tg->shares;
}
10417
#endif /* CONFIG_FAIR_GROUP_SCHED */
10418

10419
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10420
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10421
				s64 val)
P
Peter Zijlstra 已提交
10422
{
10423
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10424 10425
}

10426
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10427
{
10428
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10429
}
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10441
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10442

10443
static struct cftype cpu_files[] = {
10444
#ifdef CONFIG_FAIR_GROUP_SCHED
10445 10446
	{
		.name = "shares",
10447 10448
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10449
	},
10450 10451
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10452
	{
P
Peter Zijlstra 已提交
10453
		.name = "rt_runtime_us",
10454 10455
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10456
	},
10457 10458
	{
		.name = "rt_period_us",
10459 10460
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10461
	},
10462
#endif
10463 10464 10465 10466
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10467
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10468 10469 10470
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10471 10472 10473 10474 10475 10476 10477
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10478 10479 10480
	.early_init	= 1,
};

10481
#endif	/* CONFIG_CGROUP_SCHED */
10482 10483 10484 10485 10486 10487 10488 10489 10490 10491

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10492
/* track cpu usage of a group of tasks and its child groups */
10493 10494 10495 10496
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10497
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10498
	struct cpuacct *parent;
10499 10500 10501 10502 10503
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10504
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10505
{
10506
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10519
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10520 10521
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10522
	int i;
10523 10524

	if (!ca)
10525
		goto out;
10526 10527

	ca->cpuusage = alloc_percpu(u64);
10528 10529 10530 10531 10532 10533
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10534

10535 10536 10537
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10538
	return &ca->css;
10539 10540 10541 10542 10543 10544 10545 10546 10547

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10548 10549 10550
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10551
static void
10552
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10553
{
10554
	struct cpuacct *ca = cgroup_ca(cgrp);
10555
	int i;
10556

10557 10558
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10559 10560 10561 10562
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10563 10564
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10565
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10584
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10598
/* return total cpu usage (in nanoseconds) of a group */
10599
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10600
{
10601
	struct cpuacct *ca = cgroup_ca(cgrp);
10602 10603 10604
	u64 totalcpuusage = 0;
	int i;

10605 10606
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10607 10608 10609 10610

	return totalcpuusage;
}

10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10623 10624
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10625 10626 10627 10628 10629

out:
	return err;
}

10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10664 10665 10666
static struct cftype files[] = {
	{
		.name = "usage",
10667 10668
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10669
	},
10670 10671 10672 10673
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10674 10675 10676 10677
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10678 10679
};

10680
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10681
{
10682
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10683 10684 10685 10686 10687 10688 10689 10690 10691 10692
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10693
	int cpu;
10694

L
Li Zefan 已提交
10695
	if (unlikely(!cpuacct_subsys.active))
10696 10697
		return;

10698
	cpu = task_cpu(tsk);
10699 10700 10701

	rcu_read_lock();

10702 10703
	ca = task_ca(tsk);

10704
	for (; ca; ca = ca->parent) {
10705
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10706 10707
		*cpuusage += cputime;
	}
10708 10709

	rcu_read_unlock();
10710 10711
}

10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10733 10734 10735 10736 10737 10738 10739 10740
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */