sched.c 225.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

148 149
static inline int rt_policy(int policy)
{
150
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 152 153 154 155 156 157 158 159
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
160
/*
I
Ingo Molnar 已提交
161
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
162
 */
I
Ingo Molnar 已提交
163 164 165 166 167
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

168
struct rt_bandwidth {
I
Ingo Molnar 已提交
169 170 171 172 173
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
207 208
	spin_lock_init(&rt_b->rt_runtime_lock);

209 210 211
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
212
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 214
}

215 216 217
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
218 219 220 221 222 223
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

224
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 226 227 228 229 230 231 232 233 234 235 236
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 238
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
239 240 241 242 243 244 245 246 247 248 249
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

250 251 252 253 254 255
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

256
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257

258 259
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
260 261
struct cfs_rq;

P
Peter Zijlstra 已提交
262 263
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
264
/* task group related information */
265
struct task_group {
266
#ifdef CONFIG_CGROUP_SCHED
267 268
	struct cgroup_subsys_state css;
#endif
269 270

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
271 272 273 274 275
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
276 277 278 279 280 281
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

282
	struct rt_bandwidth rt_bandwidth;
283
#endif
284

285
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
286
	struct list_head list;
P
Peter Zijlstra 已提交
287 288 289 290

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
291 292
};

D
Dhaval Giani 已提交
293
#ifdef CONFIG_USER_SCHED
294 295 296 297 298 299 300 301

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

302
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
303 304 305 306
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
307
#endif /* CONFIG_FAIR_GROUP_SCHED */
308 309 310 311

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
312
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
313
#else /* !CONFIG_USER_SCHED */
314
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
315
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
316

317
/* task_group_lock serializes add/remove of task groups and also changes to
318 319
 * a task group's cpu shares.
 */
320
static DEFINE_SPINLOCK(task_group_lock);
321

322 323 324
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
325
#else /* !CONFIG_USER_SCHED */
326
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
327
#endif /* CONFIG_USER_SCHED */
328

329
/*
330 331 332 333
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
334 335 336
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
337
#define MIN_SHARES	2
338
#define MAX_SHARES	(1UL << 18)
339

340 341 342
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
343
/* Default task group.
I
Ingo Molnar 已提交
344
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
345
 */
346
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
347 348

/* return group to which a task belongs */
349
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
350
{
351
	struct task_group *tg;
352

353
#ifdef CONFIG_USER_SCHED
354
	tg = p->user->tg;
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
456 457
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
458
#ifdef CONFIG_SMP
459
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
460
	int overloaded;
P
Peter Zijlstra 已提交
461
#endif
P
Peter Zijlstra 已提交
462
	int rt_throttled;
P
Peter Zijlstra 已提交
463
	u64 rt_time;
P
Peter Zijlstra 已提交
464
	u64 rt_runtime;
I
Ingo Molnar 已提交
465
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
466
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
467

468
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
469 470
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
471 472 473 474 475
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
476 477
};

G
Gregory Haskins 已提交
478 479 480 481
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
482 483
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
484 485 486 487 488 489
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
490 491
	cpumask_var_t span;
	cpumask_var_t online;
492

I
Ingo Molnar 已提交
493
	/*
494 495 496
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
497
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
498
	atomic_t rto_count;
499 500 501
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
502 503
};

504 505 506 507
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
508 509 510 511
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
512 513 514 515 516 517 518
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
519
struct rq {
520 521
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
522 523 524 525 526 527

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
528 529
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530
	unsigned char idle_at_tick;
531
#ifdef CONFIG_NO_HZ
532
	unsigned long last_tick_seen;
533 534
	unsigned char in_nohz_recently;
#endif
535 536
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
537 538 539 540
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
541 542
	struct rt_rq rt;

I
Ingo Molnar 已提交
543
#ifdef CONFIG_FAIR_GROUP_SCHED
544 545
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
546 547
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
548
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

559
	struct task_struct *curr, *idle;
560
	unsigned long next_balance;
L
Linus Torvalds 已提交
561
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
562

563
	u64 clock;
I
Ingo Molnar 已提交
564

L
Linus Torvalds 已提交
565 566 567
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
568
	struct root_domain *rd;
L
Linus Torvalds 已提交
569 570 571 572 573
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
574 575
	/* cpu of this runqueue: */
	int cpu;
576
	int online;
L
Linus Torvalds 已提交
577

578
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
579

580
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
581 582 583
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
584
#ifdef CONFIG_SCHED_HRTICK
585 586 587 588
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
589 590 591
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
592 593 594 595 596
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
597 598 599 600
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
601 602

	/* schedule() stats */
603 604 605
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
606 607

	/* try_to_wake_up() stats */
608 609
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
610 611

	/* BKL stats */
612
	unsigned int bkl_count;
L
Linus Torvalds 已提交
613 614 615
#endif
};

616
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
617

618
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
619
{
620
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
621 622
}

623 624 625 626 627 628 629 630 631
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
632 633
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
634
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
635 636 637 638
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
639 640
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
641 642 643 644 645 646

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

647 648 649 650 651
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
652 653 654 655 656 657 658 659 660
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
679 680 681
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
682 683 684 685

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
686
enum {
P
Peter Zijlstra 已提交
687
#include "sched_features.h"
I
Ingo Molnar 已提交
688 689
};

P
Peter Zijlstra 已提交
690 691 692 693 694
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
695
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
696 697 698 699 700 701 702 703 704
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

705
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
706 707 708 709 710 711
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
712
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
713 714 715 716
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
717 718 719
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
720
	}
L
Li Zefan 已提交
721
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
722

L
Li Zefan 已提交
723
	return 0;
P
Peter Zijlstra 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
743
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
768 769 770 771 772
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
773
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
774 775 776 777 778
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
793

794 795 796 797 798 799
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
800 801
/*
 * ratelimit for updating the group shares.
802
 * default: 0.25ms
P
Peter Zijlstra 已提交
803
 */
804
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
805

806 807 808 809 810 811 812
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
813
/*
P
Peter Zijlstra 已提交
814
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
815 816
 * default: 1s
 */
P
Peter Zijlstra 已提交
817
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
818

819 820
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
821 822 823 824 825
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
826

827 828 829 830 831 832 833
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
834
	if (sysctl_sched_rt_runtime < 0)
835 836 837 838
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
839

L
Linus Torvalds 已提交
840
#ifndef prepare_arch_switch
841 842 843 844 845 846
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

847 848 849 850 851
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

852
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
853
static inline int task_running(struct rq *rq, struct task_struct *p)
854
{
855
	return task_current(rq, p);
856 857
}

858
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
859 860 861
{
}

862
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
863
{
864 865 866 867
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
868 869 870 871 872 873 874
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

875 876 877 878
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
879
static inline int task_running(struct rq *rq, struct task_struct *p)
880 881 882 883
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
884
	return task_current(rq, p);
885 886 887
#endif
}

888
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

905
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
906 907 908 909 910 911 912 913 914 915 916 917
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
918
#endif
919 920
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
921

922 923 924 925
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
926
static inline struct rq *__task_rq_lock(struct task_struct *p)
927 928
	__acquires(rq->lock)
{
929 930 931 932 933
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
934 935 936 937
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
938 939
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
940
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
941 942
 * explicitly disabling preemption.
 */
943
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
944 945
	__acquires(rq->lock)
{
946
	struct rq *rq;
L
Linus Torvalds 已提交
947

948 949 950 951 952 953
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
954 955 956 957
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

958 959 960 961 962 963 964 965
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
966
static void __task_rq_unlock(struct rq *rq)
967 968 969 970 971
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

972
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
973 974 975 976 977 978
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
979
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
980
 */
A
Alexey Dobriyan 已提交
981
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
982 983
	__acquires(rq->lock)
{
984
	struct rq *rq;
L
Linus Torvalds 已提交
985 986 987 988 989 990 991 992

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1014
	if (!cpu_active(cpu_of(rq)))
1015
		return 0;
P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1036
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1043
#ifdef CONFIG_SMP
1044 1045 1046 1047
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1048
{
1049
	struct rq *rq = arg;
1050

1051 1052 1053 1054
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1055 1056
}

1057 1058 1059 1060 1061 1062
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1063
{
1064 1065
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1066

1067
	hrtimer_set_expires(timer, time);
1068 1069 1070 1071 1072 1073 1074

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1089
		hrtick_clear(cpu_rq(cpu));
1090 1091 1092 1093 1094 1095
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1096
static __init void init_hrtick(void)
1097 1098 1099
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1110

A
Andrew Morton 已提交
1111
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1112 1113
{
}
1114
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1115

1116
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1117
{
1118 1119
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1120

1121 1122 1123 1124
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1125

1126 1127
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1128
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1129
}
A
Andrew Morton 已提交
1130
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1131 1132 1133 1134 1135 1136 1137 1138
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1139 1140 1141
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1142
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1143

I
Ingo Molnar 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1157
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1158 1159 1160 1161 1162
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1163
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1164 1165
		return;

1166
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1229
#endif /* CONFIG_NO_HZ */
1230

1231
#else /* !CONFIG_SMP */
1232
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1233 1234
{
	assert_spin_locked(&task_rq(p)->lock);
1235
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1236
}
1237
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1238

1239 1240 1241 1242 1243 1244 1245 1246
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1247 1248 1249
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1250
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1251

1252 1253 1254
/*
 * delta *= weight / lw
 */
1255
static unsigned long
1256 1257 1258 1259 1260
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1261 1262 1263 1264 1265 1266 1267
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1268 1269 1270 1271 1272

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1273
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1274
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1275 1276
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1277
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1278

1279
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1280 1281
}

1282
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1283 1284
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1289 1290
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1291
	lw->inv_weight = 0;
1292 1293
}

1294 1295 1296 1297
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1298
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1299 1300 1301 1302
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1314 1315 1316
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1317 1318
 */
static const int prio_to_weight[40] = {
1319 1320 1321 1322 1323 1324 1325 1326
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1327 1328
};

1329 1330 1331 1332 1333 1334 1335
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1336
static const u32 prio_to_wmult[40] = {
1337 1338 1339 1340 1341 1342 1343 1344
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1345
};
1346

I
Ingo Molnar 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1372

1373 1374 1375 1376 1377 1378
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1389
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1390
typedef int (*tg_visitor)(struct task_group *, void *);
1391 1392 1393 1394 1395

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1396
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1397 1398
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1399
	int ret;
1400 1401 1402 1403

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1404 1405 1406
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1407 1408 1409 1410 1411 1412 1413
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1414 1415 1416
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1417 1418 1419 1420 1421

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1422
out_unlock:
1423
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1424 1425

	return ret;
1426 1427
}

P
Peter Zijlstra 已提交
1428 1429 1430
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1431
}
P
Peter Zijlstra 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1445 1446
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1447 1448 1449 1450 1451

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1452 1453 1454 1455 1456 1457 1458

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1459 1460
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1461
{
1462 1463 1464
	unsigned long shares;
	unsigned long rq_weight;

1465
	if (!tg->se[cpu])
1466 1467
		return;

1468
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1469

1470 1471 1472 1473 1474 1475
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1476
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1477
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1478

1479 1480 1481 1482
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1483

1484
		spin_lock_irqsave(&rq->lock, flags);
1485
		tg->cfs_rq[cpu]->shares = shares;
1486

1487 1488 1489
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1490
}
1491 1492

/*
1493 1494 1495
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1496
 */
P
Peter Zijlstra 已提交
1497
static int tg_shares_up(struct task_group *tg, void *data)
1498
{
1499
	unsigned long weight, rq_weight = 0;
1500
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1501
	struct sched_domain *sd = data;
1502
	int i;
1503

1504
	for_each_cpu(i, sched_domain_span(sd)) {
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1516
		shares += tg->cfs_rq[i]->shares;
1517 1518
	}

1519 1520 1521 1522 1523
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1524

1525
	for_each_cpu(i, sched_domain_span(sd))
1526
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1527 1528

	return 0;
1529 1530 1531
}

/*
1532 1533 1534
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1535
 */
P
Peter Zijlstra 已提交
1536
static int tg_load_down(struct task_group *tg, void *data)
1537
{
1538
	unsigned long load;
P
Peter Zijlstra 已提交
1539
	long cpu = (long)data;
1540

1541 1542 1543 1544 1545 1546 1547
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1548

1549
	tg->cfs_rq[cpu]->h_load = load;
1550

P
Peter Zijlstra 已提交
1551
	return 0;
1552 1553
}

1554
static void update_shares(struct sched_domain *sd)
1555
{
P
Peter Zijlstra 已提交
1556 1557 1558 1559 1560
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1561
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1562
	}
1563 1564
}

1565 1566 1567 1568 1569 1570 1571
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1572
static void update_h_load(long cpu)
1573
{
P
Peter Zijlstra 已提交
1574
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1575 1576 1577 1578
}

#else

1579
static inline void update_shares(struct sched_domain *sd)
1580 1581 1582
{
}

1583 1584 1585 1586
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1587 1588 1589 1590
#endif

#endif

V
Vegard Nossum 已提交
1591
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1592 1593
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1594
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1595 1596 1597
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1598
#endif
1599

I
Ingo Molnar 已提交
1600 1601
#include "sched_stats.h"
#include "sched_idletask.c"
1602 1603
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1604 1605 1606 1607 1608
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1609 1610
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1611

1612
static void inc_nr_running(struct rq *rq)
1613 1614 1615 1616
{
	rq->nr_running++;
}

1617
static void dec_nr_running(struct rq *rq)
1618 1619 1620 1621
{
	rq->nr_running--;
}

1622 1623 1624
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1625 1626 1627 1628
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1629

I
Ingo Molnar 已提交
1630 1631 1632 1633 1634 1635 1636 1637
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1638

I
Ingo Molnar 已提交
1639 1640
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1641 1642
}

1643 1644 1645 1646 1647 1648
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1649
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1650
{
I
Ingo Molnar 已提交
1651
	sched_info_queued(p);
1652
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1653
	p->se.on_rq = 1;
1654 1655
}

1656
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1657
{
1658 1659 1660 1661 1662 1663
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1664
	sched_info_dequeued(p);
1665
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1666
	p->se.on_rq = 0;
1667 1668
}

1669
/*
I
Ingo Molnar 已提交
1670
 * __normal_prio - return the priority that is based on the static prio
1671 1672 1673
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1674
	return p->static_prio;
1675 1676
}

1677 1678 1679 1680 1681 1682 1683
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1684
static inline int normal_prio(struct task_struct *p)
1685 1686 1687
{
	int prio;

1688
	if (task_has_rt_policy(p))
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1702
static int effective_prio(struct task_struct *p)
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1715
/*
I
Ingo Molnar 已提交
1716
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1717
 */
I
Ingo Molnar 已提交
1718
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1719
{
1720
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1721
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1722

1723
	enqueue_task(rq, p, wakeup);
1724
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1730
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1731
{
1732
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1733 1734
		rq->nr_uninterruptible++;

1735
	dequeue_task(rq, p, sleep);
1736
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1743
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1744 1745 1746 1747
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1748 1749
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1750
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1751
#ifdef CONFIG_SMP
1752 1753 1754 1755 1756 1757
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1758 1759
	task_thread_info(p)->cpu = cpu;
#endif
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1774
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1775

1776 1777 1778 1779 1780 1781
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1782 1783 1784
/*
 * Is this task likely cache-hot:
 */
1785
static int
1786 1787 1788 1789
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1790 1791 1792
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1793 1794 1795
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1796 1797
		return 1;

1798 1799 1800
	if (p->sched_class != &fair_sched_class)
		return 0;

1801 1802 1803 1804 1805
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1806 1807 1808 1809 1810 1811
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1812
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1813
{
I
Ingo Molnar 已提交
1814 1815
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1816 1817
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1818
	u64 clock_offset;
I
Ingo Molnar 已提交
1819 1820

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1821 1822 1823 1824

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1825 1826 1827 1828
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1829 1830 1831 1832 1833
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1834
#endif
1835 1836
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1837 1838

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1839 1840
}

1841
struct migration_req {
L
Linus Torvalds 已提交
1842 1843
	struct list_head list;

1844
	struct task_struct *task;
L
Linus Torvalds 已提交
1845 1846 1847
	int dest_cpu;

	struct completion done;
1848
};
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1854
static int
1855
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1856
{
1857
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1863
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869 1870 1871
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1872

L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1879 1880 1881 1882 1883 1884 1885
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1892
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1893 1894
{
	unsigned long flags;
I
Ingo Molnar 已提交
1895
	int running, on_rq;
R
Roland McGrath 已提交
1896
	unsigned long ncsw;
1897
	struct rq *rq;
L
Linus Torvalds 已提交
1898

1899 1900 1901 1902 1903 1904 1905 1906
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1919 1920 1921
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1922
			cpu_relax();
R
Roland McGrath 已提交
1923
		}
1924

1925 1926 1927 1928 1929 1930
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1931
		trace_sched_wait_task(rq, p);
1932 1933
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1934
		ncsw = 0;
1935
		if (!match_state || p->state == match_state)
1936
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1937
		task_rq_unlock(rq, &flags);
1938

R
Roland McGrath 已提交
1939 1940 1941 1942 1943 1944
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1969

1970 1971 1972 1973 1974 1975 1976
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1977 1978

	return ncsw;
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1994
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2006 2007
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2008 2009 2010 2011
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2012
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2013
{
2014
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2015
	unsigned long total = weighted_cpuload(cpu);
2016

2017
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2018
		return total;
2019

I
Ingo Molnar 已提交
2020
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2021 2022 2023
}

/*
2024 2025
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2026
 */
A
Alexey Dobriyan 已提交
2027
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2028
{
2029
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2030
	unsigned long total = weighted_cpuload(cpu);
2031

2032
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2033
		return total;
2034

I
Ingo Molnar 已提交
2035
	return max(rq->cpu_load[type-1], total);
2036 2037
}

N
Nick Piggin 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2055
		/* Skip over this group if it has no CPUs allowed */
2056 2057
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2058
			continue;
2059

2060 2061
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2062 2063 2064 2065

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2066
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2077 2078
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2079 2080 2081 2082 2083 2084 2085 2086

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2087
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2088 2089 2090 2091 2092 2093 2094

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2095
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2096
 */
I
Ingo Molnar 已提交
2097
static int
2098
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2099 2100 2101 2102 2103
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2104
	/* Traverse only the allowed CPUs */
2105
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2106
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2132

2133
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2134 2135 2136
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2137 2138
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2139 2140
		if (tmp->flags & flag)
			sd = tmp;
2141
	}
N
Nick Piggin 已提交
2142

2143 2144 2145
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2146 2147
	while (sd) {
		struct sched_group *group;
2148 2149 2150 2151 2152 2153
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2154 2155

		group = find_idlest_group(sd, t, cpu);
2156 2157 2158 2159
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2160

2161
		new_cpu = find_idlest_cpu(group, t, cpu);
2162 2163 2164 2165 2166
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2167

2168
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2169
		cpu = new_cpu;
2170
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2171 2172
		sd = NULL;
		for_each_domain(cpu, tmp) {
2173
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2200
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2201
{
2202
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2203 2204
	unsigned long flags;
	long old_state;
2205
	struct rq *rq;
L
Linus Torvalds 已提交
2206

2207 2208 2209
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2210 2211 2212 2213 2214 2215 2216 2217
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2218
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2219 2220 2221 2222 2223 2224 2225
				update_shares(sd);
				break;
			}
		}
	}
#endif

2226
	smp_wmb();
L
Linus Torvalds 已提交
2227 2228 2229 2230 2231
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2232
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2233 2234 2235
		goto out_running;

	cpu = task_cpu(p);
2236
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2237 2238 2239 2240 2241 2242
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2243 2244 2245
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2252
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2259 2260 2261 2262 2263 2264 2265
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2266
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2267 2268 2269 2270 2271
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2272
#endif /* CONFIG_SCHEDSTATS */
2273

L
Linus Torvalds 已提交
2274 2275
out_activate:
#endif /* CONFIG_SMP */
2276 2277 2278 2279 2280 2281 2282 2283 2284
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2285
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2286
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2287 2288 2289
	success = 1;

out_running:
2290
	trace_sched_wakeup(rq, p);
2291
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2292

L
Linus Torvalds 已提交
2293
	p->state = TASK_RUNNING;
2294 2295 2296 2297
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2298
out:
2299 2300
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2301 2302 2303 2304 2305
	task_rq_unlock(rq, &flags);

	return success;
}

2306
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2307
{
2308
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2309 2310 2311
}
EXPORT_SYMBOL(wake_up_process);

2312
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317 2318 2319
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2320 2321 2322 2323 2324 2325 2326
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2327
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2328 2329
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2330 2331 2332

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2333 2334 2335 2336 2337 2338
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2339
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2340
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2341
#endif
N
Nick Piggin 已提交
2342

P
Peter Zijlstra 已提交
2343
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2344
	p->se.on_rq = 0;
2345
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2346

2347 2348 2349 2350
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2351 2352 2353 2354 2355 2356 2357
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2372
	set_task_cpu(p, cpu);
2373 2374 2375 2376 2377

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2378 2379
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2380

2381
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2382
	if (likely(sched_info_on()))
2383
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2384
#endif
2385
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2386 2387
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2388
#ifdef CONFIG_PREEMPT
2389
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2390
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2391
#endif
N
Nick Piggin 已提交
2392
	put_cpu();
L
Linus Torvalds 已提交
2393 2394 2395 2396 2397 2398 2399 2400 2401
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2402
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2403 2404
{
	unsigned long flags;
I
Ingo Molnar 已提交
2405
	struct rq *rq;
L
Linus Torvalds 已提交
2406 2407

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2408
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2409
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2410 2411 2412

	p->prio = effective_prio(p);

2413
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2414
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2415 2416
	} else {
		/*
I
Ingo Molnar 已提交
2417 2418
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2419
		 */
2420
		p->sched_class->task_new(rq, p);
2421
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2422
	}
2423
	trace_sched_wakeup_new(rq, p);
2424
	check_preempt_curr(rq, p, 0);
2425 2426 2427 2428
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2429
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2430 2431
}

2432 2433 2434
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2435 2436
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2437 2438 2439 2440 2441 2442 2443 2444 2445
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2446
 * @notifier: notifier struct to unregister
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2476
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2488
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2489

2490 2491 2492
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2493
 * @prev: the current task that is being switched out
2494 2495 2496 2497 2498 2499 2500 2501 2502
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2503 2504 2505
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2506
{
2507
	fire_sched_out_preempt_notifiers(prev, next);
2508 2509 2510 2511
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2512 2513
/**
 * finish_task_switch - clean up after a task-switch
2514
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2515 2516
 * @prev: the thread we just switched away from.
 *
2517 2518 2519 2520
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2521 2522
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2523
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2524 2525 2526
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2527
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2528 2529 2530
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2531
	long prev_state;
L
Linus Torvalds 已提交
2532 2533 2534 2535 2536

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2537
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2538 2539
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2540
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2541 2542 2543 2544 2545
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2546
	prev_state = prev->state;
2547 2548
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2549 2550 2551 2552
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2553

2554
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2555 2556
	if (mm)
		mmdrop(mm);
2557
	if (unlikely(prev_state == TASK_DEAD)) {
2558 2559 2560
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2561
		 */
2562
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2563
		put_task_struct(prev);
2564
	}
L
Linus Torvalds 已提交
2565 2566 2567 2568 2569 2570
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2571
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2572 2573
	__releases(rq->lock)
{
2574 2575
	struct rq *rq = this_rq();

2576 2577 2578 2579 2580
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2581
	if (current->set_child_tid)
2582
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2583 2584 2585 2586 2587 2588
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2589
static inline void
2590
context_switch(struct rq *rq, struct task_struct *prev,
2591
	       struct task_struct *next)
L
Linus Torvalds 已提交
2592
{
I
Ingo Molnar 已提交
2593
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2594

2595
	prepare_task_switch(rq, prev, next);
2596
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2597 2598
	mm = next->mm;
	oldmm = prev->active_mm;
2599 2600 2601 2602 2603 2604 2605
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2606
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2607 2608 2609 2610 2611 2612
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2613
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2614 2615 2616
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2617 2618 2619 2620 2621 2622 2623
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2624
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2625
#endif
L
Linus Torvalds 已提交
2626 2627 2628 2629

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2630 2631 2632 2633 2634 2635 2636
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2660
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2675 2676
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2677

2678
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2679 2680 2681 2682 2683 2684 2685 2686 2687
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2688
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2709
/*
I
Ingo Molnar 已提交
2710 2711
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2712
 */
I
Ingo Molnar 已提交
2713
static void update_cpu_load(struct rq *this_rq)
2714
{
2715
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2728 2729 2730 2731 2732 2733 2734
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2735 2736
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2737 2738
}

I
Ingo Molnar 已提交
2739 2740
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2747
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2748 2749 2750
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2751
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2752 2753 2754 2755
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2756
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2757
			spin_lock(&rq1->lock);
2758
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2759 2760
		} else {
			spin_lock(&rq2->lock);
2761
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2762 2763
		}
	}
2764 2765
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772 2773
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2774
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2788
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2789 2790 2791 2792
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2793 2794
	int ret = 0;

2795 2796 2797 2798 2799
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2800
	if (unlikely(!spin_trylock(&busiest->lock))) {
2801
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2802 2803
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2804
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2805
			ret = 1;
L
Linus Torvalds 已提交
2806
		} else
2807
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2808
	}
S
Steven Rostedt 已提交
2809
	return ret;
L
Linus Torvalds 已提交
2810 2811
}

2812
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2813 2814 2815 2816 2817 2818
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2819 2820 2821
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2822
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2823 2824
 * the cpu_allowed mask is restored.
 */
2825
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2826
{
2827
	struct migration_req req;
L
Linus Torvalds 已提交
2828
	unsigned long flags;
2829
	struct rq *rq;
L
Linus Torvalds 已提交
2830 2831 2832

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2833
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2834 2835
		goto out;

2836
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2837 2838 2839 2840
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2841

L
Linus Torvalds 已提交
2842 2843 2844 2845 2846
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2847

L
Linus Torvalds 已提交
2848 2849 2850 2851 2852 2853 2854
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2855 2856
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2857 2858 2859 2860
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2861
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2862
	put_cpu();
N
Nick Piggin 已提交
2863 2864
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2865 2866 2867 2868 2869 2870
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2871 2872
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2873
{
2874
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2875
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2876
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2877 2878 2879 2880
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2881
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2887
static
2888
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2889
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2890
		     int *all_pinned)
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2898 2899
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2900
		return 0;
2901
	}
2902 2903
	*all_pinned = 0;

2904 2905
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2906
		return 0;
2907
	}
L
Linus Torvalds 已提交
2908

2909 2910 2911 2912 2913 2914
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2915 2916
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2917
#ifdef CONFIG_SCHEDSTATS
2918
		if (task_hot(p, rq->clock, sd)) {
2919
			schedstat_inc(sd, lb_hot_gained[idle]);
2920 2921
			schedstat_inc(p, se.nr_forced_migrations);
		}
2922 2923 2924 2925
#endif
		return 1;
	}

2926 2927
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2928
		return 0;
2929
	}
L
Linus Torvalds 已提交
2930 2931 2932
	return 1;
}

2933 2934 2935 2936 2937
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2938
{
2939
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2940 2941
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2942

2943
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2944 2945
		goto out;

2946 2947
	pinned = 1;

L
Linus Torvalds 已提交
2948
	/*
I
Ingo Molnar 已提交
2949
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2950
	 */
I
Ingo Molnar 已提交
2951 2952
	p = iterator->start(iterator->arg);
next:
2953
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2954
		goto out;
2955 2956

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2957 2958 2959
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2960 2961
	}

I
Ingo Molnar 已提交
2962
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2963
	pulled++;
I
Ingo Molnar 已提交
2964
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2965

2966
	/*
2967
	 * We only want to steal up to the prescribed amount of weighted load.
2968
	 */
2969
	if (rem_load_move > 0) {
2970 2971
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2972 2973
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2974 2975 2976
	}
out:
	/*
2977
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2978 2979 2980 2981
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2982 2983 2984

	if (all_pinned)
		*all_pinned = pinned;
2985 2986

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2987 2988
}

I
Ingo Molnar 已提交
2989
/*
P
Peter Williams 已提交
2990 2991 2992
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2993 2994 2995 2996
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2997
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2998 2999 3000
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3001
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3002
	unsigned long total_load_moved = 0;
3003
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3004 3005

	do {
P
Peter Williams 已提交
3006 3007
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3008
				max_load_move - total_load_moved,
3009
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3010
		class = class->next;
3011 3012 3013 3014

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3015
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3016

P
Peter Williams 已提交
3017 3018 3019
	return total_load_moved > 0;
}

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3056
	const struct sched_class *class;
P
Peter Williams 已提交
3057 3058

	for (class = sched_class_highest; class; class = class->next)
3059
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3060 3061 3062
			return 1;

	return 0;
I
Ingo Molnar 已提交
3063 3064
}

L
Linus Torvalds 已提交
3065 3066
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3067 3068
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3069 3070 3071
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3072
		   unsigned long *imbalance, enum cpu_idle_type idle,
3073
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3074 3075 3076
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3077
	unsigned long max_pull;
3078 3079
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3080
	int load_idx, group_imb = 0;
3081 3082 3083 3084 3085 3086
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3087 3088

	max_load = this_load = total_load = total_pwr = 0;
3089 3090
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3091

I
Ingo Molnar 已提交
3092
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3093
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3094
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3095 3096 3097
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3098 3099

	do {
3100
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3101 3102
		int local_group;
		int i;
3103
		int __group_imb = 0;
3104
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3105
		unsigned long sum_nr_running, sum_weighted_load;
3106 3107
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3108

3109 3110
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3111

3112
		if (local_group)
3113
			balance_cpu = cpumask_first(sched_group_cpus(group));
3114

L
Linus Torvalds 已提交
3115
		/* Tally up the load of all CPUs in the group */
3116
		sum_weighted_load = sum_nr_running = avg_load = 0;
3117 3118
		sum_avg_load_per_task = avg_load_per_task = 0;

3119 3120
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3121

3122 3123
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3124

3125
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3126 3127
				*sd_idle = 0;

L
Linus Torvalds 已提交
3128
			/* Bias balancing toward cpus of our domain */
3129 3130 3131 3132 3133 3134
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3135
				load = target_load(i, load_idx);
3136
			} else {
N
Nick Piggin 已提交
3137
				load = source_load(i, load_idx);
3138 3139 3140 3141 3142
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3143 3144

			avg_load += load;
3145
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3146
			sum_weighted_load += weighted_cpuload(i);
3147 3148

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3149 3150
		}

3151 3152 3153
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3154 3155
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3156
		 */
3157 3158
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3159 3160 3161 3162
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3163
		total_load += avg_load;
3164
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3165 3166

		/* Adjust by relative CPU power of the group */
3167 3168
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3169

3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3184 3185
			__group_imb = 1;

3186
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3187

L
Linus Torvalds 已提交
3188 3189 3190
		if (local_group) {
			this_load = avg_load;
			this = group;
3191 3192 3193
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3194
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3195 3196
			max_load = avg_load;
			busiest = group;
3197 3198
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3199
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3200
		}
3201 3202 3203 3204 3205 3206

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3207 3208 3209
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3210 3211 3212 3213 3214 3215 3216 3217 3218

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3219
		/*
3220 3221
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3222 3223
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3224
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3225
			goto group_next;
3226

I
Ingo Molnar 已提交
3227
		/*
3228
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3229 3230 3231 3232 3233
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3234 3235
		     cpumask_first(sched_group_cpus(group)) <
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3236 3237
			group_min = group;
			min_nr_running = sum_nr_running;
3238 3239
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3240
		}
3241

I
Ingo Molnar 已提交
3242
		/*
3243
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3244 3245 3246 3247 3248 3249
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3250 3251
			     cpumask_first(sched_group_cpus(group)) >
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3252 3253 3254
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3255
		}
3256 3257
group_next:
#endif
L
Linus Torvalds 已提交
3258 3259 3260
		group = group->next;
	} while (group != sd->groups);

3261
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3262 3263 3264 3265 3266 3267 3268 3269
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3270
	busiest_load_per_task /= busiest_nr_running;
3271 3272 3273
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3282
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3283 3284
	 * appear as very large values with unsigned longs.
	 */
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3297 3298

	/* Don't want to pull so many tasks that a group would go idle */
3299
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3300

L
Linus Torvalds 已提交
3301
	/* How much load to actually move to equalise the imbalance */
3302 3303
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3304 3305
			/ SCHED_LOAD_SCALE;

3306 3307 3308 3309 3310 3311
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3312
	if (*imbalance < busiest_load_per_task) {
3313
		unsigned long tmp, pwr_now, pwr_move;
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3324
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3325

3326
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3327
					busiest_load_per_task * imbn) {
3328
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3338 3339 3340 3341
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3342 3343 3344
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3345 3346
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3347
		if (max_load > tmp)
3348
			pwr_move += busiest->__cpu_power *
3349
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3350 3351

		/* Amount of load we'd add */
3352
		if (max_load * busiest->__cpu_power <
3353
				busiest_load_per_task * SCHED_LOAD_SCALE)
3354 3355
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3356
		else
3357 3358 3359 3360
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3361 3362 3363
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3364 3365
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3366 3367 3368 3369 3370
	}

	return busiest;

out_balanced:
3371
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3372
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3373
		goto ret;
L
Linus Torvalds 已提交
3374

3375 3376 3377 3378 3379
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3380
ret:
L
Linus Torvalds 已提交
3381 3382 3383 3384 3385 3386 3387
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3388
static struct rq *
I
Ingo Molnar 已提交
3389
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3390
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3391
{
3392
	struct rq *busiest = NULL, *rq;
3393
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3394 3395
	int i;

3396
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3397
		unsigned long wl;
3398 3399 3400 3401

		if (!cpu_isset(i, *cpus))
			continue;

3402
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3403
		wl = weighted_cpuload(i);
3404

I
Ingo Molnar 已提交
3405
		if (rq->nr_running == 1 && wl > imbalance)
3406
			continue;
L
Linus Torvalds 已提交
3407

I
Ingo Molnar 已提交
3408 3409
		if (wl > max_load) {
			max_load = wl;
3410
			busiest = rq;
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416
		}
	}

	return busiest;
}

3417 3418 3419 3420 3421 3422
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3423 3424 3425 3426
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3427
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3428
			struct sched_domain *sd, enum cpu_idle_type idle,
3429
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3430
{
P
Peter Williams 已提交
3431
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3432 3433
	struct sched_group *group;
	unsigned long imbalance;
3434
	struct rq *busiest;
3435
	unsigned long flags;
N
Nick Piggin 已提交
3436

3437 3438
	cpus_setall(*cpus);

3439 3440 3441
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3442
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3443
	 * portraying it as CPU_NOT_IDLE.
3444
	 */
I
Ingo Molnar 已提交
3445
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3446
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3447
		sd_idle = 1;
L
Linus Torvalds 已提交
3448

3449
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3450

3451
redo:
3452
	update_shares(sd);
3453
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3454
				   cpus, balance);
3455

3456
	if (*balance == 0)
3457 3458
		goto out_balanced;

L
Linus Torvalds 已提交
3459 3460 3461 3462 3463
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3464
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3470
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3471 3472 3473

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3474
	ld_moved = 0;
L
Linus Torvalds 已提交
3475 3476 3477 3478
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3479
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3480 3481
		 * correctly treated as an imbalance.
		 */
3482
		local_irq_save(flags);
N
Nick Piggin 已提交
3483
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3484
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3485
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3486
		double_rq_unlock(this_rq, busiest);
3487
		local_irq_restore(flags);
3488

3489 3490 3491
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3492
		if (ld_moved && this_cpu != smp_processor_id())
3493 3494
			resched_cpu(this_cpu);

3495
		/* All tasks on this runqueue were pinned by CPU affinity */
3496
		if (unlikely(all_pinned)) {
3497 3498
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3499
				goto redo;
3500
			goto out_balanced;
3501
		}
L
Linus Torvalds 已提交
3502
	}
3503

P
Peter Williams 已提交
3504
	if (!ld_moved) {
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3510
			spin_lock_irqsave(&busiest->lock, flags);
3511 3512 3513 3514 3515

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3516
				spin_unlock_irqrestore(&busiest->lock, flags);
3517 3518 3519 3520
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3521 3522 3523
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3524
				active_balance = 1;
L
Linus Torvalds 已提交
3525
			}
3526
			spin_unlock_irqrestore(&busiest->lock, flags);
3527
			if (active_balance)
L
Linus Torvalds 已提交
3528 3529 3530 3531 3532 3533
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3534
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3535
		}
3536
	} else
L
Linus Torvalds 已提交
3537 3538
		sd->nr_balance_failed = 0;

3539
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3540 3541
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3542 3543 3544 3545 3546 3547 3548 3549 3550
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3551 3552
	}

P
Peter Williams 已提交
3553
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3554
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3555 3556 3557
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3558 3559 3560 3561

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3562
	sd->nr_balance_failed = 0;
3563 3564

out_one_pinned:
L
Linus Torvalds 已提交
3565
	/* tune up the balancing interval */
3566 3567
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3568 3569
		sd->balance_interval *= 2;

3570
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3571
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3572 3573 3574 3575
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3576 3577
	if (ld_moved)
		update_shares(sd);
3578
	return ld_moved;
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583 3584
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3585
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3586 3587
 * this_rq is locked.
 */
3588
static int
3589 3590
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3591 3592
{
	struct sched_group *group;
3593
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3594
	unsigned long imbalance;
P
Peter Williams 已提交
3595
	int ld_moved = 0;
N
Nick Piggin 已提交
3596
	int sd_idle = 0;
3597
	int all_pinned = 0;
3598 3599

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3600

3601 3602 3603 3604
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3605
	 * portraying it as CPU_NOT_IDLE.
3606 3607 3608
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3609
		sd_idle = 1;
L
Linus Torvalds 已提交
3610

3611
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3612
redo:
3613
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3614
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3615
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3616
	if (!group) {
I
Ingo Molnar 已提交
3617
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3618
		goto out_balanced;
L
Linus Torvalds 已提交
3619 3620
	}

3621
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3622
	if (!busiest) {
I
Ingo Molnar 已提交
3623
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3624
		goto out_balanced;
L
Linus Torvalds 已提交
3625 3626
	}

N
Nick Piggin 已提交
3627 3628
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3629
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3630

P
Peter Williams 已提交
3631
	ld_moved = 0;
3632 3633 3634
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3635 3636
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3637
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3638 3639
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3640
		double_unlock_balance(this_rq, busiest);
3641

3642
		if (unlikely(all_pinned)) {
3643 3644
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3645 3646
				goto redo;
		}
3647 3648
	}

P
Peter Williams 已提交
3649
	if (!ld_moved) {
I
Ingo Molnar 已提交
3650
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3651 3652
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3653 3654
			return -1;
	} else
3655
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3656

3657
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3658
	return ld_moved;
3659 3660

out_balanced:
I
Ingo Molnar 已提交
3661
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3662
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3663
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3664
		return -1;
3665
	sd->nr_balance_failed = 0;
3666

3667
	return 0;
L
Linus Torvalds 已提交
3668 3669 3670 3671 3672 3673
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3674
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3675 3676
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3677 3678
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3679
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3680 3681

	for_each_domain(this_cpu, sd) {
3682 3683 3684 3685 3686 3687
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3688
			/* If we've pulled tasks over stop searching: */
3689 3690
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3691 3692 3693 3694 3695 3696

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3697
	}
I
Ingo Molnar 已提交
3698
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3699 3700 3701 3702 3703
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3704
	}
L
Linus Torvalds 已提交
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3715
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3716
{
3717
	int target_cpu = busiest_rq->push_cpu;
3718 3719
	struct sched_domain *sd;
	struct rq *target_rq;
3720

3721
	/* Is there any task to move? */
3722 3723 3724 3725
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3726 3727

	/*
3728
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3729
	 * we need to fix it. Originally reported by
3730
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3731
	 */
3732
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3733

3734 3735
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3736 3737
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3738 3739

	/* Search for an sd spanning us and the target CPU. */
3740
	for_each_domain(target_cpu, sd) {
3741
		if ((sd->flags & SD_LOAD_BALANCE) &&
3742
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3743
				break;
3744
	}
3745

3746
	if (likely(sd)) {
3747
		schedstat_inc(sd, alb_count);
3748

P
Peter Williams 已提交
3749 3750
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3751 3752 3753 3754
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3755
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3756 3757
}

3758 3759 3760
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3761
	cpumask_t cpu_mask;
3762 3763 3764 3765 3766
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3767
/*
3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3778
 *
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3798
		if (!cpu_active(cpu) &&
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3835 3836 3837 3838 3839
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3840
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3841
{
3842 3843
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3844 3845
	unsigned long interval;
	struct sched_domain *sd;
3846
	/* Earliest time when we have to do rebalance again */
3847
	unsigned long next_balance = jiffies + 60*HZ;
3848
	int update_next_balance = 0;
3849
	int need_serialize;
3850
	cpumask_t tmp;
L
Linus Torvalds 已提交
3851

3852
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3853 3854 3855 3856
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3857
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3858 3859 3860 3861 3862 3863
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3864 3865 3866
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3867
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3868

3869
		if (need_serialize) {
3870 3871 3872 3873
			if (!spin_trylock(&balancing))
				goto out;
		}

3874
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3875
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3876 3877
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3878 3879 3880
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3881
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3882
			}
3883
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3884
		}
3885
		if (need_serialize)
3886 3887
			spin_unlock(&balancing);
out:
3888
		if (time_after(next_balance, sd->last_balance + interval)) {
3889
			next_balance = sd->last_balance + interval;
3890 3891
			update_next_balance = 1;
		}
3892 3893 3894 3895 3896 3897 3898 3899

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3900
	}
3901 3902 3903 3904 3905 3906 3907 3908

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3909 3910 3911 3912 3913 3914 3915 3916 3917
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3918 3919 3920 3921
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3922

I
Ingo Molnar 已提交
3923
	rebalance_domains(this_cpu, idle);
3924 3925 3926 3927 3928 3929 3930

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3931 3932
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3933 3934 3935 3936
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3937
		cpu_clear(this_cpu, cpus);
3938
		for_each_cpu(balance_cpu, &cpus) {
3939 3940 3941 3942 3943 3944 3945 3946
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3947
			rebalance_domains(balance_cpu, CPU_IDLE);
3948 3949

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3950 3951
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3964
static inline void trigger_load_balance(struct rq *rq, int cpu)
3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3991
			if (ilb < nr_cpu_ids)
3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4016
}
I
Ingo Molnar 已提交
4017 4018 4019

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4020 4021 4022
/*
 * on UP we do not need to balance between CPUs:
 */
4023
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4024 4025
{
}
I
Ingo Molnar 已提交
4026

L
Linus Torvalds 已提交
4027 4028 4029 4030 4031 4032 4033
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4034 4035
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4036
 */
4037
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4038 4039
{
	unsigned long flags;
4040
	struct rq *rq;
4041
	u64 ns = 0;
4042

4043
	rq = task_rq_lock(p, &flags);
4044

4045
	if (task_current(rq, p)) {
4046 4047
		u64 delta_exec;

I
Ingo Molnar 已提交
4048 4049
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4050
		if ((s64)delta_exec > 0)
4051
			ns = delta_exec;
4052
	}
4053

4054
	task_rq_unlock(rq, &flags);
4055

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4070
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4078 4079
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4080 4081
}

4082 4083 4084 4085 4086
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4087
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4088 4089 4090 4091 4092 4093 4094
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4095
	account_group_user_time(p, cputime);
4096 4097 4098 4099 4100 4101
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4122
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4123 4124
	cputime64_t tmp;

4125 4126 4127 4128
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4129

L
Linus Torvalds 已提交
4130
	p->stime = cputime_add(p->stime, cputime);
4131
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4132 4133 4134 4135 4136 4137 4138

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4139
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4140
		cpustat->system = cputime64_add(cpustat->system, tmp);
4141
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4160 4161 4162 4163 4164 4165 4166 4167 4168
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4169
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174 4175 4176

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4177
	} else
L
Linus Torvalds 已提交
4178 4179 4180
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4251
	struct task_struct *curr = rq->curr;
4252 4253

	sched_clock_tick();
I
Ingo Molnar 已提交
4254 4255

	spin_lock(&rq->lock);
4256
	update_rq_clock(rq);
4257
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4258
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4259
	spin_unlock(&rq->lock);
4260

4261
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4262 4263
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4264
#endif
L
Linus Torvalds 已提交
4265 4266
}

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4279

4280
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4281
{
4282
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4283 4284 4285
	/*
	 * Underflow?
	 */
4286 4287
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4288
#endif
L
Linus Torvalds 已提交
4289
	preempt_count() += val;
4290
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4291 4292 4293
	/*
	 * Spinlock count overflowing soon?
	 */
4294 4295
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4296 4297 4298
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4299 4300 4301
}
EXPORT_SYMBOL(add_preempt_count);

4302
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4303
{
4304
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4305 4306 4307
	/*
	 * Underflow?
	 */
N
Nick Piggin 已提交
4308
       if (DEBUG_LOCKS_WARN_ON(val > preempt_count() - (!!kernel_locked())))
4309
		return;
L
Linus Torvalds 已提交
4310 4311 4312
	/*
	 * Is the spinlock portion underflowing?
	 */
4313 4314 4315
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4316
#endif
4317

4318 4319
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4320 4321 4322 4323 4324 4325 4326
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4327
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4328
 */
I
Ingo Molnar 已提交
4329
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4330
{
4331 4332 4333 4334 4335
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4336
	debug_show_held_locks(prev);
4337
	print_modules();
I
Ingo Molnar 已提交
4338 4339
	if (irqs_disabled())
		print_irqtrace_events(prev);
4340 4341 4342 4343 4344

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4345
}
L
Linus Torvalds 已提交
4346

I
Ingo Molnar 已提交
4347 4348 4349 4350 4351
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4352
	/*
I
Ingo Molnar 已提交
4353
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4354 4355 4356
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4357
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4358 4359
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4360 4361
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4362
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4363 4364
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4365 4366
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4367 4368
	}
#endif
I
Ingo Molnar 已提交
4369 4370 4371 4372 4373 4374
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4375
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4376
{
4377
	const struct sched_class *class;
I
Ingo Molnar 已提交
4378
	struct task_struct *p;
L
Linus Torvalds 已提交
4379 4380

	/*
I
Ingo Molnar 已提交
4381 4382
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4383
	 */
I
Ingo Molnar 已提交
4384
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4385
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4386 4387
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4388 4389
	}

I
Ingo Molnar 已提交
4390 4391
	class = sched_class_highest;
	for ( ; ; ) {
4392
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4393 4394 4395 4396 4397 4398 4399 4400 4401
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4402

I
Ingo Molnar 已提交
4403 4404 4405 4406 4407 4408
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4409
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4410
	struct rq *rq;
4411
	int cpu;
I
Ingo Molnar 已提交
4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4425

4426
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4427
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4428

4429
	spin_lock_irq(&rq->lock);
4430
	update_rq_clock(rq);
4431
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4432 4433

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4434
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4435
			prev->state = TASK_RUNNING;
4436
		else
4437
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4438
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4439 4440
	}

4441 4442 4443 4444
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4445

I
Ingo Molnar 已提交
4446
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4447 4448
		idle_balance(cpu, rq);

4449
	prev->sched_class->put_prev_task(rq, prev);
4450
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4451 4452

	if (likely(prev != next)) {
4453 4454
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4455 4456 4457 4458
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4459
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4460 4461 4462 4463 4464 4465
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4466 4467 4468
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4469
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4470
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4471

L
Linus Torvalds 已提交
4472 4473 4474 4475 4476 4477 4478 4479
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4480
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4481
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4487

L
Linus Torvalds 已提交
4488 4489
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4490
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4491
	 */
N
Nick Piggin 已提交
4492
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4493 4494
		return;

4495 4496 4497 4498
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4499

4500 4501 4502 4503 4504 4505
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4506 4507 4508 4509
}
EXPORT_SYMBOL(preempt_schedule);

/*
4510
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4511 4512 4513 4514 4515 4516 4517
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4518

4519
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4520 4521
	BUG_ON(ti->preempt_count || !irqs_disabled());

4522 4523 4524 4525 4526 4527
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4528

4529 4530 4531 4532 4533 4534
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4535 4536 4537 4538
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4539 4540
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4541
{
4542
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4543 4544 4545 4546
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4547 4548
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4549 4550 4551
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4552
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4553 4554 4555 4556 4557
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4558
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4559

4560
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4561 4562
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4563
		if (curr->func(curr, mode, sync, key) &&
4564
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569 4570 4571 4572 4573
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4574
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4575
 */
4576
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4577
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4590
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4591 4592 4593 4594 4595
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4596
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4608
void
I
Ingo Molnar 已提交
4609
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4626 4627 4628 4629 4630 4631 4632 4633 4634
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4635
void complete(struct completion *x)
L
Linus Torvalds 已提交
4636 4637 4638 4639 4640
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4641
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4642 4643 4644 4645
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4646 4647 4648 4649 4650 4651
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4652
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4653 4654 4655 4656 4657
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4658
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4659 4660 4661 4662
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4663 4664
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4672
			if (signal_pending_state(state, current)) {
4673 4674
				timeout = -ERESTARTSYS;
				break;
4675 4676
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4677 4678 4679
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4680
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4681
		__remove_wait_queue(&x->wait, &wait);
4682 4683
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4684 4685
	}
	x->done--;
4686
	return timeout ?: 1;
L
Linus Torvalds 已提交
4687 4688
}

4689 4690
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4691 4692 4693 4694
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4695
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4696
	spin_unlock_irq(&x->wait.lock);
4697 4698
	return timeout;
}
L
Linus Torvalds 已提交
4699

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4710
void __sched wait_for_completion(struct completion *x)
4711 4712
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4713
}
4714
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4715

4716 4717 4718 4719 4720 4721 4722 4723 4724
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4725
unsigned long __sched
4726
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4727
{
4728
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4729
}
4730
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4731

4732 4733 4734 4735 4736 4737 4738
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4739
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4740
{
4741 4742 4743 4744
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4745
}
4746
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4747

4748 4749 4750 4751 4752 4753 4754 4755
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4756
unsigned long __sched
4757 4758
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4759
{
4760
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4761
}
4762
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4763

4764 4765 4766 4767 4768 4769 4770
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4826 4827
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4828
{
I
Ingo Molnar 已提交
4829 4830 4831 4832
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4833

4834
	__set_current_state(state);
L
Linus Torvalds 已提交
4835

4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4850 4851 4852
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4853
long __sched
I
Ingo Molnar 已提交
4854
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4855
{
4856
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4857 4858 4859
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4860
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4861
{
4862
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4863 4864 4865
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4866
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4867
{
4868
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4869 4870 4871
}
EXPORT_SYMBOL(sleep_on_timeout);

4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4884
void rt_mutex_setprio(struct task_struct *p, int prio)
4885 4886
{
	unsigned long flags;
4887
	int oldprio, on_rq, running;
4888
	struct rq *rq;
4889
	const struct sched_class *prev_class = p->sched_class;
4890 4891 4892 4893

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4894
	update_rq_clock(rq);
4895

4896
	oldprio = p->prio;
I
Ingo Molnar 已提交
4897
	on_rq = p->se.on_rq;
4898
	running = task_current(rq, p);
4899
	if (on_rq)
4900
		dequeue_task(rq, p, 0);
4901 4902
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4903 4904 4905 4906 4907 4908

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4909 4910
	p->prio = prio;

4911 4912
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4913
	if (on_rq) {
4914
		enqueue_task(rq, p, 0);
4915 4916

		check_class_changed(rq, p, prev_class, oldprio, running);
4917 4918 4919 4920 4921 4922
	}
	task_rq_unlock(rq, &flags);
}

#endif

4923
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4924
{
I
Ingo Molnar 已提交
4925
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4926
	unsigned long flags;
4927
	struct rq *rq;
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932 4933 4934 4935

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4936
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4937 4938 4939 4940
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4941
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4942
	 */
4943
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4944 4945 4946
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4947
	on_rq = p->se.on_rq;
4948
	if (on_rq)
4949
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4950 4951

	p->static_prio = NICE_TO_PRIO(nice);
4952
	set_load_weight(p);
4953 4954 4955
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4956

I
Ingo Molnar 已提交
4957
	if (on_rq) {
4958
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4959
		/*
4960 4961
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4962
		 */
4963
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4964 4965 4966 4967 4968 4969 4970
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4971 4972 4973 4974 4975
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4976
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4977
{
4978 4979
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4980

M
Matt Mackall 已提交
4981 4982 4983 4984
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4996
	long nice, retval;
L
Linus Torvalds 已提交
4997 4998 4999 5000 5001 5002

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5003 5004
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5014 5015 5016
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5035
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5036 5037 5038 5039 5040 5041 5042 5043
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5044
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5045 5046 5047
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5048
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5063
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5064 5065 5066 5067 5068 5069 5070 5071
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5072
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5073
{
5074
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5075 5076 5077
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5078 5079
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5080
{
I
Ingo Molnar 已提交
5081
	BUG_ON(p->se.on_rq);
5082

L
Linus Torvalds 已提交
5083
	p->policy = policy;
I
Ingo Molnar 已提交
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5096
	p->rt_priority = prio;
5097 5098 5099
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5100
	set_load_weight(p);
L
Linus Torvalds 已提交
5101 5102
}

5103 5104
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5105
{
5106
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5107
	unsigned long flags;
5108
	const struct sched_class *prev_class = p->sched_class;
5109
	struct rq *rq;
L
Linus Torvalds 已提交
5110

5111 5112
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5118 5119
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5120
		return -EINVAL;
L
Linus Torvalds 已提交
5121 5122
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5123 5124
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5125 5126
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5127
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5128
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5129
		return -EINVAL;
5130
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5131 5132
		return -EINVAL;

5133 5134 5135
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5136
	if (user && !capable(CAP_SYS_NICE)) {
5137
		if (rt_policy(policy)) {
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5154 5155 5156 5157 5158 5159
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5160

5161 5162 5163 5164 5165
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5166

5167
	if (user) {
5168
#ifdef CONFIG_RT_GROUP_SCHED
5169 5170 5171 5172
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5173 5174
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5175
			return -EPERM;
5176 5177
#endif

5178 5179 5180 5181 5182
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5183 5184 5185 5186 5187
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5188 5189 5190 5191
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5192
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5193 5194 5195
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5196 5197
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5198 5199
		goto recheck;
	}
I
Ingo Molnar 已提交
5200
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5201
	on_rq = p->se.on_rq;
5202
	running = task_current(rq, p);
5203
	if (on_rq)
5204
		deactivate_task(rq, p, 0);
5205 5206
	if (running)
		p->sched_class->put_prev_task(rq, p);
5207

L
Linus Torvalds 已提交
5208
	oldprio = p->prio;
I
Ingo Molnar 已提交
5209
	__setscheduler(rq, p, policy, param->sched_priority);
5210

5211 5212
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5213 5214
	if (on_rq) {
		activate_task(rq, p, 0);
5215 5216

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5217
	}
5218 5219 5220
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5221 5222
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5223 5224
	return 0;
}
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5239 5240
EXPORT_SYMBOL_GPL(sched_setscheduler);

5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5258 5259
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5260 5261 5262
{
	struct sched_param lparam;
	struct task_struct *p;
5263
	int retval;
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5269 5270 5271

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5272
	p = find_process_by_pid(pid);
5273 5274 5275
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5276

L
Linus Torvalds 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5286 5287
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5288
{
5289 5290 5291 5292
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5312
	struct task_struct *p;
5313
	int retval;
L
Linus Torvalds 已提交
5314 5315

	if (pid < 0)
5316
		return -EINVAL;
L
Linus Torvalds 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5338
	struct task_struct *p;
5339
	int retval;
L
Linus Torvalds 已提交
5340 5341

	if (!param || pid < 0)
5342
		return -EINVAL;
L
Linus Torvalds 已提交
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5369
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5370 5371
{
	cpumask_t cpus_allowed;
5372
	cpumask_t new_mask = *in_mask;
5373 5374
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5375

5376
	get_online_cpus();
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5382
		put_online_cpus();
L
Linus Torvalds 已提交
5383 5384 5385 5386 5387
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5388
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5389 5390 5391 5392 5393 5394 5395 5396 5397 5398
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5399 5400 5401 5402
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5403
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5404
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5405
 again:
5406
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5407

P
Paul Menage 已提交
5408
	if (!retval) {
5409
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5420 5421
out_unlock:
	put_task_struct(p);
5422
	put_online_cpus();
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5453
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5454 5455 5456 5457
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5458
	struct task_struct *p;
L
Linus Torvalds 已提交
5459 5460
	int retval;

5461
	get_online_cpus();
L
Linus Torvalds 已提交
5462 5463 5464 5465 5466 5467 5468
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5469 5470 5471 5472
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5473
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5474 5475 5476

out_unlock:
	read_unlock(&tasklist_lock);
5477
	put_online_cpus();
L
Linus Torvalds 已提交
5478

5479
	return retval;
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5510 5511
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5512 5513 5514
 */
asmlinkage long sys_sched_yield(void)
{
5515
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5516

5517
	schedstat_inc(rq, yld_count);
5518
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5519 5520 5521 5522 5523 5524

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5525
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530 5531 5532 5533
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5534
static void __cond_resched(void)
L
Linus Torvalds 已提交
5535
{
5536 5537 5538
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5539 5540 5541 5542 5543
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5544 5545 5546 5547 5548 5549 5550
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5551
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5552
{
5553 5554
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5555 5556 5557 5558 5559
		__cond_resched();
		return 1;
	}
	return 0;
}
5560
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5561 5562 5563 5564 5565

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5566
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5567 5568 5569
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5570
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5571
{
N
Nick Piggin 已提交
5572
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5573 5574
	int ret = 0;

N
Nick Piggin 已提交
5575
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5576
		spin_unlock(lock);
N
Nick Piggin 已提交
5577 5578 5579 5580
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5581
		ret = 1;
L
Linus Torvalds 已提交
5582 5583
		spin_lock(lock);
	}
J
Jan Kara 已提交
5584
	return ret;
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590 5591
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5592
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5593
		local_bh_enable();
L
Linus Torvalds 已提交
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5605
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5616
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5624
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5625

5626
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5627 5628 5629
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5630
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5631 5632 5633 5634 5635
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5636
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5637 5638
	long ret;

5639
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5640 5641 5642
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5643
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5664
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5665
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5689
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5690
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5707
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5708
	unsigned int time_slice;
5709
	int retval;
L
Linus Torvalds 已提交
5710 5711 5712
	struct timespec t;

	if (pid < 0)
5713
		return -EINVAL;
L
Linus Torvalds 已提交
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5725 5726 5727 5728 5729 5730
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5731
		time_slice = DEF_TIMESLICE;
5732
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5733 5734 5735 5736 5737
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5738 5739
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5740 5741
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5742
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5743
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5744 5745
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5746

L
Linus Torvalds 已提交
5747 5748 5749 5750 5751
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5752
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5753

5754
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5755 5756
{
	unsigned long free = 0;
5757
	unsigned state;
L
Linus Torvalds 已提交
5758 5759

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5760
	printk(KERN_INFO "%-13.13s %c", p->comm,
5761
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5762
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5763
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5764
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5765
	else
I
Ingo Molnar 已提交
5766
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5767 5768
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5769
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5770
	else
I
Ingo Molnar 已提交
5771
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5772 5773 5774
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5775
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5776 5777
		while (!*n)
			n++;
5778
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5779 5780
	}
#endif
5781
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5782
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5783

5784
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5785 5786
}

I
Ingo Molnar 已提交
5787
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5788
{
5789
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5790

5791 5792 5793
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5794
#else
5795 5796
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5797 5798 5799 5800 5801 5802 5803 5804
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5805
		if (!state_filter || (p->state & state_filter))
5806
			sched_show_task(p);
L
Linus Torvalds 已提交
5807 5808
	} while_each_thread(g, p);

5809 5810
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5811 5812 5813
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5814
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5815 5816 5817 5818 5819
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5820 5821
}

I
Ingo Molnar 已提交
5822 5823
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5824
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5825 5826
}

5827 5828 5829 5830 5831 5832 5833 5834
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5835
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5836
{
5837
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5838 5839
	unsigned long flags;

5840 5841
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5842 5843 5844
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5845
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5846
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5847
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5848 5849

	rq->curr = rq->idle = idle;
5850 5851 5852
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5853 5854 5855
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5856 5857 5858
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5859
	task_thread_info(idle)->preempt_count = 0;
5860
#endif
I
Ingo Molnar 已提交
5861 5862 5863 5864
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
5865
	ftrace_retfunc_init_task(idle);
L
Linus Torvalds 已提交
5866 5867 5868 5869 5870 5871 5872
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
5873
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
5874
 */
5875
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
5876

I
Ingo Molnar 已提交
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5900 5901

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5902 5903
}

L
Linus Torvalds 已提交
5904 5905 5906 5907
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5908
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5927
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5928 5929
 * call is not atomic; no spinlocks may be held.
 */
5930
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5931
{
5932
	struct migration_req req;
L
Linus Torvalds 已提交
5933
	unsigned long flags;
5934
	struct rq *rq;
5935
	int ret = 0;
L
Linus Torvalds 已提交
5936 5937

	rq = task_rq_lock(p, &flags);
5938
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5939 5940 5941 5942
		ret = -EINVAL;
		goto out;
	}

5943 5944 5945 5946 5947 5948
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5949
	if (p->sched_class->set_cpus_allowed)
5950
		p->sched_class->set_cpus_allowed(p, new_mask);
5951
	else {
5952 5953
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5954 5955
	}

L
Linus Torvalds 已提交
5956
	/* Can the task run on the task's current CPU? If so, we're done */
5957
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5958 5959
		goto out;

R
Rusty Russell 已提交
5960
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5970

L
Linus Torvalds 已提交
5971 5972
	return ret;
}
5973
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5974 5975

/*
I
Ingo Molnar 已提交
5976
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5977 5978 5979 5980 5981 5982
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5983 5984
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5985
 */
5986
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5987
{
5988
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5989
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5990

5991
	if (unlikely(!cpu_active(dest_cpu)))
5992
		return ret;
L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6000
		goto done;
L
Linus Torvalds 已提交
6001 6002
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6003
		goto fail;
L
Linus Torvalds 已提交
6004

I
Ingo Molnar 已提交
6005
	on_rq = p->se.on_rq;
6006
	if (on_rq)
6007
		deactivate_task(rq_src, p, 0);
6008

L
Linus Torvalds 已提交
6009
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6010 6011
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6012
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6013
	}
L
Linus Torvalds 已提交
6014
done:
6015
	ret = 1;
L
Linus Torvalds 已提交
6016
fail:
L
Linus Torvalds 已提交
6017
	double_rq_unlock(rq_src, rq_dest);
6018
	return ret;
L
Linus Torvalds 已提交
6019 6020 6021 6022 6023 6024 6025
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6026
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6027 6028
{
	int cpu = (long)data;
6029
	struct rq *rq;
L
Linus Torvalds 已提交
6030 6031 6032 6033 6034 6035

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6036
		struct migration_req *req;
L
Linus Torvalds 已提交
6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6059
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6060 6061
		list_del_init(head->next);

N
Nick Piggin 已提交
6062 6063 6064
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6094
/*
6095
 * Figure out where task on dead CPU should go, use force if necessary.
6096
 */
6097
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6098
{
6099
	unsigned long flags;
L
Linus Torvalds 已提交
6100
	cpumask_t mask;
6101 6102
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6103

6104 6105
	do {
		/* On same node? */
6106 6107 6108
		node_to_cpumask_ptr(pnodemask, cpu_to_node(dead_cpu));

		cpus_and(mask, *pnodemask, p->cpus_allowed);
R
Rusty Russell 已提交
6109
		dest_cpu = cpumask_any_and(cpu_online_mask, &mask);
6110 6111

		/* On any allowed CPU? */
6112
		if (dest_cpu >= nr_cpu_ids)
R
Rusty Russell 已提交
6113 6114
			dest_cpu = cpumask_any_and(cpu_online_mask,
						   &p->cpus_allowed);
6115 6116

		/* No more Mr. Nice Guy. */
6117
		if (dest_cpu >= nr_cpu_ids) {
6118 6119 6120
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6121 6122 6123 6124
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6125
			 * cpuset_cpus_allowed() will not block. It must be
6126 6127
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6128
			rq = task_rq_lock(p, &flags);
6129
			p->cpus_allowed = cpus_allowed;
R
Rusty Russell 已提交
6130 6131
			dest_cpu = cpumask_any_and(cpu_online_mask,
						    &p->cpus_allowed);
6132
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6133

6134 6135 6136 6137 6138
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6139
			if (p->mm && printk_ratelimit()) {
6140 6141
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6142 6143
					task_pid_nr(p), p->comm, dead_cpu);
			}
6144
		}
6145
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6146 6147 6148 6149 6150 6151 6152 6153 6154
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6155
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6156
{
R
Rusty Russell 已提交
6157
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6171
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6172

6173
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6174

6175 6176
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6177 6178
			continue;

6179 6180 6181
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6182

6183
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6184 6185
}

I
Ingo Molnar 已提交
6186 6187
/*
 * Schedules idle task to be the next runnable task on current CPU.
6188 6189
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6190 6191 6192
 */
void sched_idle_next(void)
{
6193
	int this_cpu = smp_processor_id();
6194
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6195 6196 6197 6198
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6199
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6200

6201 6202 6203
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6204 6205 6206
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6207
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6208

6209 6210
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6211 6212 6213 6214

	spin_unlock_irqrestore(&rq->lock, flags);
}

6215 6216
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6230
/* called under rq->lock with disabled interrupts */
6231
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6232
{
6233
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6234 6235

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6236
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6237 6238

	/* Cannot have done final schedule yet: would have vanished. */
6239
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6240

6241
	get_task_struct(p);
L
Linus Torvalds 已提交
6242 6243 6244

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6245
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6246 6247
	 * fine.
	 */
6248
	spin_unlock_irq(&rq->lock);
6249
	move_task_off_dead_cpu(dead_cpu, p);
6250
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6251

6252
	put_task_struct(p);
L
Linus Torvalds 已提交
6253 6254 6255 6256 6257
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6258
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6259
	struct task_struct *next;
6260

I
Ingo Molnar 已提交
6261 6262 6263
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6264
		update_rq_clock(rq);
6265
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6266 6267
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6268
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6269
		migrate_dead(dead_cpu, next);
6270

L
Linus Torvalds 已提交
6271 6272 6273 6274
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6275 6276 6277
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6278 6279
	{
		.procname	= "sched_domain",
6280
		.mode		= 0555,
6281
	},
I
Ingo Molnar 已提交
6282
	{0, },
6283 6284 6285
};

static struct ctl_table sd_ctl_root[] = {
6286
	{
6287
		.ctl_name	= CTL_KERN,
6288
		.procname	= "kernel",
6289
		.mode		= 0555,
6290 6291
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6292
	{0, },
6293 6294 6295 6296 6297
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6298
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6299 6300 6301 6302

	return entry;
}

6303 6304
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6305
	struct ctl_table *entry;
6306

6307 6308 6309
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6310
	 * will always be set. In the lowest directory the names are
6311 6312 6313
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6314 6315
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6316 6317 6318
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6319 6320 6321 6322 6323

	kfree(*tablep);
	*tablep = NULL;
}

6324
static void
6325
set_table_entry(struct ctl_table *entry,
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6339
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6340

6341 6342 6343
	if (table == NULL)
		return NULL;

6344
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6345
		sizeof(long), 0644, proc_doulongvec_minmax);
6346
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6347
		sizeof(long), 0644, proc_doulongvec_minmax);
6348
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6349
		sizeof(int), 0644, proc_dointvec_minmax);
6350
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6351
		sizeof(int), 0644, proc_dointvec_minmax);
6352
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6353
		sizeof(int), 0644, proc_dointvec_minmax);
6354
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6355
		sizeof(int), 0644, proc_dointvec_minmax);
6356
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6357
		sizeof(int), 0644, proc_dointvec_minmax);
6358
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6359
		sizeof(int), 0644, proc_dointvec_minmax);
6360
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6361
		sizeof(int), 0644, proc_dointvec_minmax);
6362
	set_table_entry(&table[9], "cache_nice_tries",
6363 6364
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6365
	set_table_entry(&table[10], "flags", &sd->flags,
6366
		sizeof(int), 0644, proc_dointvec_minmax);
6367 6368 6369
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6370 6371 6372 6373

	return table;
}

6374
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6375 6376 6377 6378 6379 6380 6381 6382 6383
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6384 6385
	if (table == NULL)
		return NULL;
6386 6387 6388 6389 6390

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6391
		entry->mode = 0555;
6392 6393 6394 6395 6396 6397 6398 6399
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6400
static void register_sched_domain_sysctl(void)
6401 6402 6403 6404 6405
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6406 6407 6408
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6409 6410 6411
	if (entry == NULL)
		return;

6412
	for_each_online_cpu(i) {
6413 6414
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6415
		entry->mode = 0555;
6416
		entry->child = sd_alloc_ctl_cpu_table(i);
6417
		entry++;
6418
	}
6419 6420

	WARN_ON(sd_sysctl_header);
6421 6422
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6423

6424
/* may be called multiple times per register */
6425 6426
static void unregister_sched_domain_sysctl(void)
{
6427 6428
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6429
	sd_sysctl_header = NULL;
6430 6431
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6432
}
6433
#else
6434 6435 6436 6437
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6438 6439 6440 6441
{
}
#endif

6442 6443 6444 6445 6446
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6447
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6467
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6468 6469 6470 6471
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6472 6473 6474 6475
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6476 6477
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6478 6479
{
	struct task_struct *p;
6480
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6481
	unsigned long flags;
6482
	struct rq *rq;
L
Linus Torvalds 已提交
6483 6484

	switch (action) {
6485

L
Linus Torvalds 已提交
6486
	case CPU_UP_PREPARE:
6487
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6488
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6489 6490 6491 6492 6493
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6494
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6495 6496 6497
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6498

L
Linus Torvalds 已提交
6499
	case CPU_ONLINE:
6500
	case CPU_ONLINE_FROZEN:
6501
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6502
		wake_up_process(cpu_rq(cpu)->migration_thread);
6503 6504 6505 6506 6507

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6508
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6509 6510

			set_rq_online(rq);
6511 6512
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6513
		break;
6514

L
Linus Torvalds 已提交
6515 6516
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6517
	case CPU_UP_CANCELED_FROZEN:
6518 6519
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6520
		/* Unbind it from offline cpu so it can run. Fall thru. */
6521
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6522
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6523 6524 6525
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6526

L
Linus Torvalds 已提交
6527
	case CPU_DEAD:
6528
	case CPU_DEAD_FROZEN:
6529
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6530 6531 6532 6533 6534
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6535
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6536
		update_rq_clock(rq);
6537
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6538
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6539 6540
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6541
		migrate_dead_tasks(cpu);
6542
		spin_unlock_irq(&rq->lock);
6543
		cpuset_unlock();
L
Linus Torvalds 已提交
6544 6545 6546
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6547 6548 6549 6550 6551
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6552 6553
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6554 6555
			struct migration_req *req;

L
Linus Torvalds 已提交
6556
			req = list_entry(rq->migration_queue.next,
6557
					 struct migration_req, list);
L
Linus Torvalds 已提交
6558 6559 6560 6561 6562
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6563

6564 6565
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6566 6567 6568 6569
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6570
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6571
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6572 6573 6574
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6575 6576 6577 6578 6579 6580 6581 6582
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6583
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6584 6585 6586 6587
	.notifier_call = migration_call,
	.priority = 10
};

6588
static int __init migration_init(void)
L
Linus Torvalds 已提交
6589 6590
{
	void *cpu = (void *)(long)smp_processor_id();
6591
	int err;
6592 6593

	/* Start one for the boot CPU: */
6594 6595
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6596 6597
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6598 6599

	return err;
L
Linus Torvalds 已提交
6600
}
6601
early_initcall(migration_init);
L
Linus Torvalds 已提交
6602 6603 6604
#endif

#ifdef CONFIG_SMP
6605

6606
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6607

6608 6609
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6610
{
I
Ingo Molnar 已提交
6611
	struct sched_group *group = sd->groups;
6612
	char str[256];
L
Linus Torvalds 已提交
6613

6614
	cpulist_scnprintf(str, sizeof(str), *sched_domain_span(sd));
6615
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6625 6626
	}

6627
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6628

6629
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6630 6631 6632
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6633
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6634 6635 6636
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6637

I
Ingo Molnar 已提交
6638
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6639
	do {
I
Ingo Molnar 已提交
6640 6641 6642
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6643 6644 6645
			break;
		}

I
Ingo Molnar 已提交
6646 6647 6648 6649 6650 6651
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6652

6653
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6654 6655 6656 6657
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6658

6659
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6660 6661 6662 6663
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6664

6665
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6666

6667
		cpulist_scnprintf(str, sizeof(str), *sched_group_cpus(group));
I
Ingo Molnar 已提交
6668
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6669

I
Ingo Molnar 已提交
6670 6671 6672
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6673

6674
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6675
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6676

6677 6678
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6679 6680 6681 6682
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6683

I
Ingo Molnar 已提交
6684 6685
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6686
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6687
	int level = 0;
L
Linus Torvalds 已提交
6688

I
Ingo Molnar 已提交
6689 6690 6691 6692
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6693

I
Ingo Molnar 已提交
6694 6695
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6696 6697 6698 6699 6700 6701
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6702
	for (;;) {
6703
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6704
			break;
L
Linus Torvalds 已提交
6705 6706
		level++;
		sd = sd->parent;
6707
		if (!sd)
I
Ingo Molnar 已提交
6708 6709
			break;
	}
6710
	kfree(groupmask);
L
Linus Torvalds 已提交
6711
}
6712
#else /* !CONFIG_SCHED_DEBUG */
6713
# define sched_domain_debug(sd, cpu) do { } while (0)
6714
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6715

6716
static int sd_degenerate(struct sched_domain *sd)
6717
{
6718
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6719 6720 6721 6722 6723 6724
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6725 6726 6727
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6741 6742
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6743 6744 6745 6746 6747 6748
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

6749
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6761 6762 6763
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6764 6765 6766 6767 6768 6769 6770
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

6771 6772 6773 6774 6775 6776 6777 6778
static void free_rootdomain(struct root_domain *rd)
{
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
6779 6780 6781 6782 6783 6784 6785 6786 6787
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6788
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
6789
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6790

6791
		cpumask_clear_cpu(rq->cpu, old_rd->span);
6792

G
Gregory Haskins 已提交
6793
		if (atomic_dec_and_test(&old_rd->refcount))
6794
			free_rootdomain(old_rd);
G
Gregory Haskins 已提交
6795 6796 6797 6798 6799
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6800 6801
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
6802
		set_rq_online(rq);
G
Gregory Haskins 已提交
6803 6804 6805 6806

	spin_unlock_irqrestore(&rq->lock, flags);
}

6807
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
6808 6809 6810
{
	memset(rd, 0, sizeof(*rd));

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
		cpupri_init(&rd->cpupri);
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
		goto free_rd;
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
6825 6826

	cpupri_init(&rd->cpupri);
6827 6828 6829 6830 6831 6832 6833 6834 6835
	return 0;

free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
free_rd:
	kfree(rd);
	return -ENOMEM;
G
Gregory Haskins 已提交
6836 6837 6838 6839
}

static void init_defrootdomain(void)
{
6840 6841
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
6842 6843 6844
	atomic_set(&def_root_domain.refcount, 1);
}

6845
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6846 6847 6848 6849 6850 6851 6852
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6853 6854 6855 6856
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
6857 6858 6859 6860

	return rd;
}

L
Linus Torvalds 已提交
6861
/*
I
Ingo Molnar 已提交
6862
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6863 6864
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6865 6866
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6867
{
6868
	struct rq *rq = cpu_rq(cpu);
6869 6870 6871
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6872
	for (tmp = sd; tmp; ) {
6873 6874 6875
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6876

6877
		if (sd_parent_degenerate(tmp, parent)) {
6878
			tmp->parent = parent->parent;
6879 6880
			if (parent->parent)
				parent->parent->child = tmp;
6881 6882
		} else
			tmp = tmp->parent;
6883 6884
	}

6885
	if (sd && sd_degenerate(sd)) {
6886
		sd = sd->parent;
6887 6888 6889
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6890 6891 6892

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6893
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6894
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6895 6896 6897
}

/* cpus with isolated domains */
6898
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6899 6900 6901 6902

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6903 6904
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6905 6906 6907 6908 6909 6910 6911 6912 6913

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6914
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6915 6916

/*
6917 6918 6919 6920
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6921 6922 6923 6924 6925
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6926
static void
6927
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6928
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6929 6930 6931
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6932 6933 6934 6935
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6936 6937
	cpus_clear(*covered);

6938
	for_each_cpu(i, span) {
6939
		struct sched_group *sg;
6940
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6941 6942
		int j;

6943
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
6944 6945
			continue;

6946
		cpumask_clear(sched_group_cpus(sg));
6947
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6948

6949
		for_each_cpu(j, span) {
6950
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6951 6952
				continue;

6953
			cpu_set(j, *covered);
6954
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
6955 6956 6957 6958 6959 6960 6961 6962 6963 6964
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6965
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6966

6967
#ifdef CONFIG_NUMA
6968

6969 6970 6971 6972 6973
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6974
 * Find the next node to include in a given scheduling domain. Simply
6975 6976 6977 6978
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6979
static int find_next_best_node(int node, nodemask_t *used_nodes)
6980 6981 6982 6983 6984
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6985
	for (i = 0; i < nr_node_ids; i++) {
6986
		/* Start at @node */
6987
		n = (node + i) % nr_node_ids;
6988 6989 6990 6991 6992

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6993
		if (node_isset(n, *used_nodes))
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7005
	node_set(best_node, *used_nodes);
7006 7007 7008 7009 7010 7011
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7012
 * @span: resulting cpumask
7013
 *
I
Ingo Molnar 已提交
7014
 * Given a node, construct a good cpumask for its sched_domain to span. It
7015 7016 7017
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7018
static void sched_domain_node_span(int node, cpumask_t *span)
7019
{
7020 7021
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7022
	int i;
7023

7024
	cpus_clear(*span);
7025
	nodes_clear(used_nodes);
7026

7027
	cpus_or(*span, *span, *nodemask);
7028
	node_set(node, used_nodes);
7029 7030

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7031
		int next_node = find_next_best_node(node, &used_nodes);
7032

7033
		node_to_cpumask_ptr_next(nodemask, next_node);
7034
		cpus_or(*span, *span, *nodemask);
7035 7036
	}
}
7037
#endif /* CONFIG_NUMA */
7038

7039
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7040

7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7056
/*
7057
 * SMT sched-domains:
7058
 */
L
Linus Torvalds 已提交
7059
#ifdef CONFIG_SCHED_SMT
7060 7061
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7062

I
Ingo Molnar 已提交
7063
static int
7064 7065
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7066
{
7067
	if (sg)
7068
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7069 7070
	return cpu;
}
7071
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7072

7073 7074 7075
/*
 * multi-core sched-domains:
 */
7076
#ifdef CONFIG_SCHED_MC
7077 7078
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7079
#endif /* CONFIG_SCHED_MC */
7080 7081

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7082
static int
7083 7084
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7085
{
7086
	int group;
7087 7088 7089 7090

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7091
	if (sg)
7092
		*sg = &per_cpu(sched_group_core, group).sg;
7093
	return group;
7094 7095
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7096
static int
7097 7098
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7099
{
7100
	if (sg)
7101
		*sg = &per_cpu(sched_group_core, cpu).sg;
7102 7103 7104 7105
	return cpu;
}
#endif

7106 7107
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7108

I
Ingo Molnar 已提交
7109
static int
7110 7111
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7112
{
7113
	int group;
7114
#ifdef CONFIG_SCHED_MC
7115 7116 7117
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7118
#elif defined(CONFIG_SCHED_SMT)
7119 7120 7121
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7122
#else
7123
	group = cpu;
L
Linus Torvalds 已提交
7124
#endif
7125
	if (sg)
7126
		*sg = &per_cpu(sched_group_phys, group).sg;
7127
	return group;
L
Linus Torvalds 已提交
7128 7129 7130 7131
}

#ifdef CONFIG_NUMA
/*
7132 7133 7134
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7135
 */
7136
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7137
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7138

7139
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7140
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7141

7142
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7143
				 struct sched_group **sg, cpumask_t *nodemask)
7144
{
7145
	int group;
7146
	node_to_cpumask_ptr(pnodemask, cpu_to_node(cpu));
7147

7148
	cpus_and(*nodemask, *pnodemask, *cpu_map);
7149
	group = first_cpu(*nodemask);
7150 7151

	if (sg)
7152
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7153
	return group;
L
Linus Torvalds 已提交
7154
}
7155

7156 7157 7158 7159 7160 7161 7162
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7163
	do {
7164
		for_each_cpu(j, sched_group_cpus(sg)) {
7165
			struct sched_domain *sd;
7166

7167
			sd = &per_cpu(phys_domains, j).sd;
7168
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7169 7170 7171 7172 7173 7174
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7175

7176 7177 7178 7179
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7180
}
7181
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7182

7183
#ifdef CONFIG_NUMA
7184
/* Free memory allocated for various sched_group structures */
7185
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7186
{
7187
	int cpu, i;
7188

7189
	for_each_cpu(cpu, cpu_map) {
7190 7191 7192 7193 7194 7195
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7196
		for (i = 0; i < nr_node_ids; i++) {
7197
			struct sched_group *oldsg, *sg = sched_group_nodes[i];
7198
			node_to_cpumask_ptr(pnodemask, i);
7199

7200
			cpus_and(*nodemask, *pnodemask, *cpu_map);
7201
			if (cpus_empty(*nodemask))
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7218
#else /* !CONFIG_NUMA */
7219
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7220 7221
{
}
7222
#endif /* CONFIG_NUMA */
7223

7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7245
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7246 7247 7248 7249
		return;

	child = sd->child;

7250 7251
	sd->groups->__cpu_power = 0;

7252 7253 7254 7255 7256 7257 7258 7259 7260 7261
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7262
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7263 7264 7265 7266 7267 7268 7269 7270
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7271
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7272 7273 7274 7275
		group = group->next;
	} while (group != child->groups);
}

7276 7277 7278 7279 7280
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7281 7282 7283 7284 7285 7286
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7287
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7288

7289 7290 7291 7292 7293
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7294
	sd->level = SD_LV_##type;				\
7295
	SD_INIT_NAME(sd, type);					\
7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7310 7311 7312 7313
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7314 7315 7316 7317 7318 7319
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7345
/*
7346 7347
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7348
 */
7349 7350
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7351
{
7352
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7353
	struct root_domain *rd;
7354 7355
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7356
#ifdef CONFIG_NUMA
7357
	cpumask_var_t domainspan, covered, notcovered;
7358
	struct sched_group **sched_group_nodes = NULL;
7359
	int sd_allnodes = 0;
7360

7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7381 7382 7383
	/*
	 * Allocate the per-node list of sched groups
	 */
7384
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7385
				    GFP_KERNEL);
7386 7387
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7388
		goto free_tmpmask;
7389 7390
	}
#endif
L
Linus Torvalds 已提交
7391

7392
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7393 7394
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7395
		goto free_sched_groups;
G
Gregory Haskins 已提交
7396 7397
	}

7398 7399 7400 7401
#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7402
	/*
7403
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7404
	 */
7405
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7406 7407
		struct sched_domain *sd = NULL, *p;

7408 7409
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7410 7411

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7412
		if (cpus_weight(*cpu_map) >
7413
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7414
			sd = &per_cpu(allnodes_domains, i);
7415
			SD_INIT(sd, ALLNODES);
7416
			set_domain_attribute(sd, attr);
7417
			cpumask_copy(sched_domain_span(sd), cpu_map);
7418
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7419
			p = sd;
7420
			sd_allnodes = 1;
7421 7422 7423
		} else
			p = NULL;

L
Linus Torvalds 已提交
7424
		sd = &per_cpu(node_domains, i);
7425
		SD_INIT(sd, NODE);
7426
		set_domain_attribute(sd, attr);
7427
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7428
		sd->parent = p;
7429 7430
		if (p)
			p->child = sd;
7431 7432
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7433 7434 7435
#endif

		p = sd;
7436
		sd = &per_cpu(phys_domains, i).sd;
7437
		SD_INIT(sd, CPU);
7438
		set_domain_attribute(sd, attr);
7439
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7440
		sd->parent = p;
7441 7442
		if (p)
			p->child = sd;
7443
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7444

7445 7446
#ifdef CONFIG_SCHED_MC
		p = sd;
7447
		sd = &per_cpu(core_domains, i).sd;
7448
		SD_INIT(sd, MC);
7449
		set_domain_attribute(sd, attr);
7450 7451 7452
		*sched_domain_span(sd) = cpu_coregroup_map(i);
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
7453
		sd->parent = p;
7454
		p->child = sd;
7455
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7456 7457
#endif

L
Linus Torvalds 已提交
7458 7459
#ifdef CONFIG_SCHED_SMT
		p = sd;
7460
		sd = &per_cpu(cpu_domains, i).sd;
7461
		SD_INIT(sd, SIBLING);
7462
		set_domain_attribute(sd, attr);
7463 7464
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7465
		sd->parent = p;
7466
		p->child = sd;
7467
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7468 7469 7470 7471 7472
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7473
	for_each_cpu(i, cpu_map) {
7474 7475 7476
		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7477 7478
			continue;

I
Ingo Molnar 已提交
7479
		init_sched_build_groups(this_sibling_map, cpu_map,
7480 7481
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7482 7483 7484
	}
#endif

7485 7486
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7487
	for_each_cpu(i, cpu_map) {
7488 7489 7490
		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7491
			continue;
7492

I
Ingo Molnar 已提交
7493
		init_sched_build_groups(this_core_map, cpu_map,
7494 7495
					&cpu_to_core_group,
					send_covered, tmpmask);
7496 7497 7498
	}
#endif

L
Linus Torvalds 已提交
7499
	/* Set up physical groups */
7500
	for (i = 0; i < nr_node_ids; i++) {
7501 7502 7503
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7504 7505
			continue;

7506 7507 7508
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7509 7510 7511 7512
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7513 7514 7515 7516 7517
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7518

7519
	for (i = 0; i < nr_node_ids; i++) {
7520 7521 7522 7523
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7524 7525 7526 7527 7528
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7529
			sched_group_nodes[i] = NULL;
7530
			continue;
7531
		}
7532

7533
		sched_domain_node_span(i, domainspan);
7534
		cpus_and(*domainspan, *domainspan, *cpu_map);
7535

7536 7537
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7538 7539 7540 7541 7542
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7543
		sched_group_nodes[i] = sg;
7544
		for_each_cpu(j, nodemask) {
7545
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7546

7547 7548 7549
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7550
		sg->__cpu_power = 0;
7551
		cpumask_copy(sched_group_cpus(sg), nodemask);
7552
		sg->next = sg;
7553
		cpus_or(*covered, *covered, *nodemask);
7554 7555
		prev = sg;

7556 7557
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7558
			node_to_cpumask_ptr(pnodemask, n);
7559

7560 7561 7562 7563
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7564 7565
				break;

7566 7567
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7568 7569
				continue;

7570 7571
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7572
					  GFP_KERNEL, i);
7573 7574 7575
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7576
				goto error;
7577
			}
7578
			sg->__cpu_power = 0;
7579
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7580
			sg->next = prev->next;
7581
			cpus_or(*covered, *covered, *tmpmask);
7582 7583 7584 7585
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7586 7587 7588
#endif

	/* Calculate CPU power for physical packages and nodes */
7589
#ifdef CONFIG_SCHED_SMT
7590
	for_each_cpu(i, cpu_map) {
7591
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7592

7593
		init_sched_groups_power(i, sd);
7594
	}
L
Linus Torvalds 已提交
7595
#endif
7596
#ifdef CONFIG_SCHED_MC
7597
	for_each_cpu(i, cpu_map) {
7598
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7599

7600
		init_sched_groups_power(i, sd);
7601 7602
	}
#endif
7603

7604
	for_each_cpu(i, cpu_map) {
7605
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7606

7607
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7608 7609
	}

7610
#ifdef CONFIG_NUMA
7611
	for (i = 0; i < nr_node_ids; i++)
7612
		init_numa_sched_groups_power(sched_group_nodes[i]);
7613

7614 7615
	if (sd_allnodes) {
		struct sched_group *sg;
7616

7617 7618
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7619 7620
		init_numa_sched_groups_power(sg);
	}
7621 7622
#endif

L
Linus Torvalds 已提交
7623
	/* Attach the domains */
7624
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7625 7626
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7627
		sd = &per_cpu(cpu_domains, i).sd;
7628
#elif defined(CONFIG_SCHED_MC)
7629
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7630
#else
7631
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7632
#endif
G
Gregory Haskins 已提交
7633
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7634
	}
7635

7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7664

7665
#ifdef CONFIG_NUMA
7666
error:
7667
	free_sched_groups(cpu_map, tmpmask);
7668
	free_rootdomain(rd);
7669
	goto free_tmpmask;
7670
#endif
L
Linus Torvalds 已提交
7671
}
P
Paul Jackson 已提交
7672

7673 7674 7675 7676 7677
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7678 7679
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7680 7681
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7682 7683 7684 7685 7686 7687 7688 7689

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7690 7691 7692 7693
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7694
/*
I
Ingo Molnar 已提交
7695
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7696 7697
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7698
 */
7699
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7700
{
7701 7702
	int err;

7703
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7704 7705 7706 7707 7708
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7709
	dattr_cur = NULL;
7710
	err = build_sched_domains(doms_cur);
7711
	register_sched_domain_sysctl();
7712 7713

	return err;
7714 7715
}

7716 7717
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7718
{
7719
	free_sched_groups(cpu_map, tmpmask);
7720
}
L
Linus Torvalds 已提交
7721

7722 7723 7724 7725
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7726
static void detach_destroy_domains(const cpumask_t *cpu_map)
7727
{
7728
	cpumask_t tmpmask;
7729 7730
	int i;

7731
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7732
		cpu_attach_domain(NULL, &def_root_domain, i);
7733
	synchronize_sched();
7734
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7735 7736
}

7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7753 7754
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7755
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7756 7757 7758 7759
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7760 7761 7762
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7763 7764 7765
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7766 7767
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7768 7769 7770 7771
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7772
 *
7773 7774 7775
 * If doms_new == NULL it will be replaced with cpu_online_map.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7776
 *
P
Paul Jackson 已提交
7777 7778
 * Call with hotplug lock held
 */
7779 7780
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7781
{
7782
	int i, j, n;
P
Paul Jackson 已提交
7783

7784
	mutex_lock(&sched_domains_mutex);
7785

7786 7787 7788
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7789
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7790 7791 7792

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7793
		for (j = 0; j < n; j++) {
7794 7795
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7796 7797 7798 7799 7800 7801 7802 7803
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7804 7805 7806 7807
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7808
		WARN_ON_ONCE(dattr_new);
7809 7810
	}

P
Paul Jackson 已提交
7811 7812 7813
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7814 7815
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7816 7817 7818
				goto match2;
		}
		/* no match - add a new doms_new */
7819 7820
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7821 7822 7823 7824 7825 7826 7827
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7828
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7829
	doms_cur = doms_new;
7830
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7831
	ndoms_cur = ndoms_new;
7832 7833

	register_sched_domain_sysctl();
7834

7835
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7836 7837
}

7838
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7839
int arch_reinit_sched_domains(void)
7840
{
7841
	get_online_cpus();
7842 7843 7844 7845

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7846
	rebuild_sched_domains();
7847
	put_online_cpus();
7848

7849
	return 0;
7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7870 7871
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7872 7873 7874
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7875
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7876
					    const char *buf, size_t count)
7877 7878 7879
{
	return sched_power_savings_store(buf, count, 0);
}
7880 7881 7882
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7883 7884 7885
#endif

#ifdef CONFIG_SCHED_SMT
7886 7887
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7888 7889 7890
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7891
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7892
					     const char *buf, size_t count)
7893 7894 7895
{
	return sched_power_savings_store(buf, count, 1);
}
7896 7897
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7917
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7918

7919
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7920
/*
7921 7922
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7923 7924 7925
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7926 7927 7928 7929 7930 7931
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7932
		partition_sched_domains(1, NULL, NULL);
7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7943
{
P
Peter Zijlstra 已提交
7944 7945
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7946 7947
	switch (action) {
	case CPU_DOWN_PREPARE:
7948
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7949
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7950 7951 7952
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7953
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7954
	case CPU_ONLINE:
7955
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7956
		enable_runtime(cpu_rq(cpu));
7957 7958
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7959 7960 7961 7962 7963 7964 7965
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7966 7967
	cpumask_t non_isolated_cpus;

7968 7969 7970 7971 7972
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7973
	get_online_cpus();
7974
	mutex_lock(&sched_domains_mutex);
7975
	arch_init_sched_domains(&cpu_online_map);
7976
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7977 7978
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7979
	mutex_unlock(&sched_domains_mutex);
7980
	put_online_cpus();
7981 7982

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7983 7984
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7985 7986 7987 7988 7989
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7990
	init_hrtick();
7991 7992

	/* Move init over to a non-isolated CPU */
7993
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7994
		BUG();
I
Ingo Molnar 已提交
7995
	sched_init_granularity();
L
Linus Torvalds 已提交
7996 7997 7998 7999
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8000
	sched_init_granularity();
L
Linus Torvalds 已提交
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8011
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8012 8013
{
	cfs_rq->tasks_timeline = RB_ROOT;
8014
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8015 8016 8017
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8018
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8019 8020
}

P
Peter Zijlstra 已提交
8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8034
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8035 8036
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8037 8038 8039 8040 8041 8042 8043
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8044 8045
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8046

8047
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8048
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8049 8050
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8051 8052
}

P
Peter Zijlstra 已提交
8053
#ifdef CONFIG_FAIR_GROUP_SCHED
8054 8055 8056
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8057
{
8058
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8059 8060 8061 8062 8063 8064 8065
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8066 8067 8068 8069
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8070 8071 8072 8073 8074
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8075 8076
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8077
	se->load.inv_weight = 0;
8078
	se->parent = parent;
P
Peter Zijlstra 已提交
8079
}
8080
#endif
P
Peter Zijlstra 已提交
8081

8082
#ifdef CONFIG_RT_GROUP_SCHED
8083 8084 8085
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8086
{
8087 8088
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8089 8090 8091 8092
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8093
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8094 8095 8096 8097
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8098 8099 8100
	if (!rt_se)
		return;

8101 8102 8103 8104 8105
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8106
	rt_se->my_q = rt_rq;
8107
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8108 8109 8110 8111
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8112 8113
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8114
	int i, j;
8115 8116 8117 8118 8119 8120 8121
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8122 8123 8124
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8125 8126 8127 8128 8129 8130
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8131
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8132 8133 8134 8135 8136 8137 8138

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8139 8140 8141 8142 8143 8144 8145

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8146 8147
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8148 8149 8150 8151 8152
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8153 8154 8155 8156 8157 8158 8159 8160
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8161 8162
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8163
	}
I
Ingo Molnar 已提交
8164

G
Gregory Haskins 已提交
8165 8166 8167 8168
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8169 8170 8171 8172 8173 8174
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8175 8176 8177
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8178 8179
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8180

8181
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8182
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8183 8184 8185 8186 8187 8188
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8189 8190
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8191

8192
	for_each_possible_cpu(i) {
8193
		struct rq *rq;
L
Linus Torvalds 已提交
8194 8195 8196

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8197
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8198
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8199
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8200
#ifdef CONFIG_FAIR_GROUP_SCHED
8201
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8202
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8223
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8224
#elif defined CONFIG_USER_SCHED
8225 8226
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8238
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8239
				&per_cpu(init_cfs_rq, i),
8240 8241
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8242

8243
#endif
D
Dhaval Giani 已提交
8244 8245 8246
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8247
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8248
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8249
#ifdef CONFIG_CGROUP_SCHED
8250
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8251
#elif defined CONFIG_USER_SCHED
8252
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8253
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8254
				&per_cpu(init_rt_rq, i),
8255 8256
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8257
#endif
I
Ingo Molnar 已提交
8258
#endif
L
Linus Torvalds 已提交
8259

I
Ingo Molnar 已提交
8260 8261
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8262
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8263
		rq->sd = NULL;
G
Gregory Haskins 已提交
8264
		rq->rd = NULL;
L
Linus Torvalds 已提交
8265
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8266
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8267
		rq->push_cpu = 0;
8268
		rq->cpu = i;
8269
		rq->online = 0;
L
Linus Torvalds 已提交
8270 8271
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8272
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8273
#endif
P
Peter Zijlstra 已提交
8274
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8275 8276 8277
		atomic_set(&rq->nr_iowait, 0);
	}

8278
	set_load_weight(&init_task);
8279

8280 8281 8282 8283
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8284
#ifdef CONFIG_SMP
8285
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8286 8287
#endif

8288 8289 8290 8291
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8305 8306 8307 8308
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8309

8310 8311 8312
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);

8313
	scheduler_running = 1;
L
Linus Torvalds 已提交
8314 8315 8316 8317 8318
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8319
#ifdef in_atomic
L
Linus Torvalds 已提交
8320 8321
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8341 8342 8343 8344 8345 8346
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8347 8348 8349
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8350

8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8362 8363
void normalize_rt_tasks(void)
{
8364
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8365
	unsigned long flags;
8366
	struct rq *rq;
L
Linus Torvalds 已提交
8367

8368
	read_lock_irqsave(&tasklist_lock, flags);
8369
	do_each_thread(g, p) {
8370 8371 8372 8373 8374 8375
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8376 8377
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8378 8379 8380
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8381
#endif
I
Ingo Molnar 已提交
8382 8383 8384 8385 8386 8387 8388 8389

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8390
			continue;
I
Ingo Molnar 已提交
8391
		}
L
Linus Torvalds 已提交
8392

8393
		spin_lock(&p->pi_lock);
8394
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8395

8396
		normalize_task(rq, p);
8397

8398
		__task_rq_unlock(rq);
8399
		spin_unlock(&p->pi_lock);
8400 8401
	} while_each_thread(g, p);

8402
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8403 8404 8405
}

#endif /* CONFIG_MAGIC_SYSRQ */
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8424
struct task_struct *curr_task(int cpu)
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8435 8436
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8437 8438 8439 8440 8441 8442 8443
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8444
void set_curr_task(int cpu, struct task_struct *p)
8445 8446 8447 8448 8449
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8450

8451 8452
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8467 8468
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8469 8470
{
	struct cfs_rq *cfs_rq;
8471
	struct sched_entity *se;
8472
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8473 8474
	int i;

8475
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8476 8477
	if (!tg->cfs_rq)
		goto err;
8478
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8479 8480
	if (!tg->se)
		goto err;
8481 8482

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8483 8484

	for_each_possible_cpu(i) {
8485
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8486

8487 8488
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8489 8490 8491
		if (!cfs_rq)
			goto err;

8492 8493
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8494 8495 8496
		if (!se)
			goto err;

8497
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8516
#else /* !CONFG_FAIR_GROUP_SCHED */
8517 8518 8519 8520
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8521 8522
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8534
#endif /* CONFIG_FAIR_GROUP_SCHED */
8535 8536

#ifdef CONFIG_RT_GROUP_SCHED
8537 8538 8539 8540
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8541 8542
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8554 8555
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8556 8557
{
	struct rt_rq *rt_rq;
8558
	struct sched_rt_entity *rt_se;
8559 8560 8561
	struct rq *rq;
	int i;

8562
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8563 8564
	if (!tg->rt_rq)
		goto err;
8565
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8566 8567 8568
	if (!tg->rt_se)
		goto err;

8569 8570
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8571 8572 8573 8574

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8575 8576
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8577 8578
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8579

8580 8581
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8582 8583
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8584

8585
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8586 8587
	}

8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8604
#else /* !CONFIG_RT_GROUP_SCHED */
8605 8606 8607 8608
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8609 8610
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8622
#endif /* CONFIG_RT_GROUP_SCHED */
8623

8624
#ifdef CONFIG_GROUP_SCHED
8625 8626 8627 8628 8629 8630 8631 8632
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8633
struct task_group *sched_create_group(struct task_group *parent)
8634 8635 8636 8637 8638 8639 8640 8641 8642
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8643
	if (!alloc_fair_sched_group(tg, parent))
8644 8645
		goto err;

8646
	if (!alloc_rt_sched_group(tg, parent))
8647 8648
		goto err;

8649
	spin_lock_irqsave(&task_group_lock, flags);
8650
	for_each_possible_cpu(i) {
8651 8652
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8653
	}
P
Peter Zijlstra 已提交
8654
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8655 8656 8657 8658 8659

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8660
	list_add_rcu(&tg->siblings, &parent->children);
8661
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8662

8663
	return tg;
S
Srivatsa Vaddagiri 已提交
8664 8665

err:
P
Peter Zijlstra 已提交
8666
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8667 8668 8669
	return ERR_PTR(-ENOMEM);
}

8670
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8671
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8672 8673
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8674
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8675 8676
}

8677
/* Destroy runqueue etc associated with a task group */
8678
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8679
{
8680
	unsigned long flags;
8681
	int i;
S
Srivatsa Vaddagiri 已提交
8682

8683
	spin_lock_irqsave(&task_group_lock, flags);
8684
	for_each_possible_cpu(i) {
8685 8686
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8687
	}
P
Peter Zijlstra 已提交
8688
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8689
	list_del_rcu(&tg->siblings);
8690
	spin_unlock_irqrestore(&task_group_lock, flags);
8691 8692

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8693
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8694 8695
}

8696
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8697 8698 8699
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8700 8701
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8702 8703 8704 8705 8706 8707 8708 8709 8710
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8711
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8712 8713
	on_rq = tsk->se.on_rq;

8714
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8715
		dequeue_task(rq, tsk, 0);
8716 8717
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8718

P
Peter Zijlstra 已提交
8719
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8720

P
Peter Zijlstra 已提交
8721 8722 8723 8724 8725
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8726 8727 8728
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8729
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8730 8731 8732

	task_rq_unlock(rq, &flags);
}
8733
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8734

8735
#ifdef CONFIG_FAIR_GROUP_SCHED
8736
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8737 8738 8739 8740 8741
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8742
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8743 8744 8745
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8746
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8747

8748
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8749
		enqueue_entity(cfs_rq, se, 0);
8750
}
8751

8752 8753 8754 8755 8756 8757 8758 8759 8760
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8761 8762
}

8763 8764
static DEFINE_MUTEX(shares_mutex);

8765
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8766 8767
{
	int i;
8768
	unsigned long flags;
8769

8770 8771 8772 8773 8774 8775
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8776 8777
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8778 8779
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8780

8781
	mutex_lock(&shares_mutex);
8782
	if (tg->shares == shares)
8783
		goto done;
S
Srivatsa Vaddagiri 已提交
8784

8785
	spin_lock_irqsave(&task_group_lock, flags);
8786 8787
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8788
	list_del_rcu(&tg->siblings);
8789
	spin_unlock_irqrestore(&task_group_lock, flags);
8790 8791 8792 8793 8794 8795 8796 8797

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8798
	tg->shares = shares;
8799 8800 8801 8802 8803
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8804
		set_se_shares(tg->se[i], shares);
8805
	}
S
Srivatsa Vaddagiri 已提交
8806

8807 8808 8809 8810
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8811
	spin_lock_irqsave(&task_group_lock, flags);
8812 8813
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8814
	list_add_rcu(&tg->siblings, &tg->parent->children);
8815
	spin_unlock_irqrestore(&task_group_lock, flags);
8816
done:
8817
	mutex_unlock(&shares_mutex);
8818
	return 0;
S
Srivatsa Vaddagiri 已提交
8819 8820
}

8821 8822 8823 8824
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8825
#endif
8826

8827
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8828
/*
P
Peter Zijlstra 已提交
8829
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8830
 */
P
Peter Zijlstra 已提交
8831 8832 8833 8834 8835
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8836
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8837

P
Peter Zijlstra 已提交
8838
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8839 8840
}

P
Peter Zijlstra 已提交
8841 8842
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8843
{
P
Peter Zijlstra 已提交
8844
	struct task_struct *g, *p;
8845

P
Peter Zijlstra 已提交
8846 8847 8848 8849
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8850

P
Peter Zijlstra 已提交
8851 8852
	return 0;
}
8853

P
Peter Zijlstra 已提交
8854 8855 8856 8857 8858
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8859

P
Peter Zijlstra 已提交
8860 8861 8862 8863 8864 8865
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8866

P
Peter Zijlstra 已提交
8867 8868
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8869

P
Peter Zijlstra 已提交
8870 8871 8872
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8873 8874
	}

8875 8876 8877 8878 8879
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8880

8881 8882 8883
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8884 8885
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8886

P
Peter Zijlstra 已提交
8887
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8888

8889 8890 8891 8892 8893
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8894

8895 8896 8897
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8898 8899 8900
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8901

P
Peter Zijlstra 已提交
8902 8903 8904 8905
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8906

P
Peter Zijlstra 已提交
8907
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8908
	}
P
Peter Zijlstra 已提交
8909

P
Peter Zijlstra 已提交
8910 8911 8912 8913
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8914 8915
}

P
Peter Zijlstra 已提交
8916
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8917
{
P
Peter Zijlstra 已提交
8918 8919 8920 8921 8922 8923 8924
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8925 8926
}

8927 8928
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8929
{
P
Peter Zijlstra 已提交
8930
	int i, err = 0;
P
Peter Zijlstra 已提交
8931 8932

	mutex_lock(&rt_constraints_mutex);
8933
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8934 8935
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8936
		goto unlock;
P
Peter Zijlstra 已提交
8937 8938

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8939 8940
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8941 8942 8943 8944 8945 8946 8947 8948 8949

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8950
 unlock:
8951
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8952 8953 8954
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8955 8956
}

8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8969 8970 8971 8972
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8973
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8974 8975
		return -1;

8976
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8977 8978 8979
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8980 8981 8982 8983 8984 8985 8986 8987

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8988 8989 8990
	if (rt_period == 0)
		return -EINVAL;

8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9005
	u64 runtime, period;
9006 9007
	int ret = 0;

9008 9009 9010
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9011 9012 9013 9014 9015 9016 9017 9018
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9019

9020
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9021
	read_lock(&tasklist_lock);
9022
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9023
	read_unlock(&tasklist_lock);
9024 9025 9026 9027
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9028
#else /* !CONFIG_RT_GROUP_SCHED */
9029 9030
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9031 9032 9033
	unsigned long flags;
	int i;

9034 9035 9036
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9037 9038 9039 9040 9041 9042 9043 9044 9045 9046
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9047 9048
	return 0;
}
9049
#endif /* CONFIG_RT_GROUP_SCHED */
9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9080

9081
#ifdef CONFIG_CGROUP_SCHED
9082 9083

/* return corresponding task_group object of a cgroup */
9084
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9085
{
9086 9087
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9088 9089 9090
}

static struct cgroup_subsys_state *
9091
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9092
{
9093
	struct task_group *tg, *parent;
9094

9095
	if (!cgrp->parent) {
9096 9097 9098 9099
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9100 9101
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9102 9103 9104 9105 9106 9107
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9108 9109
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9110
{
9111
	struct task_group *tg = cgroup_tg(cgrp);
9112 9113 9114 9115

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9116 9117 9118
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9119
{
9120 9121
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9122
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9123 9124
		return -EINVAL;
#else
9125 9126 9127
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9128
#endif
9129 9130 9131 9132 9133

	return 0;
}

static void
9134
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9135 9136 9137 9138 9139
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9140
#ifdef CONFIG_FAIR_GROUP_SCHED
9141
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9142
				u64 shareval)
9143
{
9144
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9145 9146
}

9147
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9148
{
9149
	struct task_group *tg = cgroup_tg(cgrp);
9150 9151 9152

	return (u64) tg->shares;
}
9153
#endif /* CONFIG_FAIR_GROUP_SCHED */
9154

9155
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9156
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9157
				s64 val)
P
Peter Zijlstra 已提交
9158
{
9159
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9160 9161
}

9162
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9163
{
9164
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9165
}
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9177
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9178

9179
static struct cftype cpu_files[] = {
9180
#ifdef CONFIG_FAIR_GROUP_SCHED
9181 9182
	{
		.name = "shares",
9183 9184
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9185
	},
9186 9187
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9188
	{
P
Peter Zijlstra 已提交
9189
		.name = "rt_runtime_us",
9190 9191
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9192
	},
9193 9194
	{
		.name = "rt_period_us",
9195 9196
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9197
	},
9198
#endif
9199 9200 9201 9202
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9203
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9204 9205 9206
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9207 9208 9209 9210 9211 9212 9213
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9214 9215 9216
	.early_init	= 1,
};

9217
#endif	/* CONFIG_CGROUP_SCHED */
9218 9219 9220 9221 9222 9223 9224 9225 9226 9227

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9228
/* track cpu usage of a group of tasks and its child groups */
9229 9230 9231 9232
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9233
	struct cpuacct *parent;
9234 9235 9236 9237 9238
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9239
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9240
{
9241
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9254
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9267 9268 9269
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9270 9271 9272 9273
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9274
static void
9275
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9276
{
9277
	struct cpuacct *ca = cgroup_ca(cgrp);
9278 9279 9280 9281 9282 9283

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9284
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9285
{
9286
	struct cpuacct *ca = cgroup_ca(cgrp);
9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9328 9329 9330
static struct cftype files[] = {
	{
		.name = "usage",
9331 9332
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9333 9334 9335
	},
};

9336
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9337
{
9338
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9339 9340 9341 9342 9343 9344 9345 9346 9347 9348
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9349
	int cpu;
9350 9351 9352 9353

	if (!cpuacct_subsys.active)
		return;

9354
	cpu = task_cpu(tsk);
9355 9356
	ca = task_ca(tsk);

9357 9358
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */