sched.c 260.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618
	/* For active balancing */
619
	int post_schedule;
L
Linus Torvalds 已提交
620 621
	int active_balance;
	int push_cpu;
622 623
	/* cpu of this runqueue: */
	int cpu;
624
	int online;
L
Linus Torvalds 已提交
625

626
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
627

628
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
629 630 631
	struct list_head migration_queue;
#endif

632 633 634 635
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
636
#ifdef CONFIG_SCHED_HRTICK
637 638 639 640
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
641 642 643
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
644 645 646
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
647 648
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
649 650

	/* sys_sched_yield() stats */
651
	unsigned int yld_count;
L
Linus Torvalds 已提交
652 653

	/* schedule() stats */
654 655 656
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
657 658

	/* try_to_wake_up() stats */
659 660
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
661 662

	/* BKL stats */
663
	unsigned int bkl_count;
L
Linus Torvalds 已提交
664 665 666
#endif
};

667
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
668

669
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
670
{
671
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
672 673
}

674 675 676 677 678 679 680 681 682
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
683 684
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
685
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
686 687 688 689
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
690 691
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
692 693 694 695 696

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
697
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
698

I
Ingo Molnar 已提交
699
inline void update_rq_clock(struct rq *rq)
700 701 702 703
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
704 705 706 707 708 709 710 711 712
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
731 732 733
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
734 735 736 737

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
738
enum {
P
Peter Zijlstra 已提交
739
#include "sched_features.h"
I
Ingo Molnar 已提交
740 741
};

P
Peter Zijlstra 已提交
742 743 744 745 746
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
747
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
748 749 750 751 752 753 754 755 756
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

757
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
758 759 760 761 762 763
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
764
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
765 766 767 768
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
769 770 771
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
772
	}
L
Li Zefan 已提交
773
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
774

L
Li Zefan 已提交
775
	return 0;
P
Peter Zijlstra 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
795
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
820 821 822 823 824
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
825
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
826 827 828 829 830
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843 844
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
845

846 847 848 849 850 851
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
852 853
/*
 * ratelimit for updating the group shares.
854
 * default: 0.25ms
P
Peter Zijlstra 已提交
855
 */
856
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
857

858 859 860 861 862 863 864
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
865
/*
P
Peter Zijlstra 已提交
866
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
867 868
 * default: 1s
 */
P
Peter Zijlstra 已提交
869
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
870

871 872
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
873 874 875 876 877
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
878

879 880 881 882 883 884 885
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
886
	if (sysctl_sched_rt_runtime < 0)
887 888 889 890
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
891

L
Linus Torvalds 已提交
892
#ifndef prepare_arch_switch
893 894 895 896 897 898
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

899 900 901 902 903
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

904
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
905
static inline int task_running(struct rq *rq, struct task_struct *p)
906
{
907
	return task_current(rq, p);
908 909
}

910
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
911 912 913
{
}

914
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
915
{
916 917 918 919
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
920 921 922 923 924 925 926
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

927 928 929 930
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
931
static inline int task_running(struct rq *rq, struct task_struct *p)
932 933 934 935
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
936
	return task_current(rq, p);
937 938 939
#endif
}

940
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

957
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
958 959 960 961 962 963 964 965 966 967 968 969
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
970
#endif
971 972
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
973

974 975 976 977
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
978
static inline struct rq *__task_rq_lock(struct task_struct *p)
979 980
	__acquires(rq->lock)
{
981 982 983 984 985
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
986 987 988 989
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
990 991
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
992
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
993 994
 * explicitly disabling preemption.
 */
995
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999

1000 1001 1002 1003 1004 1005
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1010 1011 1012 1013 1014 1015 1016 1017
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1018
static void __task_rq_unlock(struct rq *rq)
1019 1020 1021 1022 1023
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1024
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1025 1026 1027 1028 1029 1030
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1031
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1032
 */
A
Alexey Dobriyan 已提交
1033
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1034 1035
	__acquires(rq->lock)
{
1036
	struct rq *rq;
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042 1043 1044

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1066
	if (!cpu_active(cpu_of(rq)))
1067
		return 0;
P
Peter Zijlstra 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1088
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1089 1090 1091 1092 1093 1094
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1095
#ifdef CONFIG_SMP
1096 1097 1098 1099
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1100
{
1101
	struct rq *rq = arg;
1102

1103 1104 1105 1106
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1107 1108
}

1109 1110 1111 1112 1113 1114
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1115
{
1116 1117
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1118

1119
	hrtimer_set_expires(timer, time);
1120 1121 1122 1123

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1124
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1125 1126
		rq->hrtick_csd_pending = 1;
	}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1141
		hrtick_clear(cpu_rq(cpu));
1142 1143 1144 1145 1146 1147
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1148
static __init void init_hrtick(void)
1149 1150 1151
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1152 1153 1154 1155 1156 1157 1158 1159
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1160
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161
			HRTIMER_MODE_REL_PINNED, 0);
1162
}
1163

A
Andrew Morton 已提交
1164
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1165 1166
{
}
1167
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1168

1169
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1170
{
1171 1172
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1173

1174 1175 1176 1177
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1178

1179 1180
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1181
}
A
Andrew Morton 已提交
1182
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1183 1184 1185 1186 1187 1188 1189 1190
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1191 1192 1193
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1194
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1195

I
Ingo Molnar 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1209
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1210 1211 1212 1213 1214
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1215
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1216 1217
		return;

1218
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1274
	set_tsk_need_resched(rq->idle);
1275 1276 1277 1278 1279 1280

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1281
#endif /* CONFIG_NO_HZ */
1282

1283
#else /* !CONFIG_SMP */
1284
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1285 1286
{
	assert_spin_locked(&task_rq(p)->lock);
1287
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1288
}
1289
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1290

1291 1292 1293 1294 1295 1296 1297 1298
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1299 1300 1301
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1302
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1303

1304 1305 1306
/*
 * delta *= weight / lw
 */
1307
static unsigned long
1308 1309 1310 1311 1312
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1313 1314 1315 1316 1317 1318 1319
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1320 1321 1322 1323 1324

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1325
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1326
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1327 1328
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1329
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1330

1331
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1332 1333
}

1334
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1335 1336
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1341 1342
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1343
	lw->inv_weight = 0;
1344 1345
}

1346 1347 1348 1349
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1350
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1351 1352 1353 1354
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1355 1356
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1357 1358 1359 1360 1361 1362 1363 1364 1365

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1366 1367 1368
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1369 1370
 */
static const int prio_to_weight[40] = {
1371 1372 1373 1374 1375 1376 1377 1378
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1379 1380
};

1381 1382 1383 1384 1385 1386 1387
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1388
static const u32 prio_to_wmult[40] = {
1389 1390 1391 1392 1393 1394 1395 1396
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1397
};
1398

I
Ingo Molnar 已提交
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1424

1425 1426 1427 1428 1429 1430 1431 1432
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1433 1434
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1435 1436
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1437 1438
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1439 1440
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1441 1442
#endif

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1453
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1454
typedef int (*tg_visitor)(struct task_group *, void *);
1455 1456 1457 1458 1459

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1460
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1461 1462
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1463
	int ret;
1464 1465 1466 1467

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1468 1469 1470
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1471 1472 1473 1474 1475 1476 1477
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1478 1479 1480
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1481 1482 1483 1484 1485

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1486
out_unlock:
1487
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1488 1489

	return ret;
1490 1491
}

P
Peter Zijlstra 已提交
1492 1493 1494
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1495
}
P
Peter Zijlstra 已提交
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1506
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1507

1508 1509
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1510 1511
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1512 1513 1514 1515 1516

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1517 1518 1519 1520 1521 1522 1523

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1524
update_group_shares_cpu(struct task_group *tg, int cpu,
P
Peter Zijlstra 已提交
1525 1526
			unsigned long sd_shares, unsigned long sd_rq_weight,
			unsigned long sd_eff_weight)
1527
{
1528
	unsigned long rq_weight;
P
Peter Zijlstra 已提交
1529 1530
	unsigned long shares;
	int boost = 0;
1531

1532
	if (!tg->se[cpu])
1533 1534
		return;

1535
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
P
Peter Zijlstra 已提交
1536 1537 1538
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
P
Peter Zijlstra 已提交
1539 1540 1541
		if (sd_rq_weight == sd_eff_weight)
			sd_eff_weight += NICE_0_LOAD;
		sd_rq_weight = sd_eff_weight;
P
Peter Zijlstra 已提交
1542
	}
1543

1544
	/*
P
Peter Zijlstra 已提交
1545 1546 1547
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1548
	 */
1549
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1550
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1551

1552 1553 1554 1555
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1556

1557
		spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
1558
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1559 1560 1561
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1562
}
1563 1564

/*
1565 1566 1567
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1568
 */
P
Peter Zijlstra 已提交
1569
static int tg_shares_up(struct task_group *tg, void *data)
1570
{
P
Peter Zijlstra 已提交
1571
	unsigned long weight, rq_weight = 0, eff_weight = 0;
1572
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1573
	struct sched_domain *sd = data;
1574
	int i;
1575

1576
	for_each_cpu(i, sched_domain_span(sd)) {
1577 1578 1579 1580 1581 1582
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
P
Peter Zijlstra 已提交
1583 1584 1585
		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;

1586 1587 1588
		if (!weight)
			weight = NICE_0_LOAD;

P
Peter Zijlstra 已提交
1589
		eff_weight += weight;
1590
		shares += tg->cfs_rq[i]->shares;
1591 1592
	}

1593 1594 1595 1596 1597
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1598

P
Peter Zijlstra 已提交
1599 1600
	for_each_cpu(i, sched_domain_span(sd))
		update_group_shares_cpu(tg, i, shares, rq_weight, eff_weight);
P
Peter Zijlstra 已提交
1601 1602

	return 0;
1603 1604 1605
}

/*
1606 1607 1608
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1609
 */
P
Peter Zijlstra 已提交
1610
static int tg_load_down(struct task_group *tg, void *data)
1611
{
1612
	unsigned long load;
P
Peter Zijlstra 已提交
1613
	long cpu = (long)data;
1614

1615 1616 1617 1618 1619 1620 1621
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1622

1623
	tg->cfs_rq[cpu]->h_load = load;
1624

P
Peter Zijlstra 已提交
1625
	return 0;
1626 1627
}

1628
static void update_shares(struct sched_domain *sd)
1629
{
1630 1631 1632 1633 1634 1635 1636 1637
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1638 1639 1640

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1641
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1642
	}
1643 1644
}

1645 1646
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1647 1648 1649
	if (root_task_group_empty())
		return;

1650 1651 1652 1653 1654
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1655
static void update_h_load(long cpu)
1656
{
1657 1658 1659
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1660
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1661 1662 1663 1664
}

#else

1665
static inline void update_shares(struct sched_domain *sd)
1666 1667 1668
{
}

1669 1670 1671 1672
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1673 1674
#endif

1675 1676
#ifdef CONFIG_PREEMPT

1677
/*
1678 1679 1680 1681 1682 1683
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1684
 */
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1739 1740 1741 1742 1743 1744
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1745 1746
#endif

V
Vegard Nossum 已提交
1747
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1748 1749
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1750
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1751 1752 1753
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1754
#endif
1755

1756 1757
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1758 1759
#include "sched_stats.h"
#include "sched_idletask.c"
1760 1761
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1762 1763 1764 1765 1766
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1767 1768
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1769

1770
static void inc_nr_running(struct rq *rq)
1771 1772 1773 1774
{
	rq->nr_running++;
}

1775
static void dec_nr_running(struct rq *rq)
1776 1777 1778 1779
{
	rq->nr_running--;
}

1780 1781 1782
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1783 1784 1785 1786
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1787

I
Ingo Molnar 已提交
1788 1789 1790 1791 1792 1793 1794 1795
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1796

I
Ingo Molnar 已提交
1797 1798
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1799 1800
}

1801 1802 1803 1804 1805 1806
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1807
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1808
{
P
Peter Zijlstra 已提交
1809 1810 1811
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1812
	sched_info_queued(p);
1813
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1814
	p->se.on_rq = 1;
1815 1816
}

1817
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1818
{
P
Peter Zijlstra 已提交
1819 1820 1821 1822 1823 1824 1825 1826 1827
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1828 1829
	}

1830
	sched_info_dequeued(p);
1831
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1832
	p->se.on_rq = 0;
1833 1834
}

1835
/*
I
Ingo Molnar 已提交
1836
 * __normal_prio - return the priority that is based on the static prio
1837 1838 1839
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1840
	return p->static_prio;
1841 1842
}

1843 1844 1845 1846 1847 1848 1849
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1850
static inline int normal_prio(struct task_struct *p)
1851 1852 1853
{
	int prio;

1854
	if (task_has_rt_policy(p))
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1868
static int effective_prio(struct task_struct *p)
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1881
/*
I
Ingo Molnar 已提交
1882
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1883
 */
I
Ingo Molnar 已提交
1884
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1885
{
1886
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1887
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1888

1889
	enqueue_task(rq, p, wakeup);
1890
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1891 1892 1893 1894 1895
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1896
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1897
{
1898
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1899 1900
		rq->nr_uninterruptible++;

1901
	dequeue_task(rq, p, sleep);
1902
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1909
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1910 1911 1912 1913
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1914 1915
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1916
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1917
#ifdef CONFIG_SMP
1918 1919 1920 1921 1922 1923
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1924 1925
	task_thread_info(p)->cpu = cpu;
#endif
1926 1927
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1940
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1941

1942 1943 1944 1945 1946 1947
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1948 1949 1950
/*
 * Is this task likely cache-hot:
 */
1951
static int
1952 1953 1954 1955
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1956 1957 1958
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1959 1960 1961
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1962 1963
		return 1;

1964 1965 1966
	if (p->sched_class != &fair_sched_class)
		return 0;

1967 1968 1969 1970 1971
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1972 1973 1974 1975 1976 1977
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1978
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1979
{
I
Ingo Molnar 已提交
1980 1981
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1982 1983
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1984
	u64 clock_offset;
I
Ingo Molnar 已提交
1985 1986

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1987

1988
	trace_sched_migrate_task(p, new_cpu);
1989

I
Ingo Molnar 已提交
1990 1991 1992
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1993 1994 1995 1996
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1997
#endif
1998
	if (old_cpu != new_cpu) {
1999
		p->se.nr_migrations++;
2000
		new_rq->nr_migrations_in++;
2001
#ifdef CONFIG_SCHEDSTATS
2002 2003
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2004
#endif
2005 2006
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
2007
	}
2008 2009
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2010 2011

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2012 2013
}

2014
struct migration_req {
L
Linus Torvalds 已提交
2015 2016
	struct list_head list;

2017
	struct task_struct *task;
L
Linus Torvalds 已提交
2018 2019 2020
	int dest_cpu;

	struct completion done;
2021
};
L
Linus Torvalds 已提交
2022 2023 2024 2025 2026

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2027
static int
2028
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2029
{
2030
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2031 2032 2033 2034 2035

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2036
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2037 2038 2039 2040 2041 2042 2043 2044
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2045

L
Linus Torvalds 已提交
2046 2047 2048
	return 1;
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2092 2093 2094
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2095 2096 2097 2098 2099 2100 2101
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2108
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2109 2110
{
	unsigned long flags;
I
Ingo Molnar 已提交
2111
	int running, on_rq;
R
Roland McGrath 已提交
2112
	unsigned long ncsw;
2113
	struct rq *rq;
L
Linus Torvalds 已提交
2114

2115 2116 2117 2118 2119 2120 2121 2122
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2123

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2135 2136 2137
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2138
			cpu_relax();
R
Roland McGrath 已提交
2139
		}
2140

2141 2142 2143 2144 2145 2146
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2147
		trace_sched_wait_task(rq, p);
2148 2149
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2150
		ncsw = 0;
2151
		if (!match_state || p->state == match_state)
2152
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2153
		task_rq_unlock(rq, &flags);
2154

R
Roland McGrath 已提交
2155 2156 2157 2158 2159 2160
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2171

2172 2173 2174 2175 2176
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2177
		 * So if it was still runnable (but just not actively
2178 2179 2180 2181 2182 2183 2184
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2185

2186 2187 2188 2189 2190 2191 2192
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2193 2194

	return ncsw;
L
Linus Torvalds 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2210
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2220
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2221 2222

/*
2223 2224
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2225 2226 2227 2228
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2229
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2230
{
2231
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2232
	unsigned long total = weighted_cpuload(cpu);
2233

2234
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2235
		return total;
2236

I
Ingo Molnar 已提交
2237
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2238 2239 2240
}

/*
2241 2242
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2243
 */
A
Alexey Dobriyan 已提交
2244
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2245
{
2246
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2247
	unsigned long total = weighted_cpuload(cpu);
2248

2249
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2250
		return total;
2251

I
Ingo Molnar 已提交
2252
	return max(rq->cpu_load[type-1], total);
2253 2254
}

N
Nick Piggin 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2272
		/* Skip over this group if it has no CPUs allowed */
2273 2274
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2275
			continue;
2276

2277 2278
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2279 2280 2281 2282

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2283
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2294 2295
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2296 2297 2298 2299 2300 2301 2302 2303

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2304
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2305 2306 2307 2308 2309 2310 2311

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2312
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2313
 */
I
Ingo Molnar 已提交
2314
static int
2315
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2316 2317 2318 2319 2320
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2321
	/* Traverse only the allowed CPUs */
2322
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2323
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2349

2350
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2351 2352 2353
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2354 2355
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2356 2357
		if (tmp->flags & flag)
			sd = tmp;
2358
	}
N
Nick Piggin 已提交
2359

2360 2361 2362
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2363 2364
	while (sd) {
		struct sched_group *group;
2365 2366 2367 2368 2369 2370
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2371 2372

		group = find_idlest_group(sd, t, cpu);
2373 2374 2375 2376
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2377

2378
		new_cpu = find_idlest_cpu(group, t, cpu);
2379 2380 2381 2382 2383
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2384

2385
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2386
		cpu = new_cpu;
2387
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2388 2389
		sd = NULL;
		for_each_domain(cpu, tmp) {
2390
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2402

T
Thomas Gleixner 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2438
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2439
{
2440
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2441 2442
	unsigned long flags;
	long old_state;
2443
	struct rq *rq;
L
Linus Torvalds 已提交
2444

2445 2446 2447
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2448
#ifdef CONFIG_SMP
2449
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2450 2451 2452 2453 2454 2455
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2456
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2457 2458 2459 2460 2461 2462 2463
				update_shares(sd);
				break;
			}
		}
	}
#endif

2464
	smp_wmb();
L
Linus Torvalds 已提交
2465
	rq = task_rq_lock(p, &flags);
2466
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2467 2468 2469 2470
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2471
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2472 2473 2474
		goto out_running;

	cpu = task_cpu(p);
2475
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2482 2483 2484
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2485 2486 2487 2488 2489 2490
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2491
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2492 2493 2494 2495 2496 2497
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2498 2499 2500 2501 2502 2503 2504
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2505
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2506 2507 2508 2509 2510
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2511
#endif /* CONFIG_SCHEDSTATS */
2512

L
Linus Torvalds 已提交
2513 2514
out_activate:
#endif /* CONFIG_SMP */
2515 2516 2517 2518 2519 2520 2521 2522 2523
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2524
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2525 2526
	success = 1;

P
Peter Zijlstra 已提交
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2543
out_running:
2544
	trace_sched_wakeup(rq, p, success);
2545
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2546

L
Linus Torvalds 已提交
2547
	p->state = TASK_RUNNING;
2548 2549 2550 2551
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2569
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2570
{
2571
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2572 2573 2574
}
EXPORT_SYMBOL(wake_up_process);

2575
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2583 2584 2585 2586 2587 2588 2589
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2590
	p->se.prev_sum_exec_runtime	= 0;
2591
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2592 2593
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2594 2595
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2596 2597

#ifdef CONFIG_SCHEDSTATS
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2629
#endif
N
Nick Piggin 已提交
2630

P
Peter Zijlstra 已提交
2631
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2632
	p->se.on_rq = 0;
2633
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2634

2635 2636 2637 2638
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2639 2640 2641 2642 2643 2644 2645
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2660
	set_task_cpu(p, cpu);
2661 2662

	/*
2663
	 * Make sure we do not leak PI boosting priority to the child.
2664
	 */
2665
	p->prio = current->normal_prio;
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
			p->policy = SCHED_NORMAL;

		if (p->normal_prio < DEFAULT_PRIO)
			p->prio = DEFAULT_PRIO;

2677 2678 2679 2680 2681
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
			set_load_weight(p);
		}

2682 2683 2684 2685 2686 2687
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2688

H
Hiroshi Shimamoto 已提交
2689 2690
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2691

2692
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2693
	if (likely(sched_info_on()))
2694
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2695
#endif
2696
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2697 2698
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2699
#ifdef CONFIG_PREEMPT
2700
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2701
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2702
#endif
2703 2704
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2705
	put_cpu();
L
Linus Torvalds 已提交
2706 2707 2708 2709 2710 2711 2712 2713 2714
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2715
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2716 2717
{
	unsigned long flags;
I
Ingo Molnar 已提交
2718
	struct rq *rq;
L
Linus Torvalds 已提交
2719 2720

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2721
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2722
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2723 2724 2725

	p->prio = effective_prio(p);

2726
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2727
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2728 2729
	} else {
		/*
I
Ingo Molnar 已提交
2730 2731
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2732
		 */
2733
		p->sched_class->task_new(rq, p);
2734
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2735
	}
2736
	trace_sched_wakeup_new(rq, p, 1);
2737
	check_preempt_curr(rq, p, 0);
2738 2739 2740 2741
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2742
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2743 2744
}

2745 2746 2747
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2748
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2749
 * @notifier: notifier struct to register
2750 2751 2752 2753 2754 2755 2756 2757 2758
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2759
 * @notifier: notifier struct to unregister
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2789
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2801
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2802

2803 2804 2805
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2806
 * @prev: the current task that is being switched out
2807 2808 2809 2810 2811 2812 2813 2814 2815
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2816 2817 2818
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2819
{
2820
	fire_sched_out_preempt_notifiers(prev, next);
2821 2822 2823 2824
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2825 2826
/**
 * finish_task_switch - clean up after a task-switch
2827
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2828 2829
 * @prev: the thread we just switched away from.
 *
2830 2831 2832 2833
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2834 2835
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2836
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2837 2838 2839
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
2840
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2841 2842 2843
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2844
	long prev_state;
L
Linus Torvalds 已提交
2845 2846 2847 2848 2849

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2850
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2851 2852
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2853
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2859
	prev_state = prev->state;
2860
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2861
	perf_counter_task_sched_in(current, cpu_of(rq));
2862
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2863

2864
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2865 2866
	if (mm)
		mmdrop(mm);
2867
	if (unlikely(prev_state == TASK_DEAD)) {
2868 2869 2870
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2871
		 */
2872
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2873
		put_task_struct(prev);
2874
	}
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
}

#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2902

2903 2904 2905 2906 2907 2908
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2909 2910
}

2911 2912
#endif

L
Linus Torvalds 已提交
2913 2914 2915 2916
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2917
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2918 2919
	__releases(rq->lock)
{
2920
	struct rq *rq = this_rq();
2921

2922
	finish_task_switch(rq, prev);
2923

2924 2925 2926 2927 2928
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2929

2930 2931 2932 2933
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2934
	if (current->set_child_tid)
2935
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940 2941
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
2942
static inline void
2943
context_switch(struct rq *rq, struct task_struct *prev,
2944
	       struct task_struct *next)
L
Linus Torvalds 已提交
2945
{
I
Ingo Molnar 已提交
2946
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2947

2948
	prepare_task_switch(rq, prev, next);
2949
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2950 2951
	mm = next->mm;
	oldmm = prev->active_mm;
2952 2953 2954 2955 2956
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2957
	arch_start_context_switch(prev);
2958

I
Ingo Molnar 已提交
2959
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2960 2961 2962 2963 2964 2965
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2966
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2967 2968 2969
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2970 2971 2972 2973 2974 2975 2976
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2977
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2978
#endif
L
Linus Torvalds 已提交
2979 2980 2981 2982

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2983 2984 2985 2986 2987 2988
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
2989
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

3013
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
3028 3029
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
3030

3031
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

3041
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
3042 3043 3044 3045 3046
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

3047 3048 3049 3050 3051 3052
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

3068 3069
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
3070
{
3071 3072 3073 3074
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3087

3088 3089
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3090

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3113 3114
}

3115 3116 3117 3118 3119 3120 3121 3122 3123
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3124
/*
I
Ingo Molnar 已提交
3125 3126
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3127
 */
I
Ingo Molnar 已提交
3128
static void update_cpu_load(struct rq *this_rq)
3129
{
3130
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3143 3144 3145 3146 3147 3148 3149
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3150 3151
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3152 3153 3154 3155 3156

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3157 3158
}

I
Ingo Molnar 已提交
3159 3160
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3167
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3168 3169 3170
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3171
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3172 3173 3174 3175
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3176
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3177
			spin_lock(&rq1->lock);
3178
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3179 3180
		} else {
			spin_lock(&rq2->lock);
3181
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3182 3183
		}
	}
3184 3185
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3186 3187 3188 3189 3190 3191 3192 3193
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3194
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3208
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3209 3210
 * the cpu_allowed mask is restored.
 */
3211
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3212
{
3213
	struct migration_req req;
L
Linus Torvalds 已提交
3214
	unsigned long flags;
3215
	struct rq *rq;
L
Linus Torvalds 已提交
3216 3217

	rq = task_rq_lock(p, &flags);
3218
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3219
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3220 3221 3222 3223 3224 3225
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3226

L
Linus Torvalds 已提交
3227 3228 3229 3230 3231
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3232

L
Linus Torvalds 已提交
3233 3234 3235 3236 3237 3238 3239
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3240 3241
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3242 3243 3244 3245
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3246
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3247
	put_cpu();
N
Nick Piggin 已提交
3248 3249
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3250 3251 3252 3253 3254 3255
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3256 3257
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3258
{
3259
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3260
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3261
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3262 3263 3264 3265
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3266
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3267 3268 3269 3270 3271
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3272
static
3273
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3274
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3275
		     int *all_pinned)
L
Linus Torvalds 已提交
3276
{
3277
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3278 3279 3280 3281 3282 3283
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3284
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3285
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3286
		return 0;
3287
	}
3288 3289
	*all_pinned = 0;

3290 3291
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3292
		return 0;
3293
	}
L
Linus Torvalds 已提交
3294

3295 3296 3297 3298 3299 3300
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3301 3302 3303
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3304
#ifdef CONFIG_SCHEDSTATS
3305
		if (tsk_cache_hot) {
3306
			schedstat_inc(sd, lb_hot_gained[idle]);
3307 3308
			schedstat_inc(p, se.nr_forced_migrations);
		}
3309 3310 3311 3312
#endif
		return 1;
	}

3313
	if (tsk_cache_hot) {
3314
		schedstat_inc(p, se.nr_failed_migrations_hot);
3315
		return 0;
3316
	}
L
Linus Torvalds 已提交
3317 3318 3319
	return 1;
}

3320 3321 3322 3323 3324
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3325
{
3326
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3327 3328
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3329

3330
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3331 3332
		goto out;

3333 3334
	pinned = 1;

L
Linus Torvalds 已提交
3335
	/*
I
Ingo Molnar 已提交
3336
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3337
	 */
I
Ingo Molnar 已提交
3338 3339
	p = iterator->start(iterator->arg);
next:
3340
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3341
		goto out;
3342 3343

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3344 3345 3346
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3347 3348
	}

I
Ingo Molnar 已提交
3349
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3350
	pulled++;
I
Ingo Molnar 已提交
3351
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3363
	/*
3364
	 * We only want to steal up to the prescribed amount of weighted load.
3365
	 */
3366
	if (rem_load_move > 0) {
3367 3368
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3369 3370
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3371 3372 3373
	}
out:
	/*
3374
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3375 3376 3377 3378
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3379 3380 3381

	if (all_pinned)
		*all_pinned = pinned;
3382 3383

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3384 3385
}

I
Ingo Molnar 已提交
3386
/*
P
Peter Williams 已提交
3387 3388 3389
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3390 3391 3392 3393
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3394
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3395 3396 3397
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3398
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3399
	unsigned long total_load_moved = 0;
3400
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3401 3402

	do {
P
Peter Williams 已提交
3403 3404
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3405
				max_load_move - total_load_moved,
3406
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3407
		class = class->next;
3408

3409 3410 3411 3412 3413 3414
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3415 3416
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3417
#endif
P
Peter Williams 已提交
3418
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3419

P
Peter Williams 已提交
3420 3421 3422
	return total_load_moved > 0;
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3459
	const struct sched_class *class;
P
Peter Williams 已提交
3460

3461
	for_each_class(class) {
3462
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3463
			return 1;
3464
	}
P
Peter Williams 已提交
3465 3466

	return 0;
I
Ingo Molnar 已提交
3467
}
3468
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3469
/*
3470 3471
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3472
 */
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3491
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3492 3493 3494 3495 3496 3497
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3498
#endif
3499
};
L
Linus Torvalds 已提交
3500

3501
/*
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3534
		load_idx = sd->busy_idx;
3535 3536 3537
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3538
		load_idx = sd->newidle_idx;
3539 3540
		break;
	default:
N
Nick Piggin 已提交
3541
		load_idx = sd->idle_idx;
3542 3543
		break;
	}
L
Linus Torvalds 已提交
3544

3545 3546
	return load_idx;
}
L
Linus Torvalds 已提交
3547 3548


3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3573

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3587

3588 3589
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3590

3591 3592 3593 3594 3595 3596 3597
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3598

3599 3600 3601 3602 3603 3604 3605 3606
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3607

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3621

3622 3623 3624 3625 3626 3627 3628
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3629

3630 3631 3632 3633 3634 3635 3636
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3637

3638
/**
3639
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3640 3641 3642 3643 3644
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3645 3646 3647 3648 3649
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3650 3651 3652 3653 3654 3655 3656 3657
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3658

3659 3660 3661
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3662

3663 3664
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3665

3666 3667 3668 3669 3670 3671
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3672

3673 3674 3675 3676 3677 3678 3679
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3680

3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3725

3726 3727
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3728

3729 3730
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3731

3732
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3733
		if (local_group) {
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3746
		}
3747

3748 3749 3750
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3751

3752 3753
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3754

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3766

3767 3768 3769
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3770

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3790

3791 3792 3793 3794 3795 3796 3797 3798 3799
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3800
 */
3801 3802 3803 3804
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3805
{
3806
	struct sched_group *group = sd->groups;
3807
	struct sg_lb_stats sgs;
3808 3809
	int load_idx;

3810
	init_sd_power_savings_stats(sd, sds, idle);
3811
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3812 3813 3814 3815

	do {
		int local_group;

3816 3817
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3818
		memset(&sgs, 0, sizeof(sgs));
3819 3820
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3821

3822 3823
		if (local_group && balance && !(*balance))
			return;
3824

3825 3826
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3827 3828

		if (local_group) {
3829 3830 3831 3832 3833
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3834 3835
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3836 3837 3838 3839 3840
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3841
		}
3842

3843
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3844 3845 3846
		group = group->next;
	} while (group != sd->groups);

3847
}
L
Linus Torvalds 已提交
3848

3849 3850
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 3852
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3871

3872 3873 3874 3875 3876
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3877

L
Linus Torvalds 已提交
3878
	/*
3879 3880 3881
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3882
	 */
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3925 3926 3927 3928 3929
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3930
	if (sds->max_load < sds->avg_load) {
3931
		*imbalance = 0;
3932
		return fix_small_imbalance(sds, this_cpu, imbalance);
3933
	}
3934 3935

	/* Don't want to pull so many tasks that a group would go idle */
3936 3937
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3938

L
Linus Torvalds 已提交
3939
	/* How much load to actually move to equalise the imbalance */
3940 3941
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3942 3943
			/ SCHED_LOAD_SCALE;

3944 3945 3946 3947 3948 3949
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3950 3951
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3952

3953
}
3954
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3980 3981 3982 3983 3984 3985 3986
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3987

3988
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3989

3990 3991 3992 3993 3994 3995 3996
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4007 4008
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4009

4010 4011
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4012

4013
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4014 4015
		goto out_balanced;

4016
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4017

4018 4019 4020 4021
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4022 4023
		goto out_balanced;

4024 4025 4026 4027
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4028

L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035 4036
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4037
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4038 4039
	 * appear as very large values with unsigned longs.
	 */
4040
	if (sds.max_load <= sds.busiest_load_per_task)
4041 4042
		goto out_balanced;

4043 4044
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4045
	return sds.busiest;
L
Linus Torvalds 已提交
4046 4047

out_balanced:
4048 4049 4050 4051 4052 4053
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4054
ret:
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059 4060 4061
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4062
static struct rq *
I
Ingo Molnar 已提交
4063
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4064
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4065
{
4066
	struct rq *busiest = NULL, *rq;
4067
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4068 4069
	int i;

4070
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
4071
		unsigned long wl;
4072

4073
		if (!cpumask_test_cpu(i, cpus))
4074 4075
			continue;

4076
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
4077
		wl = weighted_cpuload(i);
4078

I
Ingo Molnar 已提交
4079
		if (rq->nr_running == 1 && wl > imbalance)
4080
			continue;
L
Linus Torvalds 已提交
4081

I
Ingo Molnar 已提交
4082 4083
		if (wl > max_load) {
			max_load = wl;
4084
			busiest = rq;
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089 4090
		}
	}

	return busiest;
}

4091 4092 4093 4094 4095 4096
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4097 4098 4099
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4100 4101 4102 4103
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4104
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4105
			struct sched_domain *sd, enum cpu_idle_type idle,
4106
			int *balance)
L
Linus Torvalds 已提交
4107
{
P
Peter Williams 已提交
4108
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4109 4110
	struct sched_group *group;
	unsigned long imbalance;
4111
	struct rq *busiest;
4112
	unsigned long flags;
4113
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4114

4115
	cpumask_setall(cpus);
4116

4117 4118 4119
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4120
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4121
	 * portraying it as CPU_NOT_IDLE.
4122
	 */
I
Ingo Molnar 已提交
4123
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4124
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4125
		sd_idle = 1;
L
Linus Torvalds 已提交
4126

4127
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4128

4129
redo:
4130
	update_shares(sd);
4131
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4132
				   cpus, balance);
4133

4134
	if (*balance == 0)
4135 4136
		goto out_balanced;

L
Linus Torvalds 已提交
4137 4138 4139 4140 4141
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4142
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4143 4144 4145 4146 4147
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4148
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4149 4150 4151

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4152
	ld_moved = 0;
L
Linus Torvalds 已提交
4153 4154 4155 4156
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4157
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4158 4159
		 * correctly treated as an imbalance.
		 */
4160
		local_irq_save(flags);
N
Nick Piggin 已提交
4161
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4162
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4163
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4164
		double_rq_unlock(this_rq, busiest);
4165
		local_irq_restore(flags);
4166

4167 4168 4169
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4170
		if (ld_moved && this_cpu != smp_processor_id())
4171 4172
			resched_cpu(this_cpu);

4173
		/* All tasks on this runqueue were pinned by CPU affinity */
4174
		if (unlikely(all_pinned)) {
4175 4176
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4177
				goto redo;
4178
			goto out_balanced;
4179
		}
L
Linus Torvalds 已提交
4180
	}
4181

P
Peter Williams 已提交
4182
	if (!ld_moved) {
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4188
			spin_lock_irqsave(&busiest->lock, flags);
4189 4190 4191 4192

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4193 4194
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4195
				spin_unlock_irqrestore(&busiest->lock, flags);
4196 4197 4198 4199
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4200 4201 4202
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4203
				active_balance = 1;
L
Linus Torvalds 已提交
4204
			}
4205
			spin_unlock_irqrestore(&busiest->lock, flags);
4206
			if (active_balance)
L
Linus Torvalds 已提交
4207 4208 4209 4210 4211 4212
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4213
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4214
		}
4215
	} else
L
Linus Torvalds 已提交
4216 4217
		sd->nr_balance_failed = 0;

4218
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4219 4220
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4221 4222 4223 4224 4225 4226 4227 4228 4229
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4230 4231
	}

P
Peter Williams 已提交
4232
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4233
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4234 4235 4236
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4237 4238 4239 4240

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4241
	sd->nr_balance_failed = 0;
4242 4243

out_one_pinned:
L
Linus Torvalds 已提交
4244
	/* tune up the balancing interval */
4245 4246
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4247 4248
		sd->balance_interval *= 2;

4249
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4250
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4251 4252 4253 4254
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4255 4256
	if (ld_moved)
		update_shares(sd);
4257
	return ld_moved;
L
Linus Torvalds 已提交
4258 4259 4260 4261 4262 4263
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4264
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4265 4266
 * this_rq is locked.
 */
4267
static int
4268
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4269 4270
{
	struct sched_group *group;
4271
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4272
	unsigned long imbalance;
P
Peter Williams 已提交
4273
	int ld_moved = 0;
N
Nick Piggin 已提交
4274
	int sd_idle = 0;
4275
	int all_pinned = 0;
4276
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4277

4278
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4279

4280 4281 4282 4283
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4284
	 * portraying it as CPU_NOT_IDLE.
4285 4286 4287
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4288
		sd_idle = 1;
L
Linus Torvalds 已提交
4289

4290
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4291
redo:
4292
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4293
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4294
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4295
	if (!group) {
I
Ingo Molnar 已提交
4296
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4297
		goto out_balanced;
L
Linus Torvalds 已提交
4298 4299
	}

4300
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4301
	if (!busiest) {
I
Ingo Molnar 已提交
4302
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4303
		goto out_balanced;
L
Linus Torvalds 已提交
4304 4305
	}

N
Nick Piggin 已提交
4306 4307
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4308
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4309

P
Peter Williams 已提交
4310
	ld_moved = 0;
4311 4312 4313
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4314 4315
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4316
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4317 4318
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4319
		double_unlock_balance(this_rq, busiest);
4320

4321
		if (unlikely(all_pinned)) {
4322 4323
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4324 4325
				goto redo;
		}
4326 4327
	}

P
Peter Williams 已提交
4328
	if (!ld_moved) {
4329
		int active_balance = 0;
4330

I
Ingo Molnar 已提交
4331
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4332 4333
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4334
			return -1;
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4371
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4384 4385 4386 4387
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4388 4389
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4390
		spin_lock(&this_rq->lock);
4391

N
Nick Piggin 已提交
4392
	} else
4393
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4394

4395
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4396
	return ld_moved;
4397 4398

out_balanced:
I
Ingo Molnar 已提交
4399
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4400
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4401
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4402
		return -1;
4403
	sd->nr_balance_failed = 0;
4404

4405
	return 0;
L
Linus Torvalds 已提交
4406 4407 4408 4409 4410 4411
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4412
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4413 4414
{
	struct sched_domain *sd;
4415
	int pulled_task = 0;
I
Ingo Molnar 已提交
4416
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4417 4418

	for_each_domain(this_cpu, sd) {
4419 4420 4421 4422 4423 4424
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4425
			/* If we've pulled tasks over stop searching: */
4426
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4427
							   sd);
4428 4429 4430 4431 4432 4433

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4434
	}
I
Ingo Molnar 已提交
4435
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4436 4437 4438 4439 4440
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4441
	}
L
Linus Torvalds 已提交
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4452
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4453
{
4454
	int target_cpu = busiest_rq->push_cpu;
4455 4456
	struct sched_domain *sd;
	struct rq *target_rq;
4457

4458
	/* Is there any task to move? */
4459 4460 4461 4462
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4463 4464

	/*
4465
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4466
	 * we need to fix it. Originally reported by
4467
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4468
	 */
4469
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4470

4471 4472
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4473 4474
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4475 4476

	/* Search for an sd spanning us and the target CPU. */
4477
	for_each_domain(target_cpu, sd) {
4478
		if ((sd->flags & SD_LOAD_BALANCE) &&
4479
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4480
				break;
4481
	}
4482

4483
	if (likely(sd)) {
4484
		schedstat_inc(sd, alb_count);
4485

P
Peter Williams 已提交
4486 4487
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4488 4489 4490 4491
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4492
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4493 4494
}

4495 4496 4497
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4498
	cpumask_var_t cpu_mask;
4499
	cpumask_var_t ilb_grp_nohz_mask;
4500 4501 4502 4503
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4504 4505 4506 4507 4508
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4620
	return cpumask_first(nohz.cpu_mask);
4621 4622 4623
}
#endif

4624
/*
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4635
 *
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4651 4652 4653 4654 4655 4656 4657 4658
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4659 4660
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4661

4662 4663 4664
			return 0;
		}

4665 4666
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4667
		/* time for ilb owner also to sleep */
4668
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4669 4670 4671 4672 4673 4674 4675 4676 4677
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4694
			return 1;
4695
		}
4696
	} else {
4697
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4698 4699
			return 0;

4700
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4713 4714 4715 4716 4717
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4718
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4719
{
4720 4721
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4722 4723
	unsigned long interval;
	struct sched_domain *sd;
4724
	/* Earliest time when we have to do rebalance again */
4725
	unsigned long next_balance = jiffies + 60*HZ;
4726
	int update_next_balance = 0;
4727
	int need_serialize;
L
Linus Torvalds 已提交
4728

4729
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4730 4731 4732 4733
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4734
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739 4740
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4741 4742 4743
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4744
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4745

4746
		if (need_serialize) {
4747 4748 4749 4750
			if (!spin_trylock(&balancing))
				goto out;
		}

4751
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4752
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4753 4754
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4755 4756 4757
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4758
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4759
			}
4760
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4761
		}
4762
		if (need_serialize)
4763 4764
			spin_unlock(&balancing);
out:
4765
		if (time_after(next_balance, sd->last_balance + interval)) {
4766
			next_balance = sd->last_balance + interval;
4767 4768
			update_next_balance = 1;
		}
4769 4770 4771 4772 4773 4774 4775 4776

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4777
	}
4778 4779 4780 4781 4782 4783 4784 4785

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4786 4787 4788 4789 4790 4791 4792 4793 4794
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4795 4796 4797 4798
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4799

I
Ingo Molnar 已提交
4800
	rebalance_domains(this_cpu, idle);
4801 4802 4803 4804 4805 4806 4807

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4808 4809
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4810 4811 4812
		struct rq *rq;
		int balance_cpu;

4813 4814 4815 4816
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4817 4818 4819 4820 4821 4822 4823 4824
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4825
			rebalance_domains(balance_cpu, CPU_IDLE);
4826 4827

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4828 4829
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4830 4831 4832 4833 4834
		}
	}
#endif
}

4835 4836 4837 4838 4839
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4840 4841 4842 4843 4844 4845 4846
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4847
static inline void trigger_load_balance(struct rq *rq, int cpu)
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4859
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4860 4861 4862 4863
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4864
			int ilb = find_new_ilb(cpu);
4865

4866
			if (ilb < nr_cpu_ids)
4867 4868 4869 4870 4871 4872 4873 4874 4875
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4876
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4877 4878 4879 4880 4881 4882 4883 4884 4885
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4886
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4887 4888
		return;
#endif
4889 4890 4891
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4892
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4893
}
I
Ingo Molnar 已提交
4894 4895 4896

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4897 4898 4899
/*
 * on UP we do not need to balance between CPUs:
 */
4900
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4901 4902
{
}
I
Ingo Molnar 已提交
4903

L
Linus Torvalds 已提交
4904 4905 4906 4907 4908 4909 4910
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4911
 * Return any ns on the sched_clock that have not yet been accounted in
4912
 * @p in case that task is currently running.
4913 4914
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4915
 */
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4930
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4931 4932
{
	unsigned long flags;
4933
	struct rq *rq;
4934
	u64 ns = 0;
4935

4936
	rq = task_rq_lock(p, &flags);
4937 4938
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4939

4940 4941
	return ns;
}
4942

4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4960

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4980
	task_rq_unlock(rq, &flags);
4981

L
Linus Torvalds 已提交
4982 4983 4984 4985 4986 4987 4988
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4989
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4990
 */
4991 4992
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4993 4994 4995 4996
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4997
	/* Add user time to process. */
L
Linus Torvalds 已提交
4998
	p->utime = cputime_add(p->utime, cputime);
4999
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5000
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5008 5009

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5010 5011
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5012 5013
}

5014 5015 5016 5017
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5018
 * @cputime_scaled: cputime scaled by cpu frequency
5019
 */
5020 5021
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5022 5023 5024 5025 5026 5027
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5028
	/* Add guest time to process. */
5029
	p->utime = cputime_add(p->utime, cputime);
5030
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5031
	account_group_user_time(p, cputime);
5032 5033
	p->gtime = cputime_add(p->gtime, cputime);

5034
	/* Add guest time to cpustat. */
5035 5036 5037 5038
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
5039 5040 5041 5042 5043
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5044
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5045 5046
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5047
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5048 5049 5050 5051
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5052
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5053
		account_guest_time(p, cputime, cputime_scaled);
5054 5055
		return;
	}
5056

5057
	/* Add system time to process. */
L
Linus Torvalds 已提交
5058
	p->stime = cputime_add(p->stime, cputime);
5059
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5060
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5061 5062 5063 5064 5065 5066 5067 5068

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5069 5070
		cpustat->system = cputime64_add(cpustat->system, tmp);

5071 5072
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5073 5074 5075 5076
	/* Account for system time used */
	acct_update_integrals(p);
}

5077
/*
L
Linus Torvalds 已提交
5078 5079
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5080
 */
5081
void account_steal_time(cputime_t cputime)
5082
{
5083 5084 5085 5086
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5087 5088
}

L
Linus Torvalds 已提交
5089
/*
5090 5091
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5092
 */
5093
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5094 5095
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5096
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5097
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5098

5099 5100 5101 5102
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5103 5104
}

5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5120
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5144 5145
}

5146 5147
#endif

5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5218
	struct task_struct *curr = rq->curr;
5219 5220

	sched_clock_tick();
I
Ingo Molnar 已提交
5221 5222

	spin_lock(&rq->lock);
5223
	update_rq_clock(rq);
5224
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5225
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5226
	spin_unlock(&rq->lock);
5227

5228 5229
	perf_counter_task_tick(curr, cpu);

5230
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5231 5232
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5233
#endif
L
Linus Torvalds 已提交
5234 5235
}

5236
notrace unsigned long get_parent_ip(unsigned long addr)
5237 5238 5239 5240 5241 5242 5243 5244
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5245

5246 5247 5248
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5249
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5250
{
5251
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5252 5253 5254
	/*
	 * Underflow?
	 */
5255 5256
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5257
#endif
L
Linus Torvalds 已提交
5258
	preempt_count() += val;
5259
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5260 5261 5262
	/*
	 * Spinlock count overflowing soon?
	 */
5263 5264
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5265 5266 5267
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5268 5269 5270
}
EXPORT_SYMBOL(add_preempt_count);

5271
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5272
{
5273
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5274 5275 5276
	/*
	 * Underflow?
	 */
5277
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5278
		return;
L
Linus Torvalds 已提交
5279 5280 5281
	/*
	 * Is the spinlock portion underflowing?
	 */
5282 5283 5284
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5285
#endif
5286

5287 5288
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5289 5290 5291 5292 5293 5294 5295
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5296
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5297
 */
I
Ingo Molnar 已提交
5298
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5299
{
5300 5301 5302 5303 5304
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5305
	debug_show_held_locks(prev);
5306
	print_modules();
I
Ingo Molnar 已提交
5307 5308
	if (irqs_disabled())
		print_irqtrace_events(prev);
5309 5310 5311 5312 5313

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5314
}
L
Linus Torvalds 已提交
5315

I
Ingo Molnar 已提交
5316 5317 5318 5319 5320
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5321
	/*
I
Ingo Molnar 已提交
5322
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5323 5324 5325
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5326
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5327 5328
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5329 5330
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5331
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5332 5333
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5334 5335
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5336 5337
	}
#endif
I
Ingo Molnar 已提交
5338 5339
}

M
Mike Galbraith 已提交
5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5362 5363 5364 5365
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5366
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5367
{
5368
	const struct sched_class *class;
I
Ingo Molnar 已提交
5369
	struct task_struct *p;
L
Linus Torvalds 已提交
5370 5371

	/*
I
Ingo Molnar 已提交
5372 5373
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5374
	 */
I
Ingo Molnar 已提交
5375
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5376
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5377 5378
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5379 5380
	}

I
Ingo Molnar 已提交
5381 5382
	class = sched_class_highest;
	for ( ; ; ) {
5383
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5393

I
Ingo Molnar 已提交
5394 5395 5396
/*
 * schedule() is the main scheduler function.
 */
5397
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5398 5399
{
	struct task_struct *prev, *next;
5400
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5401
	struct rq *rq;
5402
	int cpu;
I
Ingo Molnar 已提交
5403

5404 5405
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5416

5417
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5418
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5419

5420
	spin_lock_irq(&rq->lock);
5421
	update_rq_clock(rq);
5422
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5423 5424

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5425
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5426
			prev->state = TASK_RUNNING;
5427
		else
5428
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5429
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5430 5431
	}

5432
	pre_schedule(rq, prev);
5433

I
Ingo Molnar 已提交
5434
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5435 5436
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5437
	put_prev_task(rq, prev);
5438
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5439 5440

	if (likely(prev != next)) {
5441
		sched_info_switch(prev, next);
5442
		perf_counter_task_sched_out(prev, next, cpu);
5443

L
Linus Torvalds 已提交
5444 5445 5446 5447
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

5448
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5449 5450 5451 5452 5453 5454
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
5455
	} else
L
Linus Torvalds 已提交
5456
		spin_unlock_irq(&rq->lock);
5457

5458
	post_schedule(rq);
L
Linus Torvalds 已提交
5459

P
Peter Zijlstra 已提交
5460
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5461
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5462

L
Linus Torvalds 已提交
5463
	preempt_enable_no_resched();
5464
	if (need_resched())
L
Linus Torvalds 已提交
5465 5466 5467 5468
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5530 5531
#ifdef CONFIG_PREEMPT
/*
5532
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5533
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5534 5535 5536 5537 5538
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5539

L
Linus Torvalds 已提交
5540 5541
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5542
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5543
	 */
N
Nick Piggin 已提交
5544
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5545 5546
		return;

5547 5548 5549 5550
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5551

5552 5553 5554 5555 5556
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5557
	} while (need_resched());
L
Linus Torvalds 已提交
5558 5559 5560 5561
}
EXPORT_SYMBOL(preempt_schedule);

/*
5562
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567 5568 5569
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5570

5571
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5572 5573
	BUG_ON(ti->preempt_count || !irqs_disabled());

5574 5575 5576 5577 5578 5579
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5580

5581 5582 5583 5584 5585
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5586
	} while (need_resched());
L
Linus Torvalds 已提交
5587 5588 5589 5590
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5591 5592
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5593
{
5594
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5595 5596 5597 5598
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5599 5600
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5601 5602 5603
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5604
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5605 5606
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5607
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5608
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5609
{
5610
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5611

5612
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5613 5614
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5615
		if (curr->func(curr, mode, sync, key) &&
5616
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5617 5618 5619 5620 5621 5622 5623 5624 5625
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5626
 * @key: is directly passed to the wakeup function
5627 5628 5629
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5630
 */
5631
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5632
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5645
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5646 5647 5648 5649
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5650 5651 5652 5653 5654
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5655
/**
5656
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5657 5658 5659
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5660
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5661 5662 5663 5664 5665 5666 5667
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5668 5669 5670
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5671
 */
5672 5673
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5685
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5686 5687
	spin_unlock_irqrestore(&q->lock, flags);
}
5688 5689 5690 5691 5692 5693 5694 5695 5696
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5697 5698
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5699 5700 5701 5702 5703 5704 5705 5706
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5707 5708 5709
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5710
 */
5711
void complete(struct completion *x)
L
Linus Torvalds 已提交
5712 5713 5714 5715 5716
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5717
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5718 5719 5720 5721
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5722 5723 5724 5725 5726
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5727 5728 5729
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5730
 */
5731
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5737
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5738 5739 5740 5741
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5742 5743
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5744 5745 5746 5747 5748 5749 5750
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5751
			if (signal_pending_state(state, current)) {
5752 5753
				timeout = -ERESTARTSYS;
				break;
5754 5755
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5756 5757 5758
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5759
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5760
		__remove_wait_queue(&x->wait, &wait);
5761 5762
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5763 5764
	}
	x->done--;
5765
	return timeout ?: 1;
L
Linus Torvalds 已提交
5766 5767
}

5768 5769
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5770 5771 5772 5773
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5774
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5775
	spin_unlock_irq(&x->wait.lock);
5776 5777
	return timeout;
}
L
Linus Torvalds 已提交
5778

5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5789
void __sched wait_for_completion(struct completion *x)
5790 5791
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5792
}
5793
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5794

5795 5796 5797 5798 5799 5800 5801 5802 5803
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5804
unsigned long __sched
5805
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5806
{
5807
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5808
}
5809
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5810

5811 5812 5813 5814 5815 5816 5817
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5818
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5819
{
5820 5821 5822 5823
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5824
}
5825
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5826

5827 5828 5829 5830 5831 5832 5833 5834
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5835
unsigned long __sched
5836 5837
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5838
{
5839
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5840
}
5841
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5842

5843 5844 5845 5846 5847 5848 5849
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5905 5906
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5907
{
I
Ingo Molnar 已提交
5908 5909 5910 5911
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5912

5913
	__set_current_state(state);
L
Linus Torvalds 已提交
5914

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5929 5930 5931
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5932
long __sched
I
Ingo Molnar 已提交
5933
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5934
{
5935
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5936 5937 5938
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5939
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5940
{
5941
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5942 5943 5944
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5945
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5946
{
5947
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5948 5949 5950
}
EXPORT_SYMBOL(sleep_on_timeout);

5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5963
void rt_mutex_setprio(struct task_struct *p, int prio)
5964 5965
{
	unsigned long flags;
5966
	int oldprio, on_rq, running;
5967
	struct rq *rq;
5968
	const struct sched_class *prev_class = p->sched_class;
5969 5970 5971 5972

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5973
	update_rq_clock(rq);
5974

5975
	oldprio = p->prio;
I
Ingo Molnar 已提交
5976
	on_rq = p->se.on_rq;
5977
	running = task_current(rq, p);
5978
	if (on_rq)
5979
		dequeue_task(rq, p, 0);
5980 5981
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5982 5983 5984 5985 5986 5987

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5988 5989
	p->prio = prio;

5990 5991
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5992
	if (on_rq) {
5993
		enqueue_task(rq, p, 0);
5994 5995

		check_class_changed(rq, p, prev_class, oldprio, running);
5996 5997 5998 5999 6000 6001
	}
	task_rq_unlock(rq, &flags);
}

#endif

6002
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6003
{
I
Ingo Molnar 已提交
6004
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6005
	unsigned long flags;
6006
	struct rq *rq;
L
Linus Torvalds 已提交
6007 6008 6009 6010 6011 6012 6013 6014

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6015
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6016 6017 6018 6019
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6020
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6021
	 */
6022
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6023 6024 6025
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6026
	on_rq = p->se.on_rq;
6027
	if (on_rq)
6028
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6029 6030

	p->static_prio = NICE_TO_PRIO(nice);
6031
	set_load_weight(p);
6032 6033 6034
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6035

I
Ingo Molnar 已提交
6036
	if (on_rq) {
6037
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6038
		/*
6039 6040
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6041
		 */
6042
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6043 6044 6045 6046 6047 6048 6049
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6050 6051 6052 6053 6054
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6055
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6056
{
6057 6058
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6059

M
Matt Mackall 已提交
6060 6061 6062 6063
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6073
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6074
{
6075
	long nice, retval;
L
Linus Torvalds 已提交
6076 6077 6078 6079 6080 6081

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6082 6083
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6084 6085 6086
	if (increment > 40)
		increment = 40;

6087
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6088 6089 6090 6091 6092
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6093 6094 6095
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6114
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6115 6116 6117 6118 6119 6120 6121 6122
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6123
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6124 6125 6126
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6127
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6142
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6143 6144 6145 6146 6147 6148 6149 6150
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6151
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6152
{
6153
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6154 6155 6156
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6157 6158
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6159
{
I
Ingo Molnar 已提交
6160
	BUG_ON(p->se.on_rq);
6161

L
Linus Torvalds 已提交
6162
	p->policy = policy;
I
Ingo Molnar 已提交
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6175
	p->rt_priority = prio;
6176 6177 6178
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6179
	set_load_weight(p);
L
Linus Torvalds 已提交
6180 6181
}

6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6198 6199
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6200
{
6201
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6202
	unsigned long flags;
6203
	const struct sched_class *prev_class = p->sched_class;
6204
	struct rq *rq;
6205
	int reset_on_fork;
L
Linus Torvalds 已提交
6206

6207 6208
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6209 6210
recheck:
	/* double check policy once rq lock held */
6211 6212
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6213
		policy = oldpolicy = p->policy;
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6224 6225
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6226 6227
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6228 6229
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6230
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6231
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6232
		return -EINVAL;
6233
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6234 6235
		return -EINVAL;

6236 6237 6238
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6239
	if (user && !capable(CAP_SYS_NICE)) {
6240
		if (rt_policy(policy)) {
6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6257 6258 6259 6260 6261 6262
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6263

6264
		/* can't change other user's priorities */
6265
		if (!check_same_owner(p))
6266
			return -EPERM;
6267 6268 6269 6270

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6271
	}
L
Linus Torvalds 已提交
6272

6273
	if (user) {
6274
#ifdef CONFIG_RT_GROUP_SCHED
6275 6276 6277 6278
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6279 6280
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6281
			return -EPERM;
6282 6283
#endif

6284 6285 6286 6287 6288
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6289 6290 6291 6292 6293
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6294 6295 6296 6297
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6298
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6299 6300 6301
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6302 6303
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6304 6305
		goto recheck;
	}
I
Ingo Molnar 已提交
6306
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6307
	on_rq = p->se.on_rq;
6308
	running = task_current(rq, p);
6309
	if (on_rq)
6310
		deactivate_task(rq, p, 0);
6311 6312
	if (running)
		p->sched_class->put_prev_task(rq, p);
6313

6314 6315
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6316
	oldprio = p->prio;
I
Ingo Molnar 已提交
6317
	__setscheduler(rq, p, policy, param->sched_priority);
6318

6319 6320
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6321 6322
	if (on_rq) {
		activate_task(rq, p, 0);
6323 6324

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6325
	}
6326 6327 6328
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6329 6330
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6331 6332
	return 0;
}
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6347 6348
EXPORT_SYMBOL_GPL(sched_setscheduler);

6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6366 6367
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6368 6369 6370
{
	struct sched_param lparam;
	struct task_struct *p;
6371
	int retval;
L
Linus Torvalds 已提交
6372 6373 6374 6375 6376

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6377 6378 6379

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6380
	p = find_process_by_pid(pid);
6381 6382 6383
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6384

L
Linus Torvalds 已提交
6385 6386 6387 6388 6389 6390 6391 6392 6393
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6394 6395
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6396
{
6397 6398 6399 6400
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6401 6402 6403 6404 6405 6406 6407 6408
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6409
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6410 6411 6412 6413 6414 6415 6416 6417
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6418
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6419
{
6420
	struct task_struct *p;
6421
	int retval;
L
Linus Torvalds 已提交
6422 6423

	if (pid < 0)
6424
		return -EINVAL;
L
Linus Torvalds 已提交
6425 6426 6427 6428 6429 6430 6431

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6432 6433
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6434 6435 6436 6437 6438 6439
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6440
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6441 6442 6443
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6444
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6445 6446
{
	struct sched_param lp;
6447
	struct task_struct *p;
6448
	int retval;
L
Linus Torvalds 已提交
6449 6450

	if (!param || pid < 0)
6451
		return -EINVAL;
L
Linus Torvalds 已提交
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6478
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6479
{
6480
	cpumask_var_t cpus_allowed, new_mask;
6481 6482
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6483

6484
	get_online_cpus();
L
Linus Torvalds 已提交
6485 6486 6487 6488 6489
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6490
		put_online_cpus();
L
Linus Torvalds 已提交
6491 6492 6493 6494 6495
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6496
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6497 6498 6499 6500 6501
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6502 6503 6504 6505 6506 6507 6508 6509
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6510
	retval = -EPERM;
6511
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6512 6513
		goto out_unlock;

6514 6515 6516 6517
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6518 6519
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6520
 again:
6521
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6522

P
Paul Menage 已提交
6523
	if (!retval) {
6524 6525
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6526 6527 6528 6529 6530
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6531
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6532 6533 6534
			goto again;
		}
	}
L
Linus Torvalds 已提交
6535
out_unlock:
6536 6537 6538 6539
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6540
	put_task_struct(p);
6541
	put_online_cpus();
L
Linus Torvalds 已提交
6542 6543 6544 6545
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6546
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6547
{
6548 6549 6550 6551 6552
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6553 6554 6555 6556 6557 6558 6559 6560 6561
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6562 6563
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6564
{
6565
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6566 6567
	int retval;

6568 6569
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6570

6571 6572 6573 6574 6575
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6576 6577
}

6578
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6579
{
6580
	struct task_struct *p;
L
Linus Torvalds 已提交
6581 6582
	int retval;

6583
	get_online_cpus();
L
Linus Torvalds 已提交
6584 6585 6586 6587 6588 6589 6590
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6591 6592 6593 6594
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6595
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6596 6597 6598

out_unlock:
	read_unlock(&tasklist_lock);
6599
	put_online_cpus();
L
Linus Torvalds 已提交
6600

6601
	return retval;
L
Linus Torvalds 已提交
6602 6603 6604 6605 6606 6607 6608 6609
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6610 6611
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6612 6613
{
	int ret;
6614
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6615

6616
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6617 6618
		return -EINVAL;

6619 6620
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6621

6622 6623 6624 6625 6626 6627 6628 6629
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6630

6631
	return ret;
L
Linus Torvalds 已提交
6632 6633 6634 6635 6636
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6637 6638
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6639
 */
6640
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6641
{
6642
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6643

6644
	schedstat_inc(rq, yld_count);
6645
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6646 6647 6648 6649 6650 6651

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6652
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657 6658 6659 6660
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6661 6662 6663 6664 6665
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6666
static void __cond_resched(void)
L
Linus Torvalds 已提交
6667
{
6668 6669 6670
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6671 6672
}

6673
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6674
{
P
Peter Zijlstra 已提交
6675
	if (should_resched()) {
L
Linus Torvalds 已提交
6676 6677 6678 6679 6680
		__cond_resched();
		return 1;
	}
	return 0;
}
6681
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6682 6683

/*
6684
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6685 6686
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6687
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6688 6689 6690
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6691
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6692
{
P
Peter Zijlstra 已提交
6693
	int resched = should_resched();
J
Jan Kara 已提交
6694 6695
	int ret = 0;

N
Nick Piggin 已提交
6696
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6697
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6698
		if (resched)
N
Nick Piggin 已提交
6699 6700 6701
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6702
		ret = 1;
L
Linus Torvalds 已提交
6703 6704
		spin_lock(lock);
	}
J
Jan Kara 已提交
6705
	return ret;
L
Linus Torvalds 已提交
6706
}
6707
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6708

6709
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6710 6711 6712
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6713
	if (should_resched()) {
6714
		local_bh_enable();
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719 6720
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6721
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6722 6723 6724 6725

/**
 * yield - yield the current processor to other threads.
 *
6726
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6737
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6738 6739 6740 6741 6742 6743 6744
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6745
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6746

6747
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6748 6749 6750
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6751
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6752 6753 6754 6755 6756
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6757
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6758 6759
	long ret;

6760
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6761 6762 6763
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6764
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6775
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6776 6777 6778 6779 6780 6781 6782 6783 6784
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6785
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6786
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6800
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6801 6802 6803 6804 6805 6806 6807 6808 6809
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6810
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6811
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6825
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6826
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6827
{
6828
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6829
	unsigned int time_slice;
6830
	int retval;
L
Linus Torvalds 已提交
6831 6832 6833
	struct timespec t;

	if (pid < 0)
6834
		return -EINVAL;
L
Linus Torvalds 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6846 6847 6848 6849 6850 6851
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6852
		time_slice = DEF_TIMESLICE;
6853
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6854 6855 6856 6857 6858
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6859 6860
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6861 6862
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6863
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6864
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6865 6866
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6867

L
Linus Torvalds 已提交
6868 6869 6870 6871 6872
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6873
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6874

6875
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6876 6877
{
	unsigned long free = 0;
6878
	unsigned state;
L
Linus Torvalds 已提交
6879 6880

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6881
	printk(KERN_INFO "%-13.13s %c", p->comm,
6882
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6883
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6884
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6885
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6886
	else
I
Ingo Molnar 已提交
6887
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6888 6889
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6890
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6891
	else
I
Ingo Molnar 已提交
6892
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6893 6894
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6895
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6896
#endif
6897 6898 6899
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6900

6901
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6902 6903
}

I
Ingo Molnar 已提交
6904
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6905
{
6906
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6907

6908 6909 6910
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6911
#else
6912 6913
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6914 6915 6916 6917 6918 6919 6920 6921
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6922
		if (!state_filter || (p->state & state_filter))
6923
			sched_show_task(p);
L
Linus Torvalds 已提交
6924 6925
	} while_each_thread(g, p);

6926 6927
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6928 6929 6930
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6931
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6932 6933 6934 6935 6936
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6937 6938
}

I
Ingo Molnar 已提交
6939 6940
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6941
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6942 6943
}

6944 6945 6946 6947 6948 6949 6950 6951
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6952
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6953
{
6954
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6955 6956
	unsigned long flags;

6957 6958
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6959 6960 6961
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6962
	idle->prio = idle->normal_prio = MAX_PRIO;
6963
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6964
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6965 6966

	rq->curr = rq->idle = idle;
6967 6968 6969
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6970 6971 6972
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6973 6974 6975
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6976
	task_thread_info(idle)->preempt_count = 0;
6977
#endif
I
Ingo Molnar 已提交
6978 6979 6980 6981
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6982
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6983 6984 6985 6986 6987 6988 6989
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6990
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6991
 */
6992
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6993

I
Ingo Molnar 已提交
6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
7017 7018

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
7019 7020
}

L
Linus Torvalds 已提交
7021 7022 7023 7024
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7025
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7044
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7045 7046
 * call is not atomic; no spinlocks may be held.
 */
7047
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7048
{
7049
	struct migration_req req;
L
Linus Torvalds 已提交
7050
	unsigned long flags;
7051
	struct rq *rq;
7052
	int ret = 0;
L
Linus Torvalds 已提交
7053 7054

	rq = task_rq_lock(p, &flags);
7055
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
7056 7057 7058 7059
		ret = -EINVAL;
		goto out;
	}

7060
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7061
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7062 7063 7064 7065
		ret = -EINVAL;
		goto out;
	}

7066
	if (p->sched_class->set_cpus_allowed)
7067
		p->sched_class->set_cpus_allowed(p, new_mask);
7068
	else {
7069 7070
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7071 7072
	}

L
Linus Torvalds 已提交
7073
	/* Can the task run on the task's current CPU? If so, we're done */
7074
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7075 7076
		goto out;

R
Rusty Russell 已提交
7077
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7078
		/* Need help from migration thread: drop lock and wait. */
7079 7080 7081
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7082 7083
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7084
		put_task_struct(mt);
L
Linus Torvalds 已提交
7085 7086 7087 7088 7089 7090
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7091

L
Linus Torvalds 已提交
7092 7093
	return ret;
}
7094
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7095 7096

/*
I
Ingo Molnar 已提交
7097
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7098 7099 7100 7101 7102 7103
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7104 7105
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7106
 */
7107
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7108
{
7109
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7110
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7111

7112
	if (unlikely(!cpu_active(dest_cpu)))
7113
		return ret;
L
Linus Torvalds 已提交
7114 7115 7116 7117 7118 7119 7120

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7121
		goto done;
L
Linus Torvalds 已提交
7122
	/* Affinity changed (again). */
7123
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7124
		goto fail;
L
Linus Torvalds 已提交
7125

I
Ingo Molnar 已提交
7126
	on_rq = p->se.on_rq;
7127
	if (on_rq)
7128
		deactivate_task(rq_src, p, 0);
7129

L
Linus Torvalds 已提交
7130
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7131 7132
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7133
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7134
	}
L
Linus Torvalds 已提交
7135
done:
7136
	ret = 1;
L
Linus Torvalds 已提交
7137
fail:
L
Linus Torvalds 已提交
7138
	double_rq_unlock(rq_src, rq_dest);
7139
	return ret;
L
Linus Torvalds 已提交
7140 7141 7142 7143 7144 7145 7146
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7147
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7148 7149
{
	int cpu = (long)data;
7150
	struct rq *rq;
L
Linus Torvalds 已提交
7151 7152 7153 7154 7155 7156

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7157
		struct migration_req *req;
L
Linus Torvalds 已提交
7158 7159 7160 7161 7162 7163
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7164
			break;
L
Linus Torvalds 已提交
7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7180
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7181 7182
		list_del_init(head->next);

N
Nick Piggin 已提交
7183 7184 7185
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7186 7187 7188 7189 7190 7191 7192 7193 7194

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7206
/*
7207
 * Figure out where task on dead CPU should go, use force if necessary.
7208
 */
7209
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7210
{
7211
	int dest_cpu;
7212
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7229

7230 7231 7232 7233 7234 7235 7236 7237 7238
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7239
		}
7240 7241 7242 7243 7244 7245
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7246 7247 7248 7249 7250 7251 7252 7253 7254
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7255
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7256
{
R
Rusty Russell 已提交
7257
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7271
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7272

7273
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7274

7275 7276
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7277 7278
			continue;

7279 7280 7281
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7282

7283
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7284 7285
}

I
Ingo Molnar 已提交
7286 7287
/*
 * Schedules idle task to be the next runnable task on current CPU.
7288 7289
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7290 7291 7292
 */
void sched_idle_next(void)
{
7293
	int this_cpu = smp_processor_id();
7294
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7295 7296 7297 7298
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7299
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7300

7301 7302 7303
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7304 7305 7306
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7307
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7308

7309 7310
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7311 7312 7313 7314

	spin_unlock_irqrestore(&rq->lock, flags);
}

7315 7316
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7330
/* called under rq->lock with disabled interrupts */
7331
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7332
{
7333
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7334 7335

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7336
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7337 7338

	/* Cannot have done final schedule yet: would have vanished. */
7339
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7340

7341
	get_task_struct(p);
L
Linus Torvalds 已提交
7342 7343 7344

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7345
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7346 7347
	 * fine.
	 */
7348
	spin_unlock_irq(&rq->lock);
7349
	move_task_off_dead_cpu(dead_cpu, p);
7350
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7351

7352
	put_task_struct(p);
L
Linus Torvalds 已提交
7353 7354 7355 7356 7357
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7358
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7359
	struct task_struct *next;
7360

I
Ingo Molnar 已提交
7361 7362 7363
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7364
		update_rq_clock(rq);
7365
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7366 7367
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7368
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7369
		migrate_dead(dead_cpu, next);
7370

L
Linus Torvalds 已提交
7371 7372
	}
}
7373 7374 7375 7376 7377 7378 7379

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7380
	rq->calc_load_active = 0;
7381
}
L
Linus Torvalds 已提交
7382 7383
#endif /* CONFIG_HOTPLUG_CPU */

7384 7385 7386
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7387 7388
	{
		.procname	= "sched_domain",
7389
		.mode		= 0555,
7390
	},
I
Ingo Molnar 已提交
7391
	{0, },
7392 7393 7394
};

static struct ctl_table sd_ctl_root[] = {
7395
	{
7396
		.ctl_name	= CTL_KERN,
7397
		.procname	= "kernel",
7398
		.mode		= 0555,
7399 7400
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7401
	{0, },
7402 7403 7404 7405 7406
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7407
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7408 7409 7410 7411

	return entry;
}

7412 7413
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7414
	struct ctl_table *entry;
7415

7416 7417 7418
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7419
	 * will always be set. In the lowest directory the names are
7420 7421 7422
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7423 7424
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7425 7426 7427
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7428 7429 7430 7431 7432

	kfree(*tablep);
	*tablep = NULL;
}

7433
static void
7434
set_table_entry(struct ctl_table *entry,
7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7448
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7449

7450 7451 7452
	if (table == NULL)
		return NULL;

7453
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7454
		sizeof(long), 0644, proc_doulongvec_minmax);
7455
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7456
		sizeof(long), 0644, proc_doulongvec_minmax);
7457
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7458
		sizeof(int), 0644, proc_dointvec_minmax);
7459
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7460
		sizeof(int), 0644, proc_dointvec_minmax);
7461
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7462
		sizeof(int), 0644, proc_dointvec_minmax);
7463
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7464
		sizeof(int), 0644, proc_dointvec_minmax);
7465
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7466
		sizeof(int), 0644, proc_dointvec_minmax);
7467
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7468
		sizeof(int), 0644, proc_dointvec_minmax);
7469
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7470
		sizeof(int), 0644, proc_dointvec_minmax);
7471
	set_table_entry(&table[9], "cache_nice_tries",
7472 7473
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7474
	set_table_entry(&table[10], "flags", &sd->flags,
7475
		sizeof(int), 0644, proc_dointvec_minmax);
7476 7477 7478
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7479 7480 7481 7482

	return table;
}

7483
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7484 7485 7486 7487 7488 7489 7490 7491 7492
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7493 7494
	if (table == NULL)
		return NULL;
7495 7496 7497 7498 7499

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7500
		entry->mode = 0555;
7501 7502 7503 7504 7505 7506 7507 7508
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7509
static void register_sched_domain_sysctl(void)
7510 7511 7512 7513 7514
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7515 7516 7517
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7518 7519 7520
	if (entry == NULL)
		return;

7521
	for_each_online_cpu(i) {
7522 7523
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7524
		entry->mode = 0555;
7525
		entry->child = sd_alloc_ctl_cpu_table(i);
7526
		entry++;
7527
	}
7528 7529

	WARN_ON(sd_sysctl_header);
7530 7531
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7532

7533
/* may be called multiple times per register */
7534 7535
static void unregister_sched_domain_sysctl(void)
{
7536 7537
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7538
	sd_sysctl_header = NULL;
7539 7540
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7541
}
7542
#else
7543 7544 7545 7546
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7547 7548 7549 7550
{
}
#endif

7551 7552 7553 7554 7555
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7556
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7576
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7577 7578 7579 7580
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7581 7582 7583 7584
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7585 7586
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7587 7588
{
	struct task_struct *p;
7589
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7590
	unsigned long flags;
7591
	struct rq *rq;
L
Linus Torvalds 已提交
7592 7593

	switch (action) {
7594

L
Linus Torvalds 已提交
7595
	case CPU_UP_PREPARE:
7596
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7597
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7598 7599 7600 7601 7602
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7603
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7604
		task_rq_unlock(rq, &flags);
7605
		get_task_struct(p);
L
Linus Torvalds 已提交
7606
		cpu_rq(cpu)->migration_thread = p;
7607
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7608
		break;
7609

L
Linus Torvalds 已提交
7610
	case CPU_ONLINE:
7611
	case CPU_ONLINE_FROZEN:
7612
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7613
		wake_up_process(cpu_rq(cpu)->migration_thread);
7614 7615 7616 7617 7618

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7619
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7620 7621

			set_rq_online(rq);
7622 7623
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7624
		break;
7625

L
Linus Torvalds 已提交
7626 7627
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7628
	case CPU_UP_CANCELED_FROZEN:
7629 7630
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7631
		/* Unbind it from offline cpu so it can run. Fall thru. */
7632
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7633
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7634
		kthread_stop(cpu_rq(cpu)->migration_thread);
7635
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7636 7637
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7638

L
Linus Torvalds 已提交
7639
	case CPU_DEAD:
7640
	case CPU_DEAD_FROZEN:
7641
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7642 7643 7644
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7645
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7646 7647
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7648
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7649
		update_rq_clock(rq);
7650
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7651
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7652 7653
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7654
		migrate_dead_tasks(cpu);
7655
		spin_unlock_irq(&rq->lock);
7656
		cpuset_unlock();
L
Linus Torvalds 已提交
7657 7658
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7659
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7660 7661 7662 7663 7664
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7665 7666
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7667 7668
			struct migration_req *req;

L
Linus Torvalds 已提交
7669
			req = list_entry(rq->migration_queue.next,
7670
					 struct migration_req, list);
L
Linus Torvalds 已提交
7671
			list_del_init(&req->list);
B
Brian King 已提交
7672
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7673
			complete(&req->done);
B
Brian King 已提交
7674
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7675 7676 7677
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7678

7679 7680
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7681 7682 7683 7684
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7685
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7686
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7687 7688 7689
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7690 7691 7692 7693 7694
#endif
	}
	return NOTIFY_OK;
}

7695 7696 7697 7698
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7699
 */
7700
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7701 7702 7703 7704
	.notifier_call = migration_call,
	.priority = 10
};

7705
static int __init migration_init(void)
L
Linus Torvalds 已提交
7706 7707
{
	void *cpu = (void *)(long)smp_processor_id();
7708
	int err;
7709 7710

	/* Start one for the boot CPU: */
7711 7712
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7713 7714
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7715

7716
	return 0;
L
Linus Torvalds 已提交
7717
}
7718
early_initcall(migration_init);
L
Linus Torvalds 已提交
7719 7720 7721
#endif

#ifdef CONFIG_SMP
7722

7723
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7724

7725
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7726
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7727
{
I
Ingo Molnar 已提交
7728
	struct sched_group *group = sd->groups;
7729
	char str[256];
L
Linus Torvalds 已提交
7730

R
Rusty Russell 已提交
7731
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7732
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7733 7734 7735 7736 7737 7738 7739 7740 7741

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7742 7743
	}

7744
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7745

7746
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7747 7748 7749
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7750
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7751 7752 7753
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7754

I
Ingo Molnar 已提交
7755
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7756
	do {
I
Ingo Molnar 已提交
7757 7758 7759
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7760 7761 7762
			break;
		}

I
Ingo Molnar 已提交
7763 7764 7765 7766 7767 7768
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7769

7770
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7771 7772 7773 7774
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7775

7776
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7777 7778 7779 7780
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7781

7782
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7783

R
Rusty Russell 已提交
7784
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7785 7786 7787 7788 7789 7790

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7791

I
Ingo Molnar 已提交
7792 7793 7794
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7795

7796
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7797
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7798

7799 7800
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7801 7802 7803 7804
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7805

I
Ingo Molnar 已提交
7806 7807
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7808
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7809
	int level = 0;
L
Linus Torvalds 已提交
7810

I
Ingo Molnar 已提交
7811 7812 7813 7814
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7815

I
Ingo Molnar 已提交
7816 7817
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7818
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7819 7820 7821 7822
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7823
	for (;;) {
7824
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7825
			break;
L
Linus Torvalds 已提交
7826 7827
		level++;
		sd = sd->parent;
7828
		if (!sd)
I
Ingo Molnar 已提交
7829 7830
			break;
	}
7831
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7832
}
7833
#else /* !CONFIG_SCHED_DEBUG */
7834
# define sched_domain_debug(sd, cpu) do { } while (0)
7835
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7836

7837
static int sd_degenerate(struct sched_domain *sd)
7838
{
7839
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7840 7841 7842 7843 7844 7845
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7846 7847 7848
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7862 7863
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7864 7865 7866 7867 7868 7869
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7870
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7882 7883 7884
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7885 7886
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7887 7888 7889 7890 7891 7892 7893
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7894 7895
static void free_rootdomain(struct root_domain *rd)
{
7896 7897
	cpupri_cleanup(&rd->cpupri);

7898 7899 7900 7901 7902 7903
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7904 7905
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7906
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7907 7908 7909 7910 7911
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7912
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7913

7914
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7915
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7916

7917
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7918

I
Ingo Molnar 已提交
7919 7920 7921 7922 7923 7924 7925
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7926 7927 7928 7929 7930
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7931
	cpumask_set_cpu(rq->cpu, rd->span);
7932
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7933
		set_rq_online(rq);
G
Gregory Haskins 已提交
7934 7935

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7936 7937 7938

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7939 7940
}

L
Li Zefan 已提交
7941
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7942
{
7943 7944
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7945 7946
	memset(rd, 0, sizeof(*rd));

7947 7948
	if (bootmem)
		gfp = GFP_NOWAIT;
7949

7950
	if (!alloc_cpumask_var(&rd->span, gfp))
7951
		goto out;
7952
	if (!alloc_cpumask_var(&rd->online, gfp))
7953
		goto free_span;
7954
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7955
		goto free_online;
7956

P
Pekka Enberg 已提交
7957
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7958
		goto free_rto_mask;
7959
	return 0;
7960

7961 7962
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7963 7964 7965 7966
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7967
out:
7968
	return -ENOMEM;
G
Gregory Haskins 已提交
7969 7970 7971 7972
}

static void init_defrootdomain(void)
{
7973 7974
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7975 7976 7977
	atomic_set(&def_root_domain.refcount, 1);
}

7978
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7979 7980 7981 7982 7983 7984 7985
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7986 7987 7988 7989
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7990 7991 7992 7993

	return rd;
}

L
Linus Torvalds 已提交
7994
/*
I
Ingo Molnar 已提交
7995
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7996 7997
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7998 7999
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8000
{
8001
	struct rq *rq = cpu_rq(cpu);
8002 8003 8004
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8005
	for (tmp = sd; tmp; ) {
8006 8007 8008
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8009

8010
		if (sd_parent_degenerate(tmp, parent)) {
8011
			tmp->parent = parent->parent;
8012 8013
			if (parent->parent)
				parent->parent->child = tmp;
8014 8015
		} else
			tmp = tmp->parent;
8016 8017
	}

8018
	if (sd && sd_degenerate(sd)) {
8019
		sd = sd->parent;
8020 8021 8022
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8023 8024 8025

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8026
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8027
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8028 8029 8030
}

/* cpus with isolated domains */
8031
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8032 8033 8034 8035

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8036
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8037 8038 8039
	return 1;
}

I
Ingo Molnar 已提交
8040
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8041 8042

/*
8043 8044
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8045 8046
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8047 8048 8049 8050 8051
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8052
static void
8053 8054 8055
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8056
					struct sched_group **sg,
8057 8058
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8059 8060 8061 8062
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8063
	cpumask_clear(covered);
8064

8065
	for_each_cpu(i, span) {
8066
		struct sched_group *sg;
8067
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8068 8069
		int j;

8070
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8071 8072
			continue;

8073
		cpumask_clear(sched_group_cpus(sg));
8074
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
8075

8076
		for_each_cpu(j, span) {
8077
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8078 8079
				continue;

8080
			cpumask_set_cpu(j, covered);
8081
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8092
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8093

8094
#ifdef CONFIG_NUMA
8095

8096 8097 8098 8099 8100
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8101
 * Find the next node to include in a given scheduling domain. Simply
8102 8103 8104 8105
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8106
static int find_next_best_node(int node, nodemask_t *used_nodes)
8107 8108 8109 8110 8111
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8112
	for (i = 0; i < nr_node_ids; i++) {
8113
		/* Start at @node */
8114
		n = (node + i) % nr_node_ids;
8115 8116 8117 8118 8119

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8120
		if (node_isset(n, *used_nodes))
8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8132
	node_set(best_node, *used_nodes);
8133 8134 8135 8136 8137 8138
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8139
 * @span: resulting cpumask
8140
 *
I
Ingo Molnar 已提交
8141
 * Given a node, construct a good cpumask for its sched_domain to span. It
8142 8143 8144
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8145
static void sched_domain_node_span(int node, struct cpumask *span)
8146
{
8147
	nodemask_t used_nodes;
8148
	int i;
8149

8150
	cpumask_clear(span);
8151
	nodes_clear(used_nodes);
8152

8153
	cpumask_or(span, span, cpumask_of_node(node));
8154
	node_set(node, used_nodes);
8155 8156

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8157
		int next_node = find_next_best_node(node, &used_nodes);
8158

8159
		cpumask_or(span, span, cpumask_of_node(next_node));
8160 8161
	}
}
8162
#endif /* CONFIG_NUMA */
8163

8164
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8165

8166 8167
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8168 8169 8170
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8182
/*
8183
 * SMT sched-domains:
8184
 */
L
Linus Torvalds 已提交
8185
#ifdef CONFIG_SCHED_SMT
8186 8187
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8188

I
Ingo Molnar 已提交
8189
static int
8190 8191
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8192
{
8193
	if (sg)
8194
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8195 8196
	return cpu;
}
8197
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8198

8199 8200 8201
/*
 * multi-core sched-domains:
 */
8202
#ifdef CONFIG_SCHED_MC
8203 8204
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8205
#endif /* CONFIG_SCHED_MC */
8206 8207

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8208
static int
8209 8210
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8211
{
8212
	int group;
8213

8214
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8215
	group = cpumask_first(mask);
8216
	if (sg)
8217
		*sg = &per_cpu(sched_group_core, group).sg;
8218
	return group;
8219 8220
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8221
static int
8222 8223
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8224
{
8225
	if (sg)
8226
		*sg = &per_cpu(sched_group_core, cpu).sg;
8227 8228 8229 8230
	return cpu;
}
#endif

8231 8232
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8233

I
Ingo Molnar 已提交
8234
static int
8235 8236
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8237
{
8238
	int group;
8239
#ifdef CONFIG_SCHED_MC
8240
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8241
	group = cpumask_first(mask);
8242
#elif defined(CONFIG_SCHED_SMT)
8243
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8244
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8245
#else
8246
	group = cpu;
L
Linus Torvalds 已提交
8247
#endif
8248
	if (sg)
8249
		*sg = &per_cpu(sched_group_phys, group).sg;
8250
	return group;
L
Linus Torvalds 已提交
8251 8252 8253 8254
}

#ifdef CONFIG_NUMA
/*
8255 8256 8257
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8258
 */
8259
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8260
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8261

8262
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8263
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8264

8265 8266 8267
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8268
{
8269 8270
	int group;

8271
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8272
	group = cpumask_first(nodemask);
8273 8274

	if (sg)
8275
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8276
	return group;
L
Linus Torvalds 已提交
8277
}
8278

8279 8280 8281 8282 8283 8284 8285
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8286
	do {
8287
		for_each_cpu(j, sched_group_cpus(sg)) {
8288
			struct sched_domain *sd;
8289

8290
			sd = &per_cpu(phys_domains, j).sd;
8291
			if (j != group_first_cpu(sd->groups)) {
8292 8293 8294 8295 8296 8297
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8298

8299 8300 8301 8302
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8303
}
8304
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8305

8306
#ifdef CONFIG_NUMA
8307
/* Free memory allocated for various sched_group structures */
8308 8309
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8310
{
8311
	int cpu, i;
8312

8313
	for_each_cpu(cpu, cpu_map) {
8314 8315 8316 8317 8318 8319
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8320
		for (i = 0; i < nr_node_ids; i++) {
8321 8322
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8323
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8324
			if (cpumask_empty(nodemask))
8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8341
#else /* !CONFIG_NUMA */
8342 8343
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8344 8345
{
}
8346
#endif /* CONFIG_NUMA */
8347

8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8369
	if (cpu != group_first_cpu(sd->groups))
8370 8371 8372 8373
		return;

	child = sd->child;

8374 8375
	sd->groups->__cpu_power = 0;

8376 8377 8378 8379 8380 8381 8382 8383 8384 8385
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8386
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8387 8388 8389 8390 8391 8392 8393 8394
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8395
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8396 8397 8398 8399
		group = group->next;
	} while (group != child->groups);
}

8400 8401 8402 8403 8404
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8405 8406 8407 8408 8409 8410
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8411
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8412

8413 8414 8415 8416 8417
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8418
	sd->level = SD_LV_##type;				\
8419
	SD_INIT_NAME(sd, type);					\
8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8434 8435 8436 8437
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8438 8439 8440 8441 8442 8443
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8469
/*
8470 8471
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8472
 */
8473
static int __build_sched_domains(const struct cpumask *cpu_map,
8474
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8475
{
8476
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8477
	struct root_domain *rd;
8478 8479
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8480
#ifdef CONFIG_NUMA
8481
	cpumask_var_t domainspan, covered, notcovered;
8482
	struct sched_group **sched_group_nodes = NULL;
8483
	int sd_allnodes = 0;
8484

8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8505 8506 8507
	/*
	 * Allocate the per-node list of sched groups
	 */
8508
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8509
				    GFP_KERNEL);
8510 8511
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8512
		goto free_tmpmask;
8513 8514
	}
#endif
L
Linus Torvalds 已提交
8515

8516
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8517 8518
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8519
		goto free_sched_groups;
G
Gregory Haskins 已提交
8520 8521
	}

8522
#ifdef CONFIG_NUMA
8523
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8524 8525
#endif

L
Linus Torvalds 已提交
8526
	/*
8527
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8528
	 */
8529
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8530 8531
		struct sched_domain *sd = NULL, *p;

8532
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8533 8534

#ifdef CONFIG_NUMA
8535 8536
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8537
			sd = &per_cpu(allnodes_domains, i).sd;
8538
			SD_INIT(sd, ALLNODES);
8539
			set_domain_attribute(sd, attr);
8540
			cpumask_copy(sched_domain_span(sd), cpu_map);
8541
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8542
			p = sd;
8543
			sd_allnodes = 1;
8544 8545 8546
		} else
			p = NULL;

8547
		sd = &per_cpu(node_domains, i).sd;
8548
		SD_INIT(sd, NODE);
8549
		set_domain_attribute(sd, attr);
8550
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8551
		sd->parent = p;
8552 8553
		if (p)
			p->child = sd;
8554 8555
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8556 8557 8558
#endif

		p = sd;
8559
		sd = &per_cpu(phys_domains, i).sd;
8560
		SD_INIT(sd, CPU);
8561
		set_domain_attribute(sd, attr);
8562
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8563
		sd->parent = p;
8564 8565
		if (p)
			p->child = sd;
8566
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8567

8568 8569
#ifdef CONFIG_SCHED_MC
		p = sd;
8570
		sd = &per_cpu(core_domains, i).sd;
8571
		SD_INIT(sd, MC);
8572
		set_domain_attribute(sd, attr);
8573 8574
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8575
		sd->parent = p;
8576
		p->child = sd;
8577
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8578 8579
#endif

L
Linus Torvalds 已提交
8580 8581
#ifdef CONFIG_SCHED_SMT
		p = sd;
8582
		sd = &per_cpu(cpu_domains, i).sd;
8583
		SD_INIT(sd, SIBLING);
8584
		set_domain_attribute(sd, attr);
8585
		cpumask_and(sched_domain_span(sd),
8586
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8587
		sd->parent = p;
8588
		p->child = sd;
8589
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8590 8591 8592 8593 8594
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8595
	for_each_cpu(i, cpu_map) {
8596
		cpumask_and(this_sibling_map,
8597
			    topology_thread_cpumask(i), cpu_map);
8598
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8599 8600
			continue;

I
Ingo Molnar 已提交
8601
		init_sched_build_groups(this_sibling_map, cpu_map,
8602 8603
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8604 8605 8606
	}
#endif

8607 8608
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8609
	for_each_cpu(i, cpu_map) {
8610
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8611
		if (i != cpumask_first(this_core_map))
8612
			continue;
8613

I
Ingo Molnar 已提交
8614
		init_sched_build_groups(this_core_map, cpu_map,
8615 8616
					&cpu_to_core_group,
					send_covered, tmpmask);
8617 8618 8619
	}
#endif

L
Linus Torvalds 已提交
8620
	/* Set up physical groups */
8621
	for (i = 0; i < nr_node_ids; i++) {
8622
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8623
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8624 8625
			continue;

8626 8627 8628
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8629 8630 8631 8632
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8633 8634 8635 8636 8637
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8638

8639
	for (i = 0; i < nr_node_ids; i++) {
8640 8641 8642 8643
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8644
		cpumask_clear(covered);
8645
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8646
		if (cpumask_empty(nodemask)) {
8647
			sched_group_nodes[i] = NULL;
8648
			continue;
8649
		}
8650

8651
		sched_domain_node_span(i, domainspan);
8652
		cpumask_and(domainspan, domainspan, cpu_map);
8653

8654 8655
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8656 8657 8658 8659 8660
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8661
		sched_group_nodes[i] = sg;
8662
		for_each_cpu(j, nodemask) {
8663
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8664

8665
			sd = &per_cpu(node_domains, j).sd;
8666 8667
			sd->groups = sg;
		}
8668
		sg->__cpu_power = 0;
8669
		cpumask_copy(sched_group_cpus(sg), nodemask);
8670
		sg->next = sg;
8671
		cpumask_or(covered, covered, nodemask);
8672 8673
		prev = sg;

8674 8675
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8676

8677 8678 8679 8680
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8681 8682
				break;

8683
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8684
			if (cpumask_empty(tmpmask))
8685 8686
				continue;

8687 8688
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8689
					  GFP_KERNEL, i);
8690 8691 8692
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8693
				goto error;
8694
			}
8695
			sg->__cpu_power = 0;
8696
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8697
			sg->next = prev->next;
8698
			cpumask_or(covered, covered, tmpmask);
8699 8700 8701 8702
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8703 8704 8705
#endif

	/* Calculate CPU power for physical packages and nodes */
8706
#ifdef CONFIG_SCHED_SMT
8707
	for_each_cpu(i, cpu_map) {
8708
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8709

8710
		init_sched_groups_power(i, sd);
8711
	}
L
Linus Torvalds 已提交
8712
#endif
8713
#ifdef CONFIG_SCHED_MC
8714
	for_each_cpu(i, cpu_map) {
8715
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8716

8717
		init_sched_groups_power(i, sd);
8718 8719
	}
#endif
8720

8721
	for_each_cpu(i, cpu_map) {
8722
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8723

8724
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8725 8726
	}

8727
#ifdef CONFIG_NUMA
8728
	for (i = 0; i < nr_node_ids; i++)
8729
		init_numa_sched_groups_power(sched_group_nodes[i]);
8730

8731 8732
	if (sd_allnodes) {
		struct sched_group *sg;
8733

8734
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8735
								tmpmask);
8736 8737
		init_numa_sched_groups_power(sg);
	}
8738 8739
#endif

L
Linus Torvalds 已提交
8740
	/* Attach the domains */
8741
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8742 8743
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8744
		sd = &per_cpu(cpu_domains, i).sd;
8745
#elif defined(CONFIG_SCHED_MC)
8746
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8747
#else
8748
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8749
#endif
G
Gregory Haskins 已提交
8750
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8751
	}
8752

8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8781

8782
#ifdef CONFIG_NUMA
8783
error:
8784
	free_sched_groups(cpu_map, tmpmask);
8785
	free_rootdomain(rd);
8786
	goto free_tmpmask;
8787
#endif
L
Linus Torvalds 已提交
8788
}
P
Paul Jackson 已提交
8789

8790
static int build_sched_domains(const struct cpumask *cpu_map)
8791 8792 8793 8794
{
	return __build_sched_domains(cpu_map, NULL);
}

8795
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8796
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8797 8798
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8799 8800 8801

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8802 8803
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8804
 */
8805
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8806

8807 8808 8809 8810 8811 8812
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8813
{
8814
	return 0;
8815 8816
}

8817
/*
I
Ingo Molnar 已提交
8818
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8819 8820
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8821
 */
8822
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8823
{
8824 8825
	int err;

8826
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8827
	ndoms_cur = 1;
8828
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8829
	if (!doms_cur)
8830
		doms_cur = fallback_doms;
8831
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8832
	dattr_cur = NULL;
8833
	err = build_sched_domains(doms_cur);
8834
	register_sched_domain_sysctl();
8835 8836

	return err;
8837 8838
}

8839 8840
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8841
{
8842
	free_sched_groups(cpu_map, tmpmask);
8843
}
L
Linus Torvalds 已提交
8844

8845 8846 8847 8848
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8849
static void detach_destroy_domains(const struct cpumask *cpu_map)
8850
{
8851 8852
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8853 8854
	int i;

8855
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8856
		cpu_attach_domain(NULL, &def_root_domain, i);
8857
	synchronize_sched();
8858
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8859 8860
}

8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8877 8878
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8879
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8880 8881 8882
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8883
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8884 8885 8886
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8887 8888 8889
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8890 8891
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8892 8893 8894 8895
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8896
 *
8897
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8898 8899
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8900
 *
P
Paul Jackson 已提交
8901 8902
 * Call with hotplug lock held
 */
8903 8904
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8905
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8906
{
8907
	int i, j, n;
8908
	int new_topology;
P
Paul Jackson 已提交
8909

8910
	mutex_lock(&sched_domains_mutex);
8911

8912 8913 8914
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8915 8916 8917
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8918
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8919 8920 8921

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8922
		for (j = 0; j < n && !new_topology; j++) {
8923
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8924
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8925 8926 8927 8928 8929 8930 8931 8932
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8933 8934
	if (doms_new == NULL) {
		ndoms_cur = 0;
8935
		doms_new = fallback_doms;
8936
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8937
		WARN_ON_ONCE(dattr_new);
8938 8939
	}

P
Paul Jackson 已提交
8940 8941
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8942
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8943
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8944
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8945 8946 8947
				goto match2;
		}
		/* no match - add a new doms_new */
8948 8949
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8950 8951 8952 8953 8954
match2:
		;
	}

	/* Remember the new sched domains */
8955
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8956
		kfree(doms_cur);
8957
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8958
	doms_cur = doms_new;
8959
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8960
	ndoms_cur = ndoms_new;
8961 8962

	register_sched_domain_sysctl();
8963

8964
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8965 8966
}

8967
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8968
static void arch_reinit_sched_domains(void)
8969
{
8970
	get_online_cpus();
8971 8972 8973 8974

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8975
	rebuild_sched_domains();
8976
	put_online_cpus();
8977 8978 8979 8980
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8981
	unsigned int level = 0;
8982

8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8994 8995 8996
		return -EINVAL;

	if (smt)
8997
		sched_smt_power_savings = level;
8998
	else
8999
		sched_mc_power_savings = level;
9000

9001
	arch_reinit_sched_domains();
9002

9003
	return count;
9004 9005 9006
}

#ifdef CONFIG_SCHED_MC
9007 9008
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9009 9010 9011
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9012
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9013
					    const char *buf, size_t count)
9014 9015 9016
{
	return sched_power_savings_store(buf, count, 0);
}
9017 9018 9019
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9020 9021 9022
#endif

#ifdef CONFIG_SCHED_SMT
9023 9024
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9025 9026 9027
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9028
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9029
					     const char *buf, size_t count)
9030 9031 9032
{
	return sched_power_savings_store(buf, count, 1);
}
9033 9034
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9035 9036 9037
		   sched_smt_power_savings_store);
#endif

9038
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9054
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9055

9056
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9057
/*
9058 9059
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9060 9061 9062
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9063 9064 9065 9066 9067 9068
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
9069
		partition_sched_domains(1, NULL, NULL);
9070 9071 9072 9073 9074 9075 9076 9077 9078 9079
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9080
{
P
Peter Zijlstra 已提交
9081 9082
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9083 9084
	switch (action) {
	case CPU_DOWN_PREPARE:
9085
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9086
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9087 9088 9089
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9090
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9091
	case CPU_ONLINE:
9092
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9093
		enable_runtime(cpu_rq(cpu));
9094 9095
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9096 9097 9098 9099 9100 9101 9102
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9103 9104 9105
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9106

9107 9108 9109 9110 9111
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9112
	get_online_cpus();
9113
	mutex_lock(&sched_domains_mutex);
9114 9115 9116 9117
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9118
	mutex_unlock(&sched_domains_mutex);
9119
	put_online_cpus();
9120 9121

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9122 9123
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9124 9125 9126 9127 9128
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9129
	init_hrtick();
9130 9131

	/* Move init over to a non-isolated CPU */
9132
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9133
		BUG();
I
Ingo Molnar 已提交
9134
	sched_init_granularity();
9135
	free_cpumask_var(non_isolated_cpus);
9136 9137

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9138
	init_sched_rt_class();
L
Linus Torvalds 已提交
9139 9140 9141 9142
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9143
	sched_init_granularity();
L
Linus Torvalds 已提交
9144 9145 9146
}
#endif /* CONFIG_SMP */

9147 9148
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9149 9150 9151 9152 9153 9154 9155
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9156
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9157 9158
{
	cfs_rq->tasks_timeline = RB_ROOT;
9159
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9160 9161 9162
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9163
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9164 9165
}

P
Peter Zijlstra 已提交
9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9179
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9180
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9181
#ifdef CONFIG_SMP
9182
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9183 9184
#endif
#endif
P
Peter Zijlstra 已提交
9185 9186 9187
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9188
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9189 9190 9191 9192
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9193 9194
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9195

9196
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9197
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9198 9199
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9200 9201
}

P
Peter Zijlstra 已提交
9202
#ifdef CONFIG_FAIR_GROUP_SCHED
9203 9204 9205
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9206
{
9207
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9208 9209 9210 9211 9212 9213 9214
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9215 9216 9217 9218
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9219 9220 9221 9222 9223
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9224 9225
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9226
	se->load.inv_weight = 0;
9227
	se->parent = parent;
P
Peter Zijlstra 已提交
9228
}
9229
#endif
P
Peter Zijlstra 已提交
9230

9231
#ifdef CONFIG_RT_GROUP_SCHED
9232 9233 9234
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9235
{
9236 9237
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9238 9239 9240 9241
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9242
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9243 9244 9245 9246
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9247 9248 9249
	if (!rt_se)
		return;

9250 9251 9252 9253 9254
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9255
	rt_se->my_q = rt_rq;
9256
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9257 9258 9259 9260
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9261 9262
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9263
	int i, j;
9264 9265 9266 9267 9268 9269 9270
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9271 9272 9273
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9274 9275
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9276
	alloc_size += num_possible_cpus() * cpumask_size();
9277 9278 9279 9280 9281 9282
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9283
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9284 9285 9286 9287 9288 9289 9290

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9291 9292 9293 9294 9295 9296 9297

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9298 9299
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9300 9301 9302 9303 9304
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9305 9306 9307 9308 9309 9310 9311 9312
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9313 9314
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9315 9316 9317 9318 9319 9320
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9321
	}
I
Ingo Molnar 已提交
9322

G
Gregory Haskins 已提交
9323 9324 9325 9326
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9327 9328 9329 9330 9331 9332
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9333 9334 9335
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9336 9337
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9338

9339
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9340
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9341 9342 9343 9344 9345 9346
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9347 9348
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9349

9350
	for_each_possible_cpu(i) {
9351
		struct rq *rq;
L
Linus Torvalds 已提交
9352 9353 9354

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9355
		rq->nr_running = 0;
9356 9357
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9358
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9359
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9360
#ifdef CONFIG_FAIR_GROUP_SCHED
9361
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9362
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9378
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9379 9380 9381 9382
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9383
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9384
#elif defined CONFIG_USER_SCHED
9385 9386
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9398
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9399
				&per_cpu(init_cfs_rq, i),
9400 9401
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9402

9403
#endif
D
Dhaval Giani 已提交
9404 9405 9406
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9407
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9408
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9409
#ifdef CONFIG_CGROUP_SCHED
9410
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9411
#elif defined CONFIG_USER_SCHED
9412
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9413
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9414
				&per_cpu(init_rt_rq, i),
9415 9416
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9417
#endif
I
Ingo Molnar 已提交
9418
#endif
L
Linus Torvalds 已提交
9419

I
Ingo Molnar 已提交
9420 9421
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9422
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9423
		rq->sd = NULL;
G
Gregory Haskins 已提交
9424
		rq->rd = NULL;
9425
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9426
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9427
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9428
		rq->push_cpu = 0;
9429
		rq->cpu = i;
9430
		rq->online = 0;
L
Linus Torvalds 已提交
9431 9432
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9433
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9434
#endif
P
Peter Zijlstra 已提交
9435
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9436 9437 9438
		atomic_set(&rq->nr_iowait, 0);
	}

9439
	set_load_weight(&init_task);
9440

9441 9442 9443 9444
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9445
#ifdef CONFIG_SMP
9446
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9447 9448
#endif

9449 9450 9451 9452
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9466 9467 9468

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9469 9470 9471 9472
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9473

9474
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9475
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9476
#ifdef CONFIG_SMP
9477
#ifdef CONFIG_NO_HZ
9478 9479
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9480
#endif
9481
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9482
#endif /* SMP */
9483

9484 9485
	perf_counter_init();

9486
	scheduler_running = 1;
L
Linus Torvalds 已提交
9487 9488 9489
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9490 9491 9492 9493 9494 9495 9496 9497
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9498
{
9499
#ifdef in_atomic
L
Linus Torvalds 已提交
9500 9501
	static unsigned long prev_jiffy;	/* ratelimiting */

9502 9503
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9521 9522 9523 9524 9525 9526
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9527 9528 9529
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9530

9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9542 9543
void normalize_rt_tasks(void)
{
9544
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9545
	unsigned long flags;
9546
	struct rq *rq;
L
Linus Torvalds 已提交
9547

9548
	read_lock_irqsave(&tasklist_lock, flags);
9549
	do_each_thread(g, p) {
9550 9551 9552 9553 9554 9555
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9556 9557
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9558 9559 9560
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9561
#endif
I
Ingo Molnar 已提交
9562 9563 9564 9565 9566 9567 9568 9569

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9570
			continue;
I
Ingo Molnar 已提交
9571
		}
L
Linus Torvalds 已提交
9572

9573
		spin_lock(&p->pi_lock);
9574
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9575

9576
		normalize_task(rq, p);
9577

9578
		__task_rq_unlock(rq);
9579
		spin_unlock(&p->pi_lock);
9580 9581
	} while_each_thread(g, p);

9582
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9583 9584 9585
}

#endif /* CONFIG_MAGIC_SYSRQ */
9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9604
struct task_struct *curr_task(int cpu)
9605 9606 9607 9608 9609 9610 9611 9612 9613 9614
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9615 9616
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9617 9618 9619 9620 9621 9622 9623
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9624
void set_curr_task(int cpu, struct task_struct *p)
9625 9626 9627 9628 9629
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9630

9631 9632
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9647 9648
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9649 9650
{
	struct cfs_rq *cfs_rq;
9651
	struct sched_entity *se;
9652
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9653 9654
	int i;

9655
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9656 9657
	if (!tg->cfs_rq)
		goto err;
9658
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9659 9660
	if (!tg->se)
		goto err;
9661 9662

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9663 9664

	for_each_possible_cpu(i) {
9665
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9666

9667 9668
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9669 9670 9671
		if (!cfs_rq)
			goto err;

9672 9673
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9674 9675 9676
		if (!se)
			goto err;

9677
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9696
#else /* !CONFG_FAIR_GROUP_SCHED */
9697 9698 9699 9700
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9701 9702
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9714
#endif /* CONFIG_FAIR_GROUP_SCHED */
9715 9716

#ifdef CONFIG_RT_GROUP_SCHED
9717 9718 9719 9720
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9721 9722
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9734 9735
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9736 9737
{
	struct rt_rq *rt_rq;
9738
	struct sched_rt_entity *rt_se;
9739 9740 9741
	struct rq *rq;
	int i;

9742
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9743 9744
	if (!tg->rt_rq)
		goto err;
9745
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9746 9747 9748
	if (!tg->rt_se)
		goto err;

9749 9750
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9751 9752 9753 9754

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9755 9756
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9757 9758
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9759

9760 9761
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9762 9763
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9764

9765
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9766 9767
	}

9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9784
#else /* !CONFIG_RT_GROUP_SCHED */
9785 9786 9787 9788
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9789 9790
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9802
#endif /* CONFIG_RT_GROUP_SCHED */
9803

9804
#ifdef CONFIG_GROUP_SCHED
9805 9806 9807 9808 9809 9810 9811 9812
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9813
struct task_group *sched_create_group(struct task_group *parent)
9814 9815 9816 9817 9818 9819 9820 9821 9822
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9823
	if (!alloc_fair_sched_group(tg, parent))
9824 9825
		goto err;

9826
	if (!alloc_rt_sched_group(tg, parent))
9827 9828
		goto err;

9829
	spin_lock_irqsave(&task_group_lock, flags);
9830
	for_each_possible_cpu(i) {
9831 9832
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9833
	}
P
Peter Zijlstra 已提交
9834
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9835 9836 9837 9838 9839

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9840
	list_add_rcu(&tg->siblings, &parent->children);
9841
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9842

9843
	return tg;
S
Srivatsa Vaddagiri 已提交
9844 9845

err:
P
Peter Zijlstra 已提交
9846
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9847 9848 9849
	return ERR_PTR(-ENOMEM);
}

9850
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9851
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9852 9853
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9854
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9855 9856
}

9857
/* Destroy runqueue etc associated with a task group */
9858
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9859
{
9860
	unsigned long flags;
9861
	int i;
S
Srivatsa Vaddagiri 已提交
9862

9863
	spin_lock_irqsave(&task_group_lock, flags);
9864
	for_each_possible_cpu(i) {
9865 9866
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9867
	}
P
Peter Zijlstra 已提交
9868
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9869
	list_del_rcu(&tg->siblings);
9870
	spin_unlock_irqrestore(&task_group_lock, flags);
9871 9872

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9873
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9874 9875
}

9876
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9877 9878 9879
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9880 9881
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9882 9883 9884 9885 9886 9887 9888 9889 9890
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9891
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9892 9893
	on_rq = tsk->se.on_rq;

9894
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9895
		dequeue_task(rq, tsk, 0);
9896 9897
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9898

P
Peter Zijlstra 已提交
9899
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9900

P
Peter Zijlstra 已提交
9901 9902 9903 9904 9905
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9906 9907 9908
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9909
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9910 9911 9912

	task_rq_unlock(rq, &flags);
}
9913
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9914

9915
#ifdef CONFIG_FAIR_GROUP_SCHED
9916
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9917 9918 9919 9920 9921
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9922
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9923 9924 9925
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9926
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9927

9928
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9929
		enqueue_entity(cfs_rq, se, 0);
9930
}
9931

9932 9933 9934 9935 9936 9937 9938 9939 9940
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9941 9942
}

9943 9944
static DEFINE_MUTEX(shares_mutex);

9945
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9946 9947
{
	int i;
9948
	unsigned long flags;
9949

9950 9951 9952 9953 9954 9955
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9956 9957
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9958 9959
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9960

9961
	mutex_lock(&shares_mutex);
9962
	if (tg->shares == shares)
9963
		goto done;
S
Srivatsa Vaddagiri 已提交
9964

9965
	spin_lock_irqsave(&task_group_lock, flags);
9966 9967
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9968
	list_del_rcu(&tg->siblings);
9969
	spin_unlock_irqrestore(&task_group_lock, flags);
9970 9971 9972 9973 9974 9975 9976 9977

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9978
	tg->shares = shares;
9979 9980 9981 9982 9983
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9984
		set_se_shares(tg->se[i], shares);
9985
	}
S
Srivatsa Vaddagiri 已提交
9986

9987 9988 9989 9990
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9991
	spin_lock_irqsave(&task_group_lock, flags);
9992 9993
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9994
	list_add_rcu(&tg->siblings, &tg->parent->children);
9995
	spin_unlock_irqrestore(&task_group_lock, flags);
9996
done:
9997
	mutex_unlock(&shares_mutex);
9998
	return 0;
S
Srivatsa Vaddagiri 已提交
9999 10000
}

10001 10002 10003 10004
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10005
#endif
10006

10007
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10008
/*
P
Peter Zijlstra 已提交
10009
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10010
 */
P
Peter Zijlstra 已提交
10011 10012 10013 10014 10015
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10016
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10017

P
Peter Zijlstra 已提交
10018
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10019 10020
}

P
Peter Zijlstra 已提交
10021 10022
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10023
{
P
Peter Zijlstra 已提交
10024
	struct task_struct *g, *p;
10025

P
Peter Zijlstra 已提交
10026 10027 10028 10029
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10030

P
Peter Zijlstra 已提交
10031 10032
	return 0;
}
10033

P
Peter Zijlstra 已提交
10034 10035 10036 10037 10038
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10039

P
Peter Zijlstra 已提交
10040 10041 10042 10043 10044 10045
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10046

P
Peter Zijlstra 已提交
10047 10048
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10049

P
Peter Zijlstra 已提交
10050 10051 10052
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10053 10054
	}

10055 10056 10057 10058 10059 10060 10061
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10062 10063 10064 10065 10066
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10067

10068 10069 10070
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10071 10072
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10073

P
Peter Zijlstra 已提交
10074
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10075

10076 10077 10078 10079 10080
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10081

10082 10083 10084
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10085 10086 10087
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10088

P
Peter Zijlstra 已提交
10089 10090 10091 10092
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10093

P
Peter Zijlstra 已提交
10094
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10095
	}
P
Peter Zijlstra 已提交
10096

P
Peter Zijlstra 已提交
10097 10098 10099 10100
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10101 10102
}

P
Peter Zijlstra 已提交
10103
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10104
{
P
Peter Zijlstra 已提交
10105 10106 10107 10108 10109 10110 10111
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10112 10113
}

10114 10115
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10116
{
P
Peter Zijlstra 已提交
10117
	int i, err = 0;
P
Peter Zijlstra 已提交
10118 10119

	mutex_lock(&rt_constraints_mutex);
10120
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10121 10122
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10123
		goto unlock;
P
Peter Zijlstra 已提交
10124 10125

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10126 10127
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10128 10129 10130 10131 10132 10133 10134 10135 10136

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10137
 unlock:
10138
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10139 10140 10141
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10142 10143
}

10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10156 10157 10158 10159
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10160
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10161 10162
		return -1;

10163
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10164 10165 10166
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10167 10168 10169 10170 10171 10172 10173 10174

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10175 10176 10177
	if (rt_period == 0)
		return -EINVAL;

10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10192
	u64 runtime, period;
10193 10194
	int ret = 0;

10195 10196 10197
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10198 10199 10200 10201 10202 10203 10204 10205
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10206

10207
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10208
	read_lock(&tasklist_lock);
10209
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10210
	read_unlock(&tasklist_lock);
10211 10212 10213 10214
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10215 10216 10217 10218 10219 10220 10221 10222 10223 10224

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10225
#else /* !CONFIG_RT_GROUP_SCHED */
10226 10227
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10228 10229 10230
	unsigned long flags;
	int i;

10231 10232 10233
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10234 10235 10236 10237 10238 10239 10240
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10241 10242 10243 10244 10245 10246 10247 10248 10249 10250
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10251 10252
	return 0;
}
10253
#endif /* CONFIG_RT_GROUP_SCHED */
10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10284

10285
#ifdef CONFIG_CGROUP_SCHED
10286 10287

/* return corresponding task_group object of a cgroup */
10288
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10289
{
10290 10291
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10292 10293 10294
}

static struct cgroup_subsys_state *
10295
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10296
{
10297
	struct task_group *tg, *parent;
10298

10299
	if (!cgrp->parent) {
10300 10301 10302 10303
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10304 10305
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10306 10307 10308 10309 10310 10311
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10312 10313
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10314
{
10315
	struct task_group *tg = cgroup_tg(cgrp);
10316 10317 10318 10319

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10320 10321 10322
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10323
{
10324
#ifdef CONFIG_RT_GROUP_SCHED
10325
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10326 10327
		return -EINVAL;
#else
10328 10329 10330
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10331
#endif
10332 10333 10334 10335 10336

	return 0;
}

static void
10337
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10338 10339 10340 10341 10342
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10343
#ifdef CONFIG_FAIR_GROUP_SCHED
10344
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10345
				u64 shareval)
10346
{
10347
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10348 10349
}

10350
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10351
{
10352
	struct task_group *tg = cgroup_tg(cgrp);
10353 10354 10355

	return (u64) tg->shares;
}
10356
#endif /* CONFIG_FAIR_GROUP_SCHED */
10357

10358
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10359
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10360
				s64 val)
P
Peter Zijlstra 已提交
10361
{
10362
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10363 10364
}

10365
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10366
{
10367
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10368
}
10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10380
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10381

10382
static struct cftype cpu_files[] = {
10383
#ifdef CONFIG_FAIR_GROUP_SCHED
10384 10385
	{
		.name = "shares",
10386 10387
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10388
	},
10389 10390
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10391
	{
P
Peter Zijlstra 已提交
10392
		.name = "rt_runtime_us",
10393 10394
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10395
	},
10396 10397
	{
		.name = "rt_period_us",
10398 10399
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10400
	},
10401
#endif
10402 10403 10404 10405
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10406
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10407 10408 10409
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10410 10411 10412 10413 10414 10415 10416
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10417 10418 10419
	.early_init	= 1,
};

10420
#endif	/* CONFIG_CGROUP_SCHED */
10421 10422 10423 10424 10425 10426 10427 10428 10429 10430

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10431
/* track cpu usage of a group of tasks and its child groups */
10432 10433 10434 10435
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10436
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10437
	struct cpuacct *parent;
10438 10439 10440 10441 10442
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10443
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10444
{
10445
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10458
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10459 10460
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10461
	int i;
10462 10463

	if (!ca)
10464
		goto out;
10465 10466

	ca->cpuusage = alloc_percpu(u64);
10467 10468 10469 10470 10471 10472
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10473

10474 10475 10476
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10477
	return &ca->css;
10478 10479 10480 10481 10482 10483 10484 10485 10486

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10487 10488 10489
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10490
static void
10491
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10492
{
10493
	struct cpuacct *ca = cgroup_ca(cgrp);
10494
	int i;
10495

10496 10497
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10498 10499 10500 10501
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10502 10503
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10504
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10523
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10537
/* return total cpu usage (in nanoseconds) of a group */
10538
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10539
{
10540
	struct cpuacct *ca = cgroup_ca(cgrp);
10541 10542 10543
	u64 totalcpuusage = 0;
	int i;

10544 10545
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10546 10547 10548 10549

	return totalcpuusage;
}

10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10562 10563
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10564 10565 10566 10567 10568

out:
	return err;
}

10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10603 10604 10605
static struct cftype files[] = {
	{
		.name = "usage",
10606 10607
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10608
	},
10609 10610 10611 10612
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10613 10614 10615 10616
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10617 10618
};

10619
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10620
{
10621
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10622 10623 10624 10625 10626 10627 10628 10629 10630 10631
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10632
	int cpu;
10633

L
Li Zefan 已提交
10634
	if (unlikely(!cpuacct_subsys.active))
10635 10636
		return;

10637
	cpu = task_cpu(tsk);
10638 10639 10640

	rcu_read_lock();

10641 10642
	ca = task_ca(tsk);

10643
	for (; ca; ca = ca->parent) {
10644
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10645 10646
		*cpuusage += cputime;
	}
10647 10648

	rcu_read_unlock();
10649 10650
}

10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10672 10673 10674 10675 10676 10677 10678 10679
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */