sched.c 217.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557 558
	unsigned long avg_load_per_task;

559
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
560 561 562
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
563 564 565 566 567 568
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
569 570 571 572 573
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
574 575 576 577
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
578 579

	/* schedule() stats */
580 581 582
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
583 584

	/* try_to_wake_up() stats */
585 586
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
587 588

	/* BKL stats */
589
	unsigned int bkl_count;
L
Linus Torvalds 已提交
590
#endif
591
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
592 593
};

594
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
595

I
Ingo Molnar 已提交
596 597 598 599 600
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

601 602 603 604 605 606 607 608 609
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
610 611
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
613 614 615 616
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
617 618
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
619 620 621 622 623 624

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

625 626 627 628 629
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
630 631 632 633 634 635 636 637 638 639 640 641
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
642 643 644 645

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
646
enum {
P
Peter Zijlstra 已提交
647
#include "sched_features.h"
I
Ingo Molnar 已提交
648 649
};

P
Peter Zijlstra 已提交
650 651 652 653 654
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
655
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
656 657 658 659 660 661 662 663 664
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

665
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
666 667 668 669 670 671
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

672
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
700
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
730
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
773

774 775 776 777 778 779
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
780
/*
P
Peter Zijlstra 已提交
781
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
782 783
 * default: 1s
 */
P
Peter Zijlstra 已提交
784
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
785

786 787
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
788 789 790 791 792
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
793

794 795 796 797 798 799 800 801 802 803 804 805
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
806

L
Linus Torvalds 已提交
807
#ifndef prepare_arch_switch
808 809 810 811 812 813
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

814 815 816 817 818
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

819
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
820
static inline int task_running(struct rq *rq, struct task_struct *p)
821
{
822
	return task_current(rq, p);
823 824
}

825
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
826 827 828
{
}

829
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
830
{
831 832 833 834
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
835 836 837 838 839 840 841
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

842 843 844 845
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
846
static inline int task_running(struct rq *rq, struct task_struct *p)
847 848 849 850
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
851
	return task_current(rq, p);
852 853 854
#endif
}

855
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

872
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
873 874 875 876 877 878 879 880 881 882 883 884
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
885
#endif
886 887
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
888

889 890 891 892
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
893
static inline struct rq *__task_rq_lock(struct task_struct *p)
894 895
	__acquires(rq->lock)
{
896 897 898 899 900
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
901 902 903 904
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
905 906
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
907
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
908 909
 * explicitly disabling preemption.
 */
910
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
911 912
	__acquires(rq->lock)
{
913
	struct rq *rq;
L
Linus Torvalds 已提交
914

915 916 917 918 919 920
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
921 922 923 924
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
925
static void __task_rq_unlock(struct rq *rq)
926 927 928 929 930
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

931
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
932 933 934 935 936 937
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
938
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
939
 */
A
Alexey Dobriyan 已提交
940
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
941 942
	__acquires(rq->lock)
{
943
	struct rq *rq;
L
Linus Torvalds 已提交
944 945 946 947 948 949 950 951

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
987
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
988 989 990 991 992 993 994 995 996 997 998
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
999 1000
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1076
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1077 1078 1079 1080 1081 1082
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1083
#ifdef CONFIG_SMP
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1139
#endif /* CONFIG_SMP */
1140 1141

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1178 1179 1180 1181

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1182 1183
#endif

I
Ingo Molnar 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1197
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1198 1199 1200 1201 1202
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1203
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1204 1205
		return;

P
Peter Zijlstra 已提交
1206
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1269
#endif /* CONFIG_NO_HZ */
1270

1271
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1272
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1273 1274
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1275
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1276
}
1277
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1278

1279 1280 1281 1282 1283 1284 1285 1286
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1287 1288 1289
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1290
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1291

1292 1293 1294
/*
 * delta *= weight / lw
 */
1295
static unsigned long
1296 1297 1298 1299 1300
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1301 1302 1303 1304 1305 1306 1307
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1308 1309 1310 1311 1312

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1313
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1314
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1315 1316
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1317
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1318

1319
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1320 1321
}

1322
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1323 1324
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1325
	lw->inv_weight = 0;
1326 1327
}

1328
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1329 1330
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334 1335 1336 1337
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1338
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1339 1340 1341 1342
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1354 1355 1356
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1357 1358
 */
static const int prio_to_weight[40] = {
1359 1360 1361 1362 1363 1364 1365 1366
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1367 1368
};

1369 1370 1371 1372 1373 1374 1375
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1376
static const u32 prio_to_wmult[40] = {
1377 1378 1379 1380 1381 1382 1383 1384
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1385
};
1386

I
Ingo Molnar 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1412

1413 1414 1415 1416 1417 1418
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1429 1430 1431 1432
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}

1444 1445
#ifdef CONFIG_FAIR_GROUP_SCHED

1446
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1447 1448 1449 1450 1451

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1452 1453
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1454 1455 1456 1457 1458 1459
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1460
	(*down)(parent, cpu, sd);
1461 1462 1463 1464 1465 1466 1467
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1468
	(*up)(parent, cpu, sd);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1483
__update_group_shares_cpu(struct task_group *tg, int cpu,
1484
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1485 1486 1487 1488 1489
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1490
	if (!tg->se[cpu])
1491 1492
		return;

1493
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1505 1506 1507
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1508 1509 1510 1511 1512 1513
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1514
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1515 1516 1517 1518

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1519
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1520 1521 1522 1523 1524 1525

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1526
	__set_se_shares(tg->se[cpu], shares);
1527 1528 1529
}

/*
1530 1531 1532
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1533 1534
 */
static void
1535
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1536
{
1537 1538 1539
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1540

1541 1542 1543
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1544 1545
	}

1546 1547 1548 1549 1550
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1551 1552 1553 1554 1555 1556

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1557
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1558 1559 1560 1561 1562
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1563 1564 1565
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1566
 */
1567
static void
1568
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1569
{
1570
	unsigned long load;
1571

1572 1573 1574 1575 1576 1577 1578
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1579

1580
	tg->cfs_rq[cpu]->h_load = load;
1581 1582
}

1583 1584
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1585 1586 1587
{
}

1588
static void update_shares(struct sched_domain *sd)
1589
{
1590
	walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1591 1592
}

1593 1594 1595 1596 1597 1598 1599
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1600
static void update_h_load(int cpu)
1601
{
1602
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1603 1604 1605 1606 1607 1608 1609 1610 1611
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1612
static inline void update_shares(struct sched_domain *sd)
1613 1614 1615
{
}

1616 1617 1618 1619
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1620 1621
#endif

1622 1623
#endif

I
Ingo Molnar 已提交
1624 1625
#include "sched_stats.h"
#include "sched_idletask.c"
1626 1627
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1628 1629 1630 1631 1632
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1633 1634
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1635

1636
static void inc_nr_running(struct rq *rq)
1637 1638 1639 1640
{
	rq->nr_running++;
}

1641
static void dec_nr_running(struct rq *rq)
1642 1643 1644 1645
{
	rq->nr_running--;
}

1646 1647 1648
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1649 1650 1651 1652
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1653

I
Ingo Molnar 已提交
1654 1655 1656 1657 1658 1659 1660 1661
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1662

I
Ingo Molnar 已提交
1663 1664
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1665 1666
}

1667
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1668
{
I
Ingo Molnar 已提交
1669
	sched_info_queued(p);
1670
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1671
	p->se.on_rq = 1;
1672 1673
}

1674
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1675
{
1676
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1677
	p->se.on_rq = 0;
1678 1679
}

1680
/*
I
Ingo Molnar 已提交
1681
 * __normal_prio - return the priority that is based on the static prio
1682 1683 1684
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1685
	return p->static_prio;
1686 1687
}

1688 1689 1690 1691 1692 1693 1694
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1695
static inline int normal_prio(struct task_struct *p)
1696 1697 1698
{
	int prio;

1699
	if (task_has_rt_policy(p))
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1713
static int effective_prio(struct task_struct *p)
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1726
/*
I
Ingo Molnar 已提交
1727
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1728
 */
I
Ingo Molnar 已提交
1729
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1730
{
1731
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1732
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1733

1734
	enqueue_task(rq, p, wakeup);
1735
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1741
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1742
{
1743
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1744 1745
		rq->nr_uninterruptible++;

1746
	dequeue_task(rq, p, sleep);
1747
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1754
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1755 1756 1757 1758
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1759 1760
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1761
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1762
#ifdef CONFIG_SMP
1763 1764 1765 1766 1767 1768
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1769 1770
	task_thread_info(p)->cpu = cpu;
#endif
1771 1772
}

1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1785
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1786

1787 1788 1789 1790 1791 1792
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1793 1794 1795
/*
 * Is this task likely cache-hot:
 */
1796
static int
1797 1798 1799 1800
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1801 1802 1803
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1804
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1805 1806
		return 1;

1807 1808 1809
	if (p->sched_class != &fair_sched_class)
		return 0;

1810 1811 1812 1813 1814
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1815 1816 1817 1818 1819 1820
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1821
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1822
{
I
Ingo Molnar 已提交
1823 1824
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1825 1826
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1827
	u64 clock_offset;
I
Ingo Molnar 已提交
1828 1829

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1830 1831 1832 1833

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1834 1835 1836 1837
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1838 1839 1840 1841 1842
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1843
#endif
1844 1845
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1846 1847

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1848 1849
}

1850
struct migration_req {
L
Linus Torvalds 已提交
1851 1852
	struct list_head list;

1853
	struct task_struct *task;
L
Linus Torvalds 已提交
1854 1855 1856
	int dest_cpu;

	struct completion done;
1857
};
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1863
static int
1864
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1865
{
1866
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1872
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1881

L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1894
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1895 1896
{
	unsigned long flags;
I
Ingo Molnar 已提交
1897
	int running, on_rq;
1898
	struct rq *rq;
L
Linus Torvalds 已提交
1899

1900 1901 1902 1903 1904 1905 1906 1907
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1908

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1957

1958 1959 1960 1961 1962 1963 1964
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1980
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1992 1993
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1994 1995 1996 1997
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1998
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1999
{
2000
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2001
	unsigned long total = weighted_cpuload(cpu);
2002

2003
	if (type == 0)
I
Ingo Molnar 已提交
2004
		return total;
2005

I
Ingo Molnar 已提交
2006
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2007 2008 2009
}

/*
2010 2011
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2012
 */
A
Alexey Dobriyan 已提交
2013
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2014
{
2015
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2016
	unsigned long total = weighted_cpuload(cpu);
2017

N
Nick Piggin 已提交
2018
	if (type == 0)
I
Ingo Molnar 已提交
2019
		return total;
2020

I
Ingo Molnar 已提交
2021
	return max(rq->cpu_load[type-1], total);
2022 2023
}

N
Nick Piggin 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2041 2042
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2043
			continue;
2044

N
Nick Piggin 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2061 2062
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2063 2064 2065 2066 2067 2068 2069 2070

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2071
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2072 2073 2074 2075 2076 2077 2078

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2079
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2080
 */
I
Ingo Molnar 已提交
2081
static int
2082 2083
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2084 2085 2086 2087 2088
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2089
	/* Traverse only the allowed CPUs */
2090
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2091

2092
	for_each_cpu_mask(i, *tmp) {
2093
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2119

2120
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2121 2122 2123
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2124 2125
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2126 2127
		if (tmp->flags & flag)
			sd = tmp;
2128
	}
N
Nick Piggin 已提交
2129

2130 2131 2132
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2133
	while (sd) {
2134
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2135
		struct sched_group *group;
2136 2137 2138 2139 2140 2141
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2142 2143 2144

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2145 2146 2147 2148
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2149

2150
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2151 2152 2153 2154 2155
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2156

2157
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2189
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2190
{
2191
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2192 2193
	unsigned long flags;
	long old_state;
2194
	struct rq *rq;
L
Linus Torvalds 已提交
2195

2196 2197 2198
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2199
	smp_wmb();
L
Linus Torvalds 已提交
2200 2201 2202 2203 2204
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2205
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2206 2207 2208
		goto out_running;

	cpu = task_cpu(p);
2209
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2216 2217 2218
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2219 2220 2221 2222 2223 2224
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2225
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2226 2227 2228 2229 2230 2231
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2245
#endif /* CONFIG_SCHEDSTATS */
2246

L
Linus Torvalds 已提交
2247 2248
out_activate:
#endif /* CONFIG_SMP */
2249 2250 2251 2252 2253 2254 2255 2256 2257
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2258
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2259
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2260 2261 2262
	success = 1;

out_running:
I
Ingo Molnar 已提交
2263 2264
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2265
	p->state = TASK_RUNNING;
2266 2267 2268 2269
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2276
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2277
{
2278
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2279 2280 2281
}
EXPORT_SYMBOL(wake_up_process);

2282
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2290 2291 2292 2293 2294 2295 2296
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2297
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2298 2299
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2300 2301 2302

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2303 2304 2305 2306 2307 2308
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2309
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2310
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2311
#endif
N
Nick Piggin 已提交
2312

P
Peter Zijlstra 已提交
2313
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2314
	p->se.on_rq = 0;
2315
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2316

2317 2318 2319 2320
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2342
	set_task_cpu(p, cpu);
2343 2344 2345 2346 2347

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2348 2349
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2350

2351
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2352
	if (likely(sched_info_on()))
2353
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2354
#endif
2355
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2356 2357
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2358
#ifdef CONFIG_PREEMPT
2359
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2360
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2361
#endif
N
Nick Piggin 已提交
2362
	put_cpu();
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2372
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2373 2374
{
	unsigned long flags;
I
Ingo Molnar 已提交
2375
	struct rq *rq;
L
Linus Torvalds 已提交
2376 2377

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2378
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2379
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2380 2381 2382

	p->prio = effective_prio(p);

2383
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2384
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2385 2386
	} else {
		/*
I
Ingo Molnar 已提交
2387 2388
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2389
		 */
2390
		p->sched_class->task_new(rq, p);
2391
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2392
	}
I
Ingo Molnar 已提交
2393
	check_preempt_curr(rq, p);
2394 2395 2396 2397
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2398
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2399 2400
}

2401 2402 2403
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2404 2405
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2406 2407 2408 2409 2410 2411 2412 2413 2414
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2415
 * @notifier: notifier struct to unregister
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2445
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2457
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2458

2459 2460 2461
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2462
 * @prev: the current task that is being switched out
2463 2464 2465 2466 2467 2468 2469 2470 2471
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2472 2473 2474
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2475
{
2476
	fire_sched_out_preempt_notifiers(prev, next);
2477 2478 2479 2480
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2481 2482
/**
 * finish_task_switch - clean up after a task-switch
2483
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2484 2485
 * @prev: the thread we just switched away from.
 *
2486 2487 2488 2489
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2490 2491
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2492
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2493 2494 2495
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2496
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2497 2498 2499
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2500
	long prev_state;
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2506
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2507 2508
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2509
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2510 2511 2512 2513 2514
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2515
	prev_state = prev->state;
2516 2517
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2518 2519 2520 2521
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2522

2523
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2524 2525
	if (mm)
		mmdrop(mm);
2526
	if (unlikely(prev_state == TASK_DEAD)) {
2527 2528 2529
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2530
		 */
2531
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2532
		put_task_struct(prev);
2533
	}
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2540
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2541 2542
	__releases(rq->lock)
{
2543 2544
	struct rq *rq = this_rq();

2545 2546 2547 2548 2549
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2550
	if (current->set_child_tid)
2551
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2552 2553 2554 2555 2556 2557
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2558
static inline void
2559
context_switch(struct rq *rq, struct task_struct *prev,
2560
	       struct task_struct *next)
L
Linus Torvalds 已提交
2561
{
I
Ingo Molnar 已提交
2562
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2563

2564
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2565 2566
	mm = next->mm;
	oldmm = prev->active_mm;
2567 2568 2569 2570 2571 2572 2573
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2574
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2581
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2582 2583 2584
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2585 2586 2587 2588 2589 2590 2591
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2592
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2593
#endif
L
Linus Torvalds 已提交
2594 2595 2596 2597

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2598 2599 2600 2601 2602 2603 2604
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2628
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2643 2644
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2645

2646
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2656
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2657 2658 2659 2660 2661
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2677
/*
I
Ingo Molnar 已提交
2678 2679
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2680
 */
I
Ingo Molnar 已提交
2681
static void update_cpu_load(struct rq *this_rq)
2682
{
2683
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2696 2697 2698 2699 2700 2701 2702
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2703 2704
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2705 2706
}

I
Ingo Molnar 已提交
2707 2708
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2709 2710 2711 2712 2713 2714
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2715
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2716 2717 2718
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2719
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2720 2721 2722 2723
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2724
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2725 2726 2727 2728 2729 2730 2731
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2732 2733
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2734 2735 2736 2737 2738 2739 2740 2741
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2742
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2756
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2757 2758 2759 2760
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2761 2762
	int ret = 0;

2763 2764 2765 2766 2767
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2768
	if (unlikely(!spin_trylock(&busiest->lock))) {
2769
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2770 2771 2772
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2773
			ret = 1;
L
Linus Torvalds 已提交
2774 2775 2776
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2777
	return ret;
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2783
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2784 2785
 * the cpu_allowed mask is restored.
 */
2786
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2787
{
2788
	struct migration_req req;
L
Linus Torvalds 已提交
2789
	unsigned long flags;
2790
	struct rq *rq;
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2801

L
Linus Torvalds 已提交
2802 2803 2804 2805 2806
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2807

L
Linus Torvalds 已提交
2808 2809 2810 2811 2812 2813 2814
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2815 2816
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2817 2818 2819 2820
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2821
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2822
	put_cpu();
N
Nick Piggin 已提交
2823 2824
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2825 2826 2827 2828 2829 2830
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2831 2832
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2833
{
2834
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2835
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2836
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2837 2838 2839 2840
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2841
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2847
static
2848
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2849
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2850
		     int *all_pinned)
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2858 2859
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2860
		return 0;
2861
	}
2862 2863
	*all_pinned = 0;

2864 2865
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2866
		return 0;
2867
	}
L
Linus Torvalds 已提交
2868

2869 2870 2871 2872 2873 2874
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2875 2876
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2877
#ifdef CONFIG_SCHEDSTATS
2878
		if (task_hot(p, rq->clock, sd)) {
2879
			schedstat_inc(sd, lb_hot_gained[idle]);
2880 2881
			schedstat_inc(p, se.nr_forced_migrations);
		}
2882 2883 2884 2885
#endif
		return 1;
	}

2886 2887
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2888
		return 0;
2889
	}
L
Linus Torvalds 已提交
2890 2891 2892
	return 1;
}

2893 2894 2895 2896 2897
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2898
{
2899
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2900 2901
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2902

2903
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2904 2905
		goto out;

2906 2907
	pinned = 1;

L
Linus Torvalds 已提交
2908
	/*
I
Ingo Molnar 已提交
2909
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2910
	 */
I
Ingo Molnar 已提交
2911 2912
	p = iterator->start(iterator->arg);
next:
2913
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2914
		goto out;
2915
	/*
2916
	 * To help distribute high priority tasks across CPUs we don't
2917 2918 2919
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2920 2921
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2922
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2923 2924 2925
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2926 2927
	}

I
Ingo Molnar 已提交
2928
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2929
	pulled++;
I
Ingo Molnar 已提交
2930
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2931

2932
	/*
2933
	 * We only want to steal up to the prescribed amount of weighted load.
2934
	 */
2935
	if (rem_load_move > 0) {
2936 2937
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2938 2939
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2940 2941 2942
	}
out:
	/*
2943
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2944 2945 2946 2947
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2948 2949 2950

	if (all_pinned)
		*all_pinned = pinned;
2951 2952

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2953 2954
}

I
Ingo Molnar 已提交
2955
/*
P
Peter Williams 已提交
2956 2957 2958
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2959 2960 2961 2962
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2963
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2964 2965 2966
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2967
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2968
	unsigned long total_load_moved = 0;
2969
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2970 2971

	do {
P
Peter Williams 已提交
2972 2973
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2974
				max_load_move - total_load_moved,
2975
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2976
		class = class->next;
P
Peter Williams 已提交
2977
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2978

P
Peter Williams 已提交
2979 2980 2981
	return total_load_moved > 0;
}

2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3018
	const struct sched_class *class;
P
Peter Williams 已提交
3019 3020

	for (class = sched_class_highest; class; class = class->next)
3021
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3022 3023 3024
			return 1;

	return 0;
I
Ingo Molnar 已提交
3025 3026
}

L
Linus Torvalds 已提交
3027 3028
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3029 3030
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3031 3032 3033
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3034
		   unsigned long *imbalance, enum cpu_idle_type idle,
3035
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3036 3037 3038
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3039
	unsigned long max_pull;
3040 3041
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3042
	int load_idx, group_imb = 0;
3043 3044 3045 3046 3047 3048
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3049 3050

	max_load = this_load = total_load = total_pwr = 0;
3051 3052
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3053

I
Ingo Molnar 已提交
3054
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3055
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3056
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3057 3058 3059
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3060 3061

	do {
3062
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3063 3064
		int local_group;
		int i;
3065
		int __group_imb = 0;
3066
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3067
		unsigned long sum_nr_running, sum_weighted_load;
3068 3069
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3070 3071 3072

		local_group = cpu_isset(this_cpu, group->cpumask);

3073 3074 3075
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3076
		/* Tally up the load of all CPUs in the group */
3077
		sum_weighted_load = sum_nr_running = avg_load = 0;
3078 3079
		sum_avg_load_per_task = avg_load_per_task = 0;

3080 3081
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3082 3083

		for_each_cpu_mask(i, group->cpumask) {
3084 3085 3086 3087 3088 3089
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3090

3091
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3092 3093
				*sd_idle = 0;

L
Linus Torvalds 已提交
3094
			/* Bias balancing toward cpus of our domain */
3095 3096 3097 3098 3099 3100
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3101
				load = target_load(i, load_idx);
3102
			} else {
N
Nick Piggin 已提交
3103
				load = source_load(i, load_idx);
3104 3105 3106 3107 3108
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3109 3110

			avg_load += load;
3111
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3112
			sum_weighted_load += weighted_cpuload(i);
3113 3114

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3115 3116
		}

3117 3118 3119
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3120 3121
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3122
		 */
3123 3124
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3125 3126 3127 3128
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3129
		total_load += avg_load;
3130
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3131 3132

		/* Adjust by relative CPU power of the group */
3133 3134
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3135

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3150 3151
			__group_imb = 1;

3152
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3153

L
Linus Torvalds 已提交
3154 3155 3156
		if (local_group) {
			this_load = avg_load;
			this = group;
3157 3158 3159
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3160
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3161 3162
			max_load = avg_load;
			busiest = group;
3163 3164
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3165
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3166
		}
3167 3168 3169 3170 3171 3172

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3173 3174 3175
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3176 3177 3178 3179 3180 3181 3182 3183 3184

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3185
		/*
3186 3187
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3188 3189
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3190
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3191
			goto group_next;
3192

I
Ingo Molnar 已提交
3193
		/*
3194
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3195 3196 3197 3198 3199
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3200 3201
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3202 3203
			group_min = group;
			min_nr_running = sum_nr_running;
3204 3205
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3206
		}
3207

I
Ingo Molnar 已提交
3208
		/*
3209
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3221
		}
3222 3223
group_next:
#endif
L
Linus Torvalds 已提交
3224 3225 3226
		group = group->next;
	} while (group != sd->groups);

3227
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3228 3229 3230 3231 3232 3233 3234 3235
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3236
	busiest_load_per_task /= busiest_nr_running;
3237 3238 3239
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3240 3241 3242 3243 3244 3245 3246 3247
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3248
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3249 3250
	 * appear as very large values with unsigned longs.
	 */
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3263 3264

	/* Don't want to pull so many tasks that a group would go idle */
3265
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3266

L
Linus Torvalds 已提交
3267
	/* How much load to actually move to equalise the imbalance */
3268 3269
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3270 3271
			/ SCHED_LOAD_SCALE;

3272 3273 3274 3275 3276 3277
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3278
	if (*imbalance < busiest_load_per_task) {
3279
		unsigned long tmp, pwr_now, pwr_move;
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3290
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3291

3292
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3293
					busiest_load_per_task * imbn) {
3294
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3304 3305 3306 3307
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3308 3309 3310
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3311 3312
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3313
		if (max_load > tmp)
3314
			pwr_move += busiest->__cpu_power *
3315
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3316 3317

		/* Amount of load we'd add */
3318
		if (max_load * busiest->__cpu_power <
3319
				busiest_load_per_task * SCHED_LOAD_SCALE)
3320 3321
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3322
		else
3323 3324 3325 3326
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3327 3328 3329
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3330 3331
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3332 3333 3334 3335 3336
	}

	return busiest;

out_balanced:
3337
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3338
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3339
		goto ret;
L
Linus Torvalds 已提交
3340

3341 3342 3343 3344 3345
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3346
ret:
L
Linus Torvalds 已提交
3347 3348 3349 3350 3351 3352 3353
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3354
static struct rq *
I
Ingo Molnar 已提交
3355
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3356
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3357
{
3358
	struct rq *busiest = NULL, *rq;
3359
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3360 3361 3362
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3363
		unsigned long wl;
3364 3365 3366 3367

		if (!cpu_isset(i, *cpus))
			continue;

3368
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3369
		wl = weighted_cpuload(i);
3370

I
Ingo Molnar 已提交
3371
		if (rq->nr_running == 1 && wl > imbalance)
3372
			continue;
L
Linus Torvalds 已提交
3373

I
Ingo Molnar 已提交
3374 3375
		if (wl > max_load) {
			max_load = wl;
3376
			busiest = rq;
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381 3382
		}
	}

	return busiest;
}

3383 3384 3385 3386 3387 3388
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3389 3390 3391 3392
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3393
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3394
			struct sched_domain *sd, enum cpu_idle_type idle,
3395
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3396
{
P
Peter Williams 已提交
3397
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3398 3399
	struct sched_group *group;
	unsigned long imbalance;
3400
	struct rq *busiest;
3401
	unsigned long flags;
N
Nick Piggin 已提交
3402

3403 3404
	cpus_setall(*cpus);

3405 3406 3407
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3408
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3409
	 * portraying it as CPU_NOT_IDLE.
3410
	 */
I
Ingo Molnar 已提交
3411
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3412
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3413
		sd_idle = 1;
L
Linus Torvalds 已提交
3414

3415
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3416

3417
redo:
3418
	update_shares(sd);
3419
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3420
				   cpus, balance);
3421

3422
	if (*balance == 0)
3423 3424
		goto out_balanced;

L
Linus Torvalds 已提交
3425 3426 3427 3428 3429
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3430
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3431 3432 3433 3434 3435
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3436
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3437 3438 3439

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3440
	ld_moved = 0;
L
Linus Torvalds 已提交
3441 3442 3443 3444
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3445
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3446 3447
		 * correctly treated as an imbalance.
		 */
3448
		local_irq_save(flags);
N
Nick Piggin 已提交
3449
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3450
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3451
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3452
		double_rq_unlock(this_rq, busiest);
3453
		local_irq_restore(flags);
3454

3455 3456 3457
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3458
		if (ld_moved && this_cpu != smp_processor_id())
3459 3460
			resched_cpu(this_cpu);

3461
		/* All tasks on this runqueue were pinned by CPU affinity */
3462
		if (unlikely(all_pinned)) {
3463 3464
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3465
				goto redo;
3466
			goto out_balanced;
3467
		}
L
Linus Torvalds 已提交
3468
	}
3469

P
Peter Williams 已提交
3470
	if (!ld_moved) {
L
Linus Torvalds 已提交
3471 3472 3473 3474 3475
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3476
			spin_lock_irqsave(&busiest->lock, flags);
3477 3478 3479 3480 3481

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3482
				spin_unlock_irqrestore(&busiest->lock, flags);
3483 3484 3485 3486
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3487 3488 3489
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3490
				active_balance = 1;
L
Linus Torvalds 已提交
3491
			}
3492
			spin_unlock_irqrestore(&busiest->lock, flags);
3493
			if (active_balance)
L
Linus Torvalds 已提交
3494 3495 3496 3497 3498 3499
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3500
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3501
		}
3502
	} else
L
Linus Torvalds 已提交
3503 3504
		sd->nr_balance_failed = 0;

3505
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3506 3507
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3508 3509 3510 3511 3512 3513 3514 3515 3516
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3517 3518
	}

P
Peter Williams 已提交
3519
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3520
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3521 3522 3523
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3524 3525 3526 3527

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3528
	sd->nr_balance_failed = 0;
3529 3530

out_one_pinned:
L
Linus Torvalds 已提交
3531
	/* tune up the balancing interval */
3532 3533
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3534 3535
		sd->balance_interval *= 2;

3536
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3537
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3538 3539 3540 3541
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3542 3543
	if (ld_moved)
		update_shares(sd);
3544
	return ld_moved;
L
Linus Torvalds 已提交
3545 3546 3547 3548 3549 3550
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3551
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3552 3553
 * this_rq is locked.
 */
3554
static int
3555 3556
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3557 3558
{
	struct sched_group *group;
3559
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3560
	unsigned long imbalance;
P
Peter Williams 已提交
3561
	int ld_moved = 0;
N
Nick Piggin 已提交
3562
	int sd_idle = 0;
3563
	int all_pinned = 0;
3564 3565

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3566

3567 3568 3569 3570
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3571
	 * portraying it as CPU_NOT_IDLE.
3572 3573 3574
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3575
		sd_idle = 1;
L
Linus Torvalds 已提交
3576

3577
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3578
redo:
3579
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3580
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3581
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3582
	if (!group) {
I
Ingo Molnar 已提交
3583
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3584
		goto out_balanced;
L
Linus Torvalds 已提交
3585 3586
	}

3587
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3588
	if (!busiest) {
I
Ingo Molnar 已提交
3589
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3590
		goto out_balanced;
L
Linus Torvalds 已提交
3591 3592
	}

N
Nick Piggin 已提交
3593 3594
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3595
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3596

P
Peter Williams 已提交
3597
	ld_moved = 0;
3598 3599 3600
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3601 3602
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3603
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3604 3605
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3606
		spin_unlock(&busiest->lock);
3607

3608
		if (unlikely(all_pinned)) {
3609 3610
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3611 3612
				goto redo;
		}
3613 3614
	}

P
Peter Williams 已提交
3615
	if (!ld_moved) {
I
Ingo Molnar 已提交
3616
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3617 3618
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3619 3620
			return -1;
	} else
3621
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3622

3623
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3624
	return ld_moved;
3625 3626

out_balanced:
I
Ingo Molnar 已提交
3627
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3628
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3629
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3630
		return -1;
3631
	sd->nr_balance_failed = 0;
3632

3633
	return 0;
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3640
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3641 3642
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3643 3644
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3645
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3646 3647

	for_each_domain(this_cpu, sd) {
3648 3649 3650 3651 3652 3653
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3654
			/* If we've pulled tasks over stop searching: */
3655 3656
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3657 3658 3659 3660 3661 3662

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3663
	}
I
Ingo Molnar 已提交
3664
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3665 3666 3667 3668 3669
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3670
	}
L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3681
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3682
{
3683
	int target_cpu = busiest_rq->push_cpu;
3684 3685
	struct sched_domain *sd;
	struct rq *target_rq;
3686

3687
	/* Is there any task to move? */
3688 3689 3690 3691
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3692 3693

	/*
3694
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3695
	 * we need to fix it. Originally reported by
3696
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3697
	 */
3698
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3699

3700 3701
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3702 3703
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3704 3705

	/* Search for an sd spanning us and the target CPU. */
3706
	for_each_domain(target_cpu, sd) {
3707
		if ((sd->flags & SD_LOAD_BALANCE) &&
3708
		    cpu_isset(busiest_cpu, sd->span))
3709
				break;
3710
	}
3711

3712
	if (likely(sd)) {
3713
		schedstat_inc(sd, alb_count);
3714

P
Peter Williams 已提交
3715 3716
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3717 3718 3719 3720
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3721
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3722 3723
}

3724 3725 3726
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3727
	cpumask_t cpu_mask;
3728 3729 3730 3731 3732
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3733
/*
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3744
 *
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3801 3802 3803 3804 3805
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3806
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3807
{
3808 3809
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3810 3811
	unsigned long interval;
	struct sched_domain *sd;
3812
	/* Earliest time when we have to do rebalance again */
3813
	unsigned long next_balance = jiffies + 60*HZ;
3814
	int update_next_balance = 0;
3815
	int need_serialize;
3816
	cpumask_t tmp;
L
Linus Torvalds 已提交
3817

3818
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3819 3820 3821 3822
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3823
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3824 3825 3826 3827 3828 3829
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3830 3831 3832
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3833
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3834

3835
		if (need_serialize) {
3836 3837 3838 3839
			if (!spin_trylock(&balancing))
				goto out;
		}

3840
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3841
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3842 3843
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3844 3845 3846
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3847
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3848
			}
3849
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3850
		}
3851
		if (need_serialize)
3852 3853
			spin_unlock(&balancing);
out:
3854
		if (time_after(next_balance, sd->last_balance + interval)) {
3855
			next_balance = sd->last_balance + interval;
3856 3857
			update_next_balance = 1;
		}
3858 3859 3860 3861 3862 3863 3864 3865

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3866
	}
3867 3868 3869 3870 3871 3872 3873 3874

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3875 3876 3877 3878 3879 3880 3881 3882 3883
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3884 3885 3886 3887
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3888

I
Ingo Molnar 已提交
3889
	rebalance_domains(this_cpu, idle);
3890 3891 3892 3893 3894 3895 3896

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3897 3898
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3899 3900 3901 3902
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3903
		cpu_clear(this_cpu, cpus);
3904 3905 3906 3907 3908 3909 3910 3911 3912
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3913
			rebalance_domains(balance_cpu, CPU_IDLE);
3914 3915

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3916 3917
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3930
static inline void trigger_load_balance(struct rq *rq, int cpu)
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3957
			if (ilb < nr_cpu_ids)
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3982
}
I
Ingo Molnar 已提交
3983 3984 3985

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3986 3987 3988
/*
 * on UP we do not need to balance between CPUs:
 */
3989
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3990 3991
{
}
I
Ingo Molnar 已提交
3992

L
Linus Torvalds 已提交
3993 3994 3995 3996 3997 3998 3999
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4000 4001
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4002
 */
4003
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4004 4005
{
	unsigned long flags;
4006 4007
	u64 ns, delta_exec;
	struct rq *rq;
4008

4009 4010
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4011
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4012 4013
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4014 4015 4016 4017
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4018

L
Linus Torvalds 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4042 4043 4044 4045 4046
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4047
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4081
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4082 4083
	cputime64_t tmp;

4084 4085 4086 4087
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4088

L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095 4096
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4097
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4098
		cpustat->system = cputime64_add(cpustat->system, tmp);
4099
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4100 4101 4102 4103 4104 4105 4106
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4118 4119 4120 4121 4122 4123 4124 4125 4126
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4127
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133 4134

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4135
	} else
L
Linus Torvalds 已提交
4136 4137 4138
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4150
	struct task_struct *curr = rq->curr;
4151 4152

	sched_clock_tick();
I
Ingo Molnar 已提交
4153 4154

	spin_lock(&rq->lock);
4155
	update_rq_clock(rq);
4156
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4157
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4158
	spin_unlock(&rq->lock);
4159

4160
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4161 4162
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4163
#endif
L
Linus Torvalds 已提交
4164 4165 4166 4167
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4168
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4169 4170 4171 4172
{
	/*
	 * Underflow?
	 */
4173 4174
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4175 4176 4177 4178
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4179 4180
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4181 4182 4183
}
EXPORT_SYMBOL(add_preempt_count);

4184
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4185 4186 4187 4188
{
	/*
	 * Underflow?
	 */
4189 4190
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4191 4192 4193
	/*
	 * Is the spinlock portion underflowing?
	 */
4194 4195 4196 4197
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4198 4199 4200 4201 4202 4203 4204
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4205
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4206
 */
I
Ingo Molnar 已提交
4207
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4208
{
4209 4210 4211 4212 4213
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4214
	debug_show_held_locks(prev);
4215
	print_modules();
I
Ingo Molnar 已提交
4216 4217
	if (irqs_disabled())
		print_irqtrace_events(prev);
4218 4219 4220 4221 4222

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4223
}
L
Linus Torvalds 已提交
4224

I
Ingo Molnar 已提交
4225 4226 4227 4228 4229
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4230
	/*
I
Ingo Molnar 已提交
4231
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4232 4233 4234
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4235
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4236 4237
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4238 4239
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4240
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4241 4242
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4243 4244
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4245 4246
	}
#endif
I
Ingo Molnar 已提交
4247 4248 4249 4250 4251 4252
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4253
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4254
{
4255
	const struct sched_class *class;
I
Ingo Molnar 已提交
4256
	struct task_struct *p;
L
Linus Torvalds 已提交
4257 4258

	/*
I
Ingo Molnar 已提交
4259 4260
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4261
	 */
I
Ingo Molnar 已提交
4262
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4263
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4264 4265
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4266 4267
	}

I
Ingo Molnar 已提交
4268 4269
	class = sched_class_highest;
	for ( ; ; ) {
4270
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4280

I
Ingo Molnar 已提交
4281 4282 4283 4284 4285 4286
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4287
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4288
	struct rq *rq;
M
Mike Galbraith 已提交
4289
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4303

M
Mike Galbraith 已提交
4304 4305
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4306

4307 4308 4309 4310
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4311
	update_rq_clock(rq);
4312 4313
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4314 4315

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4316
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4317
			prev->state = TASK_RUNNING;
4318
		else
4319
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4320
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4321 4322
	}

4323 4324 4325 4326
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4327

I
Ingo Molnar 已提交
4328
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4329 4330
		idle_balance(cpu, rq);

4331
	prev->sched_class->put_prev_task(rq, prev);
4332
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4333 4334

	if (likely(prev != next)) {
4335 4336
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4337 4338 4339 4340
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4341
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4342 4343 4344 4345 4346 4347
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4348 4349 4350
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4351 4352
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4353 4354

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4355
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4356

L
Linus Torvalds 已提交
4357 4358 4359 4360 4361 4362 4363 4364
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4365
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4366
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4372

L
Linus Torvalds 已提交
4373 4374
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4375
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4376
	 */
N
Nick Piggin 已提交
4377
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4378 4379
		return;

4380 4381 4382 4383
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4384

4385 4386 4387 4388 4389 4390
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4391 4392 4393 4394
}
EXPORT_SYMBOL(preempt_schedule);

/*
4395
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4396 4397 4398 4399 4400 4401 4402
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4403

4404
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4405 4406
	BUG_ON(ti->preempt_count || !irqs_disabled());

4407 4408 4409 4410 4411 4412
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4413

4414 4415 4416 4417 4418 4419
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4420 4421 4422 4423
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4424 4425
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4426
{
4427
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4428 4429 4430 4431
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4432 4433
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4434 4435 4436
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4437
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4438 4439 4440 4441 4442
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4443
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4444

4445
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4446 4447
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4448
		if (curr->func(curr, mode, sync, key) &&
4449
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4459
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4460
 */
4461
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4462
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4475
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4481
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4493
void
I
Ingo Molnar 已提交
4494
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4511
void complete(struct completion *x)
L
Linus Torvalds 已提交
4512 4513 4514 4515 4516
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4517
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4518 4519 4520 4521
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4522
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4523 4524 4525 4526 4527
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4528
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4529 4530 4531 4532
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4533 4534
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4535 4536 4537 4538 4539 4540 4541
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4542 4543 4544 4545
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4546 4547
				timeout = -ERESTARTSYS;
				break;
4548 4549
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4550 4551 4552
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4553
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4554
		__remove_wait_queue(&x->wait, &wait);
4555 4556
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4557 4558
	}
	x->done--;
4559
	return timeout ?: 1;
L
Linus Torvalds 已提交
4560 4561
}

4562 4563
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4564 4565 4566 4567
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4568
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4569
	spin_unlock_irq(&x->wait.lock);
4570 4571
	return timeout;
}
L
Linus Torvalds 已提交
4572

4573
void __sched wait_for_completion(struct completion *x)
4574 4575
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4576
}
4577
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4578

4579
unsigned long __sched
4580
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4581
{
4582
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4583
}
4584
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4585

4586
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4587
{
4588 4589 4590 4591
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4592
}
4593
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4594

4595
unsigned long __sched
4596 4597
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4598
{
4599
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4600
}
4601
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4602

M
Matthew Wilcox 已提交
4603 4604 4605 4606 4607 4608 4609 4610 4611
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4612 4613
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4614
{
I
Ingo Molnar 已提交
4615 4616 4617 4618
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4619

4620
	__set_current_state(state);
L
Linus Torvalds 已提交
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4636 4637 4638
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4639
long __sched
I
Ingo Molnar 已提交
4640
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4641
{
4642
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4643 4644 4645
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4646
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4647
{
4648
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4649 4650 4651
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4652
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4653
{
4654
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4655 4656 4657
}
EXPORT_SYMBOL(sleep_on_timeout);

4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4670
void rt_mutex_setprio(struct task_struct *p, int prio)
4671 4672
{
	unsigned long flags;
4673
	int oldprio, on_rq, running;
4674
	struct rq *rq;
4675
	const struct sched_class *prev_class = p->sched_class;
4676 4677 4678 4679

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4680
	update_rq_clock(rq);
4681

4682
	oldprio = p->prio;
I
Ingo Molnar 已提交
4683
	on_rq = p->se.on_rq;
4684
	running = task_current(rq, p);
4685
	if (on_rq)
4686
		dequeue_task(rq, p, 0);
4687 4688
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4689 4690 4691 4692 4693 4694

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4695 4696
	p->prio = prio;

4697 4698
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4699
	if (on_rq) {
4700
		enqueue_task(rq, p, 0);
4701 4702

		check_class_changed(rq, p, prev_class, oldprio, running);
4703 4704 4705 4706 4707 4708
	}
	task_rq_unlock(rq, &flags);
}

#endif

4709
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4710
{
I
Ingo Molnar 已提交
4711
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4712
	unsigned long flags;
4713
	struct rq *rq;
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4722
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4723 4724 4725 4726
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4727
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4728
	 */
4729
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4730 4731 4732
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4733
	on_rq = p->se.on_rq;
4734
	if (on_rq)
4735
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4736 4737

	p->static_prio = NICE_TO_PRIO(nice);
4738
	set_load_weight(p);
4739 4740 4741
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4742

I
Ingo Molnar 已提交
4743
	if (on_rq) {
4744
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4745
		/*
4746 4747
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4748
		 */
4749
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4750 4751 4752 4753 4754 4755 4756
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4757 4758 4759 4760 4761
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4762
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4763
{
4764 4765
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4766

M
Matt Mackall 已提交
4767 4768 4769 4770
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4782
	long nice, retval;
L
Linus Torvalds 已提交
4783 4784 4785 4786 4787 4788

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4789 4790
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4800 4801 4802
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4821
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4822 4823 4824 4825 4826 4827 4828 4829
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4830
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4831 4832 4833
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4834
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4849
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4850 4851 4852 4853 4854 4855 4856 4857
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4858
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4859
{
4860
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4861 4862 4863
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4864 4865
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4866
{
I
Ingo Molnar 已提交
4867
	BUG_ON(p->se.on_rq);
4868

L
Linus Torvalds 已提交
4869
	p->policy = policy;
I
Ingo Molnar 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4882
	p->rt_priority = prio;
4883 4884 4885
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4886
	set_load_weight(p);
L
Linus Torvalds 已提交
4887 4888 4889
}

/**
4890
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4891 4892 4893
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4894
 *
4895
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4896
 */
I
Ingo Molnar 已提交
4897 4898
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4899
{
4900
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4901
	unsigned long flags;
4902
	const struct sched_class *prev_class = p->sched_class;
4903
	struct rq *rq;
L
Linus Torvalds 已提交
4904

4905 4906
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4907 4908 4909 4910 4911
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4912 4913
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4914
		return -EINVAL;
L
Linus Torvalds 已提交
4915 4916
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4917 4918
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4919 4920
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4921
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4922
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4923
		return -EINVAL;
4924
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4925 4926
		return -EINVAL;

4927 4928 4929 4930
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4931
		if (rt_policy(policy)) {
4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4948 4949 4950 4951 4952 4953
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4954

4955 4956 4957 4958 4959
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4960

4961 4962 4963 4964 4965
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4966
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4967 4968 4969
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4970 4971 4972
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4973 4974 4975 4976 4977
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4978 4979 4980 4981
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4982
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4983 4984 4985
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4986 4987
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4988 4989
		goto recheck;
	}
I
Ingo Molnar 已提交
4990
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4991
	on_rq = p->se.on_rq;
4992
	running = task_current(rq, p);
4993
	if (on_rq)
4994
		deactivate_task(rq, p, 0);
4995 4996
	if (running)
		p->sched_class->put_prev_task(rq, p);
4997

L
Linus Torvalds 已提交
4998
	oldprio = p->prio;
I
Ingo Molnar 已提交
4999
	__setscheduler(rq, p, policy, param->sched_priority);
5000

5001 5002
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5003 5004
	if (on_rq) {
		activate_task(rq, p, 0);
5005 5006

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5007
	}
5008 5009 5010
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5011 5012
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5013 5014 5015 5016
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
5017 5018
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5019 5020 5021
{
	struct sched_param lparam;
	struct task_struct *p;
5022
	int retval;
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5028 5029 5030

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5031
	p = find_process_by_pid(pid);
5032 5033 5034
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5035

L
Linus Torvalds 已提交
5036 5037 5038 5039 5040 5041 5042 5043 5044
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5045 5046
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5047
{
5048 5049 5050 5051
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5071
	struct task_struct *p;
5072
	int retval;
L
Linus Torvalds 已提交
5073 5074

	if (pid < 0)
5075
		return -EINVAL;
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5097
	struct task_struct *p;
5098
	int retval;
L
Linus Torvalds 已提交
5099 5100

	if (!param || pid < 0)
5101
		return -EINVAL;
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5128
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5129 5130
{
	cpumask_t cpus_allowed;
5131
	cpumask_t new_mask = *in_mask;
5132 5133
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5134

5135
	get_online_cpus();
L
Linus Torvalds 已提交
5136 5137 5138 5139 5140
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5141
		put_online_cpus();
L
Linus Torvalds 已提交
5142 5143 5144 5145 5146
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5147
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5158 5159 5160 5161
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5162
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5163
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5164
 again:
5165
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5166

P
Paul Menage 已提交
5167
	if (!retval) {
5168
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5179 5180
out_unlock:
	put_task_struct(p);
5181
	put_online_cpus();
L
Linus Torvalds 已提交
5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5212
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5213 5214 5215 5216
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5217
	struct task_struct *p;
L
Linus Torvalds 已提交
5218 5219
	int retval;

5220
	get_online_cpus();
L
Linus Torvalds 已提交
5221 5222 5223 5224 5225 5226 5227
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5228 5229 5230 5231
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5232
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5233 5234 5235

out_unlock:
	read_unlock(&tasklist_lock);
5236
	put_online_cpus();
L
Linus Torvalds 已提交
5237

5238
	return retval;
L
Linus Torvalds 已提交
5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5269 5270
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5271 5272 5273
 */
asmlinkage long sys_sched_yield(void)
{
5274
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5275

5276
	schedstat_inc(rq, yld_count);
5277
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5278 5279 5280 5281 5282 5283

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5284
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5293
static void __cond_resched(void)
L
Linus Torvalds 已提交
5294
{
5295 5296 5297
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5298 5299 5300 5301 5302
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5303 5304 5305 5306 5307 5308 5309
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5310
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5311
{
5312 5313
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318
		__cond_resched();
		return 1;
	}
	return 0;
}
5319
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5320 5321 5322 5323 5324

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5325
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5326 5327 5328
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5329
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5330
{
N
Nick Piggin 已提交
5331
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5332 5333
	int ret = 0;

N
Nick Piggin 已提交
5334
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5335
		spin_unlock(lock);
N
Nick Piggin 已提交
5336 5337 5338 5339
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5340
		ret = 1;
L
Linus Torvalds 已提交
5341 5342
		spin_lock(lock);
	}
J
Jan Kara 已提交
5343
	return ret;
L
Linus Torvalds 已提交
5344 5345 5346 5347 5348 5349 5350
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5351
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5352
		local_bh_enable();
L
Linus Torvalds 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5364
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5375
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380 5381 5382
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5383
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5384

5385
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5386 5387 5388
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5389
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5390 5391 5392 5393 5394
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5395
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5396 5397
	long ret;

5398
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5399 5400 5401
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5402
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5423
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5424
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5448
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5449
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5466
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5467
	unsigned int time_slice;
5468
	int retval;
L
Linus Torvalds 已提交
5469 5470 5471
	struct timespec t;

	if (pid < 0)
5472
		return -EINVAL;
L
Linus Torvalds 已提交
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5484 5485 5486 5487 5488 5489
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5490
		time_slice = DEF_TIMESLICE;
5491
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5492 5493 5494 5495 5496
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5497 5498
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5499 5500
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5501
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5502
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5503 5504
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5505

L
Linus Torvalds 已提交
5506 5507 5508 5509 5510
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5511
static const char stat_nam[] = "RSDTtZX";
5512

5513
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5514 5515
{
	unsigned long free = 0;
5516
	unsigned state;
L
Linus Torvalds 已提交
5517 5518

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5519
	printk(KERN_INFO "%-13.13s %c", p->comm,
5520
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5521
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5522
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5523
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5524
	else
I
Ingo Molnar 已提交
5525
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5526 5527
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5528
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5529
	else
I
Ingo Molnar 已提交
5530
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5531 5532 5533
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5534
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5535 5536
		while (!*n)
			n++;
5537
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5538 5539
	}
#endif
5540
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5541
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5542

5543
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5544 5545
}

I
Ingo Molnar 已提交
5546
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5547
{
5548
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5549

5550 5551 5552
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5553
#else
5554 5555
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5556 5557 5558 5559 5560 5561 5562 5563
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5564
		if (!state_filter || (p->state & state_filter))
5565
			sched_show_task(p);
L
Linus Torvalds 已提交
5566 5567
	} while_each_thread(g, p);

5568 5569
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5570 5571 5572
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5573
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5574 5575 5576 5577 5578
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5579 5580
}

I
Ingo Molnar 已提交
5581 5582
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5583
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5584 5585
}

5586 5587 5588 5589 5590 5591 5592 5593
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5594
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5595
{
5596
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5597 5598
	unsigned long flags;

I
Ingo Molnar 已提交
5599 5600 5601
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5602
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5603
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5604
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5605 5606 5607

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5608 5609 5610
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5611 5612 5613
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5614 5615 5616
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5617
	task_thread_info(idle)->preempt_count = 0;
5618
#endif
I
Ingo Molnar 已提交
5619 5620 5621 5622
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5659 5660 5661 5662
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5663
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5682
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5683 5684
 * call is not atomic; no spinlocks may be held.
 */
5685
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5686
{
5687
	struct migration_req req;
L
Linus Torvalds 已提交
5688
	unsigned long flags;
5689
	struct rq *rq;
5690
	int ret = 0;
L
Linus Torvalds 已提交
5691 5692

	rq = task_rq_lock(p, &flags);
5693
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5694 5695 5696 5697
		ret = -EINVAL;
		goto out;
	}

5698 5699 5700 5701 5702 5703
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5704
	if (p->sched_class->set_cpus_allowed)
5705
		p->sched_class->set_cpus_allowed(p, new_mask);
5706
	else {
5707 5708
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5709 5710
	}

L
Linus Torvalds 已提交
5711
	/* Can the task run on the task's current CPU? If so, we're done */
5712
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5713 5714
		goto out;

5715
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5725

L
Linus Torvalds 已提交
5726 5727
	return ret;
}
5728
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5729 5730

/*
I
Ingo Molnar 已提交
5731
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5732 5733 5734 5735 5736 5737
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5738 5739
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5740
 */
5741
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5742
{
5743
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5744
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5745 5746

	if (unlikely(cpu_is_offline(dest_cpu)))
5747
		return ret;
L
Linus Torvalds 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5760
	on_rq = p->se.on_rq;
5761
	if (on_rq)
5762
		deactivate_task(rq_src, p, 0);
5763

L
Linus Torvalds 已提交
5764
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5765 5766 5767
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5768
	}
5769
	ret = 1;
L
Linus Torvalds 已提交
5770 5771
out:
	double_rq_unlock(rq_src, rq_dest);
5772
	return ret;
L
Linus Torvalds 已提交
5773 5774 5775 5776 5777 5778 5779
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5780
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5781 5782
{
	int cpu = (long)data;
5783
	struct rq *rq;
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5790
		struct migration_req *req;
L
Linus Torvalds 已提交
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5813
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5814 5815
		list_del_init(head->next);

N
Nick Piggin 已提交
5816 5817 5818
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5848
/*
5849
 * Figure out where task on dead CPU should go, use force if necessary.
5850 5851
 * NOTE: interrupts should be disabled by the caller
 */
5852
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5853
{
5854
	unsigned long flags;
L
Linus Torvalds 已提交
5855
	cpumask_t mask;
5856 5857
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5858

5859 5860 5861 5862 5863 5864 5865
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5866
		if (dest_cpu >= nr_cpu_ids)
5867 5868 5869
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5870
		if (dest_cpu >= nr_cpu_ids) {
5871 5872 5873
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5874 5875 5876 5877
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5878
			 * cpuset_cpus_allowed() will not block. It must be
5879 5880
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5881
			rq = task_rq_lock(p, &flags);
5882
			p->cpus_allowed = cpus_allowed;
5883 5884
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5885

5886 5887 5888 5889 5890
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5891
			if (p->mm && printk_ratelimit()) {
5892 5893
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5894 5895
					task_pid_nr(p), p->comm, dead_cpu);
			}
5896
		}
5897
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5898 5899 5900 5901 5902 5903 5904 5905 5906
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5907
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5908
{
5909
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5923
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5924

5925
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5926

5927 5928
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5929 5930
			continue;

5931 5932 5933
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5934

5935
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5936 5937
}

I
Ingo Molnar 已提交
5938 5939
/*
 * Schedules idle task to be the next runnable task on current CPU.
5940 5941
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5942 5943 5944
 */
void sched_idle_next(void)
{
5945
	int this_cpu = smp_processor_id();
5946
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5947 5948 5949 5950
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5951
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5952

5953 5954 5955
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5956 5957 5958
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5959
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5960

5961 5962
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5963 5964 5965 5966

	spin_unlock_irqrestore(&rq->lock, flags);
}

5967 5968
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5982
/* called under rq->lock with disabled interrupts */
5983
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5984
{
5985
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5986 5987

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5988
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5989 5990

	/* Cannot have done final schedule yet: would have vanished. */
5991
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5992

5993
	get_task_struct(p);
L
Linus Torvalds 已提交
5994 5995 5996

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5997
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5998 5999
	 * fine.
	 */
6000
	spin_unlock_irq(&rq->lock);
6001
	move_task_off_dead_cpu(dead_cpu, p);
6002
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6003

6004
	put_task_struct(p);
L
Linus Torvalds 已提交
6005 6006 6007 6008 6009
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6010
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6011
	struct task_struct *next;
6012

I
Ingo Molnar 已提交
6013 6014 6015
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6016
		update_rq_clock(rq);
6017
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6018 6019 6020
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
6021

L
Linus Torvalds 已提交
6022 6023 6024 6025
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6026 6027 6028
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6029 6030
	{
		.procname	= "sched_domain",
6031
		.mode		= 0555,
6032
	},
I
Ingo Molnar 已提交
6033
	{0, },
6034 6035 6036
};

static struct ctl_table sd_ctl_root[] = {
6037
	{
6038
		.ctl_name	= CTL_KERN,
6039
		.procname	= "kernel",
6040
		.mode		= 0555,
6041 6042
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6043
	{0, },
6044 6045 6046 6047 6048
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6049
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6050 6051 6052 6053

	return entry;
}

6054 6055
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6056
	struct ctl_table *entry;
6057

6058 6059 6060
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6061
	 * will always be set. In the lowest directory the names are
6062 6063 6064
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6065 6066
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6067 6068 6069
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6070 6071 6072 6073 6074

	kfree(*tablep);
	*tablep = NULL;
}

6075
static void
6076
set_table_entry(struct ctl_table *entry,
6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6090
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6091

6092 6093 6094
	if (table == NULL)
		return NULL;

6095
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6096
		sizeof(long), 0644, proc_doulongvec_minmax);
6097
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6098
		sizeof(long), 0644, proc_doulongvec_minmax);
6099
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6100
		sizeof(int), 0644, proc_dointvec_minmax);
6101
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6102
		sizeof(int), 0644, proc_dointvec_minmax);
6103
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6104
		sizeof(int), 0644, proc_dointvec_minmax);
6105
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6106
		sizeof(int), 0644, proc_dointvec_minmax);
6107
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6108
		sizeof(int), 0644, proc_dointvec_minmax);
6109
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6110
		sizeof(int), 0644, proc_dointvec_minmax);
6111
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6112
		sizeof(int), 0644, proc_dointvec_minmax);
6113
	set_table_entry(&table[9], "cache_nice_tries",
6114 6115
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6116
	set_table_entry(&table[10], "flags", &sd->flags,
6117
		sizeof(int), 0644, proc_dointvec_minmax);
6118
	/* &table[11] is terminator */
6119 6120 6121 6122

	return table;
}

6123
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6124 6125 6126 6127 6128 6129 6130 6131 6132
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6133 6134
	if (table == NULL)
		return NULL;
6135 6136 6137 6138 6139

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6140
		entry->mode = 0555;
6141 6142 6143 6144 6145 6146 6147 6148
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6149
static void register_sched_domain_sysctl(void)
6150 6151 6152 6153 6154
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6155 6156 6157
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6158 6159 6160
	if (entry == NULL)
		return;

6161
	for_each_online_cpu(i) {
6162 6163
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6164
		entry->mode = 0555;
6165
		entry->child = sd_alloc_ctl_cpu_table(i);
6166
		entry++;
6167
	}
6168 6169

	WARN_ON(sd_sysctl_header);
6170 6171
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6172

6173
/* may be called multiple times per register */
6174 6175
static void unregister_sched_domain_sysctl(void)
{
6176 6177
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6178
	sd_sysctl_header = NULL;
6179 6180
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6181
}
6182
#else
6183 6184 6185 6186
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6187 6188 6189 6190
{
}
#endif

6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6221 6222 6223 6224
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6225 6226
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6227 6228
{
	struct task_struct *p;
6229
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6230
	unsigned long flags;
6231
	struct rq *rq;
L
Linus Torvalds 已提交
6232 6233

	switch (action) {
6234

L
Linus Torvalds 已提交
6235
	case CPU_UP_PREPARE:
6236
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6237
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6238 6239 6240 6241 6242
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6243
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6244 6245 6246
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6247

L
Linus Torvalds 已提交
6248
	case CPU_ONLINE:
6249
	case CPU_ONLINE_FROZEN:
6250
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6251
		wake_up_process(cpu_rq(cpu)->migration_thread);
6252 6253 6254 6255 6256 6257

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6258 6259

			set_rq_online(rq);
6260 6261
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6262
		break;
6263

L
Linus Torvalds 已提交
6264 6265
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6266
	case CPU_UP_CANCELED_FROZEN:
6267 6268
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6269
		/* Unbind it from offline cpu so it can run. Fall thru. */
6270 6271
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6272 6273 6274
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6275

L
Linus Torvalds 已提交
6276
	case CPU_DEAD:
6277
	case CPU_DEAD_FROZEN:
6278
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6279 6280 6281 6282 6283
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6284
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6285
		update_rq_clock(rq);
6286
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6287
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6288 6289
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6290
		migrate_dead_tasks(cpu);
6291
		spin_unlock_irq(&rq->lock);
6292
		cpuset_unlock();
L
Linus Torvalds 已提交
6293 6294 6295
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6296 6297 6298 6299 6300
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6301 6302
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6303 6304
			struct migration_req *req;

L
Linus Torvalds 已提交
6305
			req = list_entry(rq->migration_queue.next,
6306
					 struct migration_req, list);
L
Linus Torvalds 已提交
6307 6308 6309 6310 6311
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6312

6313 6314
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6315 6316 6317 6318 6319
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6320
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6321 6322 6323
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6324 6325 6326 6327 6328 6329 6330 6331
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6332
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6333 6334 6335 6336
	.notifier_call = migration_call,
	.priority = 10
};

6337
void __init migration_init(void)
L
Linus Torvalds 已提交
6338 6339
{
	void *cpu = (void *)(long)smp_processor_id();
6340
	int err;
6341 6342

	/* Start one for the boot CPU: */
6343 6344
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6345 6346 6347 6348 6349 6350
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6351

6352
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6353

6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6376 6377
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6378
{
I
Ingo Molnar 已提交
6379
	struct sched_group *group = sd->groups;
6380
	char str[256];
L
Linus Torvalds 已提交
6381

6382
	cpulist_scnprintf(str, sizeof(str), sd->span);
6383
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6384 6385 6386 6387 6388 6389 6390 6391 6392

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6393 6394
	}

6395 6396
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6397 6398 6399 6400 6401 6402 6403 6404 6405

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6406

I
Ingo Molnar 已提交
6407
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6408
	do {
I
Ingo Molnar 已提交
6409 6410 6411
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6412 6413 6414
			break;
		}

I
Ingo Molnar 已提交
6415 6416 6417 6418 6419 6420
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6421

I
Ingo Molnar 已提交
6422 6423 6424 6425 6426
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6427

6428
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6429 6430 6431 6432
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6433

6434
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6435

6436
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6437
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6438

I
Ingo Molnar 已提交
6439 6440 6441
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6442

6443
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6444
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6445

6446
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6447 6448 6449 6450
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6451

I
Ingo Molnar 已提交
6452 6453
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6454
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6455
	int level = 0;
L
Linus Torvalds 已提交
6456

I
Ingo Molnar 已提交
6457 6458 6459 6460
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6461

I
Ingo Molnar 已提交
6462 6463
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6464 6465 6466 6467 6468 6469
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6470
	for (;;) {
6471
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6472
			break;
L
Linus Torvalds 已提交
6473 6474
		level++;
		sd = sd->parent;
6475
		if (!sd)
I
Ingo Molnar 已提交
6476 6477
			break;
	}
6478
	kfree(groupmask);
L
Linus Torvalds 已提交
6479
}
6480
#else /* !CONFIG_SCHED_DEBUG */
6481
# define sched_domain_debug(sd, cpu) do { } while (0)
6482
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6483

6484
static int sd_degenerate(struct sched_domain *sd)
6485 6486 6487 6488 6489 6490 6491 6492
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6493 6494 6495
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6509 6510
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6529 6530 6531
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6532 6533 6534 6535 6536 6537 6538
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6539 6540 6541 6542 6543 6544 6545 6546 6547
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6548 6549
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6550

6551 6552
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6553 6554 6555 6556 6557 6558 6559
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6560
	cpu_set(rq->cpu, rd->span);
6561
	if (cpu_isset(rq->cpu, cpu_online_map))
6562
		set_rq_online(rq);
G
Gregory Haskins 已提交
6563 6564 6565 6566

	spin_unlock_irqrestore(&rq->lock, flags);
}

6567
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6568 6569 6570
{
	memset(rd, 0, sizeof(*rd));

6571 6572
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6573 6574

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6575 6576 6577 6578
}

static void init_defrootdomain(void)
{
6579
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6580 6581 6582
	atomic_set(&def_root_domain.refcount, 1);
}

6583
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6584 6585 6586 6587 6588 6589 6590
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6591
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6592 6593 6594 6595

	return rd;
}

L
Linus Torvalds 已提交
6596
/*
I
Ingo Molnar 已提交
6597
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6598 6599
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6600 6601
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6602
{
6603
	struct rq *rq = cpu_rq(cpu);
6604 6605 6606 6607 6608 6609 6610
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6611
		if (sd_parent_degenerate(tmp, parent)) {
6612
			tmp->parent = parent->parent;
6613 6614 6615
			if (parent->parent)
				parent->parent->child = tmp;
		}
6616 6617
	}

6618
	if (sd && sd_degenerate(sd)) {
6619
		sd = sd->parent;
6620 6621 6622
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6623 6624 6625

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6626
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6627
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6628 6629 6630
}

/* cpus with isolated domains */
6631
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6646
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6647 6648

/*
6649 6650 6651 6652
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6658
static void
6659
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6660
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6661 6662 6663
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6664 6665 6666 6667
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6668 6669 6670
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6671
		struct sched_group *sg;
6672
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6673 6674
		int j;

6675
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6676 6677
			continue;

6678
		cpus_clear(sg->cpumask);
6679
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6680

6681 6682
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6683 6684
				continue;

6685
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6697
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6698

6699
#ifdef CONFIG_NUMA
6700

6701 6702 6703 6704 6705
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6706
 * Find the next node to include in a given scheduling domain. Simply
6707 6708 6709 6710
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6711
static int find_next_best_node(int node, nodemask_t *used_nodes)
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6725
		if (node_isset(n, *used_nodes))
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6737
	node_set(best_node, *used_nodes);
6738 6739 6740 6741 6742 6743
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6744
 * @span: resulting cpumask
6745
 *
I
Ingo Molnar 已提交
6746
 * Given a node, construct a good cpumask for its sched_domain to span. It
6747 6748 6749
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6750
static void sched_domain_node_span(int node, cpumask_t *span)
6751
{
6752 6753
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6754
	int i;
6755

6756
	cpus_clear(*span);
6757
	nodes_clear(used_nodes);
6758

6759
	cpus_or(*span, *span, *nodemask);
6760
	node_set(node, used_nodes);
6761 6762

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6763
		int next_node = find_next_best_node(node, &used_nodes);
6764

6765
		node_to_cpumask_ptr_next(nodemask, next_node);
6766
		cpus_or(*span, *span, *nodemask);
6767 6768
	}
}
6769
#endif /* CONFIG_NUMA */
6770

6771
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6772

6773
/*
6774
 * SMT sched-domains:
6775
 */
L
Linus Torvalds 已提交
6776 6777
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6778
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6779

I
Ingo Molnar 已提交
6780
static int
6781 6782
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6783
{
6784 6785
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6786 6787
	return cpu;
}
6788
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6789

6790 6791 6792
/*
 * multi-core sched-domains:
 */
6793 6794
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6795
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6796
#endif /* CONFIG_SCHED_MC */
6797 6798

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6799
static int
6800 6801
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6802
{
6803
	int group;
6804 6805 6806 6807

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6808 6809 6810
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6811 6812
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6813
static int
6814 6815
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6816
{
6817 6818
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6819 6820 6821 6822
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6823
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6824
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6825

I
Ingo Molnar 已提交
6826
static int
6827 6828
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6829
{
6830
	int group;
6831
#ifdef CONFIG_SCHED_MC
6832 6833 6834
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6835
#elif defined(CONFIG_SCHED_SMT)
6836 6837 6838
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6839
#else
6840
	group = cpu;
L
Linus Torvalds 已提交
6841
#endif
6842 6843 6844
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6845 6846 6847 6848
}

#ifdef CONFIG_NUMA
/*
6849 6850 6851
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6852
 */
6853
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6854
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6855

6856
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6857
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6858

6859
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6860
				 struct sched_group **sg, cpumask_t *nodemask)
6861
{
6862 6863
	int group;

6864 6865 6866
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6867 6868 6869 6870

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6871
}
6872

6873 6874 6875 6876 6877 6878 6879
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6880 6881 6882
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6883

6884 6885 6886 6887 6888 6889 6890 6891
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6892

6893 6894 6895 6896
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6897
}
6898
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6899

6900
#ifdef CONFIG_NUMA
6901
/* Free memory allocated for various sched_group structures */
6902
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6903
{
6904
	int cpu, i;
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6916 6917 6918
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6935
#else /* !CONFIG_NUMA */
6936
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6937 6938
{
}
6939
#endif /* CONFIG_NUMA */
6940

6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6967 6968
	sd->groups->__cpu_power = 0;

6969 6970 6971 6972 6973 6974 6975 6976 6977 6978
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6979
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6980 6981 6982 6983 6984 6985 6986 6987
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6988
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6989 6990 6991 6992
		group = group->next;
	} while (group != child->groups);
}

6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7004
	sd->level = SD_LV_##type;				\
7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7053 7054 7055 7056
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7057 7058 7059 7060 7061 7062
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7088
/*
7089 7090
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7091
 */
7092 7093
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7094 7095
{
	int i;
G
Gregory Haskins 已提交
7096
	struct root_domain *rd;
7097 7098
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7099 7100
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7101
	int sd_allnodes = 0;
7102 7103 7104 7105

	/*
	 * Allocate the per-node list of sched groups
	 */
7106
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7107
				    GFP_KERNEL);
7108 7109
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7110
		return -ENOMEM;
7111 7112
	}
#endif
L
Linus Torvalds 已提交
7113

7114
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7115 7116
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7117 7118 7119
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7120 7121 7122
		return -ENOMEM;
	}

7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7142
	/*
7143
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7144
	 */
7145
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7146
		struct sched_domain *sd = NULL, *p;
7147
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7148

7149 7150
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7151 7152

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7153
		if (cpus_weight(*cpu_map) >
7154
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7155
			sd = &per_cpu(allnodes_domains, i);
7156
			SD_INIT(sd, ALLNODES);
7157
			set_domain_attribute(sd, attr);
7158
			sd->span = *cpu_map;
7159
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7160
			p = sd;
7161
			sd_allnodes = 1;
7162 7163 7164
		} else
			p = NULL;

L
Linus Torvalds 已提交
7165
		sd = &per_cpu(node_domains, i);
7166
		SD_INIT(sd, NODE);
7167
		set_domain_attribute(sd, attr);
7168
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7169
		sd->parent = p;
7170 7171
		if (p)
			p->child = sd;
7172
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7173 7174 7175 7176
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7177
		SD_INIT(sd, CPU);
7178
		set_domain_attribute(sd, attr);
7179
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7180
		sd->parent = p;
7181 7182
		if (p)
			p->child = sd;
7183
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7184

7185 7186 7187
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7188
		SD_INIT(sd, MC);
7189
		set_domain_attribute(sd, attr);
7190 7191 7192
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7193
		p->child = sd;
7194
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7195 7196
#endif

L
Linus Torvalds 已提交
7197 7198 7199
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7200
		SD_INIT(sd, SIBLING);
7201
		set_domain_attribute(sd, attr);
7202
		sd->span = per_cpu(cpu_sibling_map, i);
7203
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7204
		sd->parent = p;
7205
		p->child = sd;
7206
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7207 7208 7209 7210 7211
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7212
	for_each_cpu_mask(i, *cpu_map) {
7213 7214 7215 7216 7217 7218
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7219 7220
			continue;

I
Ingo Molnar 已提交
7221
		init_sched_build_groups(this_sibling_map, cpu_map,
7222 7223
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7224 7225 7226
	}
#endif

7227 7228 7229
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7230 7231 7232 7233 7234 7235
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7236
			continue;
7237

I
Ingo Molnar 已提交
7238
		init_sched_build_groups(this_core_map, cpu_map,
7239 7240
					&cpu_to_core_group,
					send_covered, tmpmask);
7241 7242 7243
	}
#endif

L
Linus Torvalds 已提交
7244 7245
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7246 7247
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7248

7249 7250 7251
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7252 7253
			continue;

7254 7255 7256
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7257 7258 7259 7260
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7261 7262 7263 7264 7265 7266 7267
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7268 7269 7270 7271

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7272 7273 7274
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7275 7276
		int j;

7277 7278 7279 7280 7281
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7282
			sched_group_nodes[i] = NULL;
7283
			continue;
7284
		}
7285

7286
		sched_domain_node_span(i, domainspan);
7287
		cpus_and(*domainspan, *domainspan, *cpu_map);
7288

7289
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7290 7291 7292 7293 7294
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7295
		sched_group_nodes[i] = sg;
7296
		for_each_cpu_mask(j, *nodemask) {
7297
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7298

7299 7300 7301
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7302
		sg->__cpu_power = 0;
7303
		sg->cpumask = *nodemask;
7304
		sg->next = sg;
7305
		cpus_or(*covered, *covered, *nodemask);
7306 7307 7308
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7309
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7310
			int n = (i + j) % MAX_NUMNODES;
7311
			node_to_cpumask_ptr(pnodemask, n);
7312

7313 7314 7315 7316
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7317 7318
				break;

7319 7320
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7321 7322
				continue;

7323 7324
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7325 7326 7327
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7328
				goto error;
7329
			}
7330
			sg->__cpu_power = 0;
7331
			sg->cpumask = *tmpmask;
7332
			sg->next = prev->next;
7333
			cpus_or(*covered, *covered, *tmpmask);
7334 7335 7336 7337
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7338 7339 7340
#endif

	/* Calculate CPU power for physical packages and nodes */
7341
#ifdef CONFIG_SCHED_SMT
7342
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7343 7344
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7345
		init_sched_groups_power(i, sd);
7346
	}
L
Linus Torvalds 已提交
7347
#endif
7348
#ifdef CONFIG_SCHED_MC
7349
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7350 7351
		struct sched_domain *sd = &per_cpu(core_domains, i);

7352
		init_sched_groups_power(i, sd);
7353 7354
	}
#endif
7355

7356
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7357 7358
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7359
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7360 7361
	}

7362
#ifdef CONFIG_NUMA
7363 7364
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7365

7366 7367
	if (sd_allnodes) {
		struct sched_group *sg;
7368

7369 7370
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7371 7372
		init_numa_sched_groups_power(sg);
	}
7373 7374
#endif

L
Linus Torvalds 已提交
7375
	/* Attach the domains */
7376
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7377 7378 7379
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7380 7381
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7382 7383 7384
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7385
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7386
	}
7387

7388
	SCHED_CPUMASK_FREE((void *)allmasks);
7389 7390
	return 0;

7391
#ifdef CONFIG_NUMA
7392
error:
7393 7394
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7395
	return -ENOMEM;
7396
#endif
L
Linus Torvalds 已提交
7397
}
P
Paul Jackson 已提交
7398

7399 7400 7401 7402 7403
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7404 7405
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7406 7407
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7408 7409 7410 7411 7412 7413 7414 7415

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7416 7417 7418 7419
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7432
/*
I
Ingo Molnar 已提交
7433
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7434 7435
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7436
 */
7437
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7438
{
7439 7440
	int err;

7441
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7442 7443 7444 7445 7446
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7447
	dattr_cur = NULL;
7448
	err = build_sched_domains(doms_cur);
7449
	register_sched_domain_sysctl();
7450 7451

	return err;
7452 7453
}

7454 7455
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7456
{
7457
	free_sched_groups(cpu_map, tmpmask);
7458
}
L
Linus Torvalds 已提交
7459

7460 7461 7462 7463
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7464
static void detach_destroy_domains(const cpumask_t *cpu_map)
7465
{
7466
	cpumask_t tmpmask;
7467 7468
	int i;

7469 7470
	unregister_sched_domain_sysctl();

7471
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7472
		cpu_attach_domain(NULL, &def_root_domain, i);
7473
	synchronize_sched();
7474
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7475 7476
}

7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7493 7494
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7495
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7496 7497 7498 7499
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7500 7501 7502
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7503 7504 7505
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7506 7507
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7508 7509 7510 7511 7512 7513
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7514 7515
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7516 7517 7518
{
	int i, j;

7519
	mutex_lock(&sched_domains_mutex);
7520

7521 7522 7523
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7524 7525 7526 7527
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7528
		dattr_new = NULL;
P
Paul Jackson 已提交
7529 7530 7531 7532 7533
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7534 7535
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7547 7548
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7549 7550 7551
				goto match2;
		}
		/* no match - add a new doms_new */
7552 7553
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7554 7555 7556 7557 7558 7559 7560
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7561
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7562
	doms_cur = doms_new;
7563
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7564
	ndoms_cur = ndoms_new;
7565 7566

	register_sched_domain_sysctl();
7567

7568
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7569 7570
}

7571
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7572
int arch_reinit_sched_domains(void)
7573 7574 7575
{
	int err;

7576
	get_online_cpus();
7577
	mutex_lock(&sched_domains_mutex);
7578
	detach_destroy_domains(&cpu_online_map);
7579
	free_sched_domains();
7580
	err = arch_init_sched_domains(&cpu_online_map);
7581
	mutex_unlock(&sched_domains_mutex);
7582
	put_online_cpus();
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7609 7610
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7611 7612 7613
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7614 7615
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7616 7617 7618 7619 7620 7621 7622
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7623 7624
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7625 7626 7627
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7648
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7649

L
Linus Torvalds 已提交
7650
/*
I
Ingo Molnar 已提交
7651
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7652
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7653
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7654 7655 7656 7657 7658
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7659 7660
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7661 7662
	switch (action) {
	case CPU_DOWN_PREPARE:
7663
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7664 7665 7666 7667
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7668
		detach_destroy_domains(&cpu_online_map);
7669
		free_sched_domains();
L
Linus Torvalds 已提交
7670 7671
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7672

L
Linus Torvalds 已提交
7673
	case CPU_DOWN_FAILED:
7674
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7675
	case CPU_ONLINE:
7676
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7677 7678 7679 7680
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7681
	case CPU_DEAD:
7682
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7683 7684 7685 7686 7687 7688 7689 7690
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7691 7692 7693 7694 7695 7696 7697
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7698
	/* The hotplug lock is already held by cpu_up/cpu_down */
7699
	arch_init_sched_domains(&cpu_online_map);
7700
#endif
L
Linus Torvalds 已提交
7701 7702 7703 7704 7705 7706

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7707 7708
	cpumask_t non_isolated_cpus;

7709 7710 7711 7712 7713
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7714
	get_online_cpus();
7715
	mutex_lock(&sched_domains_mutex);
7716
	arch_init_sched_domains(&cpu_online_map);
7717
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7718 7719
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7720
	mutex_unlock(&sched_domains_mutex);
7721
	put_online_cpus();
L
Linus Torvalds 已提交
7722 7723
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7724
	init_hrtick();
7725 7726

	/* Move init over to a non-isolated CPU */
7727
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7728
		BUG();
I
Ingo Molnar 已提交
7729
	sched_init_granularity();
L
Linus Torvalds 已提交
7730 7731 7732 7733
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7734
	sched_init_granularity();
L
Linus Torvalds 已提交
7735 7736 7737 7738 7739 7740 7741 7742 7743 7744
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7745
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7746 7747
{
	cfs_rq->tasks_timeline = RB_ROOT;
7748
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7749 7750 7751
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7752
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7753 7754
}

P
Peter Zijlstra 已提交
7755 7756 7757 7758 7759 7760 7761
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7762
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7763 7764 7765 7766 7767
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7768
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7769 7770
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7771 7772 7773 7774 7775 7776 7777
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7778 7779
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7780

7781
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7782
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7783 7784
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7785 7786
}

P
Peter Zijlstra 已提交
7787
#ifdef CONFIG_FAIR_GROUP_SCHED
7788 7789 7790
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7791
{
7792
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7793 7794 7795 7796 7797 7798 7799
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7800 7801 7802 7803
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7804 7805 7806 7807 7808
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7809 7810
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7811
	se->load.inv_weight = 0;
7812
	se->parent = parent;
P
Peter Zijlstra 已提交
7813
}
7814
#endif
P
Peter Zijlstra 已提交
7815

7816
#ifdef CONFIG_RT_GROUP_SCHED
7817 7818 7819
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7820
{
7821 7822
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7823 7824 7825 7826
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7827
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7828 7829 7830 7831
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7832 7833 7834
	if (!rt_se)
		return;

7835 7836 7837 7838 7839
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7840
	rt_se->my_q = rt_rq;
7841
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7842 7843 7844 7845
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7846 7847
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7848
	int i, j;
7849 7850 7851 7852 7853 7854 7855
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7856 7857 7858
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7859 7860 7861 7862 7863 7864
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7865
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7866 7867 7868 7869 7870 7871 7872

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7873 7874 7875 7876 7877 7878 7879

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7880 7881
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7882 7883 7884 7885 7886
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7887 7888 7889 7890 7891 7892 7893 7894
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7895 7896
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7897
	}
I
Ingo Molnar 已提交
7898

G
Gregory Haskins 已提交
7899 7900 7901 7902
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7903 7904 7905 7906 7907 7908
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7909 7910 7911
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7912 7913
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7914

7915
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7916
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7917 7918 7919 7920 7921 7922
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7923 7924
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7925

7926
	for_each_possible_cpu(i) {
7927
		struct rq *rq;
L
Linus Torvalds 已提交
7928 7929 7930

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7931
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7932
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7933
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7934
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7935
#ifdef CONFIG_FAIR_GROUP_SCHED
7936
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7937
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7958
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7959
#elif defined CONFIG_USER_SCHED
7960 7961
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7973
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7974
				&per_cpu(init_cfs_rq, i),
7975 7976
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7977

7978
#endif
D
Dhaval Giani 已提交
7979 7980 7981
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7982
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7983
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7984
#ifdef CONFIG_CGROUP_SCHED
7985
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7986
#elif defined CONFIG_USER_SCHED
7987
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7988
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7989
				&per_cpu(init_rt_rq, i),
7990 7991
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7992
#endif
I
Ingo Molnar 已提交
7993
#endif
L
Linus Torvalds 已提交
7994

I
Ingo Molnar 已提交
7995 7996
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7997
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7998
		rq->sd = NULL;
G
Gregory Haskins 已提交
7999
		rq->rd = NULL;
L
Linus Torvalds 已提交
8000
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8001
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8002
		rq->push_cpu = 0;
8003
		rq->cpu = i;
8004
		rq->online = 0;
L
Linus Torvalds 已提交
8005 8006
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8007
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8008
#endif
P
Peter Zijlstra 已提交
8009
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8010 8011 8012
		atomic_set(&rq->nr_iowait, 0);
	}

8013
	set_load_weight(&init_task);
8014

8015 8016 8017 8018
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8019 8020 8021 8022
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

8023 8024 8025 8026
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8040 8041 8042 8043
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8044 8045

	scheduler_running = 1;
L
Linus Torvalds 已提交
8046 8047 8048 8049 8050
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8051
#ifdef in_atomic
L
Linus Torvalds 已提交
8052 8053 8054 8055 8056 8057 8058
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8059
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8060 8061 8062
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8063
		debug_show_held_locks(current);
8064 8065
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8066 8067 8068 8069 8070 8071 8072 8073
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8074 8075 8076
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8077

8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8089 8090
void normalize_rt_tasks(void)
{
8091
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8092
	unsigned long flags;
8093
	struct rq *rq;
L
Linus Torvalds 已提交
8094

8095
	read_lock_irqsave(&tasklist_lock, flags);
8096
	do_each_thread(g, p) {
8097 8098 8099 8100 8101 8102
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8103 8104
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8105 8106 8107
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8108
#endif
I
Ingo Molnar 已提交
8109 8110 8111 8112 8113 8114 8115 8116

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8117
			continue;
I
Ingo Molnar 已提交
8118
		}
L
Linus Torvalds 已提交
8119

8120
		spin_lock(&p->pi_lock);
8121
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8122

8123
		normalize_task(rq, p);
8124

8125
		__task_rq_unlock(rq);
8126
		spin_unlock(&p->pi_lock);
8127 8128
	} while_each_thread(g, p);

8129
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8130 8131 8132
}

#endif /* CONFIG_MAGIC_SYSRQ */
8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8151
struct task_struct *curr_task(int cpu)
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8162 8163
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8164 8165 8166 8167 8168 8169 8170
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8171
void set_curr_task(int cpu, struct task_struct *p)
8172 8173 8174 8175 8176
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8177

8178 8179
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8194 8195
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8196 8197
{
	struct cfs_rq *cfs_rq;
8198
	struct sched_entity *se, *parent_se;
8199
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8200 8201
	int i;

8202
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8203 8204
	if (!tg->cfs_rq)
		goto err;
8205
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8206 8207
	if (!tg->se)
		goto err;
8208 8209

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8210 8211

	for_each_possible_cpu(i) {
8212
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8213

P
Peter Zijlstra 已提交
8214 8215
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8216 8217 8218
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8219 8220
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8221 8222 8223
		if (!se)
			goto err;

8224 8225
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8244
#else /* !CONFG_FAIR_GROUP_SCHED */
8245 8246 8247 8248
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8249 8250
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8262
#endif /* CONFIG_FAIR_GROUP_SCHED */
8263 8264

#ifdef CONFIG_RT_GROUP_SCHED
8265 8266 8267 8268
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8269 8270
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8282 8283
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8284 8285
{
	struct rt_rq *rt_rq;
8286
	struct sched_rt_entity *rt_se, *parent_se;
8287 8288 8289
	struct rq *rq;
	int i;

8290
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8291 8292
	if (!tg->rt_rq)
		goto err;
8293
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8294 8295 8296
	if (!tg->rt_se)
		goto err;

8297 8298
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8299 8300 8301 8302

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8303 8304 8305 8306
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8307

P
Peter Zijlstra 已提交
8308 8309 8310 8311
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8312

8313 8314
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8315 8316
	}

8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8333
#else /* !CONFIG_RT_GROUP_SCHED */
8334 8335 8336 8337
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8338 8339
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8351
#endif /* CONFIG_RT_GROUP_SCHED */
8352

8353
#ifdef CONFIG_GROUP_SCHED
8354 8355 8356 8357 8358 8359 8360 8361
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8362
struct task_group *sched_create_group(struct task_group *parent)
8363 8364 8365 8366 8367 8368 8369 8370 8371
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8372
	if (!alloc_fair_sched_group(tg, parent))
8373 8374
		goto err;

8375
	if (!alloc_rt_sched_group(tg, parent))
8376 8377
		goto err;

8378
	spin_lock_irqsave(&task_group_lock, flags);
8379
	for_each_possible_cpu(i) {
8380 8381
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8382
	}
P
Peter Zijlstra 已提交
8383
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8384 8385 8386 8387 8388 8389

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8390
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8391

8392
	return tg;
S
Srivatsa Vaddagiri 已提交
8393 8394

err:
P
Peter Zijlstra 已提交
8395
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8396 8397 8398
	return ERR_PTR(-ENOMEM);
}

8399
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8400
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8401 8402
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8403
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8404 8405
}

8406
/* Destroy runqueue etc associated with a task group */
8407
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8408
{
8409
	unsigned long flags;
8410
	int i;
S
Srivatsa Vaddagiri 已提交
8411

8412
	spin_lock_irqsave(&task_group_lock, flags);
8413
	for_each_possible_cpu(i) {
8414 8415
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8416
	}
P
Peter Zijlstra 已提交
8417
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8418
	list_del_rcu(&tg->siblings);
8419
	spin_unlock_irqrestore(&task_group_lock, flags);
8420 8421

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8422
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8423 8424
}

8425
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8426 8427 8428
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8429 8430
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8431 8432 8433 8434 8435 8436 8437 8438 8439
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8440
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8441 8442
	on_rq = tsk->se.on_rq;

8443
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8444
		dequeue_task(rq, tsk, 0);
8445 8446
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8447

P
Peter Zijlstra 已提交
8448
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8449

P
Peter Zijlstra 已提交
8450 8451 8452 8453 8454
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8455 8456 8457
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8458
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8459 8460 8461

	task_rq_unlock(rq, &flags);
}
8462
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8463

8464
#ifdef CONFIG_FAIR_GROUP_SCHED
8465
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8466 8467 8468 8469 8470
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8471
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8472 8473 8474
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8475
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8476

8477
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8478
		enqueue_entity(cfs_rq, se, 0);
8479
}
8480

8481 8482 8483 8484 8485 8486 8487 8488 8489
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8490 8491
}

8492 8493
static DEFINE_MUTEX(shares_mutex);

8494
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8495 8496
{
	int i;
8497
	unsigned long flags;
8498

8499 8500 8501 8502 8503 8504
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8505 8506
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8507 8508
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8509

8510
	mutex_lock(&shares_mutex);
8511
	if (tg->shares == shares)
8512
		goto done;
S
Srivatsa Vaddagiri 已提交
8513

8514
	spin_lock_irqsave(&task_group_lock, flags);
8515 8516
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8517
	list_del_rcu(&tg->siblings);
8518
	spin_unlock_irqrestore(&task_group_lock, flags);
8519 8520 8521 8522 8523 8524 8525 8526

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8527
	tg->shares = shares;
8528 8529 8530 8531 8532
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8533
		set_se_shares(tg->se[i], shares);
8534
	}
S
Srivatsa Vaddagiri 已提交
8535

8536 8537 8538 8539
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8540
	spin_lock_irqsave(&task_group_lock, flags);
8541 8542
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8543
	list_add_rcu(&tg->siblings, &tg->parent->children);
8544
	spin_unlock_irqrestore(&task_group_lock, flags);
8545
done:
8546
	mutex_unlock(&shares_mutex);
8547
	return 0;
S
Srivatsa Vaddagiri 已提交
8548 8549
}

8550 8551 8552 8553
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8554
#endif
8555

8556
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8557
/*
P
Peter Zijlstra 已提交
8558
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8559
 */
P
Peter Zijlstra 已提交
8560 8561 8562 8563 8564 8565 8566
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8567
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8568 8569
}

8570 8571 8572
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8573
	struct task_group *tgi, *parent = tg->parent;
8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8597
	return total + to_ratio(period, runtime) <=
8598 8599 8600 8601
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8602
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8603 8604 8605
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8606
	unsigned long global_ratio =
8607
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8608 8609

	rcu_read_lock();
P
Peter Zijlstra 已提交
8610 8611 8612
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8613

8614 8615
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8616 8617
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8618

P
Peter Zijlstra 已提交
8619
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8620
}
8621
#endif
P
Peter Zijlstra 已提交
8622

8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8634 8635
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8636
{
P
Peter Zijlstra 已提交
8637
	int i, err = 0;
P
Peter Zijlstra 已提交
8638 8639

	mutex_lock(&rt_constraints_mutex);
8640
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8641
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8642 8643 8644
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8645 8646 8647 8648
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8649 8650

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8651 8652
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8653 8654 8655 8656 8657 8658 8659 8660 8661

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8662
 unlock:
8663
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8664 8665 8666
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8667 8668
}

8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8681 8682 8683 8684
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8685
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8686 8687
		return -1;

8688
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8689 8690 8691
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8714 8715
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8716 8717
	int ret = 0;

8718 8719 8720
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8721
	mutex_lock(&rt_constraints_mutex);
8722
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8723 8724 8725 8726 8727
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8728
#else /* !CONFIG_RT_GROUP_SCHED */
8729 8730
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8744 8745
	return 0;
}
8746
#endif /* CONFIG_RT_GROUP_SCHED */
8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8777

8778
#ifdef CONFIG_CGROUP_SCHED
8779 8780

/* return corresponding task_group object of a cgroup */
8781
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8782
{
8783 8784
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8785 8786 8787
}

static struct cgroup_subsys_state *
8788
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8789
{
8790
	struct task_group *tg, *parent;
8791

8792
	if (!cgrp->parent) {
8793
		/* This is early initialization for the top cgroup */
8794
		init_task_group.css.cgroup = cgrp;
8795 8796 8797
		return &init_task_group.css;
	}

8798 8799
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8800 8801 8802 8803
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8804
	tg->css.cgroup = cgrp;
8805 8806 8807 8808

	return &tg->css;
}

I
Ingo Molnar 已提交
8809 8810
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8811
{
8812
	struct task_group *tg = cgroup_tg(cgrp);
8813 8814 8815 8816

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8817 8818 8819
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8820
{
8821 8822
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8823
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8824 8825
		return -EINVAL;
#else
8826 8827 8828
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8829
#endif
8830 8831 8832 8833 8834

	return 0;
}

static void
8835
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8836 8837 8838 8839 8840
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8841
#ifdef CONFIG_FAIR_GROUP_SCHED
8842
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8843
				u64 shareval)
8844
{
8845
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8846 8847
}

8848
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8849
{
8850
	struct task_group *tg = cgroup_tg(cgrp);
8851 8852 8853

	return (u64) tg->shares;
}
8854
#endif /* CONFIG_FAIR_GROUP_SCHED */
8855

8856
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8857
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8858
				s64 val)
P
Peter Zijlstra 已提交
8859
{
8860
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8861 8862
}

8863
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8864
{
8865
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8866
}
8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8878
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8879

8880
static struct cftype cpu_files[] = {
8881
#ifdef CONFIG_FAIR_GROUP_SCHED
8882 8883
	{
		.name = "shares",
8884 8885
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8886
	},
8887 8888
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8889
	{
P
Peter Zijlstra 已提交
8890
		.name = "rt_runtime_us",
8891 8892
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8893
	},
8894 8895
	{
		.name = "rt_period_us",
8896 8897
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8898
	},
8899
#endif
8900 8901 8902 8903
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8904
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8905 8906 8907
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8908 8909 8910 8911 8912 8913 8914
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8915 8916 8917
	.early_init	= 1,
};

8918
#endif	/* CONFIG_CGROUP_SCHED */
8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8939
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8940
{
8941
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8954
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8971
static void
8972
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8973
{
8974
	struct cpuacct *ca = cgroup_ca(cgrp);
8975 8976 8977 8978 8979 8980

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8981
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8982
{
8983
	struct cpuacct *ca = cgroup_ca(cgrp);
8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9025 9026 9027
static struct cftype files[] = {
	{
		.name = "usage",
9028 9029
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9030 9031 9032
	},
};

9033
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9034
{
9035
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */