sched.c 203.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
L
Linus Torvalds 已提交
71

72
#include <asm/tlb.h>
73
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
74

75 76 77 78 79 80 81
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
82
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
83 84
}

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

145 146 147 148 149 150 151 152 153 154 155 156
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
157
/*
I
Ingo Molnar 已提交
158
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
159
 */
I
Ingo Molnar 已提交
160 161 162 163 164
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

165 166 167
struct rt_bandwidth {
	ktime_t rt_period;
	u64 rt_runtime;
P
Peter Zijlstra 已提交
168
	spinlock_t rt_runtime_lock;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
	struct hrtimer rt_period_timer;
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
203 204
	spin_lock_init(&rt_b->rt_runtime_lock);

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

242
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
243

244 245
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
246 247
struct cfs_rq;

P
Peter Zijlstra 已提交
248 249
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
250
/* task group related information */
251
struct task_group {
252
#ifdef CONFIG_CGROUP_SCHED
253 254
	struct cgroup_subsys_state css;
#endif
255 256

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257 258 259 260 261
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
273 274
};

275
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
276 277 278 279
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
280 281 282 283 284 285
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
P
Peter Zijlstra 已提交
286

287
/* task_group_lock serializes add/remove of task groups and also changes to
288 289
 * a task group's cpu shares.
 */
290
static DEFINE_SPINLOCK(task_group_lock);
291

292 293 294
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

295 296 297 298 299 300 301 302 303 304
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
305
/* Default task group.
I
Ingo Molnar 已提交
306
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
307
 */
308
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
309 310

/* return group to which a task belongs */
311
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
312
{
313
	struct task_group *tg;
314

315
#ifdef CONFIG_USER_SCHED
316
	tg = p->user->tg;
317
#elif defined(CONFIG_CGROUP_SCHED)
318 319
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
320
#else
I
Ingo Molnar 已提交
321
	tg = &init_task_group;
322
#endif
323
	return tg;
S
Srivatsa Vaddagiri 已提交
324 325 326
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
327
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
328
{
329
#ifdef CONFIG_FAIR_GROUP_SCHED
330 331
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
332
#endif
P
Peter Zijlstra 已提交
333

334
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
335 336
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
337
#endif
S
Srivatsa Vaddagiri 已提交
338 339
}

340 341 342 343 344 345 346 347 348 349
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
350 351
#else

P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
353 354
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
355

356
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
357

I
Ingo Molnar 已提交
358 359 360 361 362 363
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
364
	u64 min_vruntime;
I
Ingo Molnar 已提交
365 366 367 368 369 370 371

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
372
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
373 374 375

	unsigned long nr_spread_over;

376
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
377 378
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
379 380
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
381 382 383 384 385 386
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
387 388
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
389 390
#endif
};
L
Linus Torvalds 已提交
391

I
Ingo Molnar 已提交
392 393 394
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
395
	unsigned long rt_nr_running;
396
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
399
#ifdef CONFIG_SMP
400
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
401
	int overloaded;
P
Peter Zijlstra 已提交
402
#endif
P
Peter Zijlstra 已提交
403
	int rt_throttled;
P
Peter Zijlstra 已提交
404
	u64 rt_time;
P
Peter Zijlstra 已提交
405 406
	u64 rt_runtime;
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
407

408
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
409 410
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
411 412 413 414 415
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
416 417
};

G
Gregory Haskins 已提交
418 419 420 421
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
422 423
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
424 425 426 427 428 429 430 431
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
432

I
Ingo Molnar 已提交
433
	/*
434 435 436 437
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
438
	atomic_t rto_count;
G
Gregory Haskins 已提交
439 440
};

441 442 443 444
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
445 446 447 448
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
449 450 451 452 453 454 455
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
456
struct rq {
457 458
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
459 460 461 462 463 464

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
465 466
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
467
	unsigned char idle_at_tick;
468
#ifdef CONFIG_NO_HZ
469
	unsigned long last_tick_seen;
470 471
	unsigned char in_nohz_recently;
#endif
472 473
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
474 475 476 477
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
478 479
	struct rt_rq rt;

I
Ingo Molnar 已提交
480
#ifdef CONFIG_FAIR_GROUP_SCHED
481 482
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
483 484
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
485
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
486 487 488 489 490 491 492 493 494 495
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

496
	struct task_struct *curr, *idle;
497
	unsigned long next_balance;
L
Linus Torvalds 已提交
498
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
499 500 501 502

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

503
	unsigned int clock_warps, clock_overflows, clock_underflows;
504 505
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
506
	u64 tick_timestamp;
I
Ingo Molnar 已提交
507

L
Linus Torvalds 已提交
508 509 510
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
511
	struct root_domain *rd;
L
Linus Torvalds 已提交
512 513 514 515 516
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
517 518
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
519

520
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
521 522 523
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
524 525 526 527 528 529
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
530 531 532 533 534
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
535 536 537 538
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
539 540

	/* schedule() stats */
541 542 543
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
544 545

	/* try_to_wake_up() stats */
546 547
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
548 549

	/* BKL stats */
550
	unsigned int bkl_count;
L
Linus Torvalds 已提交
551
#endif
552
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
553 554
};

555
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
556

I
Ingo Molnar 已提交
557 558 559 560 561
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

562 563 564 565 566 567 568 569 570
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
#ifdef CONFIG_NO_HZ
static inline bool nohz_on(int cpu)
{
	return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
}

static inline u64 max_skipped_ticks(struct rq *rq)
{
	return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
	rq->last_tick_seen = jiffies;
}
#else
static inline u64 max_skipped_ticks(struct rq *rq)
{
	return 1;
}

static inline void update_last_tick_seen(struct rq *rq)
{
}
#endif

I
Ingo Molnar 已提交
597
/*
I
Ingo Molnar 已提交
598 599
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
600
 */
I
Ingo Molnar 已提交
601
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
602 603 604 605 606 607
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
608 609 610
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
611 612 613 614 615 616 617 618 619 620
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
621 622 623 624 625 626
		u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
		u64 max_time = rq->tick_timestamp + max_jump;

		if (unlikely(clock + delta > max_time)) {
			if (clock < max_time)
				clock = max_time;
627 628
			else
				clock++;
I
Ingo Molnar 已提交
629 630 631 632 633 634 635 636 637 638
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
639
}
I
Ingo Molnar 已提交
640

I
Ingo Molnar 已提交
641 642 643 644
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
645 646
}

N
Nick Piggin 已提交
647 648
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
650 651 652 653
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
654 655
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
656 657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
675
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
676 677
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
678 679
	SCHED_FEAT_AFFINE_WAKEUPS	= 8,
	SCHED_FEAT_CACHE_HOT_BUDDY	= 16,
I
Ingo Molnar 已提交
680 681 682
	SCHED_FEAT_SYNC_WAKEUPS		= 32,
	SCHED_FEAT_HRTICK		= 64,
	SCHED_FEAT_DOUBLE_TICK		= 128,
I
Ingo Molnar 已提交
683 684 685
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
686
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
687
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
688
		SCHED_FEAT_START_DEBIT		* 1 |
I
Ingo Molnar 已提交
689 690
		SCHED_FEAT_AFFINE_WAKEUPS	* 1 |
		SCHED_FEAT_CACHE_HOT_BUDDY	* 1 |
I
Ingo Molnar 已提交
691
		SCHED_FEAT_SYNC_WAKEUPS		* 1 |
P
Peter Zijlstra 已提交
692
		SCHED_FEAT_HRTICK		* 1 |
I
Ingo Molnar 已提交
693
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
694 695 696

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

697 698 699 700 701 702
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
703
/*
P
Peter Zijlstra 已提交
704
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
705 706
 * default: 1s
 */
P
Peter Zijlstra 已提交
707
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
708

709 710
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
711 712 713 714 715
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
716

717 718 719 720 721 722 723 724 725 726 727 728
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
729

730 731 732 733 734
static const unsigned long long time_sync_thresh = 100000;

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

735
/*
736 737 738 739
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
740
 */
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
{
	unsigned long flags;

	spin_lock_irqsave(&time_sync_lock, flags);

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

	spin_unlock_irqrestore(&time_sync_lock, flags);

	return time;
}

static unsigned long long __cpu_clock(int cpu)
763 764 765
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
766
	struct rq *rq;
767

768 769 770 771
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
772 773 774 775 776 777
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
778
	now = rq->clock;
779
	local_irq_restore(flags);
780 781 782

	return now;
}
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;

	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

	if (unlikely(delta_time > time_sync_thresh))
		time = __sync_cpu_clock(time, cpu);

	return time;
}
P
Paul E. McKenney 已提交
801
EXPORT_SYMBOL_GPL(cpu_clock);
802

L
Linus Torvalds 已提交
803
#ifndef prepare_arch_switch
804 805 806 807 808 809
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

810 811 812 813 814
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

815
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
816
static inline int task_running(struct rq *rq, struct task_struct *p)
817
{
818
	return task_current(rq, p);
819 820
}

821
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
822 823 824
{
}

825
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
826
{
827 828 829 830
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
831 832 833 834 835 836 837
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

838 839 840 841
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
842
static inline int task_running(struct rq *rq, struct task_struct *p)
843 844 845 846
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
847
	return task_current(rq, p);
848 849 850
#endif
}

851
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

868
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
869 870 871 872 873 874 875 876 877 878 879 880
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
881
#endif
882 883
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
884

885 886 887 888
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
889
static inline struct rq *__task_rq_lock(struct task_struct *p)
890 891
	__acquires(rq->lock)
{
892 893 894 895 896
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
897 898 899 900
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
901 902
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
903
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
904 905
 * explicitly disabling preemption.
 */
906
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
907 908
	__acquires(rq->lock)
{
909
	struct rq *rq;
L
Linus Torvalds 已提交
910

911 912 913 914 915 916
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
917 918 919 920
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
921
static void __task_rq_unlock(struct rq *rq)
922 923 924 925 926
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

927
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
928 929 930 931 932 933
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
934
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
935
 */
A
Alexey Dobriyan 已提交
936
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
937 938
	__acquires(rq->lock)
{
939
	struct rq *rq;
L
Linus Torvalds 已提交
940 941 942 943 944 945 946 947

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

948
/*
949
 * We are going deep-idle (irqs are disabled):
950
 */
951
void sched_clock_idle_sleep_event(void)
952
{
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
969

970 971 972 973 974 975 976 977 978 979 980
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
981
	touch_softlockup_watchdog();
982
}
983
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
984

P
Peter Zijlstra 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1165
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1166 1167 1168 1169 1170
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1171
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1172 1173
		return;

P
Peter Zijlstra 已提交
1174
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1239
#else
P
Peter Zijlstra 已提交
1240
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1241 1242
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1243
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1244 1245 1246
}
#endif

1247 1248 1249 1250 1251 1252 1253 1254
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1255 1256 1257
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1258
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1259

1260
static unsigned long
1261 1262 1263 1264 1265 1266
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1267
		lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1268 1269 1270 1271 1272

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1273
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1274
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1275 1276
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1277
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1278

1279
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1280 1281 1282 1283 1284 1285 1286 1287
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1288
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1289 1290
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1291
	lw->inv_weight = 0;
1292 1293
}

1294
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1295 1296
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1297
	lw->inv_weight = 0;
1298 1299
}

1300 1301 1302 1303
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1304
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1305 1306 1307 1308
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1320 1321 1322
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1323 1324
 */
static const int prio_to_weight[40] = {
1325 1326 1327 1328 1329 1330 1331 1332
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1333 1334
};

1335 1336 1337 1338 1339 1340 1341
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1342
static const u32 prio_to_wmult[40] = {
1343 1344 1345 1346 1347 1348 1349 1350
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1351
};
1352

I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1378

1379 1380 1381 1382 1383 1384
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1385 1386 1387 1388 1389 1390 1391
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1392 1393
#include "sched_stats.h"
#include "sched_idletask.c"
1394 1395
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1413 1414
{
	rq->nr_running++;
1415
	inc_load(rq, p);
1416 1417
}

1418
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1419 1420
{
	rq->nr_running--;
1421
	dec_load(rq, p);
1422 1423
}

1424 1425 1426
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1427 1428 1429 1430
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1431

I
Ingo Molnar 已提交
1432 1433 1434 1435 1436 1437 1438 1439
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1440

I
Ingo Molnar 已提交
1441 1442
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1443 1444
}

1445
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1446
{
I
Ingo Molnar 已提交
1447
	sched_info_queued(p);
1448
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1449
	p->se.on_rq = 1;
1450 1451
}

1452
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1453
{
1454
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1455
	p->se.on_rq = 0;
1456 1457
}

1458
/*
I
Ingo Molnar 已提交
1459
 * __normal_prio - return the priority that is based on the static prio
1460 1461 1462
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1463
	return p->static_prio;
1464 1465
}

1466 1467 1468 1469 1470 1471 1472
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1473
static inline int normal_prio(struct task_struct *p)
1474 1475 1476
{
	int prio;

1477
	if (task_has_rt_policy(p))
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1491
static int effective_prio(struct task_struct *p)
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1504
/*
I
Ingo Molnar 已提交
1505
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1506
 */
I
Ingo Molnar 已提交
1507
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1508
{
1509
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1510
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1511

1512
	enqueue_task(rq, p, wakeup);
1513
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1519
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1520
{
1521
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1522 1523
		rq->nr_uninterruptible++;

1524
	dequeue_task(rq, p, sleep);
1525
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1526 1527 1528 1529 1530 1531
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1532
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1533 1534 1535 1536
{
	return cpu_curr(task_cpu(p)) == p;
}

1537 1538 1539
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1540
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1541 1542 1543 1544
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1545
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1546
#ifdef CONFIG_SMP
1547 1548 1549 1550 1551 1552
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1553 1554
	task_thread_info(p)->cpu = cpu;
#endif
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1569
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1570

1571 1572 1573
/*
 * Is this task likely cache-hot:
 */
1574
static int
1575 1576 1577 1578
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1579 1580 1581
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1582
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1583 1584
		return 1;

1585 1586 1587
	if (p->sched_class != &fair_sched_class)
		return 0;

1588 1589 1590 1591 1592
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1593 1594 1595 1596 1597 1598
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1599
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1600
{
I
Ingo Molnar 已提交
1601 1602
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1603 1604
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1605
	u64 clock_offset;
I
Ingo Molnar 已提交
1606 1607

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1608 1609 1610 1611

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1612 1613 1614 1615
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1616 1617 1618 1619 1620
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1621
#endif
1622 1623
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1624 1625

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1626 1627
}

1628
struct migration_req {
L
Linus Torvalds 已提交
1629 1630
	struct list_head list;

1631
	struct task_struct *task;
L
Linus Torvalds 已提交
1632 1633 1634
	int dest_cpu;

	struct completion done;
1635
};
L
Linus Torvalds 已提交
1636 1637 1638 1639 1640

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1641
static int
1642
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1643
{
1644
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1650
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657 1658
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1659

L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1672
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1673 1674
{
	unsigned long flags;
I
Ingo Molnar 已提交
1675
	int running, on_rq;
1676
	struct rq *rq;
L
Linus Torvalds 已提交
1677

1678 1679 1680 1681 1682 1683 1684 1685
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1700

1701 1702 1703 1704 1705 1706 1707 1708 1709
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1710

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1721

1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1735

1736 1737 1738 1739 1740 1741 1742
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1758
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1770 1771
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1772 1773 1774 1775
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1776
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1777
{
1778
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1779
	unsigned long total = weighted_cpuload(cpu);
1780

1781
	if (type == 0)
I
Ingo Molnar 已提交
1782
		return total;
1783

I
Ingo Molnar 已提交
1784
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1785 1786 1787
}

/*
1788 1789
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1790
 */
A
Alexey Dobriyan 已提交
1791
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1792
{
1793
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1794
	unsigned long total = weighted_cpuload(cpu);
1795

N
Nick Piggin 已提交
1796
	if (type == 0)
I
Ingo Molnar 已提交
1797
		return total;
1798

I
Ingo Molnar 已提交
1799
	return max(rq->cpu_load[type-1], total);
1800 1801 1802 1803 1804
}

/*
 * Return the average load per task on the cpu's run queue
 */
1805
static unsigned long cpu_avg_load_per_task(int cpu)
1806
{
1807
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1808
	unsigned long total = weighted_cpuload(cpu);
1809 1810
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1811
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1812 1813
}

N
Nick Piggin 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1831 1832
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1833
			continue;
1834

N
Nick Piggin 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1851 1852
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1853 1854 1855 1856 1857 1858 1859 1860

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1861
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1862 1863 1864 1865 1866 1867 1868

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1869
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1870
 */
I
Ingo Molnar 已提交
1871 1872
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1873
{
1874
	cpumask_t tmp;
N
Nick Piggin 已提交
1875 1876 1877 1878
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1879 1880 1881 1882
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1883
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1909

1910
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1911 1912 1913
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1914 1915
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1916 1917
		if (tmp->flags & flag)
			sd = tmp;
1918
	}
N
Nick Piggin 已提交
1919 1920 1921 1922

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1923 1924 1925 1926 1927 1928
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1929 1930 1931

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1932 1933 1934 1935
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1936

1937
		new_cpu = find_idlest_cpu(group, t, cpu);
1938 1939 1940 1941 1942
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1943

1944
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1976
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1977
{
1978
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1979 1980
	unsigned long flags;
	long old_state;
1981
	struct rq *rq;
L
Linus Torvalds 已提交
1982

1983 1984 1985
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

1986
	smp_wmb();
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1992
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1993 1994 1995
		goto out_running;

	cpu = task_cpu(p);
1996
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001 2002
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2003 2004 2005
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2012
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2013 2014 2015 2016 2017 2018
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2034 2035
out_activate:
#endif /* CONFIG_SMP */
2036 2037 2038 2039 2040 2041 2042 2043 2044
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2045
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2046
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2047 2048 2049
	success = 1;

out_running:
I
Ingo Molnar 已提交
2050 2051
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2052
	p->state = TASK_RUNNING;
2053 2054 2055 2056
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2057 2058 2059 2060 2061 2062
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2063
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2064
{
2065
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2066 2067 2068
}
EXPORT_SYMBOL(wake_up_process);

2069
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2070 2071 2072 2073 2074 2075 2076
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2077 2078 2079 2080 2081 2082 2083
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2084
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2085 2086
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2087 2088 2089

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2090 2091 2092 2093 2094 2095
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2096
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2097
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2098
#endif
N
Nick Piggin 已提交
2099

P
Peter Zijlstra 已提交
2100
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2101
	p->se.on_rq = 0;
N
Nick Piggin 已提交
2102

2103 2104 2105 2106
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2107 2108 2109 2110 2111 2112 2113
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2128
	set_task_cpu(p, cpu);
2129 2130 2131 2132 2133

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2134 2135
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2136

2137
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2138
	if (likely(sched_info_on()))
2139
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2140
#endif
2141
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2142 2143
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2144
#ifdef CONFIG_PREEMPT
2145
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2146
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2147
#endif
N
Nick Piggin 已提交
2148
	put_cpu();
L
Linus Torvalds 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2158
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2159 2160
{
	unsigned long flags;
I
Ingo Molnar 已提交
2161
	struct rq *rq;
L
Linus Torvalds 已提交
2162 2163

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2164
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2165
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2166 2167 2168

	p->prio = effective_prio(p);

2169
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2170
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2171 2172
	} else {
		/*
I
Ingo Molnar 已提交
2173 2174
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2175
		 */
2176
		p->sched_class->task_new(rq, p);
2177
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2178
	}
I
Ingo Molnar 已提交
2179
	check_preempt_curr(rq, p);
2180 2181 2182 2183
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2184
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2185 2186
}

2187 2188 2189
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2190 2191
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2192 2193 2194 2195 2196 2197 2198 2199 2200
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2201
 * @notifier: notifier struct to unregister
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2245 2246 2247
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2248
 * @prev: the current task that is being switched out
2249 2250 2251 2252 2253 2254 2255 2256 2257
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2258 2259 2260
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2261
{
2262
	fire_sched_out_preempt_notifiers(prev, next);
2263 2264 2265 2266
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2267 2268
/**
 * finish_task_switch - clean up after a task-switch
2269
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2270 2271
 * @prev: the thread we just switched away from.
 *
2272 2273 2274 2275
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2276 2277
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2278
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2279 2280 2281
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2282
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2283 2284 2285
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2286
	long prev_state;
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2292
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2293 2294
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2295
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2296 2297 2298 2299 2300
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2301
	prev_state = prev->state;
2302 2303
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2304 2305 2306 2307
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2308

2309
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2310 2311
	if (mm)
		mmdrop(mm);
2312
	if (unlikely(prev_state == TASK_DEAD)) {
2313 2314 2315
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2316
		 */
2317
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2318
		put_task_struct(prev);
2319
	}
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2326
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2327 2328
	__releases(rq->lock)
{
2329 2330
	struct rq *rq = this_rq();

2331 2332 2333 2334 2335
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2336
	if (current->set_child_tid)
2337
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2338 2339 2340 2341 2342 2343
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2344
static inline void
2345
context_switch(struct rq *rq, struct task_struct *prev,
2346
	       struct task_struct *next)
L
Linus Torvalds 已提交
2347
{
I
Ingo Molnar 已提交
2348
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2349

2350
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2351 2352
	mm = next->mm;
	oldmm = prev->active_mm;
2353 2354 2355 2356 2357 2358 2359
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2360
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2361 2362 2363 2364 2365 2366
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2367
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2368 2369 2370
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2371 2372 2373 2374 2375 2376 2377
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2378
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2379
#endif
L
Linus Torvalds 已提交
2380 2381 2382 2383

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2384 2385 2386 2387 2388 2389 2390
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2414
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2429 2430
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2431

2432
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2442
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2463
/*
I
Ingo Molnar 已提交
2464 2465
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2466
 */
I
Ingo Molnar 已提交
2467
static void update_cpu_load(struct rq *this_rq)
2468
{
2469
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2482 2483 2484 2485 2486 2487 2488
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2489 2490
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2491 2492
}

I
Ingo Molnar 已提交
2493 2494
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2495 2496 2497 2498 2499 2500
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2501
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2502 2503 2504
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2505
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2506 2507 2508 2509
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2510
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2511 2512 2513 2514 2515 2516 2517
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2518 2519
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524 2525 2526 2527
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2528
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2542
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2543 2544 2545 2546
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2547 2548
	int ret = 0;

2549 2550 2551 2552 2553
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2554
	if (unlikely(!spin_trylock(&busiest->lock))) {
2555
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2556 2557 2558
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2559
			ret = 1;
L
Linus Torvalds 已提交
2560 2561 2562
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2563
	return ret;
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2569
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2570 2571
 * the cpu_allowed mask is restored.
 */
2572
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2573
{
2574
	struct migration_req req;
L
Linus Torvalds 已提交
2575
	unsigned long flags;
2576
	struct rq *rq;
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2587

L
Linus Torvalds 已提交
2588 2589 2590 2591 2592
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2593

L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599 2600
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2601 2602
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2603 2604 2605 2606
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2607
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2608
	put_cpu();
N
Nick Piggin 已提交
2609 2610
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2617 2618
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2619
{
2620
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2621
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2622
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2623 2624 2625 2626
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2627
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2628 2629 2630 2631 2632
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2633
static
2634
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2635
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2636
		     int *all_pinned)
L
Linus Torvalds 已提交
2637 2638 2639 2640 2641 2642 2643
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2644 2645
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2646
		return 0;
2647
	}
2648 2649
	*all_pinned = 0;

2650 2651
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2652
		return 0;
2653
	}
L
Linus Torvalds 已提交
2654

2655 2656 2657 2658 2659 2660
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2661 2662
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2663
#ifdef CONFIG_SCHEDSTATS
2664
		if (task_hot(p, rq->clock, sd)) {
2665
			schedstat_inc(sd, lb_hot_gained[idle]);
2666 2667
			schedstat_inc(p, se.nr_forced_migrations);
		}
2668 2669 2670 2671
#endif
		return 1;
	}

2672 2673
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2674
		return 0;
2675
	}
L
Linus Torvalds 已提交
2676 2677 2678
	return 1;
}

2679 2680 2681 2682 2683
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2684
{
2685
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2686 2687
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2688

2689
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2690 2691
		goto out;

2692 2693
	pinned = 1;

L
Linus Torvalds 已提交
2694
	/*
I
Ingo Molnar 已提交
2695
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2696
	 */
I
Ingo Molnar 已提交
2697 2698
	p = iterator->start(iterator->arg);
next:
2699
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2700
		goto out;
2701
	/*
2702
	 * To help distribute high priority tasks across CPUs we don't
2703 2704 2705
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2706 2707
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2708
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2709 2710 2711
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2712 2713
	}

I
Ingo Molnar 已提交
2714
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2715
	pulled++;
I
Ingo Molnar 已提交
2716
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2717

2718
	/*
2719
	 * We only want to steal up to the prescribed amount of weighted load.
2720
	 */
2721
	if (rem_load_move > 0) {
2722 2723
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2724 2725
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2726 2727 2728
	}
out:
	/*
2729
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2730 2731 2732 2733
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2734 2735 2736

	if (all_pinned)
		*all_pinned = pinned;
2737 2738

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2739 2740
}

I
Ingo Molnar 已提交
2741
/*
P
Peter Williams 已提交
2742 2743 2744
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2745 2746 2747 2748
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2749
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2750 2751 2752
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2753
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2754
	unsigned long total_load_moved = 0;
2755
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2756 2757

	do {
P
Peter Williams 已提交
2758 2759
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2760
				max_load_move - total_load_moved,
2761
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2762
		class = class->next;
P
Peter Williams 已提交
2763
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2764

P
Peter Williams 已提交
2765 2766 2767
	return total_load_moved > 0;
}

2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2804
	const struct sched_class *class;
P
Peter Williams 已提交
2805 2806

	for (class = sched_class_highest; class; class = class->next)
2807
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2808 2809 2810
			return 1;

	return 0;
I
Ingo Molnar 已提交
2811 2812
}

L
Linus Torvalds 已提交
2813 2814
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2815 2816
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2817 2818 2819
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2820 2821
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2822 2823 2824
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2825
	unsigned long max_pull;
2826 2827
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2828
	int load_idx, group_imb = 0;
2829 2830 2831 2832 2833 2834
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2835 2836

	max_load = this_load = total_load = total_pwr = 0;
2837 2838
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2839
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2840
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2841
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2842 2843 2844
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2845 2846

	do {
2847
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2848 2849
		int local_group;
		int i;
2850
		int __group_imb = 0;
2851
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2852
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2853 2854 2855

		local_group = cpu_isset(this_cpu, group->cpumask);

2856 2857 2858
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2859
		/* Tally up the load of all CPUs in the group */
2860
		sum_weighted_load = sum_nr_running = avg_load = 0;
2861 2862
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2863 2864

		for_each_cpu_mask(i, group->cpumask) {
2865 2866 2867 2868 2869 2870
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2871

2872
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2873 2874
				*sd_idle = 0;

L
Linus Torvalds 已提交
2875
			/* Bias balancing toward cpus of our domain */
2876 2877 2878 2879 2880 2881
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2882
				load = target_load(i, load_idx);
2883
			} else {
N
Nick Piggin 已提交
2884
				load = source_load(i, load_idx);
2885 2886 2887 2888 2889
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2890 2891

			avg_load += load;
2892
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2893
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2894 2895
		}

2896 2897 2898
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2899 2900
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2901
		 */
2902 2903
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2904 2905 2906 2907
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2908
		total_load += avg_load;
2909
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2910 2911

		/* Adjust by relative CPU power of the group */
2912 2913
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2914

2915 2916 2917
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2918
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2919

L
Linus Torvalds 已提交
2920 2921 2922
		if (local_group) {
			this_load = avg_load;
			this = group;
2923 2924 2925
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2926
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2927 2928
			max_load = avg_load;
			busiest = group;
2929 2930
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2931
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2932
		}
2933 2934 2935 2936 2937 2938

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2939 2940 2941
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2942 2943 2944 2945 2946 2947 2948 2949 2950

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2951
		/*
2952 2953
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2954 2955
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2956
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2957
			goto group_next;
2958

I
Ingo Molnar 已提交
2959
		/*
2960
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2961 2962 2963 2964 2965
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2966 2967
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2968 2969
			group_min = group;
			min_nr_running = sum_nr_running;
2970 2971
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2972
		}
2973

I
Ingo Molnar 已提交
2974
		/*
2975
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2987
		}
2988 2989
group_next:
#endif
L
Linus Torvalds 已提交
2990 2991 2992
		group = group->next;
	} while (group != sd->groups);

2993
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3002
	busiest_load_per_task /= busiest_nr_running;
3003 3004 3005
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3006 3007 3008 3009 3010 3011 3012 3013
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3014
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3015 3016
	 * appear as very large values with unsigned longs.
	 */
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3029 3030

	/* Don't want to pull so many tasks that a group would go idle */
3031
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3032

L
Linus Torvalds 已提交
3033
	/* How much load to actually move to equalise the imbalance */
3034 3035
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3036 3037
			/ SCHED_LOAD_SCALE;

3038 3039 3040 3041 3042 3043
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3044
	if (*imbalance < busiest_load_per_task) {
3045
		unsigned long tmp, pwr_now, pwr_move;
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3057

I
Ingo Molnar 已提交
3058 3059
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3060
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3070 3071 3072 3073
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3074 3075 3076
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3077 3078
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3079
		if (max_load > tmp)
3080
			pwr_move += busiest->__cpu_power *
3081
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3082 3083

		/* Amount of load we'd add */
3084
		if (max_load * busiest->__cpu_power <
3085
				busiest_load_per_task * SCHED_LOAD_SCALE)
3086 3087
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3088
		else
3089 3090 3091 3092
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3093 3094 3095
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3096 3097
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3098 3099 3100 3101 3102
	}

	return busiest;

out_balanced:
3103
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3104
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3105
		goto ret;
L
Linus Torvalds 已提交
3106

3107 3108 3109 3110 3111
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3112
ret:
L
Linus Torvalds 已提交
3113 3114 3115 3116 3117 3118 3119
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3120
static struct rq *
I
Ingo Molnar 已提交
3121
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3122
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3123
{
3124
	struct rq *busiest = NULL, *rq;
3125
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3126 3127 3128
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3129
		unsigned long wl;
3130 3131 3132 3133

		if (!cpu_isset(i, *cpus))
			continue;

3134
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3135
		wl = weighted_cpuload(i);
3136

I
Ingo Molnar 已提交
3137
		if (rq->nr_running == 1 && wl > imbalance)
3138
			continue;
L
Linus Torvalds 已提交
3139

I
Ingo Molnar 已提交
3140 3141
		if (wl > max_load) {
			max_load = wl;
3142
			busiest = rq;
L
Linus Torvalds 已提交
3143 3144 3145 3146 3147 3148
		}
	}

	return busiest;
}

3149 3150 3151 3152 3153 3154
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3155 3156 3157 3158
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3159
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3160
			struct sched_domain *sd, enum cpu_idle_type idle,
3161
			int *balance)
L
Linus Torvalds 已提交
3162
{
P
Peter Williams 已提交
3163
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3164 3165
	struct sched_group *group;
	unsigned long imbalance;
3166
	struct rq *busiest;
3167
	cpumask_t cpus = CPU_MASK_ALL;
3168
	unsigned long flags;
N
Nick Piggin 已提交
3169

3170 3171 3172
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3173
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3174
	 * portraying it as CPU_NOT_IDLE.
3175
	 */
I
Ingo Molnar 已提交
3176
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3177
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3178
		sd_idle = 1;
L
Linus Torvalds 已提交
3179

3180
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3181

3182 3183
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3184 3185
				   &cpus, balance);

3186
	if (*balance == 0)
3187 3188
		goto out_balanced;

L
Linus Torvalds 已提交
3189 3190 3191 3192 3193
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3194
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3200
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3201 3202 3203

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3204
	ld_moved = 0;
L
Linus Torvalds 已提交
3205 3206 3207 3208
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3209
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3210 3211
		 * correctly treated as an imbalance.
		 */
3212
		local_irq_save(flags);
N
Nick Piggin 已提交
3213
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3214
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3215
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3216
		double_rq_unlock(this_rq, busiest);
3217
		local_irq_restore(flags);
3218

3219 3220 3221
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3222
		if (ld_moved && this_cpu != smp_processor_id())
3223 3224
			resched_cpu(this_cpu);

3225
		/* All tasks on this runqueue were pinned by CPU affinity */
3226 3227 3228 3229
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3230
			goto out_balanced;
3231
		}
L
Linus Torvalds 已提交
3232
	}
3233

P
Peter Williams 已提交
3234
	if (!ld_moved) {
L
Linus Torvalds 已提交
3235 3236 3237 3238 3239
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3240
			spin_lock_irqsave(&busiest->lock, flags);
3241 3242 3243 3244 3245

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3246
				spin_unlock_irqrestore(&busiest->lock, flags);
3247 3248 3249 3250
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3251 3252 3253
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3254
				active_balance = 1;
L
Linus Torvalds 已提交
3255
			}
3256
			spin_unlock_irqrestore(&busiest->lock, flags);
3257
			if (active_balance)
L
Linus Torvalds 已提交
3258 3259 3260 3261 3262 3263
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3264
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3265
		}
3266
	} else
L
Linus Torvalds 已提交
3267 3268
		sd->nr_balance_failed = 0;

3269
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3270 3271
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3272 3273 3274 3275 3276 3277 3278 3279 3280
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3281 3282
	}

P
Peter Williams 已提交
3283
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3284
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3285
		return -1;
P
Peter Williams 已提交
3286
	return ld_moved;
L
Linus Torvalds 已提交
3287 3288 3289 3290

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3291
	sd->nr_balance_failed = 0;
3292 3293

out_one_pinned:
L
Linus Torvalds 已提交
3294
	/* tune up the balancing interval */
3295 3296
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3297 3298
		sd->balance_interval *= 2;

3299
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3300
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3301
		return -1;
L
Linus Torvalds 已提交
3302 3303 3304 3305 3306 3307 3308
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3309
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3310 3311
 * this_rq is locked.
 */
3312
static int
3313
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3314 3315
{
	struct sched_group *group;
3316
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3317
	unsigned long imbalance;
P
Peter Williams 已提交
3318
	int ld_moved = 0;
N
Nick Piggin 已提交
3319
	int sd_idle = 0;
3320
	int all_pinned = 0;
3321
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3322

3323 3324 3325 3326
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3327
	 * portraying it as CPU_NOT_IDLE.
3328 3329 3330
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3331
		sd_idle = 1;
L
Linus Torvalds 已提交
3332

3333
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3334
redo:
I
Ingo Molnar 已提交
3335
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3336
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3337
	if (!group) {
I
Ingo Molnar 已提交
3338
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3339
		goto out_balanced;
L
Linus Torvalds 已提交
3340 3341
	}

I
Ingo Molnar 已提交
3342
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3343
				&cpus);
N
Nick Piggin 已提交
3344
	if (!busiest) {
I
Ingo Molnar 已提交
3345
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3346
		goto out_balanced;
L
Linus Torvalds 已提交
3347 3348
	}

N
Nick Piggin 已提交
3349 3350
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3351
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3352

P
Peter Williams 已提交
3353
	ld_moved = 0;
3354 3355 3356
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3357 3358
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3359
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3360 3361
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3362
		spin_unlock(&busiest->lock);
3363

3364
		if (unlikely(all_pinned)) {
3365 3366 3367 3368
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3369 3370
	}

P
Peter Williams 已提交
3371
	if (!ld_moved) {
I
Ingo Molnar 已提交
3372
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3373 3374
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3375 3376
			return -1;
	} else
3377
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3378

P
Peter Williams 已提交
3379
	return ld_moved;
3380 3381

out_balanced:
I
Ingo Molnar 已提交
3382
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3383
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3384
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3385
		return -1;
3386
	sd->nr_balance_failed = 0;
3387

3388
	return 0;
L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3395
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3396 3397
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3398 3399
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3400 3401

	for_each_domain(this_cpu, sd) {
3402 3403 3404 3405 3406 3407
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3408
			/* If we've pulled tasks over stop searching: */
3409
			pulled_task = load_balance_newidle(this_cpu,
3410 3411 3412 3413 3414 3415 3416
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3417
	}
I
Ingo Molnar 已提交
3418
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3419 3420 3421 3422 3423
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3424
	}
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3435
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3436
{
3437
	int target_cpu = busiest_rq->push_cpu;
3438 3439
	struct sched_domain *sd;
	struct rq *target_rq;
3440

3441
	/* Is there any task to move? */
3442 3443 3444 3445
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3446 3447

	/*
3448
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3449
	 * we need to fix it. Originally reported by
3450
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3451
	 */
3452
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3453

3454 3455
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3456 3457
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3458 3459

	/* Search for an sd spanning us and the target CPU. */
3460
	for_each_domain(target_cpu, sd) {
3461
		if ((sd->flags & SD_LOAD_BALANCE) &&
3462
		    cpu_isset(busiest_cpu, sd->span))
3463
				break;
3464
	}
3465

3466
	if (likely(sd)) {
3467
		schedstat_inc(sd, alb_count);
3468

P
Peter Williams 已提交
3469 3470
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3471 3472 3473 3474
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3475
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3476 3477
}

3478 3479 3480
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3481
	cpumask_t cpu_mask;
3482 3483 3484 3485 3486
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3487
/*
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3498
 *
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3555 3556 3557 3558 3559
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3560
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3561
{
3562 3563
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3564 3565
	unsigned long interval;
	struct sched_domain *sd;
3566
	/* Earliest time when we have to do rebalance again */
3567
	unsigned long next_balance = jiffies + 60*HZ;
3568
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3569

3570
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3571 3572 3573 3574
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3575
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3576 3577 3578 3579 3580 3581
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3582 3583 3584
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3585

3586 3587 3588 3589 3590
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3591
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3592
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3593 3594
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3595 3596 3597
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3598
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3599
			}
3600
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3601
		}
3602 3603 3604
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3605
		if (time_after(next_balance, sd->last_balance + interval)) {
3606
			next_balance = sd->last_balance + interval;
3607 3608
			update_next_balance = 1;
		}
3609 3610 3611 3612 3613 3614 3615 3616

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3617
	}
3618 3619 3620 3621 3622 3623 3624 3625

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3626 3627 3628 3629 3630 3631 3632 3633 3634
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3635 3636 3637 3638
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3639

I
Ingo Molnar 已提交
3640
	rebalance_domains(this_cpu, idle);
3641 3642 3643 3644 3645 3646 3647

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3648 3649
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3650 3651 3652 3653
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3654
		cpu_clear(this_cpu, cpus);
3655 3656 3657 3658 3659 3660 3661 3662 3663
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3664
			rebalance_domains(balance_cpu, CPU_IDLE);
3665 3666

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3667 3668
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3681
static inline void trigger_load_balance(struct rq *rq, int cpu)
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3708
			if (ilb < nr_cpu_ids)
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3733
}
I
Ingo Molnar 已提交
3734 3735 3736

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3737 3738 3739
/*
 * on UP we do not need to balance between CPUs:
 */
3740
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3741 3742
{
}
I
Ingo Molnar 已提交
3743

L
Linus Torvalds 已提交
3744 3745 3746 3747 3748 3749 3750
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3751 3752
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3753
 */
3754
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3755 3756
{
	unsigned long flags;
3757 3758
	u64 ns, delta_exec;
	struct rq *rq;
3759

3760 3761
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3762
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3763 3764
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3765 3766 3767 3768
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3769

L
Linus Torvalds 已提交
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3793 3794 3795 3796 3797
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3798
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3832
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3833 3834
	cputime64_t tmp;

3835 3836
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3837

L
Linus Torvalds 已提交
3838 3839 3840 3841 3842 3843 3844 3845
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3846
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3847
		cpustat->system = cputime64_add(cpustat->system, tmp);
3848
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3849 3850 3851 3852 3853 3854 3855
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3867 3868 3869 3870 3871 3872 3873 3874 3875
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3876
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3884
	} else
L
Linus Torvalds 已提交
3885 3886 3887
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3899
	struct task_struct *curr = rq->curr;
3900
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3901 3902

	spin_lock(&rq->lock);
3903
	__update_rq_clock(rq);
3904 3905 3906
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3907
	if (unlikely(rq->clock < next_tick)) {
3908
		rq->clock = next_tick;
3909 3910
		rq->clock_underflows++;
	}
3911
	rq->tick_timestamp = rq->clock;
3912
	update_last_tick_seen(rq);
3913
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3914
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
3915
	spin_unlock(&rq->lock);
3916

3917
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3918 3919
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3920
#endif
L
Linus Torvalds 已提交
3921 3922 3923 3924
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3925
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3926 3927 3928 3929
{
	/*
	 * Underflow?
	 */
3930 3931
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3932 3933 3934 3935
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3936 3937
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3938 3939 3940
}
EXPORT_SYMBOL(add_preempt_count);

3941
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3942 3943 3944 3945
{
	/*
	 * Underflow?
	 */
3946 3947
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3948 3949 3950
	/*
	 * Is the spinlock portion underflowing?
	 */
3951 3952 3953 3954
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3955 3956 3957 3958 3959 3960 3961
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3962
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3963
 */
I
Ingo Molnar 已提交
3964
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3965
{
3966 3967 3968 3969 3970
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3971 3972 3973
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3974 3975 3976 3977 3978

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3979
}
L
Linus Torvalds 已提交
3980

I
Ingo Molnar 已提交
3981 3982 3983 3984 3985
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3986
	/*
I
Ingo Molnar 已提交
3987
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3988 3989 3990
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3991 3992 3993
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3994 3995
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3996
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3997 3998
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3999 4000
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4001 4002
	}
#endif
I
Ingo Molnar 已提交
4003 4004 4005 4006 4007 4008
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4009
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4010
{
4011
	const struct sched_class *class;
I
Ingo Molnar 已提交
4012
	struct task_struct *p;
L
Linus Torvalds 已提交
4013 4014

	/*
I
Ingo Molnar 已提交
4015 4016
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4017
	 */
I
Ingo Molnar 已提交
4018
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4019
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4020 4021
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4022 4023
	}

I
Ingo Molnar 已提交
4024 4025
	class = sched_class_highest;
	for ( ; ; ) {
4026
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4036

I
Ingo Molnar 已提交
4037 4038 4039 4040 4041 4042
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4043
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4059

P
Peter Zijlstra 已提交
4060 4061
	hrtick_clear(rq);

4062 4063 4064 4065
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
4066
	__update_rq_clock(rq);
4067 4068
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4069 4070 4071

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4072
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4073
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4074
		} else {
4075
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4076
		}
I
Ingo Molnar 已提交
4077
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4078 4079
	}

4080 4081 4082 4083
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4084

I
Ingo Molnar 已提交
4085
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4086 4087
		idle_balance(cpu, rq);

4088
	prev->sched_class->put_prev_task(rq, prev);
4089
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4090 4091

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
4092

L
Linus Torvalds 已提交
4093 4094 4095 4096 4097
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4098
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4099 4100 4101 4102 4103 4104
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4105 4106 4107
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4108 4109 4110
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4111
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4112

L
Linus Torvalds 已提交
4113 4114 4115 4116 4117 4118 4119 4120
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4121
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4122
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4123 4124 4125 4126 4127 4128 4129
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4130

L
Linus Torvalds 已提交
4131 4132
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4133
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4134
	 */
N
Nick Piggin 已提交
4135
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4136 4137
		return;

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4151

4152 4153 4154 4155 4156 4157
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4158 4159 4160 4161
}
EXPORT_SYMBOL(preempt_schedule);

/*
4162
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4163 4164 4165 4166 4167 4168 4169 4170 4171
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4172

4173
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4174 4175
	BUG_ON(ti->preempt_count || !irqs_disabled());

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4191

4192 4193 4194 4195 4196 4197
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4198 4199 4200 4201
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4202 4203
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4204
{
4205
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4206 4207 4208 4209
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4210 4211
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4212 4213 4214
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4215
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4216 4217 4218 4219 4220
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4221
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4222

4223
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4224 4225
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4226
		if (curr->func(curr, mode, sync, key) &&
4227
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4237
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4238
 */
4239
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4240
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4253
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4259
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4271
void
I
Ingo Molnar 已提交
4272
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4289
void complete(struct completion *x)
L
Linus Torvalds 已提交
4290 4291 4292 4293 4294
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4295
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4296 4297 4298 4299
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4300
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4301 4302 4303 4304 4305
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4306
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4307 4308 4309 4310
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4311 4312
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4313 4314 4315 4316 4317 4318 4319
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4320 4321 4322 4323
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4324 4325 4326 4327
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4328 4329 4330 4331 4332
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4333
				return timeout;
L
Linus Torvalds 已提交
4334 4335 4336 4337 4338 4339 4340 4341
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4342 4343
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4344 4345 4346 4347
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4348
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4349
	spin_unlock_irq(&x->wait.lock);
4350 4351
	return timeout;
}
L
Linus Torvalds 已提交
4352

4353
void __sched wait_for_completion(struct completion *x)
4354 4355
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4356
}
4357
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4358

4359
unsigned long __sched
4360
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4361
{
4362
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4363
}
4364
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4365

4366
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4367
{
4368 4369 4370 4371
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4372
}
4373
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4374

4375
unsigned long __sched
4376 4377
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4378
{
4379
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4380
}
4381
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4382

M
Matthew Wilcox 已提交
4383 4384 4385 4386 4387 4388 4389 4390 4391
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4392 4393
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4394
{
I
Ingo Molnar 已提交
4395 4396 4397 4398
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4399

4400
	__set_current_state(state);
L
Linus Torvalds 已提交
4401

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4416 4417 4418
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4419
long __sched
I
Ingo Molnar 已提交
4420
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4421
{
4422
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4423 4424 4425
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4426
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4427
{
4428
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4429 4430 4431
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4432
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4433
{
4434
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4435 4436 4437
}
EXPORT_SYMBOL(sleep_on_timeout);

4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4450
void rt_mutex_setprio(struct task_struct *p, int prio)
4451 4452
{
	unsigned long flags;
4453
	int oldprio, on_rq, running;
4454
	struct rq *rq;
4455
	const struct sched_class *prev_class = p->sched_class;
4456 4457 4458 4459

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4460
	update_rq_clock(rq);
4461

4462
	oldprio = p->prio;
I
Ingo Molnar 已提交
4463
	on_rq = p->se.on_rq;
4464
	running = task_current(rq, p);
4465
	if (on_rq)
4466
		dequeue_task(rq, p, 0);
4467 4468
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4469 4470 4471 4472 4473 4474

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4475 4476
	p->prio = prio;

4477 4478
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4479
	if (on_rq) {
4480
		enqueue_task(rq, p, 0);
4481 4482

		check_class_changed(rq, p, prev_class, oldprio, running);
4483 4484 4485 4486 4487 4488
	}
	task_rq_unlock(rq, &flags);
}

#endif

4489
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4490
{
I
Ingo Molnar 已提交
4491
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4492
	unsigned long flags;
4493
	struct rq *rq;
L
Linus Torvalds 已提交
4494 4495 4496 4497 4498 4499 4500 4501

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4502
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4503 4504 4505 4506
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4507
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4508
	 */
4509
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4510 4511 4512
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4513
	on_rq = p->se.on_rq;
4514
	if (on_rq) {
4515
		dequeue_task(rq, p, 0);
4516 4517
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4518 4519

	p->static_prio = NICE_TO_PRIO(nice);
4520
	set_load_weight(p);
4521 4522 4523
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4524

I
Ingo Molnar 已提交
4525
	if (on_rq) {
4526
		enqueue_task(rq, p, 0);
4527
		inc_load(rq, p);
L
Linus Torvalds 已提交
4528
		/*
4529 4530
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4531
		 */
4532
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537 4538 4539
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4540 4541 4542 4543 4544
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4545
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4546
{
4547 4548
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4549

M
Matt Mackall 已提交
4550 4551 4552 4553
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4565
	long nice, retval;
L
Linus Torvalds 已提交
4566 4567 4568 4569 4570 4571

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4572 4573
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4574 4575 4576 4577 4578 4579 4580 4581 4582
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4583 4584 4585
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4604
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4605 4606 4607 4608 4609 4610 4611 4612
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4613
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4614 4615 4616
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4617
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4632
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4633 4634 4635 4636 4637 4638 4639 4640
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4641
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4642
{
4643
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4644 4645 4646
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4647 4648
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4649
{
I
Ingo Molnar 已提交
4650
	BUG_ON(p->se.on_rq);
4651

L
Linus Torvalds 已提交
4652
	p->policy = policy;
I
Ingo Molnar 已提交
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4665
	p->rt_priority = prio;
4666 4667 4668
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4669
	set_load_weight(p);
L
Linus Torvalds 已提交
4670 4671 4672
}

/**
4673
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4674 4675 4676
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4677
 *
4678
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4679
 */
I
Ingo Molnar 已提交
4680 4681
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4682
{
4683
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4684
	unsigned long flags;
4685
	const struct sched_class *prev_class = p->sched_class;
4686
	struct rq *rq;
L
Linus Torvalds 已提交
4687

4688 4689
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4690 4691 4692 4693 4694
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4695 4696
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4697
		return -EINVAL;
L
Linus Torvalds 已提交
4698 4699
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4700 4701
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4702 4703
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4704
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4705
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4706
		return -EINVAL;
4707
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4708 4709
		return -EINVAL;

4710 4711 4712 4713
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4714
		if (rt_policy(policy)) {
4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4731 4732 4733 4734 4735 4736
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4737

4738 4739 4740 4741 4742
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4743

4744 4745 4746 4747 4748
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4749
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4750 4751 4752
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4753 4754 4755
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4756 4757 4758 4759 4760
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4761 4762 4763 4764
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4765
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4766 4767 4768
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4769 4770
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4771 4772
		goto recheck;
	}
I
Ingo Molnar 已提交
4773
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4774
	on_rq = p->se.on_rq;
4775
	running = task_current(rq, p);
4776
	if (on_rq)
4777
		deactivate_task(rq, p, 0);
4778 4779
	if (running)
		p->sched_class->put_prev_task(rq, p);
4780

L
Linus Torvalds 已提交
4781
	oldprio = p->prio;
I
Ingo Molnar 已提交
4782
	__setscheduler(rq, p, policy, param->sched_priority);
4783

4784 4785
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4786 4787
	if (on_rq) {
		activate_task(rq, p, 0);
4788 4789

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4790
	}
4791 4792 4793
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4794 4795
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4796 4797 4798 4799
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4800 4801
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4802 4803 4804
{
	struct sched_param lparam;
	struct task_struct *p;
4805
	int retval;
L
Linus Torvalds 已提交
4806 4807 4808 4809 4810

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4811 4812 4813

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4814
	p = find_process_by_pid(pid);
4815 4816 4817
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4818

L
Linus Torvalds 已提交
4819 4820 4821 4822 4823 4824 4825 4826 4827
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4828 4829
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4830
{
4831 4832 4833 4834
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4854
	struct task_struct *p;
4855
	int retval;
L
Linus Torvalds 已提交
4856 4857

	if (pid < 0)
4858
		return -EINVAL;
L
Linus Torvalds 已提交
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4880
	struct task_struct *p;
4881
	int retval;
L
Linus Torvalds 已提交
4882 4883

	if (!param || pid < 0)
4884
		return -EINVAL;
L
Linus Torvalds 已提交
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4911
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4912 4913
{
	cpumask_t cpus_allowed;
4914
	cpumask_t new_mask = *in_mask;
4915 4916
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4917

4918
	get_online_cpus();
L
Linus Torvalds 已提交
4919 4920 4921 4922 4923
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4924
		put_online_cpus();
L
Linus Torvalds 已提交
4925 4926 4927 4928 4929
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4930
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4941 4942 4943 4944
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

4945
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
4946
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4947
 again:
L
Linus Torvalds 已提交
4948 4949
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4950
	if (!retval) {
4951
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4962 4963
out_unlock:
	put_task_struct(p);
4964
	put_online_cpus();
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

4995
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002 5003 5004
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5005
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5006 5007 5008
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5009
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5010 5011
EXPORT_SYMBOL(cpu_online_map);

5012
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5013
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5014 5015 5016 5017
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5018
	struct task_struct *p;
L
Linus Torvalds 已提交
5019 5020
	int retval;

5021
	get_online_cpus();
L
Linus Torvalds 已提交
5022 5023 5024 5025 5026 5027 5028
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5029 5030 5031 5032
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5033
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5034 5035 5036

out_unlock:
	read_unlock(&tasklist_lock);
5037
	put_online_cpus();
L
Linus Torvalds 已提交
5038

5039
	return retval;
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5070 5071
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5072 5073 5074
 */
asmlinkage long sys_sched_yield(void)
{
5075
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5076

5077
	schedstat_inc(rq, yld_count);
5078
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5085
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5086 5087 5088 5089 5090 5091 5092 5093
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5094
static void __cond_resched(void)
L
Linus Torvalds 已提交
5095
{
5096 5097 5098
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5099 5100 5101 5102 5103
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5111 5112
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5113
{
5114 5115
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
		__cond_resched();
		return 1;
	}
	return 0;
}
5121 5122
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
5123 5124 5125 5126 5127

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5128
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5129 5130 5131
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5132
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5133
{
N
Nick Piggin 已提交
5134
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5135 5136
	int ret = 0;

N
Nick Piggin 已提交
5137
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5138
		spin_unlock(lock);
N
Nick Piggin 已提交
5139 5140 5141 5142
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5143
		ret = 1;
L
Linus Torvalds 已提交
5144 5145
		spin_lock(lock);
	}
J
Jan Kara 已提交
5146
	return ret;
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5154
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5155
		local_bh_enable();
L
Linus Torvalds 已提交
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5167
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5178
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184 5185
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5186
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5187

5188
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5189 5190 5191
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5192
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5193 5194 5195 5196 5197
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5198
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5199 5200
	long ret;

5201
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5202 5203 5204
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5205
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5226
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5227
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5251
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5252
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5269
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5270
	unsigned int time_slice;
5271
	int retval;
L
Linus Torvalds 已提交
5272 5273 5274
	struct timespec t;

	if (pid < 0)
5275
		return -EINVAL;
L
Linus Torvalds 已提交
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5287 5288 5289 5290 5291 5292
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5293
		time_slice = DEF_TIMESLICE;
5294
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5295 5296 5297 5298 5299
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5300 5301
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5302 5303
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5304
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5305
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5306 5307
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5308

L
Linus Torvalds 已提交
5309 5310 5311 5312 5313
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5314
static const char stat_nam[] = "RSDTtZX";
5315

5316
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5317 5318
{
	unsigned long free = 0;
5319
	unsigned state;
L
Linus Torvalds 已提交
5320 5321

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5322
	printk(KERN_INFO "%-13.13s %c", p->comm,
5323
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5324
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5325
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5326
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5327
	else
I
Ingo Molnar 已提交
5328
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5329 5330
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5331
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5332
	else
I
Ingo Molnar 已提交
5333
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5334 5335 5336
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5337
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5338 5339
		while (!*n)
			n++;
5340
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5341 5342
	}
#endif
5343
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5344
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5345

5346
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5347 5348
}

I
Ingo Molnar 已提交
5349
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5350
{
5351
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5352

5353 5354 5355
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5356
#else
5357 5358
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5359 5360 5361 5362 5363 5364 5365 5366
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5367
		if (!state_filter || (p->state & state_filter))
5368
			sched_show_task(p);
L
Linus Torvalds 已提交
5369 5370
	} while_each_thread(g, p);

5371 5372
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5373 5374 5375
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5376
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5377 5378 5379 5380 5381
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5382 5383
}

I
Ingo Molnar 已提交
5384 5385
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5386
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5387 5388
}

5389 5390 5391 5392 5393 5394 5395 5396
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5397
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5398
{
5399
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5400 5401
	unsigned long flags;

I
Ingo Molnar 已提交
5402 5403 5404
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5405
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5406
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5407
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5408 5409 5410

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5411 5412 5413
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5414 5415 5416
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5417
	task_thread_info(idle)->preempt_count = 0;
5418

I
Ingo Molnar 已提交
5419 5420 5421 5422
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5459 5460 5461 5462
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5463
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5482
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5483 5484
 * call is not atomic; no spinlocks may be held.
 */
5485
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5486
{
5487
	struct migration_req req;
L
Linus Torvalds 已提交
5488
	unsigned long flags;
5489
	struct rq *rq;
5490
	int ret = 0;
L
Linus Torvalds 已提交
5491 5492 5493 5494 5495 5496 5497

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5498 5499 5500
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5501
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5502
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5503 5504
	}

L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5519

L
Linus Torvalds 已提交
5520 5521 5522 5523 5524
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5525
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5526 5527 5528 5529 5530 5531
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5532 5533
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5534
 */
5535
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5536
{
5537
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5538
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5539 5540

	if (unlikely(cpu_is_offline(dest_cpu)))
5541
		return ret;
L
Linus Torvalds 已提交
5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5554
	on_rq = p->se.on_rq;
5555
	if (on_rq)
5556
		deactivate_task(rq_src, p, 0);
5557

L
Linus Torvalds 已提交
5558
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5559 5560 5561
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5562
	}
5563
	ret = 1;
L
Linus Torvalds 已提交
5564 5565
out:
	double_rq_unlock(rq_src, rq_dest);
5566
	return ret;
L
Linus Torvalds 已提交
5567 5568 5569 5570 5571 5572 5573
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5574
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5575 5576
{
	int cpu = (long)data;
5577
	struct rq *rq;
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5584
		struct migration_req *req;
L
Linus Torvalds 已提交
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5607
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5608 5609
		list_del_init(head->next);

N
Nick Piggin 已提交
5610 5611 5612
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5642
/*
5643
 * Figure out where task on dead CPU should go, use force if necessary.
5644 5645
 * NOTE: interrupts should be disabled by the caller
 */
5646
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5647
{
5648
	unsigned long flags;
L
Linus Torvalds 已提交
5649
	cpumask_t mask;
5650 5651
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5652

5653 5654 5655 5656 5657 5658 5659
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5660
		if (dest_cpu >= nr_cpu_ids)
5661 5662 5663
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5664
		if (dest_cpu >= nr_cpu_ids) {
5665 5666 5667
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5668 5669 5670 5671
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5672
			 * cpuset_cpus_allowed() will not block. It must be
5673 5674
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5675
			rq = task_rq_lock(p, &flags);
5676
			p->cpus_allowed = cpus_allowed;
5677 5678
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5679

5680 5681 5682 5683 5684
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5685
			if (p->mm && printk_ratelimit()) {
5686 5687
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5688 5689
					task_pid_nr(p), p->comm, dead_cpu);
			}
5690
		}
5691
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5692 5693 5694 5695 5696 5697 5698 5699 5700
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5701
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5702
{
5703
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5717
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5718

5719
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5720

5721 5722
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5723 5724
			continue;

5725 5726 5727
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5728

5729
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5730 5731
}

I
Ingo Molnar 已提交
5732 5733
/*
 * Schedules idle task to be the next runnable task on current CPU.
5734 5735
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5736 5737 5738
 */
void sched_idle_next(void)
{
5739
	int this_cpu = smp_processor_id();
5740
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5741 5742 5743 5744
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5745
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5746

5747 5748 5749
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5750 5751 5752
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5753
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5754

5755 5756
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5757 5758 5759 5760

	spin_unlock_irqrestore(&rq->lock, flags);
}

5761 5762
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5776
/* called under rq->lock with disabled interrupts */
5777
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5778
{
5779
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5780 5781

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5782
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5783 5784

	/* Cannot have done final schedule yet: would have vanished. */
5785
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5786

5787
	get_task_struct(p);
L
Linus Torvalds 已提交
5788 5789 5790

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5791
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5792 5793
	 * fine.
	 */
5794
	spin_unlock_irq(&rq->lock);
5795
	move_task_off_dead_cpu(dead_cpu, p);
5796
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5797

5798
	put_task_struct(p);
L
Linus Torvalds 已提交
5799 5800 5801 5802 5803
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5804
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5805
	struct task_struct *next;
5806

I
Ingo Molnar 已提交
5807 5808 5809
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5810
		update_rq_clock(rq);
5811
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5812 5813 5814
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5815

L
Linus Torvalds 已提交
5816 5817 5818 5819
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5820 5821 5822
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5823 5824
	{
		.procname	= "sched_domain",
5825
		.mode		= 0555,
5826
	},
I
Ingo Molnar 已提交
5827
	{0, },
5828 5829 5830
};

static struct ctl_table sd_ctl_root[] = {
5831
	{
5832
		.ctl_name	= CTL_KERN,
5833
		.procname	= "kernel",
5834
		.mode		= 0555,
5835 5836
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5837
	{0, },
5838 5839 5840 5841 5842
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5843
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5844 5845 5846 5847

	return entry;
}

5848 5849
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5850
	struct ctl_table *entry;
5851

5852 5853 5854
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5855
	 * will always be set. In the lowest directory the names are
5856 5857 5858
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5859 5860
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5861 5862 5863
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5864 5865 5866 5867 5868

	kfree(*tablep);
	*tablep = NULL;
}

5869
static void
5870
set_table_entry(struct ctl_table *entry,
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5884
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5885

5886 5887 5888
	if (table == NULL)
		return NULL;

5889
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5890
		sizeof(long), 0644, proc_doulongvec_minmax);
5891
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5892
		sizeof(long), 0644, proc_doulongvec_minmax);
5893
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5894
		sizeof(int), 0644, proc_dointvec_minmax);
5895
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5896
		sizeof(int), 0644, proc_dointvec_minmax);
5897
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5898
		sizeof(int), 0644, proc_dointvec_minmax);
5899
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5900
		sizeof(int), 0644, proc_dointvec_minmax);
5901
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5902
		sizeof(int), 0644, proc_dointvec_minmax);
5903
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5904
		sizeof(int), 0644, proc_dointvec_minmax);
5905
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5906
		sizeof(int), 0644, proc_dointvec_minmax);
5907
	set_table_entry(&table[9], "cache_nice_tries",
5908 5909
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5910
	set_table_entry(&table[10], "flags", &sd->flags,
5911
		sizeof(int), 0644, proc_dointvec_minmax);
5912
	/* &table[11] is terminator */
5913 5914 5915 5916

	return table;
}

5917
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5918 5919 5920 5921 5922 5923 5924 5925 5926
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5927 5928
	if (table == NULL)
		return NULL;
5929 5930 5931 5932 5933

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5934
		entry->mode = 0555;
5935 5936 5937 5938 5939 5940 5941 5942
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5943
static void register_sched_domain_sysctl(void)
5944 5945 5946 5947 5948
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5949 5950 5951
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5952 5953 5954
	if (entry == NULL)
		return;

5955
	for_each_online_cpu(i) {
5956 5957
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5958
		entry->mode = 0555;
5959
		entry->child = sd_alloc_ctl_cpu_table(i);
5960
		entry++;
5961
	}
5962 5963

	WARN_ON(sd_sysctl_header);
5964 5965
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5966

5967
/* may be called multiple times per register */
5968 5969
static void unregister_sched_domain_sysctl(void)
{
5970 5971
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5972
	sd_sysctl_header = NULL;
5973 5974
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5975
}
5976
#else
5977 5978 5979 5980
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5981 5982 5983 5984
{
}
#endif

L
Linus Torvalds 已提交
5985 5986 5987 5988
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5989 5990
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5991 5992
{
	struct task_struct *p;
5993
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5994
	unsigned long flags;
5995
	struct rq *rq;
L
Linus Torvalds 已提交
5996 5997

	switch (action) {
5998

L
Linus Torvalds 已提交
5999
	case CPU_UP_PREPARE:
6000
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6001
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6002 6003 6004 6005 6006
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6007
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6008 6009 6010
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6011

L
Linus Torvalds 已提交
6012
	case CPU_ONLINE:
6013
	case CPU_ONLINE_FROZEN:
6014
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6015
		wake_up_process(cpu_rq(cpu)->migration_thread);
6016 6017 6018 6019 6020 6021 6022 6023 6024

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6025
		break;
6026

L
Linus Torvalds 已提交
6027 6028
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6029
	case CPU_UP_CANCELED_FROZEN:
6030 6031
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6032
		/* Unbind it from offline cpu so it can run. Fall thru. */
6033 6034
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6035 6036 6037
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6038

L
Linus Torvalds 已提交
6039
	case CPU_DEAD:
6040
	case CPU_DEAD_FROZEN:
6041
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6042 6043 6044 6045 6046
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6047
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6048
		update_rq_clock(rq);
6049
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6050
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6051 6052
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6053
		migrate_dead_tasks(cpu);
6054
		spin_unlock_irq(&rq->lock);
6055
		cpuset_unlock();
L
Linus Torvalds 已提交
6056 6057 6058
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6059 6060 6061 6062 6063
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6064 6065
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6066 6067
			struct migration_req *req;

L
Linus Torvalds 已提交
6068
			req = list_entry(rq->migration_queue.next,
6069
					 struct migration_req, list);
L
Linus Torvalds 已提交
6070 6071 6072 6073 6074
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6075

6076 6077
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6087 6088 6089 6090 6091 6092 6093 6094
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6095
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6096 6097 6098 6099
	.notifier_call = migration_call,
	.priority = 10
};

6100
void __init migration_init(void)
L
Linus Torvalds 已提交
6101 6102
{
	void *cpu = (void *)(long)smp_processor_id();
6103
	int err;
6104 6105

	/* Start one for the boot CPU: */
6106 6107
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6108 6109 6110 6111 6112 6113
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6114 6115 6116 6117 6118

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

6119
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6120 6121

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
6122
{
I
Ingo Molnar 已提交
6123 6124
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
6125
	char str[256];
L
Linus Torvalds 已提交
6126

6127
	cpulist_scnprintf(str, sizeof(str), sd->span);
I
Ingo Molnar 已提交
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6138 6139
	}

I
Ingo Molnar 已提交
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6150

I
Ingo Molnar 已提交
6151
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6152
	do {
I
Ingo Molnar 已提交
6153 6154 6155
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6156 6157 6158
			break;
		}

I
Ingo Molnar 已提交
6159 6160 6161 6162 6163 6164
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6165

I
Ingo Molnar 已提交
6166 6167 6168 6169 6170
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6171

I
Ingo Molnar 已提交
6172 6173 6174 6175 6176
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6177

I
Ingo Molnar 已提交
6178
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6179

6180
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6181
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6182

I
Ingo Molnar 已提交
6183 6184 6185
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6186

I
Ingo Molnar 已提交
6187 6188
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6189

I
Ingo Molnar 已提交
6190 6191 6192 6193 6194
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6195

I
Ingo Molnar 已提交
6196 6197 6198
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6199

I
Ingo Molnar 已提交
6200 6201 6202 6203
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6204

I
Ingo Molnar 已提交
6205 6206 6207 6208 6209
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6210 6211
		level++;
		sd = sd->parent;
6212
		if (!sd)
I
Ingo Molnar 已提交
6213 6214
			break;
	}
L
Linus Torvalds 已提交
6215 6216
}
#else
6217
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6218 6219
#endif

6220
static int sd_degenerate(struct sched_domain *sd)
6221 6222 6223 6224 6225 6226 6227 6228
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6229 6230 6231
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6245 6246
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6265 6266 6267
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6268 6269 6270 6271 6272 6273 6274
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6285
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6286 6287
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6288
		}
G
Gregory Haskins 已提交
6289

6290 6291 6292
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6293 6294 6295 6296 6297 6298 6299
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6300
	cpu_set(rq->cpu, rd->span);
6301 6302
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6303

I
Ingo Molnar 已提交
6304
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6305 6306
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6307
	}
G
Gregory Haskins 已提交
6308 6309 6310 6311

	spin_unlock_irqrestore(&rq->lock, flags);
}

6312
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6313 6314 6315
{
	memset(rd, 0, sizeof(*rd));

6316 6317
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6318 6319 6320 6321
}

static void init_defrootdomain(void)
{
6322
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6323 6324 6325
	atomic_set(&def_root_domain.refcount, 1);
}

6326
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6327 6328 6329 6330 6331 6332 6333
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6334
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6335 6336 6337 6338

	return rd;
}

L
Linus Torvalds 已提交
6339
/*
I
Ingo Molnar 已提交
6340
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6341 6342
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6343 6344
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6345
{
6346
	struct rq *rq = cpu_rq(cpu);
6347 6348 6349 6350 6351 6352 6353
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6354
		if (sd_parent_degenerate(tmp, parent)) {
6355
			tmp->parent = parent->parent;
6356 6357 6358
			if (parent->parent)
				parent->parent->child = tmp;
		}
6359 6360
	}

6361
	if (sd && sd_degenerate(sd)) {
6362
		sd = sd->parent;
6363 6364 6365
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6366 6367 6368

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6369
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6370
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6371 6372 6373
}

/* cpus with isolated domains */
6374
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6389
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6390 6391

/*
6392 6393 6394 6395
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6396 6397 6398 6399 6400
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6401
static void
6402 6403 6404
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6405 6406 6407 6408 6409 6410
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6411 6412
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6413 6414 6415 6416 6417 6418
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6419
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6420 6421

		for_each_cpu_mask(j, span) {
6422
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6437
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6438

6439
#ifdef CONFIG_NUMA
6440

6441 6442 6443 6444 6445
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6446
 * Find the next node to include in a given scheduling domain. Simply
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6486
 * Given a node, construct a good cpumask for its sched_domain to span. It
6487 6488 6489 6490 6491 6492
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6493 6494
	cpumask_t span, nodemask;
	int i;
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6505

6506 6507 6508 6509 6510 6511 6512 6513
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6514
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6515

6516
/*
6517
 * SMT sched-domains:
6518
 */
L
Linus Torvalds 已提交
6519 6520
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6521
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6522

I
Ingo Molnar 已提交
6523 6524
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6525
{
6526 6527
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6528 6529 6530 6531
	return cpu;
}
#endif

6532 6533 6534
/*
 * multi-core sched-domains:
 */
6535 6536
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6537
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6538 6539 6540
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6541 6542
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6543
{
6544
	int group;
6545
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6546
	cpus_and(mask, mask, *cpu_map);
6547 6548 6549 6550
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6551 6552
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6553 6554
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6555
{
6556 6557
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6558 6559 6560 6561
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6562
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6563
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6564

I
Ingo Molnar 已提交
6565 6566
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6567
{
6568
	int group;
6569
#ifdef CONFIG_SCHED_MC
6570
	cpumask_t mask = cpu_coregroup_map(cpu);
6571
	cpus_and(mask, mask, *cpu_map);
6572
	group = first_cpu(mask);
6573
#elif defined(CONFIG_SCHED_SMT)
6574
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6575
	cpus_and(mask, mask, *cpu_map);
6576
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6577
#else
6578
	group = cpu;
L
Linus Torvalds 已提交
6579
#endif
6580 6581 6582
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6583 6584 6585 6586
}

#ifdef CONFIG_NUMA
/*
6587 6588 6589
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6590
 */
6591
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6592
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6593

6594
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6595
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6596

6597 6598
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6599
{
6600 6601 6602 6603 6604 6605 6606 6607 6608
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6609
}
6610

6611 6612 6613 6614 6615 6616 6617
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6618 6619 6620
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6621

6622 6623 6624 6625 6626 6627 6628 6629
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6630

6631 6632 6633 6634
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6635
}
L
Linus Torvalds 已提交
6636 6637
#endif

6638
#ifdef CONFIG_NUMA
6639 6640 6641
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6642
	int cpu, i;
6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6673 6674 6675 6676 6677
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6678

6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6705 6706
	sd->groups->__cpu_power = 0;

6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6717
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6718 6719 6720 6721 6722 6723 6724 6725
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6726
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6727 6728 6729 6730
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6731
/*
6732 6733
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6734
 */
6735
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6736 6737
{
	int i;
G
Gregory Haskins 已提交
6738
	struct root_domain *rd;
6739 6740
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6741
	int sd_allnodes = 0;
6742 6743 6744 6745

	/*
	 * Allocate the per-node list of sched groups
	 */
6746
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6747
				    GFP_KERNEL);
6748 6749
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6750
		return -ENOMEM;
6751 6752 6753
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6754

6755
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6756 6757 6758 6759 6760
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6761
	/*
6762
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6763
	 */
6764
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6765 6766 6767
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6768
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6769 6770

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6771 6772
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6773 6774 6775
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6776
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6777
			p = sd;
6778
			sd_allnodes = 1;
6779 6780 6781
		} else
			p = NULL;

L
Linus Torvalds 已提交
6782 6783
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6784 6785
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6786 6787
		if (p)
			p->child = sd;
6788
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6789 6790 6791 6792 6793 6794 6795
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6796 6797
		if (p)
			p->child = sd;
6798
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6799

6800 6801 6802 6803 6804 6805 6806
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6807
		p->child = sd;
6808
		cpu_to_core_group(i, cpu_map, &sd->groups);
6809 6810
#endif

L
Linus Torvalds 已提交
6811 6812 6813 6814
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6815
		sd->span = per_cpu(cpu_sibling_map, i);
6816
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6817
		sd->parent = p;
6818
		p->child = sd;
6819
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6820 6821 6822 6823 6824
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6825
	for_each_cpu_mask(i, *cpu_map) {
6826
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6827
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6828 6829 6830
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6831 6832
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6833 6834 6835
	}
#endif

6836 6837 6838 6839 6840 6841 6842
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6843 6844
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6845 6846 6847
	}
#endif

L
Linus Torvalds 已提交
6848 6849 6850 6851
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6852
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6853 6854 6855
		if (cpus_empty(nodemask))
			continue;

6856
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6857 6858 6859 6860
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6861
	if (sd_allnodes)
I
Ingo Molnar 已提交
6862 6863
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6874 6875
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6876
			continue;
6877
		}
6878 6879 6880 6881

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6882
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6883 6884 6885 6886 6887
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6888 6889 6890
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6891

6892 6893 6894
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6895
		sg->__cpu_power = 0;
6896
		sg->cpumask = nodemask;
6897
		sg->next = sg;
6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6916 6917
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6918 6919 6920
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6921
				goto error;
6922
			}
6923
			sg->__cpu_power = 0;
6924
			sg->cpumask = tmp;
6925
			sg->next = prev->next;
6926 6927 6928 6929 6930
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6931 6932 6933
#endif

	/* Calculate CPU power for physical packages and nodes */
6934
#ifdef CONFIG_SCHED_SMT
6935
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6936 6937
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6938
		init_sched_groups_power(i, sd);
6939
	}
L
Linus Torvalds 已提交
6940
#endif
6941
#ifdef CONFIG_SCHED_MC
6942
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6943 6944
		struct sched_domain *sd = &per_cpu(core_domains, i);

6945
		init_sched_groups_power(i, sd);
6946 6947
	}
#endif
6948

6949
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6950 6951
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6952
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6953 6954
	}

6955
#ifdef CONFIG_NUMA
6956 6957
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6958

6959 6960
	if (sd_allnodes) {
		struct sched_group *sg;
6961

6962
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6963 6964
		init_numa_sched_groups_power(sg);
	}
6965 6966
#endif

L
Linus Torvalds 已提交
6967
	/* Attach the domains */
6968
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6969 6970 6971
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6972 6973
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6974 6975 6976
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6977
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6978
	}
6979 6980 6981

	return 0;

6982
#ifdef CONFIG_NUMA
6983 6984 6985
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6986
#endif
L
Linus Torvalds 已提交
6987
}
P
Paul Jackson 已提交
6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6999 7000 7001 7002
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7003
/*
I
Ingo Molnar 已提交
7004
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7005 7006
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7007
 */
7008
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7009
{
7010 7011
	int err;

7012
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7013 7014 7015 7016 7017
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7018
	err = build_sched_domains(doms_cur);
7019
	register_sched_domain_sysctl();
7020 7021

	return err;
7022 7023 7024
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
7025
{
7026
	free_sched_groups(cpu_map);
7027
}
L
Linus Torvalds 已提交
7028

7029 7030 7031 7032
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7033
static void detach_destroy_domains(const cpumask_t *cpu_map)
7034 7035 7036
{
	int i;

7037 7038
	unregister_sched_domain_sysctl();

7039
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7040
		cpu_attach_domain(NULL, &def_root_domain, i);
7041 7042 7043 7044
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
7045 7046
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7047
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7048 7049 7050 7051
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7052 7053 7054
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7055 7056 7057
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7058 7059
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

7070 7071
	lock_doms_cur();

7072 7073 7074
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
7110 7111

	register_sched_domain_sysctl();
7112 7113

	unlock_doms_cur();
P
Paul Jackson 已提交
7114 7115
}

7116
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7117
int arch_reinit_sched_domains(void)
7118 7119 7120
{
	int err;

7121
	get_online_cpus();
7122 7123
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7124
	put_online_cpus();
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7151 7152
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7153 7154 7155
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7156 7157
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7158 7159 7160 7161 7162 7163 7164
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7165 7166
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7167 7168 7169
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7190 7191
#endif

L
Linus Torvalds 已提交
7192
/*
I
Ingo Molnar 已提交
7193
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7194
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7195
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7196 7197 7198 7199 7200 7201 7202
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7203
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7204
	case CPU_DOWN_PREPARE:
7205
	case CPU_DOWN_PREPARE_FROZEN:
7206
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7207 7208 7209
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7210
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7211
	case CPU_DOWN_FAILED:
7212
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7213
	case CPU_ONLINE:
7214
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7215
	case CPU_DEAD:
7216
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7217 7218 7219 7220 7221 7222 7223 7224 7225
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7226
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7227 7228 7229 7230 7231 7232

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7233 7234
	cpumask_t non_isolated_cpus;

7235 7236 7237 7238 7239
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7240
	get_online_cpus();
7241
	arch_init_sched_domains(&cpu_online_map);
7242
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7243 7244
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7245
	put_online_cpus();
L
Linus Torvalds 已提交
7246 7247
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7248 7249 7250 7251

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7252
	sched_init_granularity();
L
Linus Torvalds 已提交
7253 7254 7255 7256
}
#else
void __init sched_init_smp(void)
{
7257 7258 7259 7260 7261
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
I
Ingo Molnar 已提交
7262
	sched_init_granularity();
L
Linus Torvalds 已提交
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7273
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7274 7275 7276 7277 7278
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7279
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7280 7281
}

P
Peter Zijlstra 已提交
7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7295
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7296 7297
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7298 7299 7300 7301 7302 7303 7304
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7305 7306
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7307

7308
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7309
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7310 7311
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7312 7313
}

P
Peter Zijlstra 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7332
#endif
P
Peter Zijlstra 已提交
7333

7334
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7335 7336 7337 7338 7339 7340 7341 7342
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7343
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7355 7356
void __init sched_init(void)
{
7357
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7358
	int i, j;
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
		ptr = (unsigned long)alloc_bootmem_low(alloc_size);

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
#endif
	}
I
Ingo Molnar 已提交
7388

G
Gregory Haskins 已提交
7389 7390 7391 7392
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7393 7394 7395 7396 7397 7398 7399 7400
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
#endif

7401
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7402 7403 7404
	list_add(&init_task_group.list, &task_groups);
#endif

7405
	for_each_possible_cpu(i) {
7406
		struct rq *rq;
L
Linus Torvalds 已提交
7407 7408 7409

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7410
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7411
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7412
		rq->clock = 1;
7413
		update_last_tick_seen(rq);
I
Ingo Molnar 已提交
7414
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7415
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7416
#ifdef CONFIG_FAIR_GROUP_SCHED
7417
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7418 7419 7420 7421 7422
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7423 7424
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7425 7426 7427 7428
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
P
Peter Zijlstra 已提交
7429 7430
#else
		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
I
Ingo Molnar 已提交
7431
#endif
L
Linus Torvalds 已提交
7432

I
Ingo Molnar 已提交
7433 7434
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7435
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7436
		rq->sd = NULL;
G
Gregory Haskins 已提交
7437
		rq->rd = NULL;
L
Linus Torvalds 已提交
7438
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7439
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7440
		rq->push_cpu = 0;
7441
		rq->cpu = i;
L
Linus Torvalds 已提交
7442 7443
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7444
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7445
#endif
P
Peter Zijlstra 已提交
7446
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7447
		atomic_set(&rq->nr_iowait, 0);
7448
		highest_cpu = i;
L
Linus Torvalds 已提交
7449 7450
	}

7451
	set_load_weight(&init_task);
7452

7453 7454 7455 7456
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7457
#ifdef CONFIG_SMP
7458
	nr_cpu_ids = highest_cpu + 1;
7459 7460 7461
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7462 7463 7464 7465
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7479 7480 7481 7482
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7483 7484

	scheduler_running = 1;
L
Linus Torvalds 已提交
7485 7486 7487 7488 7489
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7490
#ifdef in_atomic
L
Linus Torvalds 已提交
7491 7492 7493 7494 7495 7496 7497
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7498
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7499 7500 7501
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7502
		debug_show_held_locks(current);
7503 7504
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7505 7506 7507 7508 7509 7510 7511 7512
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7527 7528
void normalize_rt_tasks(void)
{
7529
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7530
	unsigned long flags;
7531
	struct rq *rq;
L
Linus Torvalds 已提交
7532

7533
	read_lock_irqsave(&tasklist_lock, flags);
7534
	do_each_thread(g, p) {
7535 7536 7537 7538 7539 7540
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7541 7542
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7543 7544 7545
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7546
#endif
I
Ingo Molnar 已提交
7547 7548 7549 7550 7551 7552 7553 7554 7555
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7556
			continue;
I
Ingo Molnar 已提交
7557
		}
L
Linus Torvalds 已提交
7558

7559
		spin_lock(&p->pi_lock);
7560
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7561

7562
		normalize_task(rq, p);
7563

7564
		__task_rq_unlock(rq);
7565
		spin_unlock(&p->pi_lock);
7566 7567
	} while_each_thread(g, p);

7568
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7569 7570 7571
}

#endif /* CONFIG_MAGIC_SYSRQ */
7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7590
struct task_struct *curr_task(int cpu)
7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7601 7602
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7603 7604 7605 7606 7607 7608 7609
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7610
void set_curr_task(int cpu, struct task_struct *p)
7611 7612 7613 7614 7615
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7616

7617 7618
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7633
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7634 7635 7636
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7637
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7638 7639
	int i;

7640
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7641 7642
	if (!tg->cfs_rq)
		goto err;
7643
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7644 7645
	if (!tg->se)
		goto err;
7646 7647

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7648 7649

	for_each_possible_cpu(i) {
7650
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7651

P
Peter Zijlstra 已提交
7652 7653
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7654 7655 7656
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7657 7658
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7659 7660 7661
		if (!se)
			goto err;

7662
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7698 7699 7700
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7701 7702 7703 7704
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

7705 7706
	destroy_rt_bandwidth(&tg->rt_bandwidth);

7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

7725
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7726 7727
	if (!tg->rt_rq)
		goto err;
7728
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7729 7730 7731
	if (!tg->rt_se)
		goto err;

7732 7733
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7734 7735 7736 7737

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7738 7739 7740 7741
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7742

P
Peter Zijlstra 已提交
7743 7744 7745 7746
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7747

P
Peter Zijlstra 已提交
7748
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7749 7750
	}

7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

7786
#ifdef CONFIG_GROUP_SCHED
7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7811
	spin_lock_irqsave(&task_group_lock, flags);
7812
	for_each_possible_cpu(i) {
7813 7814
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7815
	}
P
Peter Zijlstra 已提交
7816
	list_add_rcu(&tg->list, &task_groups);
7817
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7818

7819
	return tg;
S
Srivatsa Vaddagiri 已提交
7820 7821

err:
P
Peter Zijlstra 已提交
7822
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7823 7824 7825
	return ERR_PTR(-ENOMEM);
}

7826
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7827
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7828 7829
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7830
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7831 7832
}

7833
/* Destroy runqueue etc associated with a task group */
7834
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7835
{
7836
	unsigned long flags;
7837
	int i;
S
Srivatsa Vaddagiri 已提交
7838

7839
	spin_lock_irqsave(&task_group_lock, flags);
7840
	for_each_possible_cpu(i) {
7841 7842
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7843
	}
P
Peter Zijlstra 已提交
7844
	list_del_rcu(&tg->list);
7845
	spin_unlock_irqrestore(&task_group_lock, flags);
7846 7847

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7848
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7849 7850
}

7851
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7852 7853 7854
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7855 7856
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7857 7858 7859 7860 7861 7862 7863 7864 7865
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7866
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7867 7868
	on_rq = tsk->se.on_rq;

7869
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7870
		dequeue_task(rq, tsk, 0);
7871 7872
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7873

P
Peter Zijlstra 已提交
7874
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7875

P
Peter Zijlstra 已提交
7876 7877 7878 7879 7880
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7881 7882 7883
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7884
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7885 7886 7887

	task_rq_unlock(rq, &flags);
}
7888
#endif
S
Srivatsa Vaddagiri 已提交
7889

7890
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7891 7892 7893 7894 7895 7896
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7897
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7898 7899

	on_rq = se->on_rq;
7900
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7901 7902 7903 7904 7905
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7906
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7907
		enqueue_entity(cfs_rq, se, 0);
7908 7909

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7910 7911
}

7912 7913
static DEFINE_MUTEX(shares_mutex);

7914
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7915 7916
{
	int i;
7917
	unsigned long flags;
7918

7919 7920 7921 7922 7923 7924 7925 7926
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7927
	mutex_lock(&shares_mutex);
7928
	if (tg->shares == shares)
7929
		goto done;
S
Srivatsa Vaddagiri 已提交
7930

7931
	spin_lock_irqsave(&task_group_lock, flags);
7932 7933
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7934
	spin_unlock_irqrestore(&task_group_lock, flags);
7935 7936 7937 7938 7939 7940 7941 7942

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7943
	tg->shares = shares;
7944
	for_each_possible_cpu(i)
7945
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7946

7947 7948 7949 7950
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7951
	spin_lock_irqsave(&task_group_lock, flags);
7952 7953
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7954
	spin_unlock_irqrestore(&task_group_lock, flags);
7955
done:
7956
	mutex_unlock(&shares_mutex);
7957
	return 0;
S
Srivatsa Vaddagiri 已提交
7958 7959
}

7960 7961 7962 7963
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7964
#endif
7965

7966
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7967
/*
P
Peter Zijlstra 已提交
7968
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7969
 */
P
Peter Zijlstra 已提交
7970 7971 7972 7973 7974 7975 7976
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7977
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7978 7979 7980
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7981 7982 7983
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7984
	unsigned long global_ratio =
7985
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
7986 7987

	rcu_read_lock();
P
Peter Zijlstra 已提交
7988 7989 7990
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7991

7992 7993
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
7994 7995
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7996

P
Peter Zijlstra 已提交
7997
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7998 7999
}

8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8011 8012
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8013
{
P
Peter Zijlstra 已提交
8014
	int i, err = 0;
P
Peter Zijlstra 已提交
8015 8016

	mutex_lock(&rt_constraints_mutex);
8017
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8018
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8019 8020 8021
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8022 8023 8024 8025
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8026 8027

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8028 8029
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8039
 unlock:
8040
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8041 8042 8043
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8044 8045
}

8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8058 8059 8060 8061
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8062
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8063 8064
		return -1;

8065
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8066 8067 8068
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8116 8117
	return 0;
}
8118
#endif
8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8149

8150
#ifdef CONFIG_CGROUP_SCHED
8151 8152

/* return corresponding task_group object of a cgroup */
8153
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8154
{
8155 8156
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8157 8158 8159
}

static struct cgroup_subsys_state *
8160
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8161 8162 8163
{
	struct task_group *tg;

8164
	if (!cgrp->parent) {
8165
		/* This is early initialization for the top cgroup */
8166
		init_task_group.css.cgroup = cgrp;
8167 8168 8169 8170
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
8171
	if (cgrp->parent->parent)
8172 8173 8174 8175 8176 8177 8178
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8179
	tg->css.cgroup = cgrp;
8180 8181 8182 8183

	return &tg->css;
}

I
Ingo Molnar 已提交
8184 8185
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8186
{
8187
	struct task_group *tg = cgroup_tg(cgrp);
8188 8189 8190 8191

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8192 8193 8194
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8195
{
8196 8197
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8198
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8199 8200
		return -EINVAL;
#else
8201 8202 8203
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8204
#endif
8205 8206 8207 8208 8209

	return 0;
}

static void
8210
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8211 8212 8213 8214 8215
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8216
#ifdef CONFIG_FAIR_GROUP_SCHED
8217 8218
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8219
{
8220
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8221 8222
}

8223
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8224
{
8225
	struct task_group *tg = cgroup_tg(cgrp);
8226 8227 8228

	return (u64) tg->shares;
}
8229
#endif
8230

8231
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8232
static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
P
Peter Zijlstra 已提交
8233 8234 8235
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8236
{
P
Peter Zijlstra 已提交
8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8263 8264
}

P
Peter Zijlstra 已提交
8265 8266 8267 8268
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8269
{
P
Peter Zijlstra 已提交
8270 8271 8272
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8273

P
Peter Zijlstra 已提交
8274
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8275
}
8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8287
#endif
P
Peter Zijlstra 已提交
8288

8289
static struct cftype cpu_files[] = {
8290
#ifdef CONFIG_FAIR_GROUP_SCHED
8291 8292 8293 8294 8295
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8296 8297
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8298
	{
P
Peter Zijlstra 已提交
8299 8300 8301
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8302
	},
8303 8304 8305 8306 8307
	{
		.name = "rt_period_us",
		.read_uint = cpu_rt_period_read_uint,
		.write_uint = cpu_rt_period_write_uint,
	},
8308
#endif
8309 8310 8311 8312
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8313
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8314 8315 8316
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8317 8318 8319 8320 8321 8322 8323
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8324 8325 8326
	.early_init	= 1,
};

8327
#endif	/* CONFIG_CGROUP_SCHED */
8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8348
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8349
{
8350
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8363
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8380
static void
8381
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8382
{
8383
	struct cpuacct *ca = cgroup_ca(cgrp);
8384 8385 8386 8387 8388 8389

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8390
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8391
{
8392
	struct cpuacct *ca = cgroup_ca(cgrp);
8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8434 8435 8436 8437
static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
8438
		.write_uint = cpuusage_write,
8439 8440 8441
	},
};

8442
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8443
{
8444
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */