sched.c 217.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557 558
	unsigned long avg_load_per_task;

559
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
560 561 562
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
563 564 565 566 567 568
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
569 570 571 572 573
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
574 575 576 577
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
578 579

	/* schedule() stats */
580 581 582
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
583 584

	/* try_to_wake_up() stats */
585 586
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
587 588

	/* BKL stats */
589
	unsigned int bkl_count;
L
Linus Torvalds 已提交
590
#endif
591
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
592 593
};

594
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
595

I
Ingo Molnar 已提交
596 597 598 599 600
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

601 602 603 604 605 606 607 608 609
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
610 611
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
613 614 615 616
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
617 618
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
619 620 621 622 623 624

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

625 626 627 628 629
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
630 631 632 633 634 635 636 637 638 639 640 641
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
642 643 644 645

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
646
enum {
P
Peter Zijlstra 已提交
647
#include "sched_features.h"
I
Ingo Molnar 已提交
648 649
};

P
Peter Zijlstra 已提交
650 651 652 653 654
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
655
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
656 657 658 659 660 661 662 663 664
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

665
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
666 667 668 669 670 671
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

672
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
700
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
730
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
773

774 775 776 777 778 779
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
780 781 782 783 784 785
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
786
/*
P
Peter Zijlstra 已提交
787
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
788 789
 * default: 1s
 */
P
Peter Zijlstra 已提交
790
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
791

792 793
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
794 795 796 797 798
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
799

800 801 802 803 804 805 806 807 808 809 810 811
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
812

L
Linus Torvalds 已提交
813
#ifndef prepare_arch_switch
814 815 816 817 818 819
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

820 821 822 823 824
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

825
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
826
static inline int task_running(struct rq *rq, struct task_struct *p)
827
{
828
	return task_current(rq, p);
829 830
}

831
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
832 833 834
{
}

835
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
836
{
837 838 839 840
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
841 842 843 844 845 846 847
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

848 849 850 851
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
852
static inline int task_running(struct rq *rq, struct task_struct *p)
853 854 855 856
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
857
	return task_current(rq, p);
858 859 860
#endif
}

861
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

878
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
879 880 881 882 883 884 885 886 887 888 889 890
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
891
#endif
892 893
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
894

895 896 897 898
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
899
static inline struct rq *__task_rq_lock(struct task_struct *p)
900 901
	__acquires(rq->lock)
{
902 903 904 905 906
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
907 908 909 910
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
911 912
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
913
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
914 915
 * explicitly disabling preemption.
 */
916
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
917 918
	__acquires(rq->lock)
{
919
	struct rq *rq;
L
Linus Torvalds 已提交
920

921 922 923 924 925 926
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
927 928 929 930
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
931
static void __task_rq_unlock(struct rq *rq)
932 933 934 935 936
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

937
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
938 939 940 941 942 943
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
944
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
945
 */
A
Alexey Dobriyan 已提交
946
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
947 948
	__acquires(rq->lock)
{
949
	struct rq *rq;
L
Linus Torvalds 已提交
950 951 952 953 954 955 956 957

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
993
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1005 1006
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1082
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1083 1084 1085 1086 1087 1088
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1089
#ifdef CONFIG_SMP
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1145
#endif /* CONFIG_SMP */
1146 1147

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1184 1185 1186 1187

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1188 1189
#endif

I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1203
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1204 1205 1206 1207 1208
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1209
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1210 1211
		return;

P
Peter Zijlstra 已提交
1212
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1275
#endif /* CONFIG_NO_HZ */
1276

1277
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1278
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1279 1280
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1281
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1282
}
1283
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1293 1294 1295
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1296
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1297

1298 1299 1300
/*
 * delta *= weight / lw
 */
1301
static unsigned long
1302 1303 1304 1305 1306
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1307 1308 1309 1310 1311 1312 1313
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1314 1315 1316 1317 1318

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1319
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1320
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1321 1322
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1323
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324

1325
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 1327
}

1328
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 1330
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 1336
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340 1341 1342 1343
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1344
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 1346 1347 1348
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 1361 1362
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1363 1364
 */
static const int prio_to_weight[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1373 1374
};

1375 1376 1377 1378 1379 1380 1381
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1382
static const u32 prio_to_wmult[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1391
};
1392

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1418

1419 1420 1421 1422 1423 1424
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1435 1436 1437 1438
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

1450 1451
#ifdef CONFIG_FAIR_GROUP_SCHED

1452
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1453 1454 1455 1456 1457

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1458 1459
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1460 1461 1462 1463 1464 1465
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1466
	(*down)(parent, cpu, sd);
1467 1468 1469 1470 1471 1472 1473
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1474
	(*up)(parent, cpu, sd);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1489
__update_group_shares_cpu(struct task_group *tg, int cpu,
1490
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1491 1492 1493 1494 1495
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1496
	if (!tg->se[cpu])
1497 1498
		return;

1499
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1511 1512 1513
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1514 1515 1516 1517 1518 1519
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1520
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1521 1522 1523 1524

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1525
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1526 1527 1528 1529 1530 1531

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1532
	__set_se_shares(tg->se[cpu], shares);
1533 1534 1535
}

/*
1536 1537 1538
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1539 1540
 */
static void
1541
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1542
{
1543 1544 1545
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1546

1547 1548 1549
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1550 1551
	}

1552 1553 1554 1555 1556
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1557

P
Peter Zijlstra 已提交
1558 1559 1560
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1561 1562 1563 1564 1565
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1566
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1567 1568 1569 1570 1571
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1572 1573 1574
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1575
 */
1576
static void
1577
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1578
{
1579
	unsigned long load;
1580

1581 1582 1583 1584 1585 1586 1587
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1588

1589
	tg->cfs_rq[cpu]->h_load = load;
1590 1591
}

1592 1593
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1594 1595 1596
{
}

1597
static void update_shares(struct sched_domain *sd)
1598
{
P
Peter Zijlstra 已提交
1599 1600 1601 1602 1603 1604 1605
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1606 1607
}

1608 1609 1610 1611 1612 1613 1614
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1615
static void update_h_load(int cpu)
1616
{
1617
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1618 1619 1620 1621 1622 1623 1624 1625 1626
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1627
static inline void update_shares(struct sched_domain *sd)
1628 1629 1630
{
}

1631 1632 1633 1634
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1635 1636
#endif

1637 1638
#endif

I
Ingo Molnar 已提交
1639 1640
#include "sched_stats.h"
#include "sched_idletask.c"
1641 1642
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1643 1644 1645 1646 1647
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1648 1649
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1650

1651
static void inc_nr_running(struct rq *rq)
1652 1653 1654 1655
{
	rq->nr_running++;
}

1656
static void dec_nr_running(struct rq *rq)
1657 1658 1659 1660
{
	rq->nr_running--;
}

1661 1662 1663
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1664 1665 1666 1667
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1668

I
Ingo Molnar 已提交
1669 1670 1671 1672 1673 1674 1675 1676
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1677

I
Ingo Molnar 已提交
1678 1679
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1680 1681
}

1682
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1683
{
I
Ingo Molnar 已提交
1684
	sched_info_queued(p);
1685
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1686
	p->se.on_rq = 1;
1687 1688
}

1689
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1690
{
1691
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1692
	p->se.on_rq = 0;
1693 1694
}

1695
/*
I
Ingo Molnar 已提交
1696
 * __normal_prio - return the priority that is based on the static prio
1697 1698 1699
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1700
	return p->static_prio;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1710
static inline int normal_prio(struct task_struct *p)
1711 1712 1713
{
	int prio;

1714
	if (task_has_rt_policy(p))
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1728
static int effective_prio(struct task_struct *p)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1741
/*
I
Ingo Molnar 已提交
1742
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1743
 */
I
Ingo Molnar 已提交
1744
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1745
{
1746
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1747
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1748

1749
	enqueue_task(rq, p, wakeup);
1750
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1756
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1757
{
1758
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1759 1760
		rq->nr_uninterruptible++;

1761
	dequeue_task(rq, p, sleep);
1762
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1769
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1770 1771 1772 1773
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1774 1775
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1776
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1777
#ifdef CONFIG_SMP
1778 1779 1780 1781 1782 1783
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1784 1785
	task_thread_info(p)->cpu = cpu;
#endif
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1800
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1801

1802 1803 1804 1805 1806 1807
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1808 1809 1810
/*
 * Is this task likely cache-hot:
 */
1811
static int
1812 1813 1814 1815
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1816 1817 1818
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1819
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1820 1821
		return 1;

1822 1823 1824
	if (p->sched_class != &fair_sched_class)
		return 0;

1825 1826 1827 1828 1829
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1830 1831 1832 1833 1834 1835
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1836
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1837
{
I
Ingo Molnar 已提交
1838 1839
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1840 1841
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1842
	u64 clock_offset;
I
Ingo Molnar 已提交
1843 1844

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1845 1846 1847 1848

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1849 1850 1851 1852
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1853 1854 1855 1856 1857
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1858
#endif
1859 1860
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1861 1862

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1863 1864
}

1865
struct migration_req {
L
Linus Torvalds 已提交
1866 1867
	struct list_head list;

1868
	struct task_struct *task;
L
Linus Torvalds 已提交
1869 1870 1871
	int dest_cpu;

	struct completion done;
1872
};
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1878
static int
1879
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1880
{
1881
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1887
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1888 1889 1890 1891 1892 1893 1894 1895
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1896

L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1909
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1910 1911
{
	unsigned long flags;
I
Ingo Molnar 已提交
1912
	int running, on_rq;
1913
	struct rq *rq;
L
Linus Torvalds 已提交
1914

1915 1916 1917 1918 1919 1920 1921 1922
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1972

1973 1974 1975 1976 1977 1978 1979
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1995
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2007 2008
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2009 2010 2011 2012
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2013
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2014
{
2015
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2016
	unsigned long total = weighted_cpuload(cpu);
2017

2018
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2019
		return total;
2020

I
Ingo Molnar 已提交
2021
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2022 2023 2024
}

/*
2025 2026
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2027
 */
A
Alexey Dobriyan 已提交
2028
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2029
{
2030
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2031
	unsigned long total = weighted_cpuload(cpu);
2032

2033
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2034
		return total;
2035

I
Ingo Molnar 已提交
2036
	return max(rq->cpu_load[type-1], total);
2037 2038
}

N
Nick Piggin 已提交
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2056 2057
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2058
			continue;
2059

N
Nick Piggin 已提交
2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2076 2077
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2078 2079 2080 2081 2082 2083 2084 2085

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2086
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2087 2088 2089 2090 2091 2092 2093

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2094
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2095
 */
I
Ingo Molnar 已提交
2096
static int
2097 2098
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2099 2100 2101 2102 2103
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2104
	/* Traverse only the allowed CPUs */
2105
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2106

2107
	for_each_cpu_mask(i, *tmp) {
2108
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2134

2135
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2136 2137 2138
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2139 2140
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2141 2142
		if (tmp->flags & flag)
			sd = tmp;
2143
	}
N
Nick Piggin 已提交
2144

2145 2146 2147
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2148
	while (sd) {
2149
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2150
		struct sched_group *group;
2151 2152 2153 2154 2155 2156
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2157 2158 2159

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2160 2161 2162 2163
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2164

2165
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2166 2167 2168 2169 2170
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2171

2172
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2204
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2205
{
2206
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2207 2208
	unsigned long flags;
	long old_state;
2209
	struct rq *rq;
L
Linus Torvalds 已提交
2210

2211 2212 2213
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2230
	smp_wmb();
L
Linus Torvalds 已提交
2231 2232 2233 2234 2235
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2236
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2237 2238 2239
		goto out_running;

	cpu = task_cpu(p);
2240
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2247 2248 2249
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254 2255
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2256
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2257 2258 2259 2260 2261 2262
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2276
#endif /* CONFIG_SCHEDSTATS */
2277

L
Linus Torvalds 已提交
2278 2279
out_activate:
#endif /* CONFIG_SMP */
2280 2281 2282 2283 2284 2285 2286 2287 2288
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2289
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2290
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2291 2292 2293
	success = 1;

out_running:
I
Ingo Molnar 已提交
2294 2295
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2296
	p->state = TASK_RUNNING;
2297 2298 2299 2300
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2307
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2308
{
2309
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2310 2311 2312
}
EXPORT_SYMBOL(wake_up_process);

2313
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319 2320
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2321 2322 2323 2324 2325 2326 2327
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2328
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2329 2330
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2331 2332 2333

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2334 2335 2336 2337 2338 2339
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2340
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2341
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2342
#endif
N
Nick Piggin 已提交
2343

P
Peter Zijlstra 已提交
2344
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2345
	p->se.on_rq = 0;
2346
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2347

2348 2349 2350 2351
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2352 2353 2354 2355 2356 2357 2358
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2373
	set_task_cpu(p, cpu);
2374 2375 2376 2377 2378

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2379 2380
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2381

2382
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2383
	if (likely(sched_info_on()))
2384
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2385
#endif
2386
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2387 2388
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2389
#ifdef CONFIG_PREEMPT
2390
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2391
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2392
#endif
N
Nick Piggin 已提交
2393
	put_cpu();
L
Linus Torvalds 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2403
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2404 2405
{
	unsigned long flags;
I
Ingo Molnar 已提交
2406
	struct rq *rq;
L
Linus Torvalds 已提交
2407 2408

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2409
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2410
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2411 2412 2413

	p->prio = effective_prio(p);

2414
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2415
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2416 2417
	} else {
		/*
I
Ingo Molnar 已提交
2418 2419
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2420
		 */
2421
		p->sched_class->task_new(rq, p);
2422
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2423
	}
I
Ingo Molnar 已提交
2424
	check_preempt_curr(rq, p);
2425 2426 2427 2428
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2429
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2430 2431
}

2432 2433 2434
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2435 2436
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2437 2438 2439 2440 2441 2442 2443 2444 2445
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2446
 * @notifier: notifier struct to unregister
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2476
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2488
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2489

2490 2491 2492
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2493
 * @prev: the current task that is being switched out
2494 2495 2496 2497 2498 2499 2500 2501 2502
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2503 2504 2505
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2506
{
2507
	fire_sched_out_preempt_notifiers(prev, next);
2508 2509 2510 2511
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2512 2513
/**
 * finish_task_switch - clean up after a task-switch
2514
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2515 2516
 * @prev: the thread we just switched away from.
 *
2517 2518 2519 2520
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2521 2522
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2523
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2524 2525 2526
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2527
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2528 2529 2530
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2531
	long prev_state;
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2537
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2538 2539
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2540
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2546
	prev_state = prev->state;
2547 2548
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2549 2550 2551 2552
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2553

2554
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2555 2556
	if (mm)
		mmdrop(mm);
2557
	if (unlikely(prev_state == TASK_DEAD)) {
2558 2559 2560
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2561
		 */
2562
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2563
		put_task_struct(prev);
2564
	}
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2571
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2572 2573
	__releases(rq->lock)
{
2574 2575
	struct rq *rq = this_rq();

2576 2577 2578 2579 2580
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2581
	if (current->set_child_tid)
2582
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2589
static inline void
2590
context_switch(struct rq *rq, struct task_struct *prev,
2591
	       struct task_struct *next)
L
Linus Torvalds 已提交
2592
{
I
Ingo Molnar 已提交
2593
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2594

2595
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2596 2597
	mm = next->mm;
	oldmm = prev->active_mm;
2598 2599 2600 2601 2602 2603 2604
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2605
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2606 2607 2608 2609 2610 2611
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2612
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2613 2614 2615
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2616 2617 2618 2619 2620 2621 2622
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2623
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2624
#endif
L
Linus Torvalds 已提交
2625 2626 2627 2628

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2629 2630 2631 2632 2633 2634 2635
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2659
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2674 2675
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2676

2677
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2687
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2688 2689 2690 2691 2692
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2708
/*
I
Ingo Molnar 已提交
2709 2710
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2711
 */
I
Ingo Molnar 已提交
2712
static void update_cpu_load(struct rq *this_rq)
2713
{
2714
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2727 2728 2729 2730 2731 2732 2733
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2734 2735
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2736 2737
}

I
Ingo Molnar 已提交
2738 2739
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2740 2741 2742 2743 2744 2745
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2746
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2747 2748 2749
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2750
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2751 2752 2753 2754
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2755
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761 2762
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2763 2764
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769 2770 2771 2772
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2773
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2787
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2788 2789 2790 2791
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2792 2793
	int ret = 0;

2794 2795 2796 2797 2798
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2799
	if (unlikely(!spin_trylock(&busiest->lock))) {
2800
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2801 2802 2803
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2804
			ret = 1;
L
Linus Torvalds 已提交
2805 2806 2807
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2808
	return ret;
L
Linus Torvalds 已提交
2809 2810 2811 2812 2813
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2814
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2815 2816
 * the cpu_allowed mask is restored.
 */
2817
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2818
{
2819
	struct migration_req req;
L
Linus Torvalds 已提交
2820
	unsigned long flags;
2821
	struct rq *rq;
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2832

L
Linus Torvalds 已提交
2833 2834 2835 2836 2837
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2838

L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844 2845
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2846 2847
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2848 2849 2850 2851
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2852
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2853
	put_cpu();
N
Nick Piggin 已提交
2854 2855
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2862 2863
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2864
{
2865
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2866
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2867
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2868 2869 2870 2871
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2872
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2873 2874 2875 2876 2877
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2878
static
2879
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2880
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2881
		     int *all_pinned)
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887 2888
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2889 2890
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2891
		return 0;
2892
	}
2893 2894
	*all_pinned = 0;

2895 2896
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2897
		return 0;
2898
	}
L
Linus Torvalds 已提交
2899

2900 2901 2902 2903 2904 2905
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2906 2907
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2908
#ifdef CONFIG_SCHEDSTATS
2909
		if (task_hot(p, rq->clock, sd)) {
2910
			schedstat_inc(sd, lb_hot_gained[idle]);
2911 2912
			schedstat_inc(p, se.nr_forced_migrations);
		}
2913 2914 2915 2916
#endif
		return 1;
	}

2917 2918
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2919
		return 0;
2920
	}
L
Linus Torvalds 已提交
2921 2922 2923
	return 1;
}

2924 2925 2926 2927 2928
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2929
{
2930
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2931 2932
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2933

2934
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2935 2936
		goto out;

2937 2938
	pinned = 1;

L
Linus Torvalds 已提交
2939
	/*
I
Ingo Molnar 已提交
2940
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2941
	 */
I
Ingo Molnar 已提交
2942 2943
	p = iterator->start(iterator->arg);
next:
2944
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2945
		goto out;
2946 2947

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2948 2949 2950
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2951 2952
	}

I
Ingo Molnar 已提交
2953
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2954
	pulled++;
I
Ingo Molnar 已提交
2955
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2956

2957
	/*
2958
	 * We only want to steal up to the prescribed amount of weighted load.
2959
	 */
2960
	if (rem_load_move > 0) {
2961 2962
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2963 2964
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2965 2966 2967
	}
out:
	/*
2968
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2969 2970 2971 2972
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2973 2974 2975

	if (all_pinned)
		*all_pinned = pinned;
2976 2977

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2978 2979
}

I
Ingo Molnar 已提交
2980
/*
P
Peter Williams 已提交
2981 2982 2983
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2984 2985 2986 2987
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2988
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2989 2990 2991
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2992
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2993
	unsigned long total_load_moved = 0;
2994
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2995 2996

	do {
P
Peter Williams 已提交
2997 2998
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2999
				max_load_move - total_load_moved,
3000
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3001
		class = class->next;
P
Peter Williams 已提交
3002
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3003

P
Peter Williams 已提交
3004 3005 3006
	return total_load_moved > 0;
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3043
	const struct sched_class *class;
P
Peter Williams 已提交
3044 3045

	for (class = sched_class_highest; class; class = class->next)
3046
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3047 3048 3049
			return 1;

	return 0;
I
Ingo Molnar 已提交
3050 3051
}

L
Linus Torvalds 已提交
3052 3053
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3054 3055
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3056 3057 3058
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3059
		   unsigned long *imbalance, enum cpu_idle_type idle,
3060
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3061 3062 3063
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3064
	unsigned long max_pull;
3065 3066
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3067
	int load_idx, group_imb = 0;
3068 3069 3070 3071 3072 3073
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3074 3075

	max_load = this_load = total_load = total_pwr = 0;
3076 3077
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3078

I
Ingo Molnar 已提交
3079
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3080
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3081
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3082 3083 3084
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3085 3086

	do {
3087
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3088 3089
		int local_group;
		int i;
3090
		int __group_imb = 0;
3091
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3092
		unsigned long sum_nr_running, sum_weighted_load;
3093 3094
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3095 3096 3097

		local_group = cpu_isset(this_cpu, group->cpumask);

3098 3099 3100
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3101
		/* Tally up the load of all CPUs in the group */
3102
		sum_weighted_load = sum_nr_running = avg_load = 0;
3103 3104
		sum_avg_load_per_task = avg_load_per_task = 0;

3105 3106
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3107 3108

		for_each_cpu_mask(i, group->cpumask) {
3109 3110 3111 3112 3113 3114
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3115

3116
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3117 3118
				*sd_idle = 0;

L
Linus Torvalds 已提交
3119
			/* Bias balancing toward cpus of our domain */
3120 3121 3122 3123 3124 3125
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3126
				load = target_load(i, load_idx);
3127
			} else {
N
Nick Piggin 已提交
3128
				load = source_load(i, load_idx);
3129 3130 3131 3132 3133
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3134 3135

			avg_load += load;
3136
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3137
			sum_weighted_load += weighted_cpuload(i);
3138 3139

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3140 3141
		}

3142 3143 3144
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3145 3146
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3147
		 */
3148 3149
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3150 3151 3152 3153
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3154
		total_load += avg_load;
3155
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3156 3157

		/* Adjust by relative CPU power of the group */
3158 3159
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3160

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3175 3176
			__group_imb = 1;

3177
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3178

L
Linus Torvalds 已提交
3179 3180 3181
		if (local_group) {
			this_load = avg_load;
			this = group;
3182 3183 3184
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3185
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3186 3187
			max_load = avg_load;
			busiest = group;
3188 3189
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3190
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3191
		}
3192 3193 3194 3195 3196 3197

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3198 3199 3200
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3201 3202 3203 3204 3205 3206 3207 3208 3209

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3210
		/*
3211 3212
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3213 3214
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3215
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3216
			goto group_next;
3217

I
Ingo Molnar 已提交
3218
		/*
3219
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3220 3221 3222 3223 3224
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3225 3226
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3227 3228
			group_min = group;
			min_nr_running = sum_nr_running;
3229 3230
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3231
		}
3232

I
Ingo Molnar 已提交
3233
		/*
3234
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3246
		}
3247 3248
group_next:
#endif
L
Linus Torvalds 已提交
3249 3250 3251
		group = group->next;
	} while (group != sd->groups);

3252
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3253 3254 3255 3256 3257 3258 3259 3260
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3261
	busiest_load_per_task /= busiest_nr_running;
3262 3263 3264
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3265 3266 3267 3268 3269 3270 3271 3272
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3273
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3274 3275
	 * appear as very large values with unsigned longs.
	 */
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3288 3289

	/* Don't want to pull so many tasks that a group would go idle */
3290
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3291

L
Linus Torvalds 已提交
3292
	/* How much load to actually move to equalise the imbalance */
3293 3294
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3295 3296
			/ SCHED_LOAD_SCALE;

3297 3298 3299 3300 3301 3302
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3303
	if (*imbalance < busiest_load_per_task) {
3304
		unsigned long tmp, pwr_now, pwr_move;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3315
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3316

3317
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3318
					busiest_load_per_task * imbn) {
3319
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3320 3321 3322 3323 3324 3325 3326 3327 3328
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3329 3330 3331 3332
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3333 3334 3335
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3336 3337
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3338
		if (max_load > tmp)
3339
			pwr_move += busiest->__cpu_power *
3340
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3341 3342

		/* Amount of load we'd add */
3343
		if (max_load * busiest->__cpu_power <
3344
				busiest_load_per_task * SCHED_LOAD_SCALE)
3345 3346
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3347
		else
3348 3349 3350 3351
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3352 3353 3354
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3355 3356
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3357 3358 3359 3360 3361
	}

	return busiest;

out_balanced:
3362
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3363
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3364
		goto ret;
L
Linus Torvalds 已提交
3365

3366 3367 3368 3369 3370
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3371
ret:
L
Linus Torvalds 已提交
3372 3373 3374 3375 3376 3377 3378
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3379
static struct rq *
I
Ingo Molnar 已提交
3380
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3381
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3382
{
3383
	struct rq *busiest = NULL, *rq;
3384
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3385 3386 3387
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3388
		unsigned long wl;
3389 3390 3391 3392

		if (!cpu_isset(i, *cpus))
			continue;

3393
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3394
		wl = weighted_cpuload(i);
3395

I
Ingo Molnar 已提交
3396
		if (rq->nr_running == 1 && wl > imbalance)
3397
			continue;
L
Linus Torvalds 已提交
3398

I
Ingo Molnar 已提交
3399 3400
		if (wl > max_load) {
			max_load = wl;
3401
			busiest = rq;
L
Linus Torvalds 已提交
3402 3403 3404 3405 3406 3407
		}
	}

	return busiest;
}

3408 3409 3410 3411 3412 3413
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3414 3415 3416 3417
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3418
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3419
			struct sched_domain *sd, enum cpu_idle_type idle,
3420
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3421
{
P
Peter Williams 已提交
3422
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3423 3424
	struct sched_group *group;
	unsigned long imbalance;
3425
	struct rq *busiest;
3426
	unsigned long flags;
N
Nick Piggin 已提交
3427

3428 3429
	cpus_setall(*cpus);

3430 3431 3432
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3433
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3434
	 * portraying it as CPU_NOT_IDLE.
3435
	 */
I
Ingo Molnar 已提交
3436
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3437
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3438
		sd_idle = 1;
L
Linus Torvalds 已提交
3439

3440
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3441

3442
redo:
3443
	update_shares(sd);
3444
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3445
				   cpus, balance);
3446

3447
	if (*balance == 0)
3448 3449
		goto out_balanced;

L
Linus Torvalds 已提交
3450 3451 3452 3453 3454
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3455
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3456 3457 3458 3459 3460
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3461
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3462 3463 3464

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3465
	ld_moved = 0;
L
Linus Torvalds 已提交
3466 3467 3468 3469
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3470
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3471 3472
		 * correctly treated as an imbalance.
		 */
3473
		local_irq_save(flags);
N
Nick Piggin 已提交
3474
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3475
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3476
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3477
		double_rq_unlock(this_rq, busiest);
3478
		local_irq_restore(flags);
3479

3480 3481 3482
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3483
		if (ld_moved && this_cpu != smp_processor_id())
3484 3485
			resched_cpu(this_cpu);

3486
		/* All tasks on this runqueue were pinned by CPU affinity */
3487
		if (unlikely(all_pinned)) {
3488 3489
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3490
				goto redo;
3491
			goto out_balanced;
3492
		}
L
Linus Torvalds 已提交
3493
	}
3494

P
Peter Williams 已提交
3495
	if (!ld_moved) {
L
Linus Torvalds 已提交
3496 3497 3498 3499 3500
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3501
			spin_lock_irqsave(&busiest->lock, flags);
3502 3503 3504 3505 3506

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3507
				spin_unlock_irqrestore(&busiest->lock, flags);
3508 3509 3510 3511
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3512 3513 3514
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3515
				active_balance = 1;
L
Linus Torvalds 已提交
3516
			}
3517
			spin_unlock_irqrestore(&busiest->lock, flags);
3518
			if (active_balance)
L
Linus Torvalds 已提交
3519 3520 3521 3522 3523 3524
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3525
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3526
		}
3527
	} else
L
Linus Torvalds 已提交
3528 3529
		sd->nr_balance_failed = 0;

3530
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3531 3532
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3533 3534 3535 3536 3537 3538 3539 3540 3541
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3542 3543
	}

P
Peter Williams 已提交
3544
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3545
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3546 3547 3548
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3549 3550 3551 3552

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3553
	sd->nr_balance_failed = 0;
3554 3555

out_one_pinned:
L
Linus Torvalds 已提交
3556
	/* tune up the balancing interval */
3557 3558
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3559 3560
		sd->balance_interval *= 2;

3561
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3562
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3563 3564 3565 3566
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3567 3568
	if (ld_moved)
		update_shares(sd);
3569
	return ld_moved;
L
Linus Torvalds 已提交
3570 3571 3572 3573 3574 3575
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3576
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3577 3578
 * this_rq is locked.
 */
3579
static int
3580 3581
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3582 3583
{
	struct sched_group *group;
3584
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3585
	unsigned long imbalance;
P
Peter Williams 已提交
3586
	int ld_moved = 0;
N
Nick Piggin 已提交
3587
	int sd_idle = 0;
3588
	int all_pinned = 0;
3589 3590

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3591

3592 3593 3594 3595
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3596
	 * portraying it as CPU_NOT_IDLE.
3597 3598 3599
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3600
		sd_idle = 1;
L
Linus Torvalds 已提交
3601

3602
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3603
redo:
3604
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3605
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3606
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3607
	if (!group) {
I
Ingo Molnar 已提交
3608
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3609
		goto out_balanced;
L
Linus Torvalds 已提交
3610 3611
	}

3612
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3613
	if (!busiest) {
I
Ingo Molnar 已提交
3614
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3615
		goto out_balanced;
L
Linus Torvalds 已提交
3616 3617
	}

N
Nick Piggin 已提交
3618 3619
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3620
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3621

P
Peter Williams 已提交
3622
	ld_moved = 0;
3623 3624 3625
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3626 3627
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3628
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3629 3630
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3631
		spin_unlock(&busiest->lock);
3632

3633
		if (unlikely(all_pinned)) {
3634 3635
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3636 3637
				goto redo;
		}
3638 3639
	}

P
Peter Williams 已提交
3640
	if (!ld_moved) {
I
Ingo Molnar 已提交
3641
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3642 3643
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3644 3645
			return -1;
	} else
3646
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3647

3648
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3649
	return ld_moved;
3650 3651

out_balanced:
I
Ingo Molnar 已提交
3652
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3653
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3654
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3655
		return -1;
3656
	sd->nr_balance_failed = 0;
3657

3658
	return 0;
L
Linus Torvalds 已提交
3659 3660 3661 3662 3663 3664
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3665
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3666 3667
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3668 3669
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3670
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3671 3672

	for_each_domain(this_cpu, sd) {
3673 3674 3675 3676 3677 3678
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3679
			/* If we've pulled tasks over stop searching: */
3680 3681
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3682 3683 3684 3685 3686 3687

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3688
	}
I
Ingo Molnar 已提交
3689
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3690 3691 3692 3693 3694
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3695
	}
L
Linus Torvalds 已提交
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3706
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3707
{
3708
	int target_cpu = busiest_rq->push_cpu;
3709 3710
	struct sched_domain *sd;
	struct rq *target_rq;
3711

3712
	/* Is there any task to move? */
3713 3714 3715 3716
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3717 3718

	/*
3719
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3720
	 * we need to fix it. Originally reported by
3721
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3722
	 */
3723
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3724

3725 3726
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3727 3728
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3729 3730

	/* Search for an sd spanning us and the target CPU. */
3731
	for_each_domain(target_cpu, sd) {
3732
		if ((sd->flags & SD_LOAD_BALANCE) &&
3733
		    cpu_isset(busiest_cpu, sd->span))
3734
				break;
3735
	}
3736

3737
	if (likely(sd)) {
3738
		schedstat_inc(sd, alb_count);
3739

P
Peter Williams 已提交
3740 3741
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3742 3743 3744 3745
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3746
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3747 3748
}

3749 3750 3751
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3752
	cpumask_t cpu_mask;
3753 3754 3755 3756 3757
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3758
/*
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3769
 *
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3826 3827 3828 3829 3830
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3831
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3832
{
3833 3834
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3835 3836
	unsigned long interval;
	struct sched_domain *sd;
3837
	/* Earliest time when we have to do rebalance again */
3838
	unsigned long next_balance = jiffies + 60*HZ;
3839
	int update_next_balance = 0;
3840
	int need_serialize;
3841
	cpumask_t tmp;
L
Linus Torvalds 已提交
3842

3843
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3844 3845 3846 3847
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3848
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3849 3850 3851 3852 3853 3854
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3855 3856 3857
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3858
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3859

3860
		if (need_serialize) {
3861 3862 3863 3864
			if (!spin_trylock(&balancing))
				goto out;
		}

3865
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3866
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3867 3868
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3869 3870 3871
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3872
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3873
			}
3874
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3875
		}
3876
		if (need_serialize)
3877 3878
			spin_unlock(&balancing);
out:
3879
		if (time_after(next_balance, sd->last_balance + interval)) {
3880
			next_balance = sd->last_balance + interval;
3881 3882
			update_next_balance = 1;
		}
3883 3884 3885 3886 3887 3888 3889 3890

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3891
	}
3892 3893 3894 3895 3896 3897 3898 3899

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3900 3901 3902 3903 3904 3905 3906 3907 3908
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3909 3910 3911 3912
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3913

I
Ingo Molnar 已提交
3914
	rebalance_domains(this_cpu, idle);
3915 3916 3917 3918 3919 3920 3921

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3922 3923
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3924 3925 3926 3927
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3928
		cpu_clear(this_cpu, cpus);
3929 3930 3931 3932 3933 3934 3935 3936 3937
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3938
			rebalance_domains(balance_cpu, CPU_IDLE);
3939 3940

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3941 3942
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3955
static inline void trigger_load_balance(struct rq *rq, int cpu)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3982
			if (ilb < nr_cpu_ids)
3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4007
}
I
Ingo Molnar 已提交
4008 4009 4010

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4011 4012 4013
/*
 * on UP we do not need to balance between CPUs:
 */
4014
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4015 4016
{
}
I
Ingo Molnar 已提交
4017

L
Linus Torvalds 已提交
4018 4019 4020 4021 4022 4023 4024
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4025 4026
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4027
 */
4028
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4029 4030
{
	unsigned long flags;
4031 4032
	u64 ns, delta_exec;
	struct rq *rq;
4033

4034 4035
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4036
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4037 4038
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4039 4040 4041 4042
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4043

L
Linus Torvalds 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4067 4068 4069 4070 4071
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4072
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4106
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4107 4108
	cputime64_t tmp;

4109 4110 4111 4112
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4113

L
Linus Torvalds 已提交
4114 4115 4116 4117 4118 4119 4120 4121
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4122
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4123
		cpustat->system = cputime64_add(cpustat->system, tmp);
4124
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149 4150 4151
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4152
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4160
	} else
L
Linus Torvalds 已提交
4161 4162 4163
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4175
	struct task_struct *curr = rq->curr;
4176 4177

	sched_clock_tick();
I
Ingo Molnar 已提交
4178 4179

	spin_lock(&rq->lock);
4180
	update_rq_clock(rq);
4181
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4182
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4183
	spin_unlock(&rq->lock);
4184

4185
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4186 4187
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4188
#endif
L
Linus Torvalds 已提交
4189 4190 4191 4192
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4193
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4194 4195 4196 4197
{
	/*
	 * Underflow?
	 */
4198 4199
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4200 4201 4202 4203
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4204 4205
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4206 4207 4208
}
EXPORT_SYMBOL(add_preempt_count);

4209
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4210 4211 4212 4213
{
	/*
	 * Underflow?
	 */
4214 4215
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4216 4217 4218
	/*
	 * Is the spinlock portion underflowing?
	 */
4219 4220 4221 4222
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4230
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4231
 */
I
Ingo Molnar 已提交
4232
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4233
{
4234 4235 4236 4237 4238
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4239
	debug_show_held_locks(prev);
4240
	print_modules();
I
Ingo Molnar 已提交
4241 4242
	if (irqs_disabled())
		print_irqtrace_events(prev);
4243 4244 4245 4246 4247

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4248
}
L
Linus Torvalds 已提交
4249

I
Ingo Molnar 已提交
4250 4251 4252 4253 4254
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4255
	/*
I
Ingo Molnar 已提交
4256
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4257 4258 4259
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4260
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4261 4262
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4263 4264
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4265
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4266 4267
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4268 4269
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4270 4271
	}
#endif
I
Ingo Molnar 已提交
4272 4273 4274 4275 4276 4277
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4278
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4279
{
4280
	const struct sched_class *class;
I
Ingo Molnar 已提交
4281
	struct task_struct *p;
L
Linus Torvalds 已提交
4282 4283

	/*
I
Ingo Molnar 已提交
4284 4285
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4286
	 */
I
Ingo Molnar 已提交
4287
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4288
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4289 4290
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4291 4292
	}

I
Ingo Molnar 已提交
4293 4294
	class = sched_class_highest;
	for ( ; ; ) {
4295
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4305

I
Ingo Molnar 已提交
4306 4307 4308 4309 4310 4311
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4312
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4313
	struct rq *rq;
M
Mike Galbraith 已提交
4314
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4328

M
Mike Galbraith 已提交
4329 4330
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4331

4332 4333 4334 4335
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4336
	update_rq_clock(rq);
4337 4338
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4339 4340

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4341
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4342
			prev->state = TASK_RUNNING;
4343
		else
4344
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4345
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4346 4347
	}

4348 4349 4350 4351
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4352

I
Ingo Molnar 已提交
4353
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4354 4355
		idle_balance(cpu, rq);

4356
	prev->sched_class->put_prev_task(rq, prev);
4357
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4358 4359

	if (likely(prev != next)) {
4360 4361
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4362 4363 4364 4365
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4366
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4367 4368 4369 4370 4371 4372
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4373 4374 4375
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4376 4377
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4378 4379

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4380
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4381

L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4390
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4391
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4392 4393 4394 4395 4396
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4397

L
Linus Torvalds 已提交
4398 4399
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4400
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4401
	 */
N
Nick Piggin 已提交
4402
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4403 4404
		return;

4405 4406 4407 4408
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4409

4410 4411 4412 4413 4414 4415
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4416 4417 4418 4419
}
EXPORT_SYMBOL(preempt_schedule);

/*
4420
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4428

4429
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4430 4431
	BUG_ON(ti->preempt_count || !irqs_disabled());

4432 4433 4434 4435 4436 4437
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4438

4439 4440 4441 4442 4443 4444
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4445 4446 4447 4448
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4449 4450
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4451
{
4452
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4453 4454 4455 4456
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4457 4458
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4459 4460 4461
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4462
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4468
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4469

4470
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4471 4472
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4473
		if (curr->func(curr, mode, sync, key) &&
4474
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4484
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4485
 */
4486
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4487
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4500
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4501 4502 4503 4504 4505
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4506
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4518
void
I
Ingo Molnar 已提交
4519
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4536
void complete(struct completion *x)
L
Linus Torvalds 已提交
4537 4538 4539 4540 4541
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4542
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4543 4544 4545 4546
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4547
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4553
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4554 4555 4556 4557
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4558 4559
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4560 4561 4562 4563 4564 4565 4566
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4567 4568 4569 4570
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4571 4572
				timeout = -ERESTARTSYS;
				break;
4573 4574
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4575 4576 4577
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4578
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4579
		__remove_wait_queue(&x->wait, &wait);
4580 4581
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4582 4583
	}
	x->done--;
4584
	return timeout ?: 1;
L
Linus Torvalds 已提交
4585 4586
}

4587 4588
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4589 4590 4591 4592
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4593
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4594
	spin_unlock_irq(&x->wait.lock);
4595 4596
	return timeout;
}
L
Linus Torvalds 已提交
4597

4598
void __sched wait_for_completion(struct completion *x)
4599 4600
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4601
}
4602
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4603

4604
unsigned long __sched
4605
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4606
{
4607
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4608
}
4609
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4610

4611
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4612
{
4613 4614 4615 4616
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4617
}
4618
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4619

4620
unsigned long __sched
4621 4622
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4623
{
4624
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4625
}
4626
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4627

M
Matthew Wilcox 已提交
4628 4629 4630 4631 4632 4633 4634 4635 4636
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4637 4638
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4639
{
I
Ingo Molnar 已提交
4640 4641 4642 4643
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4644

4645
	__set_current_state(state);
L
Linus Torvalds 已提交
4646

4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4661 4662 4663
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4664
long __sched
I
Ingo Molnar 已提交
4665
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4666
{
4667
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4668 4669 4670
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4671
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4672
{
4673
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4674 4675 4676
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4677
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4678
{
4679
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4680 4681 4682
}
EXPORT_SYMBOL(sleep_on_timeout);

4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4695
void rt_mutex_setprio(struct task_struct *p, int prio)
4696 4697
{
	unsigned long flags;
4698
	int oldprio, on_rq, running;
4699
	struct rq *rq;
4700
	const struct sched_class *prev_class = p->sched_class;
4701 4702 4703 4704

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4705
	update_rq_clock(rq);
4706

4707
	oldprio = p->prio;
I
Ingo Molnar 已提交
4708
	on_rq = p->se.on_rq;
4709
	running = task_current(rq, p);
4710
	if (on_rq)
4711
		dequeue_task(rq, p, 0);
4712 4713
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4714 4715 4716 4717 4718 4719

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4720 4721
	p->prio = prio;

4722 4723
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4724
	if (on_rq) {
4725
		enqueue_task(rq, p, 0);
4726 4727

		check_class_changed(rq, p, prev_class, oldprio, running);
4728 4729 4730 4731 4732 4733
	}
	task_rq_unlock(rq, &flags);
}

#endif

4734
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4735
{
I
Ingo Molnar 已提交
4736
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4737
	unsigned long flags;
4738
	struct rq *rq;
L
Linus Torvalds 已提交
4739 4740 4741 4742 4743 4744 4745 4746

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4747
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4748 4749 4750 4751
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4752
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4753
	 */
4754
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4755 4756 4757
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4758
	on_rq = p->se.on_rq;
4759
	if (on_rq)
4760
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4761 4762

	p->static_prio = NICE_TO_PRIO(nice);
4763
	set_load_weight(p);
4764 4765 4766
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4767

I
Ingo Molnar 已提交
4768
	if (on_rq) {
4769
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4770
		/*
4771 4772
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4773
		 */
4774
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4775 4776 4777 4778 4779 4780 4781
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4782 4783 4784 4785 4786
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4787
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4788
{
4789 4790
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4791

M
Matt Mackall 已提交
4792 4793 4794 4795
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4807
	long nice, retval;
L
Linus Torvalds 已提交
4808 4809 4810 4811 4812 4813

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4814 4815
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4825 4826 4827
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4846
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852 4853 4854
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4855
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4856 4857 4858
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4859
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4874
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879 4880 4881 4882
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4883
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4884
{
4885
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4886 4887 4888
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4889 4890
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4891
{
I
Ingo Molnar 已提交
4892
	BUG_ON(p->se.on_rq);
4893

L
Linus Torvalds 已提交
4894
	p->policy = policy;
I
Ingo Molnar 已提交
4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4907
	p->rt_priority = prio;
4908 4909 4910
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4911
	set_load_weight(p);
L
Linus Torvalds 已提交
4912 4913 4914
}

/**
4915
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4916 4917 4918
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4919
 *
4920
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4921
 */
I
Ingo Molnar 已提交
4922 4923
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4924
{
4925
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4926
	unsigned long flags;
4927
	const struct sched_class *prev_class = p->sched_class;
4928
	struct rq *rq;
L
Linus Torvalds 已提交
4929

4930 4931
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4932 4933 4934 4935 4936
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4937 4938
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4939
		return -EINVAL;
L
Linus Torvalds 已提交
4940 4941
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4942 4943
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4944 4945
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4946
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4947
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4948
		return -EINVAL;
4949
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4950 4951
		return -EINVAL;

4952 4953 4954 4955
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4956
		if (rt_policy(policy)) {
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4973 4974 4975 4976 4977 4978
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4979

4980 4981 4982 4983 4984
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4985

4986 4987 4988 4989 4990
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4991
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4992 4993 4994
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4995 4996 4997
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4998 4999 5000 5001 5002
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5003 5004 5005 5006
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5007
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5008 5009 5010
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5011 5012
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5013 5014
		goto recheck;
	}
I
Ingo Molnar 已提交
5015
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5016
	on_rq = p->se.on_rq;
5017
	running = task_current(rq, p);
5018
	if (on_rq)
5019
		deactivate_task(rq, p, 0);
5020 5021
	if (running)
		p->sched_class->put_prev_task(rq, p);
5022

L
Linus Torvalds 已提交
5023
	oldprio = p->prio;
I
Ingo Molnar 已提交
5024
	__setscheduler(rq, p, policy, param->sched_priority);
5025

5026 5027
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5028 5029
	if (on_rq) {
		activate_task(rq, p, 0);
5030 5031

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5032
	}
5033 5034 5035
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5036 5037
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5038 5039 5040 5041
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5042 5043
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5044 5045 5046
{
	struct sched_param lparam;
	struct task_struct *p;
5047
	int retval;
L
Linus Torvalds 已提交
5048 5049 5050 5051 5052

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5053 5054 5055

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5056
	p = find_process_by_pid(pid);
5057 5058 5059
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5060

L
Linus Torvalds 已提交
5061 5062 5063 5064 5065 5066 5067 5068 5069
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5070 5071
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5072
{
5073 5074 5075 5076
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5096
	struct task_struct *p;
5097
	int retval;
L
Linus Torvalds 已提交
5098 5099

	if (pid < 0)
5100
		return -EINVAL;
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5122
	struct task_struct *p;
5123
	int retval;
L
Linus Torvalds 已提交
5124 5125

	if (!param || pid < 0)
5126
		return -EINVAL;
L
Linus Torvalds 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5153
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5154 5155
{
	cpumask_t cpus_allowed;
5156
	cpumask_t new_mask = *in_mask;
5157 5158
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5159

5160
	get_online_cpus();
L
Linus Torvalds 已提交
5161 5162 5163 5164 5165
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5166
		put_online_cpus();
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5172
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5183 5184 5185 5186
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5187
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5188
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5189
 again:
5190
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5191

P
Paul Menage 已提交
5192
	if (!retval) {
5193
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5204 5205
out_unlock:
	put_task_struct(p);
5206
	put_online_cpus();
L
Linus Torvalds 已提交
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5237
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5238 5239 5240 5241
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5242
	struct task_struct *p;
L
Linus Torvalds 已提交
5243 5244
	int retval;

5245
	get_online_cpus();
L
Linus Torvalds 已提交
5246 5247 5248 5249 5250 5251 5252
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5253 5254 5255 5256
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5257
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5258 5259 5260

out_unlock:
	read_unlock(&tasklist_lock);
5261
	put_online_cpus();
L
Linus Torvalds 已提交
5262

5263
	return retval;
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5294 5295
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5296 5297 5298
 */
asmlinkage long sys_sched_yield(void)
{
5299
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5300

5301
	schedstat_inc(rq, yld_count);
5302
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5303 5304 5305 5306 5307 5308

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5309
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5310 5311 5312 5313 5314 5315 5316 5317
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5318
static void __cond_resched(void)
L
Linus Torvalds 已提交
5319
{
5320 5321 5322
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5323 5324 5325 5326 5327
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5328 5329 5330 5331 5332 5333 5334
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5335
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5336
{
5337 5338
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5339 5340 5341 5342 5343
		__cond_resched();
		return 1;
	}
	return 0;
}
5344
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5345 5346 5347 5348 5349

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5350
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5351 5352 5353
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5354
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5355
{
N
Nick Piggin 已提交
5356
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5357 5358
	int ret = 0;

N
Nick Piggin 已提交
5359
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5360
		spin_unlock(lock);
N
Nick Piggin 已提交
5361 5362 5363 5364
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5365
		ret = 1;
L
Linus Torvalds 已提交
5366 5367
		spin_lock(lock);
	}
J
Jan Kara 已提交
5368
	return ret;
L
Linus Torvalds 已提交
5369 5370 5371 5372 5373 5374 5375
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5376
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5377
		local_bh_enable();
L
Linus Torvalds 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5389
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5400
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5401 5402 5403 5404 5405 5406 5407
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5408
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5409

5410
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5411 5412 5413
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5414
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5415 5416 5417 5418 5419
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5420
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5421 5422
	long ret;

5423
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5424 5425 5426
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5427
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5448
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5449
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5473
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5474
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5491
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5492
	unsigned int time_slice;
5493
	int retval;
L
Linus Torvalds 已提交
5494 5495 5496
	struct timespec t;

	if (pid < 0)
5497
		return -EINVAL;
L
Linus Torvalds 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5509 5510 5511 5512 5513 5514
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5515
		time_slice = DEF_TIMESLICE;
5516
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5517 5518 5519 5520 5521
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5522 5523
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5524 5525
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5526
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5527
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5528 5529
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5530

L
Linus Torvalds 已提交
5531 5532 5533 5534 5535
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5536
static const char stat_nam[] = "RSDTtZX";
5537

5538
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5539 5540
{
	unsigned long free = 0;
5541
	unsigned state;
L
Linus Torvalds 已提交
5542 5543

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5544
	printk(KERN_INFO "%-13.13s %c", p->comm,
5545
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5546
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5547
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5548
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5549
	else
I
Ingo Molnar 已提交
5550
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5551 5552
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5553
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5554
	else
I
Ingo Molnar 已提交
5555
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5556 5557 5558
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5559
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5560 5561
		while (!*n)
			n++;
5562
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5563 5564
	}
#endif
5565
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5566
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5567

5568
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5569 5570
}

I
Ingo Molnar 已提交
5571
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5572
{
5573
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5574

5575 5576 5577
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5578
#else
5579 5580
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5581 5582 5583 5584 5585 5586 5587 5588
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5589
		if (!state_filter || (p->state & state_filter))
5590
			sched_show_task(p);
L
Linus Torvalds 已提交
5591 5592
	} while_each_thread(g, p);

5593 5594
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5595 5596 5597
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5598
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5599 5600 5601 5602 5603
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5604 5605
}

I
Ingo Molnar 已提交
5606 5607
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5608
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5609 5610
}

5611 5612 5613 5614 5615 5616 5617 5618
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5619
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5620
{
5621
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5622 5623
	unsigned long flags;

I
Ingo Molnar 已提交
5624 5625 5626
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5627
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5628
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5629
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5630 5631 5632

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5633 5634 5635
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5636 5637 5638
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5639 5640 5641
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5642
	task_thread_info(idle)->preempt_count = 0;
5643
#endif
I
Ingo Molnar 已提交
5644 5645 5646 5647
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5684 5685 5686 5687
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5688
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5707
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5708 5709
 * call is not atomic; no spinlocks may be held.
 */
5710
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5711
{
5712
	struct migration_req req;
L
Linus Torvalds 已提交
5713
	unsigned long flags;
5714
	struct rq *rq;
5715
	int ret = 0;
L
Linus Torvalds 已提交
5716 5717

	rq = task_rq_lock(p, &flags);
5718
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5719 5720 5721 5722
		ret = -EINVAL;
		goto out;
	}

5723 5724 5725 5726 5727 5728
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5729
	if (p->sched_class->set_cpus_allowed)
5730
		p->sched_class->set_cpus_allowed(p, new_mask);
5731
	else {
5732 5733
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5734 5735
	}

L
Linus Torvalds 已提交
5736
	/* Can the task run on the task's current CPU? If so, we're done */
5737
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5738 5739
		goto out;

5740
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5741 5742 5743 5744 5745 5746 5747 5748 5749
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5750

L
Linus Torvalds 已提交
5751 5752
	return ret;
}
5753
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5754 5755

/*
I
Ingo Molnar 已提交
5756
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5757 5758 5759 5760 5761 5762
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5763 5764
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5765
 */
5766
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5767
{
5768
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5769
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5770 5771

	if (unlikely(cpu_is_offline(dest_cpu)))
5772
		return ret;
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5785
	on_rq = p->se.on_rq;
5786
	if (on_rq)
5787
		deactivate_task(rq_src, p, 0);
5788

L
Linus Torvalds 已提交
5789
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5790 5791 5792
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5793
	}
5794
	ret = 1;
L
Linus Torvalds 已提交
5795 5796
out:
	double_rq_unlock(rq_src, rq_dest);
5797
	return ret;
L
Linus Torvalds 已提交
5798 5799 5800 5801 5802 5803 5804
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5805
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5806 5807
{
	int cpu = (long)data;
5808
	struct rq *rq;
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813 5814

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5815
		struct migration_req *req;
L
Linus Torvalds 已提交
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5838
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5839 5840
		list_del_init(head->next);

N
Nick Piggin 已提交
5841 5842 5843
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5873
/*
5874
 * Figure out where task on dead CPU should go, use force if necessary.
5875 5876
 * NOTE: interrupts should be disabled by the caller
 */
5877
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5878
{
5879
	unsigned long flags;
L
Linus Torvalds 已提交
5880
	cpumask_t mask;
5881 5882
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5883

5884 5885 5886 5887 5888 5889 5890
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5891
		if (dest_cpu >= nr_cpu_ids)
5892 5893 5894
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5895
		if (dest_cpu >= nr_cpu_ids) {
5896 5897 5898
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5899 5900 5901 5902
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5903
			 * cpuset_cpus_allowed() will not block. It must be
5904 5905
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5906
			rq = task_rq_lock(p, &flags);
5907
			p->cpus_allowed = cpus_allowed;
5908 5909
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5910

5911 5912 5913 5914 5915
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5916
			if (p->mm && printk_ratelimit()) {
5917 5918
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5919 5920
					task_pid_nr(p), p->comm, dead_cpu);
			}
5921
		}
5922
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5932
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5933
{
5934
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5948
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5949

5950
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5951

5952 5953
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5954 5955
			continue;

5956 5957 5958
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5959

5960
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5961 5962
}

I
Ingo Molnar 已提交
5963 5964
/*
 * Schedules idle task to be the next runnable task on current CPU.
5965 5966
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5967 5968 5969
 */
void sched_idle_next(void)
{
5970
	int this_cpu = smp_processor_id();
5971
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5972 5973 5974 5975
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5976
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5977

5978 5979 5980
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5981 5982 5983
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5984
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5985

5986 5987
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5988 5989 5990 5991

	spin_unlock_irqrestore(&rq->lock, flags);
}

5992 5993
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6007
/* called under rq->lock with disabled interrupts */
6008
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6009
{
6010
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6011 6012

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6013
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6014 6015

	/* Cannot have done final schedule yet: would have vanished. */
6016
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6017

6018
	get_task_struct(p);
L
Linus Torvalds 已提交
6019 6020 6021

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6022
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6023 6024
	 * fine.
	 */
6025
	spin_unlock_irq(&rq->lock);
6026
	move_task_off_dead_cpu(dead_cpu, p);
6027
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6028

6029
	put_task_struct(p);
L
Linus Torvalds 已提交
6030 6031 6032 6033 6034
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6035
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6036
	struct task_struct *next;
6037

I
Ingo Molnar 已提交
6038 6039 6040
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6041
		update_rq_clock(rq);
6042
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6043 6044 6045
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6046

L
Linus Torvalds 已提交
6047 6048 6049 6050
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6051 6052 6053
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6054 6055
	{
		.procname	= "sched_domain",
6056
		.mode		= 0555,
6057
	},
I
Ingo Molnar 已提交
6058
	{0, },
6059 6060 6061
};

static struct ctl_table sd_ctl_root[] = {
6062
	{
6063
		.ctl_name	= CTL_KERN,
6064
		.procname	= "kernel",
6065
		.mode		= 0555,
6066 6067
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6068
	{0, },
6069 6070 6071 6072 6073
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6074
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6075 6076 6077 6078

	return entry;
}

6079 6080
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6081
	struct ctl_table *entry;
6082

6083 6084 6085
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6086
	 * will always be set. In the lowest directory the names are
6087 6088 6089
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6090 6091
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6092 6093 6094
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6095 6096 6097 6098 6099

	kfree(*tablep);
	*tablep = NULL;
}

6100
static void
6101
set_table_entry(struct ctl_table *entry,
6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6115
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6116

6117 6118 6119
	if (table == NULL)
		return NULL;

6120
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6121
		sizeof(long), 0644, proc_doulongvec_minmax);
6122
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6123
		sizeof(long), 0644, proc_doulongvec_minmax);
6124
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6125
		sizeof(int), 0644, proc_dointvec_minmax);
6126
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6127
		sizeof(int), 0644, proc_dointvec_minmax);
6128
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6129
		sizeof(int), 0644, proc_dointvec_minmax);
6130
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6131
		sizeof(int), 0644, proc_dointvec_minmax);
6132
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6133
		sizeof(int), 0644, proc_dointvec_minmax);
6134
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6135
		sizeof(int), 0644, proc_dointvec_minmax);
6136
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6137
		sizeof(int), 0644, proc_dointvec_minmax);
6138
	set_table_entry(&table[9], "cache_nice_tries",
6139 6140
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6141
	set_table_entry(&table[10], "flags", &sd->flags,
6142
		sizeof(int), 0644, proc_dointvec_minmax);
6143
	/* &table[11] is terminator */
6144 6145 6146 6147

	return table;
}

6148
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6149 6150 6151 6152 6153 6154 6155 6156 6157
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6158 6159
	if (table == NULL)
		return NULL;
6160 6161 6162 6163 6164

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6165
		entry->mode = 0555;
6166 6167 6168 6169 6170 6171 6172 6173
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6174
static void register_sched_domain_sysctl(void)
6175 6176 6177 6178 6179
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6180 6181 6182
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6183 6184 6185
	if (entry == NULL)
		return;

6186
	for_each_online_cpu(i) {
6187 6188
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6189
		entry->mode = 0555;
6190
		entry->child = sd_alloc_ctl_cpu_table(i);
6191
		entry++;
6192
	}
6193 6194

	WARN_ON(sd_sysctl_header);
6195 6196
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6197

6198
/* may be called multiple times per register */
6199 6200
static void unregister_sched_domain_sysctl(void)
{
6201 6202
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6203
	sd_sysctl_header = NULL;
6204 6205
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6206
}
6207
#else
6208 6209 6210 6211
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6212 6213 6214 6215
{
}
#endif

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6246 6247 6248 6249
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6250 6251
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6252 6253
{
	struct task_struct *p;
6254
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6255
	unsigned long flags;
6256
	struct rq *rq;
L
Linus Torvalds 已提交
6257 6258

	switch (action) {
6259

L
Linus Torvalds 已提交
6260
	case CPU_UP_PREPARE:
6261
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6262
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6263 6264 6265 6266 6267
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6268
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6269 6270 6271
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6272

L
Linus Torvalds 已提交
6273
	case CPU_ONLINE:
6274
	case CPU_ONLINE_FROZEN:
6275
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6276
		wake_up_process(cpu_rq(cpu)->migration_thread);
6277 6278 6279 6280 6281 6282

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6283 6284

			set_rq_online(rq);
6285 6286
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6287
		break;
6288

L
Linus Torvalds 已提交
6289 6290
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6291
	case CPU_UP_CANCELED_FROZEN:
6292 6293
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6294
		/* Unbind it from offline cpu so it can run. Fall thru. */
6295 6296
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6297 6298 6299
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6300

L
Linus Torvalds 已提交
6301
	case CPU_DEAD:
6302
	case CPU_DEAD_FROZEN:
6303
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6304 6305 6306 6307 6308
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6309
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6310
		update_rq_clock(rq);
6311
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6312
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6313 6314
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6315
		migrate_dead_tasks(cpu);
6316
		spin_unlock_irq(&rq->lock);
6317
		cpuset_unlock();
L
Linus Torvalds 已提交
6318 6319 6320
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6321 6322 6323 6324 6325
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6326 6327
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6328 6329
			struct migration_req *req;

L
Linus Torvalds 已提交
6330
			req = list_entry(rq->migration_queue.next,
6331
					 struct migration_req, list);
L
Linus Torvalds 已提交
6332 6333 6334 6335 6336
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6337

6338 6339
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6340 6341 6342 6343 6344
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6345
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6346 6347 6348
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6349 6350 6351 6352 6353 6354 6355 6356
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6357
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6358 6359 6360 6361
	.notifier_call = migration_call,
	.priority = 10
};

6362
void __init migration_init(void)
L
Linus Torvalds 已提交
6363 6364
{
	void *cpu = (void *)(long)smp_processor_id();
6365
	int err;
6366 6367

	/* Start one for the boot CPU: */
6368 6369
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6370 6371 6372 6373 6374 6375
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6376

6377
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6378

6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6401 6402
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6403
{
I
Ingo Molnar 已提交
6404
	struct sched_group *group = sd->groups;
6405
	char str[256];
L
Linus Torvalds 已提交
6406

6407
	cpulist_scnprintf(str, sizeof(str), sd->span);
6408
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6409 6410 6411 6412 6413 6414 6415 6416 6417

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6418 6419
	}

6420 6421
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6422 6423 6424 6425 6426 6427 6428 6429 6430

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6431

I
Ingo Molnar 已提交
6432
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6433
	do {
I
Ingo Molnar 已提交
6434 6435 6436
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6437 6438 6439
			break;
		}

I
Ingo Molnar 已提交
6440 6441 6442 6443 6444 6445
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6446

I
Ingo Molnar 已提交
6447 6448 6449 6450 6451
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6452

6453
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6454 6455 6456 6457
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6458

6459
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6460

6461
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6462
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6463

I
Ingo Molnar 已提交
6464 6465 6466
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6467

6468
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6469
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6470

6471
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6472 6473 6474 6475
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6476

I
Ingo Molnar 已提交
6477 6478
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6479
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6480
	int level = 0;
L
Linus Torvalds 已提交
6481

I
Ingo Molnar 已提交
6482 6483 6484 6485
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6486

I
Ingo Molnar 已提交
6487 6488
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6489 6490 6491 6492 6493 6494
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6495
	for (;;) {
6496
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6497
			break;
L
Linus Torvalds 已提交
6498 6499
		level++;
		sd = sd->parent;
6500
		if (!sd)
I
Ingo Molnar 已提交
6501 6502
			break;
	}
6503
	kfree(groupmask);
L
Linus Torvalds 已提交
6504
}
6505
#else /* !CONFIG_SCHED_DEBUG */
6506
# define sched_domain_debug(sd, cpu) do { } while (0)
6507
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6508

6509
static int sd_degenerate(struct sched_domain *sd)
6510 6511 6512 6513 6514 6515 6516 6517
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6518 6519 6520
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6534 6535
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6554 6555 6556
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6557 6558 6559 6560 6561 6562 6563
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6564 6565 6566 6567 6568 6569 6570 6571 6572
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6573 6574
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6575

6576 6577
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6578 6579 6580 6581 6582 6583 6584
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6585
	cpu_set(rq->cpu, rd->span);
6586
	if (cpu_isset(rq->cpu, cpu_online_map))
6587
		set_rq_online(rq);
G
Gregory Haskins 已提交
6588 6589 6590 6591

	spin_unlock_irqrestore(&rq->lock, flags);
}

6592
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6593 6594 6595
{
	memset(rd, 0, sizeof(*rd));

6596 6597
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6598 6599

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6600 6601 6602 6603
}

static void init_defrootdomain(void)
{
6604
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6605 6606 6607
	atomic_set(&def_root_domain.refcount, 1);
}

6608
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6609 6610 6611 6612 6613 6614 6615
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6616
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6617 6618 6619 6620

	return rd;
}

L
Linus Torvalds 已提交
6621
/*
I
Ingo Molnar 已提交
6622
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6623 6624
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6625 6626
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6627
{
6628
	struct rq *rq = cpu_rq(cpu);
6629 6630 6631 6632 6633 6634 6635
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6636
		if (sd_parent_degenerate(tmp, parent)) {
6637
			tmp->parent = parent->parent;
6638 6639 6640
			if (parent->parent)
				parent->parent->child = tmp;
		}
6641 6642
	}

6643
	if (sd && sd_degenerate(sd)) {
6644
		sd = sd->parent;
6645 6646 6647
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6648 6649 6650

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6651
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6652
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6653 6654 6655
}

/* cpus with isolated domains */
6656
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6671
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6672 6673

/*
6674 6675 6676 6677
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6678 6679 6680 6681 6682
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6683
static void
6684
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6685
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6686 6687 6688
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6689 6690 6691 6692
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6693 6694 6695
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6696
		struct sched_group *sg;
6697
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6698 6699
		int j;

6700
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6701 6702
			continue;

6703
		cpus_clear(sg->cpumask);
6704
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6705

6706 6707
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6708 6709
				continue;

6710
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6722
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6723

6724
#ifdef CONFIG_NUMA
6725

6726 6727 6728 6729 6730
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6731
 * Find the next node to include in a given scheduling domain. Simply
6732 6733 6734 6735
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6736
static int find_next_best_node(int node, nodemask_t *used_nodes)
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6750
		if (node_isset(n, *used_nodes))
6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6762
	node_set(best_node, *used_nodes);
6763 6764 6765 6766 6767 6768
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6769
 * @span: resulting cpumask
6770
 *
I
Ingo Molnar 已提交
6771
 * Given a node, construct a good cpumask for its sched_domain to span. It
6772 6773 6774
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6775
static void sched_domain_node_span(int node, cpumask_t *span)
6776
{
6777 6778
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6779
	int i;
6780

6781
	cpus_clear(*span);
6782
	nodes_clear(used_nodes);
6783

6784
	cpus_or(*span, *span, *nodemask);
6785
	node_set(node, used_nodes);
6786 6787

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6788
		int next_node = find_next_best_node(node, &used_nodes);
6789

6790
		node_to_cpumask_ptr_next(nodemask, next_node);
6791
		cpus_or(*span, *span, *nodemask);
6792 6793
	}
}
6794
#endif /* CONFIG_NUMA */
6795

6796
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6797

6798
/*
6799
 * SMT sched-domains:
6800
 */
L
Linus Torvalds 已提交
6801 6802
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6803
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6804

I
Ingo Molnar 已提交
6805
static int
6806 6807
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6808
{
6809 6810
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6811 6812
	return cpu;
}
6813
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6814

6815 6816 6817
/*
 * multi-core sched-domains:
 */
6818 6819
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6820
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6821
#endif /* CONFIG_SCHED_MC */
6822 6823

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6824
static int
6825 6826
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6827
{
6828
	int group;
6829 6830 6831 6832

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6833 6834 6835
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6836 6837
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6838
static int
6839 6840
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6841
{
6842 6843
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6844 6845 6846 6847
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6848
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6849
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6850

I
Ingo Molnar 已提交
6851
static int
6852 6853
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6854
{
6855
	int group;
6856
#ifdef CONFIG_SCHED_MC
6857 6858 6859
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6860
#elif defined(CONFIG_SCHED_SMT)
6861 6862 6863
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6864
#else
6865
	group = cpu;
L
Linus Torvalds 已提交
6866
#endif
6867 6868 6869
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6870 6871 6872 6873
}

#ifdef CONFIG_NUMA
/*
6874 6875 6876
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6877
 */
6878
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6879
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6880

6881
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6882
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6883

6884
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6885
				 struct sched_group **sg, cpumask_t *nodemask)
6886
{
6887 6888
	int group;

6889 6890 6891
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6892 6893 6894 6895

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6896
}
6897

6898 6899 6900 6901 6902 6903 6904
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6905 6906 6907
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6908

6909 6910 6911 6912 6913 6914 6915 6916
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6917

6918 6919 6920 6921
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6922
}
6923
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6924

6925
#ifdef CONFIG_NUMA
6926
/* Free memory allocated for various sched_group structures */
6927
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6928
{
6929
	int cpu, i;
6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6941 6942 6943
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6960
#else /* !CONFIG_NUMA */
6961
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6962 6963
{
}
6964
#endif /* CONFIG_NUMA */
6965

6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6992 6993
	sd->groups->__cpu_power = 0;

6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7004
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7005 7006 7007 7008 7009 7010 7011 7012
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7013
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7014 7015 7016 7017
		group = group->next;
	} while (group != child->groups);
}

7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7029
	sd->level = SD_LV_##type;				\
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7078 7079 7080 7081
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7082 7083 7084 7085 7086 7087
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7113
/*
7114 7115
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7116
 */
7117 7118
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7119 7120
{
	int i;
G
Gregory Haskins 已提交
7121
	struct root_domain *rd;
7122 7123
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7124 7125
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7126
	int sd_allnodes = 0;
7127 7128 7129 7130

	/*
	 * Allocate the per-node list of sched groups
	 */
7131
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7132
				    GFP_KERNEL);
7133 7134
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7135
		return -ENOMEM;
7136 7137
	}
#endif
L
Linus Torvalds 已提交
7138

7139
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7140 7141
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7142 7143 7144
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7145 7146 7147
		return -ENOMEM;
	}

7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7167
	/*
7168
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7169
	 */
7170
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7171
		struct sched_domain *sd = NULL, *p;
7172
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7173

7174 7175
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7176 7177

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7178
		if (cpus_weight(*cpu_map) >
7179
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7180
			sd = &per_cpu(allnodes_domains, i);
7181
			SD_INIT(sd, ALLNODES);
7182
			set_domain_attribute(sd, attr);
7183
			sd->span = *cpu_map;
7184
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7185
			p = sd;
7186
			sd_allnodes = 1;
7187 7188 7189
		} else
			p = NULL;

L
Linus Torvalds 已提交
7190
		sd = &per_cpu(node_domains, i);
7191
		SD_INIT(sd, NODE);
7192
		set_domain_attribute(sd, attr);
7193
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7194
		sd->parent = p;
7195 7196
		if (p)
			p->child = sd;
7197
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7198 7199 7200 7201
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7202
		SD_INIT(sd, CPU);
7203
		set_domain_attribute(sd, attr);
7204
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7205
		sd->parent = p;
7206 7207
		if (p)
			p->child = sd;
7208
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7209

7210 7211 7212
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7213
		SD_INIT(sd, MC);
7214
		set_domain_attribute(sd, attr);
7215 7216 7217
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7218
		p->child = sd;
7219
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7220 7221
#endif

L
Linus Torvalds 已提交
7222 7223 7224
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7225
		SD_INIT(sd, SIBLING);
7226
		set_domain_attribute(sd, attr);
7227
		sd->span = per_cpu(cpu_sibling_map, i);
7228
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7229
		sd->parent = p;
7230
		p->child = sd;
7231
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7237
	for_each_cpu_mask(i, *cpu_map) {
7238 7239 7240 7241 7242 7243
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7244 7245
			continue;

I
Ingo Molnar 已提交
7246
		init_sched_build_groups(this_sibling_map, cpu_map,
7247 7248
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7249 7250 7251
	}
#endif

7252 7253 7254
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7255 7256 7257 7258 7259 7260
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7261
			continue;
7262

I
Ingo Molnar 已提交
7263
		init_sched_build_groups(this_core_map, cpu_map,
7264 7265
					&cpu_to_core_group,
					send_covered, tmpmask);
7266 7267 7268
	}
#endif

L
Linus Torvalds 已提交
7269 7270
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7271 7272
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7273

7274 7275 7276
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7277 7278
			continue;

7279 7280 7281
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7282 7283 7284 7285
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7286 7287 7288 7289 7290 7291 7292
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7293 7294 7295 7296

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7297 7298 7299
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7300 7301
		int j;

7302 7303 7304 7305 7306
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7307
			sched_group_nodes[i] = NULL;
7308
			continue;
7309
		}
7310

7311
		sched_domain_node_span(i, domainspan);
7312
		cpus_and(*domainspan, *domainspan, *cpu_map);
7313

7314
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7315 7316 7317 7318 7319
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7320
		sched_group_nodes[i] = sg;
7321
		for_each_cpu_mask(j, *nodemask) {
7322
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7323

7324 7325 7326
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7327
		sg->__cpu_power = 0;
7328
		sg->cpumask = *nodemask;
7329
		sg->next = sg;
7330
		cpus_or(*covered, *covered, *nodemask);
7331 7332 7333
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7334
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7335
			int n = (i + j) % MAX_NUMNODES;
7336
			node_to_cpumask_ptr(pnodemask, n);
7337

7338 7339 7340 7341
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7342 7343
				break;

7344 7345
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7346 7347
				continue;

7348 7349
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7350 7351 7352
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7353
				goto error;
7354
			}
7355
			sg->__cpu_power = 0;
7356
			sg->cpumask = *tmpmask;
7357
			sg->next = prev->next;
7358
			cpus_or(*covered, *covered, *tmpmask);
7359 7360 7361 7362
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7363 7364 7365
#endif

	/* Calculate CPU power for physical packages and nodes */
7366
#ifdef CONFIG_SCHED_SMT
7367
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7368 7369
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7370
		init_sched_groups_power(i, sd);
7371
	}
L
Linus Torvalds 已提交
7372
#endif
7373
#ifdef CONFIG_SCHED_MC
7374
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7375 7376
		struct sched_domain *sd = &per_cpu(core_domains, i);

7377
		init_sched_groups_power(i, sd);
7378 7379
	}
#endif
7380

7381
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7382 7383
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7384
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7385 7386
	}

7387
#ifdef CONFIG_NUMA
7388 7389
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7390

7391 7392
	if (sd_allnodes) {
		struct sched_group *sg;
7393

7394 7395
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7396 7397
		init_numa_sched_groups_power(sg);
	}
7398 7399
#endif

L
Linus Torvalds 已提交
7400
	/* Attach the domains */
7401
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7402 7403 7404
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7405 7406
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7407 7408 7409
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7410
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7411
	}
7412

7413
	SCHED_CPUMASK_FREE((void *)allmasks);
7414 7415
	return 0;

7416
#ifdef CONFIG_NUMA
7417
error:
7418 7419
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7420
	return -ENOMEM;
7421
#endif
L
Linus Torvalds 已提交
7422
}
P
Paul Jackson 已提交
7423

7424 7425 7426 7427 7428
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7429 7430
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7431 7432
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7433 7434 7435 7436 7437 7438 7439 7440

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7441 7442 7443 7444
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7457
/*
I
Ingo Molnar 已提交
7458
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7459 7460
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7461
 */
7462
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7463
{
7464 7465
	int err;

7466
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7467 7468 7469 7470 7471
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7472
	dattr_cur = NULL;
7473
	err = build_sched_domains(doms_cur);
7474
	register_sched_domain_sysctl();
7475 7476

	return err;
7477 7478
}

7479 7480
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7481
{
7482
	free_sched_groups(cpu_map, tmpmask);
7483
}
L
Linus Torvalds 已提交
7484

7485 7486 7487 7488
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7489
static void detach_destroy_domains(const cpumask_t *cpu_map)
7490
{
7491
	cpumask_t tmpmask;
7492 7493
	int i;

7494 7495
	unregister_sched_domain_sysctl();

7496
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7497
		cpu_attach_domain(NULL, &def_root_domain, i);
7498
	synchronize_sched();
7499
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7500 7501
}

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7518 7519
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7520
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7521 7522 7523 7524
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7525 7526 7527
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7528 7529 7530
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7531 7532
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7533 7534 7535 7536 7537 7538
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7539 7540
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7541 7542 7543
{
	int i, j;

7544
	mutex_lock(&sched_domains_mutex);
7545

7546 7547 7548
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7549 7550 7551 7552
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7553
		dattr_new = NULL;
P
Paul Jackson 已提交
7554 7555 7556 7557 7558
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7559 7560
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7572 7573
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7574 7575 7576
				goto match2;
		}
		/* no match - add a new doms_new */
7577 7578
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7579 7580 7581 7582 7583 7584 7585
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7586
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7587
	doms_cur = doms_new;
7588
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7589
	ndoms_cur = ndoms_new;
7590 7591

	register_sched_domain_sysctl();
7592

7593
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7594 7595
}

7596
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7597
int arch_reinit_sched_domains(void)
7598 7599 7600
{
	int err;

7601
	get_online_cpus();
7602
	mutex_lock(&sched_domains_mutex);
7603
	detach_destroy_domains(&cpu_online_map);
7604
	free_sched_domains();
7605
	err = arch_init_sched_domains(&cpu_online_map);
7606
	mutex_unlock(&sched_domains_mutex);
7607
	put_online_cpus();
7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7634 7635
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7636 7637 7638
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7639 7640
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7641 7642 7643 7644 7645 7646 7647
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7648 7649
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7650 7651 7652
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7673
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7674

L
Linus Torvalds 已提交
7675
/*
I
Ingo Molnar 已提交
7676
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7677
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7678
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7679 7680 7681 7682 7683
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7684 7685
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7686 7687
	switch (action) {
	case CPU_DOWN_PREPARE:
7688
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7689 7690 7691 7692
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7693
		detach_destroy_domains(&cpu_online_map);
7694
		free_sched_domains();
L
Linus Torvalds 已提交
7695 7696
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7697

L
Linus Torvalds 已提交
7698
	case CPU_DOWN_FAILED:
7699
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7700
	case CPU_ONLINE:
7701
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7702 7703 7704 7705
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7706
	case CPU_DEAD:
7707
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7708 7709 7710 7711 7712 7713 7714 7715
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7716 7717 7718 7719 7720 7721 7722
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7723
	/* The hotplug lock is already held by cpu_up/cpu_down */
7724
	arch_init_sched_domains(&cpu_online_map);
7725
#endif
L
Linus Torvalds 已提交
7726 7727 7728 7729 7730 7731

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7732 7733
	cpumask_t non_isolated_cpus;

7734 7735 7736 7737 7738
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7739
	get_online_cpus();
7740
	mutex_lock(&sched_domains_mutex);
7741
	arch_init_sched_domains(&cpu_online_map);
7742
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7743 7744
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7745
	mutex_unlock(&sched_domains_mutex);
7746
	put_online_cpus();
L
Linus Torvalds 已提交
7747 7748
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7749
	init_hrtick();
7750 7751

	/* Move init over to a non-isolated CPU */
7752
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7753
		BUG();
I
Ingo Molnar 已提交
7754
	sched_init_granularity();
L
Linus Torvalds 已提交
7755 7756 7757 7758
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7759
	sched_init_granularity();
L
Linus Torvalds 已提交
7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7770
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7771 7772
{
	cfs_rq->tasks_timeline = RB_ROOT;
7773
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7774 7775 7776
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7777
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7778 7779
}

P
Peter Zijlstra 已提交
7780 7781 7782 7783 7784 7785 7786
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7787
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7788 7789 7790 7791 7792
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7793
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7794 7795
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7796 7797 7798 7799 7800 7801 7802
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7803 7804
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7805

7806
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7807
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7808 7809
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7810 7811
}

P
Peter Zijlstra 已提交
7812
#ifdef CONFIG_FAIR_GROUP_SCHED
7813 7814 7815
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7816
{
7817
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7818 7819 7820 7821 7822 7823 7824
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7825 7826 7827 7828
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7829 7830 7831 7832 7833
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7834 7835
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7836
	se->load.inv_weight = 0;
7837
	se->parent = parent;
P
Peter Zijlstra 已提交
7838
}
7839
#endif
P
Peter Zijlstra 已提交
7840

7841
#ifdef CONFIG_RT_GROUP_SCHED
7842 7843 7844
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7845
{
7846 7847
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7848 7849 7850 7851
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7852
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7853 7854 7855 7856
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7857 7858 7859
	if (!rt_se)
		return;

7860 7861 7862 7863 7864
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7865
	rt_se->my_q = rt_rq;
7866
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7867 7868 7869 7870
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7871 7872
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7873
	int i, j;
7874 7875 7876 7877 7878 7879 7880
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7881 7882 7883
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7884 7885 7886 7887 7888 7889
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7890
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7891 7892 7893 7894 7895 7896 7897

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7898 7899 7900 7901 7902 7903 7904

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7905 7906
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7907 7908 7909 7910 7911
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7912 7913 7914 7915 7916 7917 7918 7919
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7920 7921
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7922
	}
I
Ingo Molnar 已提交
7923

G
Gregory Haskins 已提交
7924 7925 7926 7927
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7928 7929 7930 7931 7932 7933
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7934 7935 7936
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7937 7938
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7939

7940
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7941
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7942 7943 7944 7945 7946 7947
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7948 7949
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7950

7951
	for_each_possible_cpu(i) {
7952
		struct rq *rq;
L
Linus Torvalds 已提交
7953 7954 7955

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7956
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7957
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7958
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7959
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7960
#ifdef CONFIG_FAIR_GROUP_SCHED
7961
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7962
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7983
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7984
#elif defined CONFIG_USER_SCHED
7985 7986
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7998
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7999
				&per_cpu(init_cfs_rq, i),
8000 8001
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8002

8003
#endif
D
Dhaval Giani 已提交
8004 8005 8006
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8007
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8008
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8009
#ifdef CONFIG_CGROUP_SCHED
8010
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8011
#elif defined CONFIG_USER_SCHED
8012
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8013
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8014
				&per_cpu(init_rt_rq, i),
8015 8016
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8017
#endif
I
Ingo Molnar 已提交
8018
#endif
L
Linus Torvalds 已提交
8019

I
Ingo Molnar 已提交
8020 8021
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8022
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8023
		rq->sd = NULL;
G
Gregory Haskins 已提交
8024
		rq->rd = NULL;
L
Linus Torvalds 已提交
8025
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8026
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8027
		rq->push_cpu = 0;
8028
		rq->cpu = i;
8029
		rq->online = 0;
L
Linus Torvalds 已提交
8030 8031
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8032
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8033
#endif
P
Peter Zijlstra 已提交
8034
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8035 8036 8037
		atomic_set(&rq->nr_iowait, 0);
	}

8038
	set_load_weight(&init_task);
8039

8040 8041 8042 8043
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8044 8045 8046 8047
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8048 8049 8050 8051
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8065 8066 8067 8068
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8069 8070

	scheduler_running = 1;
L
Linus Torvalds 已提交
8071 8072 8073 8074 8075
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8076
#ifdef in_atomic
L
Linus Torvalds 已提交
8077 8078 8079 8080 8081 8082 8083
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8084
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8085 8086 8087
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8088
		debug_show_held_locks(current);
8089 8090
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8091 8092 8093 8094 8095 8096 8097 8098
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8099 8100 8101
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8102

8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8114 8115
void normalize_rt_tasks(void)
{
8116
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8117
	unsigned long flags;
8118
	struct rq *rq;
L
Linus Torvalds 已提交
8119

8120
	read_lock_irqsave(&tasklist_lock, flags);
8121
	do_each_thread(g, p) {
8122 8123 8124 8125 8126 8127
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8128 8129
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8130 8131 8132
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8133
#endif
I
Ingo Molnar 已提交
8134 8135 8136 8137 8138 8139 8140 8141

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8142
			continue;
I
Ingo Molnar 已提交
8143
		}
L
Linus Torvalds 已提交
8144

8145
		spin_lock(&p->pi_lock);
8146
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8147

8148
		normalize_task(rq, p);
8149

8150
		__task_rq_unlock(rq);
8151
		spin_unlock(&p->pi_lock);
8152 8153
	} while_each_thread(g, p);

8154
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8155 8156 8157
}

#endif /* CONFIG_MAGIC_SYSRQ */
8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8176
struct task_struct *curr_task(int cpu)
8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8187 8188
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8189 8190 8191 8192 8193 8194 8195
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8196
void set_curr_task(int cpu, struct task_struct *p)
8197 8198 8199 8200 8201
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8202

8203 8204
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8219 8220
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8221 8222
{
	struct cfs_rq *cfs_rq;
8223
	struct sched_entity *se, *parent_se;
8224
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8225 8226
	int i;

8227
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8228 8229
	if (!tg->cfs_rq)
		goto err;
8230
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8231 8232
	if (!tg->se)
		goto err;
8233 8234

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8235 8236

	for_each_possible_cpu(i) {
8237
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8238

P
Peter Zijlstra 已提交
8239 8240
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8241 8242 8243
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8244 8245
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8246 8247 8248
		if (!se)
			goto err;

8249 8250
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8269
#else /* !CONFG_FAIR_GROUP_SCHED */
8270 8271 8272 8273
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8274 8275
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8287
#endif /* CONFIG_FAIR_GROUP_SCHED */
8288 8289

#ifdef CONFIG_RT_GROUP_SCHED
8290 8291 8292 8293
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8294 8295
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8307 8308
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8309 8310
{
	struct rt_rq *rt_rq;
8311
	struct sched_rt_entity *rt_se, *parent_se;
8312 8313 8314
	struct rq *rq;
	int i;

8315
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8316 8317
	if (!tg->rt_rq)
		goto err;
8318
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8319 8320 8321
	if (!tg->rt_se)
		goto err;

8322 8323
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8324 8325 8326 8327

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8328 8329 8330 8331
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8332

P
Peter Zijlstra 已提交
8333 8334 8335 8336
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8337

8338 8339
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8340 8341
	}

8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8358
#else /* !CONFIG_RT_GROUP_SCHED */
8359 8360 8361 8362
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8363 8364
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8376
#endif /* CONFIG_RT_GROUP_SCHED */
8377

8378
#ifdef CONFIG_GROUP_SCHED
8379 8380 8381 8382 8383 8384 8385 8386
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8387
struct task_group *sched_create_group(struct task_group *parent)
8388 8389 8390 8391 8392 8393 8394 8395 8396
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8397
	if (!alloc_fair_sched_group(tg, parent))
8398 8399
		goto err;

8400
	if (!alloc_rt_sched_group(tg, parent))
8401 8402
		goto err;

8403
	spin_lock_irqsave(&task_group_lock, flags);
8404
	for_each_possible_cpu(i) {
8405 8406
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8407
	}
P
Peter Zijlstra 已提交
8408
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8409 8410 8411 8412 8413 8414

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8415
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8416

8417
	return tg;
S
Srivatsa Vaddagiri 已提交
8418 8419

err:
P
Peter Zijlstra 已提交
8420
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8421 8422 8423
	return ERR_PTR(-ENOMEM);
}

8424
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8425
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8426 8427
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8428
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8429 8430
}

8431
/* Destroy runqueue etc associated with a task group */
8432
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8433
{
8434
	unsigned long flags;
8435
	int i;
S
Srivatsa Vaddagiri 已提交
8436

8437
	spin_lock_irqsave(&task_group_lock, flags);
8438
	for_each_possible_cpu(i) {
8439 8440
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8441
	}
P
Peter Zijlstra 已提交
8442
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8443
	list_del_rcu(&tg->siblings);
8444
	spin_unlock_irqrestore(&task_group_lock, flags);
8445 8446

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8447
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8448 8449
}

8450
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8451 8452 8453
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8454 8455
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8456 8457 8458 8459 8460 8461 8462 8463 8464
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8465
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8466 8467
	on_rq = tsk->se.on_rq;

8468
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8469
		dequeue_task(rq, tsk, 0);
8470 8471
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8472

P
Peter Zijlstra 已提交
8473
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8474

P
Peter Zijlstra 已提交
8475 8476 8477 8478 8479
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8480 8481 8482
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8483
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8484 8485 8486

	task_rq_unlock(rq, &flags);
}
8487
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8488

8489
#ifdef CONFIG_FAIR_GROUP_SCHED
8490
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8491 8492 8493 8494 8495
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8496
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8497 8498 8499
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8500
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8501

8502
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8503
		enqueue_entity(cfs_rq, se, 0);
8504
}
8505

8506 8507 8508 8509 8510 8511 8512 8513 8514
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8515 8516
}

8517 8518
static DEFINE_MUTEX(shares_mutex);

8519
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8520 8521
{
	int i;
8522
	unsigned long flags;
8523

8524 8525 8526 8527 8528 8529
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8530 8531
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8532 8533
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8534

8535
	mutex_lock(&shares_mutex);
8536
	if (tg->shares == shares)
8537
		goto done;
S
Srivatsa Vaddagiri 已提交
8538

8539
	spin_lock_irqsave(&task_group_lock, flags);
8540 8541
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8542
	list_del_rcu(&tg->siblings);
8543
	spin_unlock_irqrestore(&task_group_lock, flags);
8544 8545 8546 8547 8548 8549 8550 8551

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8552
	tg->shares = shares;
8553 8554 8555 8556 8557
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8558
		set_se_shares(tg->se[i], shares);
8559
	}
S
Srivatsa Vaddagiri 已提交
8560

8561 8562 8563 8564
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8565
	spin_lock_irqsave(&task_group_lock, flags);
8566 8567
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8568
	list_add_rcu(&tg->siblings, &tg->parent->children);
8569
	spin_unlock_irqrestore(&task_group_lock, flags);
8570
done:
8571
	mutex_unlock(&shares_mutex);
8572
	return 0;
S
Srivatsa Vaddagiri 已提交
8573 8574
}

8575 8576 8577 8578
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8579
#endif
8580

8581
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8582
/*
P
Peter Zijlstra 已提交
8583
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8584
 */
P
Peter Zijlstra 已提交
8585 8586 8587 8588 8589 8590 8591
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8592
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8593 8594
}

8595 8596 8597
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8598
	struct task_group *tgi, *parent = tg->parent;
8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8622
	return total + to_ratio(period, runtime) <=
8623 8624 8625 8626
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8627
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8628 8629 8630
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8631
	unsigned long global_ratio =
8632
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8633 8634

	rcu_read_lock();
P
Peter Zijlstra 已提交
8635 8636 8637
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8638

8639 8640
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8641 8642
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8643

P
Peter Zijlstra 已提交
8644
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8645
}
8646
#endif
P
Peter Zijlstra 已提交
8647

8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8659 8660
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8661
{
P
Peter Zijlstra 已提交
8662
	int i, err = 0;
P
Peter Zijlstra 已提交
8663 8664

	mutex_lock(&rt_constraints_mutex);
8665
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8666
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8667 8668 8669
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8670 8671 8672 8673
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8674 8675

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8676 8677
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8678 8679 8680 8681 8682 8683 8684 8685 8686

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8687
 unlock:
8688
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8689 8690 8691
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8692 8693
}

8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8706 8707 8708 8709
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8710
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8711 8712
		return -1;

8713
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8714 8715 8716
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8739 8740
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8741 8742
	int ret = 0;

8743 8744 8745
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8746
	mutex_lock(&rt_constraints_mutex);
8747
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8748 8749 8750 8751 8752
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8753
#else /* !CONFIG_RT_GROUP_SCHED */
8754 8755
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8769 8770
	return 0;
}
8771
#endif /* CONFIG_RT_GROUP_SCHED */
8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8802

8803
#ifdef CONFIG_CGROUP_SCHED
8804 8805

/* return corresponding task_group object of a cgroup */
8806
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8807
{
8808 8809
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8810 8811 8812
}

static struct cgroup_subsys_state *
8813
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8814
{
8815
	struct task_group *tg, *parent;
8816

8817
	if (!cgrp->parent) {
8818
		/* This is early initialization for the top cgroup */
8819
		init_task_group.css.cgroup = cgrp;
8820 8821 8822
		return &init_task_group.css;
	}

8823 8824
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8825 8826 8827 8828
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8829
	tg->css.cgroup = cgrp;
8830 8831 8832 8833

	return &tg->css;
}

I
Ingo Molnar 已提交
8834 8835
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8836
{
8837
	struct task_group *tg = cgroup_tg(cgrp);
8838 8839 8840 8841

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8842 8843 8844
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8845
{
8846 8847
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8848
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8849 8850
		return -EINVAL;
#else
8851 8852 8853
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8854
#endif
8855 8856 8857 8858 8859

	return 0;
}

static void
8860
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8861 8862 8863 8864 8865
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8866
#ifdef CONFIG_FAIR_GROUP_SCHED
8867
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8868
				u64 shareval)
8869
{
8870
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8871 8872
}

8873
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8874
{
8875
	struct task_group *tg = cgroup_tg(cgrp);
8876 8877 8878

	return (u64) tg->shares;
}
8879
#endif /* CONFIG_FAIR_GROUP_SCHED */
8880

8881
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8882
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8883
				s64 val)
P
Peter Zijlstra 已提交
8884
{
8885
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8886 8887
}

8888
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8889
{
8890
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8891
}
8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8903
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8904

8905
static struct cftype cpu_files[] = {
8906
#ifdef CONFIG_FAIR_GROUP_SCHED
8907 8908
	{
		.name = "shares",
8909 8910
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8911
	},
8912 8913
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8914
	{
P
Peter Zijlstra 已提交
8915
		.name = "rt_runtime_us",
8916 8917
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8918
	},
8919 8920
	{
		.name = "rt_period_us",
8921 8922
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8923
	},
8924
#endif
8925 8926 8927 8928
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8929
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8930 8931 8932
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8933 8934 8935 8936 8937 8938 8939
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8940 8941 8942
	.early_init	= 1,
};

8943
#endif	/* CONFIG_CGROUP_SCHED */
8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8964
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8965
{
8966
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8979
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8996
static void
8997
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8998
{
8999
	struct cpuacct *ca = cgroup_ca(cgrp);
9000 9001 9002 9003 9004 9005

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9006
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9007
{
9008
	struct cpuacct *ca = cgroup_ca(cgrp);
9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9050 9051 9052
static struct cftype files[] = {
	{
		.name = "usage",
9053 9054
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9055 9056 9057
	},
};

9058
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9059
{
9060
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */