sched.c 168.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46 47 48 49 50 51 52 53 54 55
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
56
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
57 58
#include <linux/syscalls.h>
#include <linux/times.h>
59
#include <linux/tsacct_kern.h>
60
#include <linux/kprobes.h>
61
#include <linux/delayacct.h>
62
#include <linux/reciprocal_div.h>
63
#include <linux/unistd.h>
J
Jens Axboe 已提交
64
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
65

66
#include <asm/tlb.h>
L
Linus Torvalds 已提交
67

68 69 70 71 72 73 74 75 76 77
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
	return (unsigned long long)jiffies * (1000000000 / HZ);
}

L
Linus Torvalds 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
D
Dmitry Adamushko 已提交
99
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (1000000000 / HZ))
L
Linus Torvalds 已提交
100 101
#define JIFFIES_TO_NS(TIME)	((TIME) * (1000000000 / HZ))

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

134 135 136 137 138 139 140 141 142 143 144 145
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
146
/*
I
Ingo Molnar 已提交
147
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
148
 */
I
Ingo Molnar 已提交
149 150 151 152 153
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
#ifdef CONFIG_FAIR_GROUP_SCHED

struct cfs_rq;

/* task group related information */
struct task_grp {
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

172 173
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
174 175

/* Default task group.
I
Ingo Molnar 已提交
176
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
177
 */
I
Ingo Molnar 已提交
178 179 180 181
struct task_grp init_task_grp = {
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
182

183
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
184
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
185
#else
I
Ingo Molnar 已提交
186
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
187 188
#endif

189
static int init_task_grp_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
190 191 192 193

/* return group to which a task belongs */
static inline struct task_grp *task_grp(struct task_struct *p)
{
194 195
	struct task_grp *tg;

196 197 198
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
#else
199
	tg  = &init_task_grp;
200
#endif
201 202

	return tg;
S
Srivatsa Vaddagiri 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
static inline void set_task_cfs_rq(struct task_struct *p)
{
	p->se.cfs_rq = task_grp(p)->cfs_rq[task_cpu(p)];
	p->se.parent = task_grp(p)->se[task_cpu(p)];
}

#else

static inline void set_task_cfs_rq(struct task_struct *p) { }

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
218 219 220 221 222 223
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
224
	u64 min_vruntime;
I
Ingo Molnar 已提交
225 226 227 228 229 230 231 232

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
233 234 235

	unsigned long nr_spread_over;

236
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
237 238 239 240 241 242 243 244 245 246
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

	/* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
	struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
S
Srivatsa Vaddagiri 已提交
247
	struct task_grp *tg;    /* group that "owns" this runqueue */
248
	struct rcu_head rcu;
I
Ingo Molnar 已提交
249 250
#endif
};
L
Linus Torvalds 已提交
251

I
Ingo Molnar 已提交
252 253 254 255 256 257 258
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
259 260 261 262 263 264 265
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
266
struct rq {
I
Ingo Molnar 已提交
267
	spinlock_t lock;	/* runqueue lock */
L
Linus Torvalds 已提交
268 269 270 271 272 273

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
274 275
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
276
	unsigned char idle_at_tick;
277 278 279
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
280
	struct load_weight load;	/* capture load from *all* tasks on this cpu */
I
Ingo Molnar 已提交
281 282 283 284 285 286
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
	struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
L
Linus Torvalds 已提交
287
#endif
I
Ingo Molnar 已提交
288
	struct rt_rq  rt;
L
Linus Torvalds 已提交
289 290 291 292 293 294 295 296 297

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

298
	struct task_struct *curr, *idle;
299
	unsigned long next_balance;
L
Linus Torvalds 已提交
300
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
301 302 303 304 305

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
306 307
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
308
	u64 tick_timestamp;
I
Ingo Molnar 已提交
309

L
Linus Torvalds 已提交
310 311 312 313 314 315 316 317
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
318
	int cpu;		/* cpu of this runqueue */
L
Linus Torvalds 已提交
319

320
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
321 322 323 324 325 326 327 328 329 330 331
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
	unsigned long yld_exp_empty;
	unsigned long yld_act_empty;
	unsigned long yld_both_empty;
332
	unsigned long yld_count;
L
Linus Torvalds 已提交
333 334 335

	/* schedule() stats */
	unsigned long sched_switch;
336
	unsigned long sched_count;
L
Linus Torvalds 已提交
337 338 339
	unsigned long sched_goidle;

	/* try_to_wake_up() stats */
340
	unsigned long ttwu_count;
L
Linus Torvalds 已提交
341
	unsigned long ttwu_local;
I
Ingo Molnar 已提交
342 343

	/* BKL stats */
344
	unsigned long bkl_count;
L
Linus Torvalds 已提交
345
#endif
346
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
347 348
};

349
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
350
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
351

I
Ingo Molnar 已提交
352 353 354 355 356
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

357 358 359 360 361 362 363 364 365
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
366
/*
I
Ingo Molnar 已提交
367 368
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
369
 */
I
Ingo Molnar 已提交
370
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
371 372 373 374 375 376
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
377 378 379
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
380 381 382 383 384 385 386 387 388 389
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
390 391 392 393 394
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
395 396 397 398 399 400 401 402 403 404
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
405
}
I
Ingo Molnar 已提交
406

I
Ingo Molnar 已提交
407 408 409 410
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
411 412
}

N
Nick Piggin 已提交
413 414
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
415
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
416 417 418 419
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
420 421
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
422 423 424 425 426 427

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
441 442 443 444
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
	SCHED_FEAT_START_DEBIT		= 2,
	SCHED_FEAT_USE_TREE_AVG         = 4,
	SCHED_FEAT_APPROX_AVG           = 8,
I
Ingo Molnar 已提交
445 446 447 448
};

const_debug unsigned int sysctl_sched_features =
		SCHED_FEAT_NEW_FAIR_SLEEPERS	*1 |
P
Peter Zijlstra 已提交
449 450 451
		SCHED_FEAT_START_DEBIT		*1 |
		SCHED_FEAT_USE_TREE_AVG		*0 |
		SCHED_FEAT_APPROX_AVG		*0;
I
Ingo Molnar 已提交
452 453 454

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

455 456 457 458 459 460 461 462
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
463
	struct rq *rq;
464

465
	local_irq_save(flags);
I
Ingo Molnar 已提交
466 467 468
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
469
	local_irq_restore(flags);
470 471 472 473

	return now;
}

L
Linus Torvalds 已提交
474
#ifndef prepare_arch_switch
475 476 477 478 479 480 481
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
482
static inline int task_running(struct rq *rq, struct task_struct *p)
483 484 485 486
{
	return rq->curr == p;
}

487
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
488 489 490
{
}

491
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
492
{
493 494 495 496
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
497 498 499 500 501 502 503
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

504 505 506 507
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
508
static inline int task_running(struct rq *rq, struct task_struct *p)
509 510 511 512 513 514 515 516
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

517
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

534
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
535 536 537 538 539 540 541 542 543 544 545 546
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
547
#endif
548 549
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
550

551 552 553 554
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
555
static inline struct rq *__task_rq_lock(struct task_struct *p)
556 557
	__acquires(rq->lock)
{
558
	struct rq *rq;
559 560 561 562 563 564 565 566 567 568 569

repeat_lock_task:
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock(&rq->lock);
		goto repeat_lock_task;
	}
	return rq;
}

L
Linus Torvalds 已提交
570 571 572 573 574
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
 * interrupts.  Note the ordering: we can safely lookup the task_rq without
 * explicitly disabling preemption.
 */
575
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
576 577
	__acquires(rq->lock)
{
578
	struct rq *rq;
L
Linus Torvalds 已提交
579 580 581 582 583 584 585 586 587 588 589 590

repeat_lock_task:
	local_irq_save(*flags);
	rq = task_rq(p);
	spin_lock(&rq->lock);
	if (unlikely(rq != task_rq(p))) {
		spin_unlock_irqrestore(&rq->lock, *flags);
		goto repeat_lock_task;
	}
	return rq;
}

A
Alexey Dobriyan 已提交
591
static void __task_rq_unlock(struct rq *rq)
592 593 594 595 596
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

597
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
598 599 600 601 602 603
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
604
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
605
 */
A
Alexey Dobriyan 已提交
606
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
607 608
	__acquires(rq->lock)
{
609
	struct rq *rq;
L
Linus Torvalds 已提交
610 611 612 613 614 615 616 617

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

618
/*
619
 * We are going deep-idle (irqs are disabled):
620
 */
621
void sched_clock_idle_sleep_event(void)
622
{
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
639

640 641 642 643 644 645 646 647 648 649 650
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
651
}
652
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
653

I
Ingo Molnar 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

706 707 708 709 710 711 712 713
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
714 715 716
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
717
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
718

719
static unsigned long
720 721 722 723 724 725
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
726
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
727 728 729 730 731

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
732
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
733
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
734 735
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
736
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
737

738
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
739 740 741 742 743 744 745 746
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

747
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
748 749 750 751
{
	lw->weight += inc;
}

752
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
753 754 755 756
{
	lw->weight -= dec;
}

757 758 759 760 761 762 763 764 765
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
 * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
766 767 768 769 770 771 772 773 774 775 776
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
777 778 779
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
780 781
 */
static const int prio_to_weight[40] = {
782 783 784 785 786 787 788 789
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
790 791
};

792 793 794 795 796 797 798
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
799
static const u32 prio_to_wmult[40] = {
800 801 802 803 804 805 806 807
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
808
};
809

I
Ingo Molnar 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
827
		      int *this_best_prio, struct rq_iterator *iterator);
I
Ingo Molnar 已提交
828 829 830

#include "sched_stats.h"
#include "sched_idletask.c"
831 832
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
833 834 835 836 837 838
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

839 840 841 842
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
843
 * total load (rq->load.weight) on the runqueue, while
844 845 846 847 848 849 850
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
851
 * This function is called /before/ updating rq->load
852 853
 * and when switching tasks.
 */
854
static inline void inc_load(struct rq *rq, const struct task_struct *p)
855
{
856
	update_load_add(&rq->load, p->se.load.weight);
857 858
}

859
static inline void dec_load(struct rq *rq, const struct task_struct *p)
860
{
861
	update_load_sub(&rq->load, p->se.load.weight);
862 863
}

864
static void inc_nr_running(struct task_struct *p, struct rq *rq)
865 866
{
	rq->nr_running++;
867
	inc_load(rq, p);
868 869
}

870
static void dec_nr_running(struct task_struct *p, struct rq *rq)
871 872
{
	rq->nr_running--;
873
	dec_load(rq, p);
874 875
}

876 877 878
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
879 880 881 882
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
883

I
Ingo Molnar 已提交
884 885 886 887 888 889 890 891
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
892

I
Ingo Molnar 已提交
893 894
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
895 896
}

897
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
898
{
I
Ingo Molnar 已提交
899
	sched_info_queued(p);
900
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
901
	p->se.on_rq = 1;
902 903
}

904
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
905
{
906
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
907
	p->se.on_rq = 0;
908 909
}

910
/*
I
Ingo Molnar 已提交
911
 * __normal_prio - return the priority that is based on the static prio
912 913 914
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
915
	return p->static_prio;
916 917
}

918 919 920 921 922 923 924
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
925
static inline int normal_prio(struct task_struct *p)
926 927 928
{
	int prio;

929
	if (task_has_rt_policy(p))
930 931 932 933 934 935 936 937 938 939 940 941 942
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
943
static int effective_prio(struct task_struct *p)
944 945 946 947 948 949 950 951 952 953 954 955
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
956
/*
I
Ingo Molnar 已提交
957
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
958
 */
I
Ingo Molnar 已提交
959
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
960
{
I
Ingo Molnar 已提交
961 962
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
963

964
	enqueue_task(rq, p, wakeup);
965
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
966 967 968 969 970
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
971
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
972
{
I
Ingo Molnar 已提交
973 974 975
	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible++;

976
	dequeue_task(rq, p, sleep);
977
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
978 979 980 981 982 983
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
984
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
985 986 987 988
{
	return cpu_curr(task_cpu(p)) == p;
}

989 990 991
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
992
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
993 994 995 996 997 998 999
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
#ifdef CONFIG_SMP
	task_thread_info(p)->cpu = cpu;
#endif
S
Srivatsa Vaddagiri 已提交
1000
	set_task_cfs_rq(p);
1001 1002
}

L
Linus Torvalds 已提交
1003
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1004

I
Ingo Molnar 已提交
1005
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1006
{
I
Ingo Molnar 已提交
1007 1008
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 1010
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1011
	u64 clock_offset;
I
Ingo Molnar 已提交
1012 1013

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1014 1015 1016 1017

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1018 1019 1020 1021
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
I
Ingo Molnar 已提交
1022
#endif
1023 1024
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1025 1026

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1027 1028
}

1029
struct migration_req {
L
Linus Torvalds 已提交
1030 1031
	struct list_head list;

1032
	struct task_struct *task;
L
Linus Torvalds 已提交
1033 1034 1035
	int dest_cpu;

	struct completion done;
1036
};
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1042
static int
1043
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1044
{
1045
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1046 1047 1048 1049 1050

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1051
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1052 1053 1054 1055 1056 1057 1058 1059
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1060

L
Linus Torvalds 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1073
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1074 1075
{
	unsigned long flags;
I
Ingo Molnar 已提交
1076
	int running, on_rq;
1077
	struct rq *rq;
L
Linus Torvalds 已提交
1078 1079

repeat:
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	/*
	 * We do the initial early heuristics without holding
	 * any task-queue locks at all. We'll only try to get
	 * the runqueue lock when things look like they will
	 * work out!
	 */
	rq = task_rq(p);

	/*
	 * If the task is actively running on another CPU
	 * still, just relax and busy-wait without holding
	 * any locks.
	 *
	 * NOTE! Since we don't hold any locks, it's not
	 * even sure that "rq" stays as the right runqueue!
	 * But we don't care, since "task_running()" will
	 * return false if the runqueue has changed and p
	 * is actually now running somewhere else!
	 */
	while (task_running(rq, p))
		cpu_relax();

	/*
	 * Ok, time to look more closely! We need the rq
	 * lock now, to be *sure*. If we're wrong, we'll
	 * just go back and repeat.
	 */
L
Linus Torvalds 已提交
1107
	rq = task_rq_lock(p, &flags);
1108
	running = task_running(rq, p);
I
Ingo Molnar 已提交
1109
	on_rq = p->se.on_rq;
1110 1111 1112 1113 1114 1115 1116 1117 1118
	task_rq_unlock(rq, &flags);

	/*
	 * Was it really running after all now that we
	 * checked with the proper locks actually held?
	 *
	 * Oops. Go back and try again..
	 */
	if (unlikely(running)) {
L
Linus Torvalds 已提交
1119 1120 1121
		cpu_relax();
		goto repeat;
	}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	/*
	 * It's not enough that it's not actively running,
	 * it must be off the runqueue _entirely_, and not
	 * preempted!
	 *
	 * So if it wa still runnable (but just not actively
	 * running right now), it's preempted, and we should
	 * yield - it could be a while.
	 */
I
Ingo Molnar 已提交
1132
	if (unlikely(on_rq)) {
1133 1134 1135 1136 1137 1138 1139 1140 1141
		yield();
		goto repeat;
	}

	/*
	 * Ahh, all good. It wasn't running, and it wasn't
	 * runnable, which means that it will never become
	 * running in the future either. We're all done!
	 */
L
Linus Torvalds 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1157
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1169 1170
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1171 1172 1173 1174
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1175
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1176
{
1177
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1178
	unsigned long total = weighted_cpuload(cpu);
1179

1180
	if (type == 0)
I
Ingo Molnar 已提交
1181
		return total;
1182

I
Ingo Molnar 已提交
1183
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1184 1185 1186
}

/*
1187 1188
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1189
 */
A
Alexey Dobriyan 已提交
1190
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1191
{
1192
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1193
	unsigned long total = weighted_cpuload(cpu);
1194

N
Nick Piggin 已提交
1195
	if (type == 0)
I
Ingo Molnar 已提交
1196
		return total;
1197

I
Ingo Molnar 已提交
1198
	return max(rq->cpu_load[type-1], total);
1199 1200 1201 1202 1203 1204 1205
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1206
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1207
	unsigned long total = weighted_cpuload(cpu);
1208 1209
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1210
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1211 1212
}

N
Nick Piggin 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1230 1231 1232 1233
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
			goto nextgroup;

N
Nick Piggin 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1250 1251
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1252 1253 1254 1255 1256 1257 1258 1259

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1260
nextgroup:
N
Nick Piggin 已提交
1261 1262 1263 1264 1265 1266 1267 1268 1269
		group = group->next;
	} while (group != sd->groups);

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1270
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1271
 */
I
Ingo Molnar 已提交
1272 1273
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1274
{
1275
	cpumask_t tmp;
N
Nick Piggin 已提交
1276 1277 1278 1279
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1280 1281 1282 1283
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1284
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1310

1311
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1312 1313 1314
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1315 1316
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1317 1318
		if (tmp->flags & flag)
			sd = tmp;
1319
	}
N
Nick Piggin 已提交
1320 1321 1322 1323

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1324 1325 1326 1327 1328 1329
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1330 1331 1332

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1333 1334 1335 1336
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1337

1338
		new_cpu = find_idlest_cpu(group, t, cpu);
1339 1340 1341 1342 1343
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1344

1345
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1372
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1373 1374 1375 1376 1377
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1388 1389 1390 1391
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1392
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1393 1394 1395 1396
			for_each_cpu_mask(i, tmp) {
				if (idle_cpu(i))
					return i;
			}
I
Ingo Molnar 已提交
1397
		} else {
N
Nick Piggin 已提交
1398
			break;
I
Ingo Molnar 已提交
1399
		}
L
Linus Torvalds 已提交
1400 1401 1402 1403
	}
	return cpu;
}
#else
1404
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1424
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1425 1426 1427 1428
{
	int cpu, this_cpu, success = 0;
	unsigned long flags;
	long old_state;
1429
	struct rq *rq;
L
Linus Torvalds 已提交
1430
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1431
	struct sched_domain *sd, *this_sd = NULL;
1432
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1433 1434 1435 1436 1437 1438 1439 1440
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1441
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450
		goto out_running;

	cpu = task_cpu(p);
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1451 1452
	new_cpu = cpu;

1453
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1454 1455
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1456 1457 1458 1459 1460 1461 1462 1463
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1464 1465 1466
		}
	}

N
Nick Piggin 已提交
1467
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1468 1469 1470
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1471
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1472
	 */
N
Nick Piggin 已提交
1473 1474 1475
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1476

1477 1478
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1479 1480
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1481

N
Nick Piggin 已提交
1482 1483
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1484 1485
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1486 1487 1488
			unsigned long tl_per_task;

			tl_per_task = cpu_avg_load_per_task(this_cpu);
1489

L
Linus Torvalds 已提交
1490
			/*
1491 1492 1493
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1494
			 */
1495
			if (sync)
I
Ingo Molnar 已提交
1496
				tl -= current->se.load.weight;
1497 1498

			if ((tl <= load &&
1499
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1500
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1534
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1535 1536 1537 1538 1539 1540 1541 1542
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1543
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1544
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550 1551 1552
	/*
	 * Sync wakeups (i.e. those types of wakeups where the waker
	 * has indicated that it will leave the CPU in short order)
	 * don't trigger a preemption, if the woken up task will run on
	 * this cpu. (in this case the 'I will reschedule' promise of
	 * the waker guarantees that the freshly woken up task is going
	 * to be considered on this CPU.)
	 */
I
Ingo Molnar 已提交
1553 1554
	if (!sync || cpu != this_cpu)
		check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1565
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1566 1567 1568 1569 1570 1571
{
	return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
				 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
}
EXPORT_SYMBOL(wake_up_process);

1572
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578 1579
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1580 1581 1582 1583 1584 1585 1586
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1587
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1588 1589 1590

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1591 1592 1593 1594 1595 1596
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1597
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1598
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1599
#endif
N
Nick Piggin 已提交
1600

I
Ingo Molnar 已提交
1601 1602
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1603

1604 1605 1606 1607
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1608 1609 1610 1611 1612 1613 1614
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1629
	set_task_cpu(p, cpu);
1630 1631 1632 1633 1634

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1635 1636
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1637

1638
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1639
	if (likely(sched_info_on()))
1640
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1641
#endif
1642
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1643 1644
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1645
#ifdef CONFIG_PREEMPT
1646
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1647
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1648
#endif
N
Nick Piggin 已提交
1649
	put_cpu();
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1659
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1660 1661
{
	unsigned long flags;
I
Ingo Molnar 已提交
1662 1663
	struct rq *rq;
	int this_cpu;
L
Linus Torvalds 已提交
1664 1665

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1666
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1667
	this_cpu = smp_processor_id(); /* parent's CPU */
I
Ingo Molnar 已提交
1668
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1669 1670 1671

	p->prio = effective_prio(p);

1672 1673
	if (task_cpu(p) != this_cpu || !p->sched_class->task_new ||
							!current->se.on_rq) {
I
Ingo Molnar 已提交
1674
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1675 1676
	} else {
		/*
I
Ingo Molnar 已提交
1677 1678
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1679
		 */
1680
		p->sched_class->task_new(rq, p);
1681
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1682
	}
I
Ingo Molnar 已提交
1683 1684
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1685 1686
}

1687 1688 1689
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1690 1691
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1692 1693 1694 1695 1696 1697 1698 1699 1700
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1701
 * @notifier: notifier struct to unregister
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1745 1746 1747
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1748
 * @prev: the current task that is being switched out
1749 1750 1751 1752 1753 1754 1755 1756 1757
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1758 1759 1760
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1761
{
1762
	fire_sched_out_preempt_notifiers(prev, next);
1763 1764 1765 1766
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1767 1768
/**
 * finish_task_switch - clean up after a task-switch
1769
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1770 1771
 * @prev: the thread we just switched away from.
 *
1772 1773 1774 1775
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780 1781
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
 * so, we finish that here outside of the runqueue lock.  (Doing it
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1782
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1783 1784 1785
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1786
	long prev_state;
L
Linus Torvalds 已提交
1787 1788 1789 1790 1791

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1792
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1793 1794
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1795
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1801
	prev_state = prev->state;
1802 1803
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1804
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1805 1806
	if (mm)
		mmdrop(mm);
1807
	if (unlikely(prev_state == TASK_DEAD)) {
1808 1809 1810
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1811
		 */
1812
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1813
		put_task_struct(prev);
1814
	}
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1821
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1822 1823
	__releases(rq->lock)
{
1824 1825
	struct rq *rq = this_rq();

1826 1827 1828 1829 1830
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1831 1832 1833 1834 1835 1836 1837 1838
	if (current->set_child_tid)
		put_user(current->pid, current->set_child_tid);
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1839
static inline void
1840
context_switch(struct rq *rq, struct task_struct *prev,
1841
	       struct task_struct *next)
L
Linus Torvalds 已提交
1842
{
I
Ingo Molnar 已提交
1843
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1844

1845
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1846 1847
	mm = next->mm;
	oldmm = prev->active_mm;
1848 1849 1850 1851 1852 1853 1854
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1855
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1856 1857 1858 1859 1860 1861
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1862
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1863 1864 1865
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1866 1867 1868 1869 1870 1871 1872
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1873
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1874
#endif
L
Linus Torvalds 已提交
1875 1876 1877 1878

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1879 1880 1881 1882 1883 1884 1885
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1909
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
1924 1925
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
1926

1927
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1928 1929 1930 1931 1932 1933 1934 1935 1936
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

1937
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

1958
/*
I
Ingo Molnar 已提交
1959 1960
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
1961
 */
I
Ingo Molnar 已提交
1962
static void update_cpu_load(struct rq *this_rq)
1963
{
1964
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
1977 1978 1979 1980 1981 1982 1983
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
1984 1985
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
1986 1987
}

I
Ingo Molnar 已提交
1988 1989
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
1990 1991 1992 1993 1994 1995
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
1996
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
1997 1998 1999
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2000
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2001 2002 2003 2004
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2005
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2013 2014
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2015 2016 2017 2018 2019 2020 2021 2022
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2023
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2037
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2038 2039 2040 2041
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2042 2043 2044 2045 2046
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2047
	if (unlikely(!spin_trylock(&busiest->lock))) {
2048
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
 * allow dest_cpu, which will force the cpu onto dest_cpu.  Then
 * the cpu_allowed mask is restored.
 */
2063
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2064
{
2065
	struct migration_req req;
L
Linus Torvalds 已提交
2066
	unsigned long flags;
2067
	struct rq *rq;
L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2078

L
Linus Torvalds 已提交
2079 2080 2081 2082 2083
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2084

L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090 2091
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2092 2093
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2094 2095 2096 2097
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2098
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2099
	put_cpu();
N
Nick Piggin 已提交
2100 2101
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2108 2109
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2110
{
2111
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2112
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2113
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2114 2115 2116 2117
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2118
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2124
static
2125
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2126
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2127
		     int *all_pinned)
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
	if (!cpu_isset(this_cpu, p->cpus_allowed))
		return 0;
2137 2138 2139 2140
	*all_pinned = 0;

	if (task_running(rq, p))
		return 0;
L
Linus Torvalds 已提交
2141 2142 2143 2144

	return 1;
}

I
Ingo Molnar 已提交
2145
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2146
		      unsigned long max_nr_move, unsigned long max_load_move,
I
Ingo Molnar 已提交
2147
		      struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2148
		      int *all_pinned, unsigned long *load_moved,
2149
		      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2150
{
I
Ingo Molnar 已提交
2151 2152 2153
	int pulled = 0, pinned = 0, skip_for_load;
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2154

2155
	if (max_nr_move == 0 || max_load_move == 0)
L
Linus Torvalds 已提交
2156 2157
		goto out;

2158 2159
	pinned = 1;

L
Linus Torvalds 已提交
2160
	/*
I
Ingo Molnar 已提交
2161
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2162
	 */
I
Ingo Molnar 已提交
2163 2164 2165
	p = iterator->start(iterator->arg);
next:
	if (!p)
L
Linus Torvalds 已提交
2166
		goto out;
2167 2168 2169 2170 2171
	/*
	 * To help distribute high priority tasks accross CPUs we don't
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2172 2173
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2174
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2175 2176 2177
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2178 2179
	}

I
Ingo Molnar 已提交
2180
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2181
	pulled++;
I
Ingo Molnar 已提交
2182
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2183

2184 2185 2186 2187 2188
	/*
	 * We only want to steal up to the prescribed number of tasks
	 * and the prescribed amount of weighted load.
	 */
	if (pulled < max_nr_move && rem_load_move > 0) {
2189 2190
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2191 2192
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200
	}
out:
	/*
	 * Right now, this is the only place pull_task() is called,
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2201 2202 2203

	if (all_pinned)
		*all_pinned = pinned;
I
Ingo Molnar 已提交
2204
	*load_moved = max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2205 2206 2207
	return pulled;
}

I
Ingo Molnar 已提交
2208
/*
P
Peter Williams 已提交
2209 2210 2211
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2212 2213 2214 2215
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2216
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2217 2218 2219
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2220
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2221
	unsigned long total_load_moved = 0;
2222
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2223 2224

	do {
P
Peter Williams 已提交
2225 2226 2227
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
				ULONG_MAX, max_load_move - total_load_moved,
2228
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2229
		class = class->next;
P
Peter Williams 已提交
2230
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2231

P
Peter Williams 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	return total_load_moved > 0;
}

/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2245
	const struct sched_class *class;
2246
	int this_best_prio = MAX_PRIO;
P
Peter Williams 已提交
2247 2248 2249

	for (class = sched_class_highest; class; class = class->next)
		if (class->load_balance(this_rq, this_cpu, busiest,
2250 2251
					1, ULONG_MAX, sd, idle, NULL,
					&this_best_prio))
P
Peter Williams 已提交
2252 2253 2254
			return 1;

	return 0;
I
Ingo Molnar 已提交
2255 2256
}

L
Linus Torvalds 已提交
2257 2258
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2259 2260
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2261 2262 2263
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2264 2265
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2266 2267 2268
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2269
	unsigned long max_pull;
2270 2271
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
N
Nick Piggin 已提交
2272
	int load_idx;
2273 2274 2275 2276 2277 2278
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2279 2280

	max_load = this_load = total_load = total_pwr = 0;
2281 2282
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2283
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2284
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2285
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2286 2287 2288
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2289 2290

	do {
2291
		unsigned long load, group_capacity;
L
Linus Torvalds 已提交
2292 2293
		int local_group;
		int i;
2294
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2295
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2296 2297 2298

		local_group = cpu_isset(this_cpu, group->cpumask);

2299 2300 2301
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2302
		/* Tally up the load of all CPUs in the group */
2303
		sum_weighted_load = sum_nr_running = avg_load = 0;
L
Linus Torvalds 已提交
2304 2305

		for_each_cpu_mask(i, group->cpumask) {
2306 2307 2308 2309 2310 2311
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2312

2313
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2314 2315
				*sd_idle = 0;

L
Linus Torvalds 已提交
2316
			/* Bias balancing toward cpus of our domain */
2317 2318 2319 2320 2321 2322
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2323
				load = target_load(i, load_idx);
2324
			} else
N
Nick Piggin 已提交
2325
				load = source_load(i, load_idx);
L
Linus Torvalds 已提交
2326 2327

			avg_load += load;
2328
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2329
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2330 2331
		}

2332 2333 2334
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2335 2336
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2337
		 */
2338 2339
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2340 2341 2342 2343
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2344
		total_load += avg_load;
2345
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2346 2347

		/* Adjust by relative CPU power of the group */
2348 2349
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2350

2351
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2352

L
Linus Torvalds 已提交
2353 2354 2355
		if (local_group) {
			this_load = avg_load;
			this = group;
2356 2357 2358
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2359
			   sum_nr_running > group_capacity) {
L
Linus Torvalds 已提交
2360 2361
			max_load = avg_load;
			busiest = group;
2362 2363
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
L
Linus Torvalds 已提交
2364
		}
2365 2366 2367 2368 2369 2370

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2371 2372 2373
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2374 2375 2376 2377 2378 2379 2380 2381 2382

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2383
		/*
2384 2385
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2386 2387
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2388
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2389
			goto group_next;
2390

I
Ingo Molnar 已提交
2391
		/*
2392
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2393 2394 2395 2396 2397
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2398 2399
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2400 2401
			group_min = group;
			min_nr_running = sum_nr_running;
2402 2403
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2404
		}
2405

I
Ingo Molnar 已提交
2406
		/*
2407
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2419
		}
2420 2421
group_next:
#endif
L
Linus Torvalds 已提交
2422 2423 2424
		group = group->next;
	} while (group != sd->groups);

2425
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2434
	busiest_load_per_task /= busiest_nr_running;
L
Linus Torvalds 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
	 * by pulling tasks to us.  Be careful of negative numbers as they'll
	 * appear as very large values with unsigned longs.
	 */
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2458 2459

	/* Don't want to pull so many tasks that a group would go idle */
2460
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2461

L
Linus Torvalds 已提交
2462
	/* How much load to actually move to equalise the imbalance */
2463 2464
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2465 2466
			/ SCHED_LOAD_SCALE;

2467 2468 2469 2470 2471 2472
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2473
	if (*imbalance < busiest_load_per_task) {
2474
		unsigned long tmp, pwr_now, pwr_move;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2486

I
Ingo Molnar 已提交
2487 2488
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2489
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2499 2500 2501 2502
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2503 2504 2505
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2506 2507
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2508
		if (max_load > tmp)
2509
			pwr_move += busiest->__cpu_power *
2510
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2511 2512

		/* Amount of load we'd add */
2513
		if (max_load * busiest->__cpu_power <
2514
				busiest_load_per_task * SCHED_LOAD_SCALE)
2515 2516
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2517
		else
2518 2519 2520 2521
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2522 2523 2524
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2525 2526
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531
	}

	return busiest;

out_balanced:
2532
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2533
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2534
		goto ret;
L
Linus Torvalds 已提交
2535

2536 2537 2538 2539 2540
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2541
ret:
L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2549
static struct rq *
I
Ingo Molnar 已提交
2550
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2551
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2552
{
2553
	struct rq *busiest = NULL, *rq;
2554
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2555 2556 2557
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2558
		unsigned long wl;
2559 2560 2561 2562

		if (!cpu_isset(i, *cpus))
			continue;

2563
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2564
		wl = weighted_cpuload(i);
2565

I
Ingo Molnar 已提交
2566
		if (rq->nr_running == 1 && wl > imbalance)
2567
			continue;
L
Linus Torvalds 已提交
2568

I
Ingo Molnar 已提交
2569 2570
		if (wl > max_load) {
			max_load = wl;
2571
			busiest = rq;
L
Linus Torvalds 已提交
2572 2573 2574 2575 2576 2577
		}
	}

	return busiest;
}

2578 2579 2580 2581 2582 2583
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2584 2585 2586 2587
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2588
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2589
			struct sched_domain *sd, enum cpu_idle_type idle,
2590
			int *balance)
L
Linus Torvalds 已提交
2591
{
P
Peter Williams 已提交
2592
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2593 2594
	struct sched_group *group;
	unsigned long imbalance;
2595
	struct rq *busiest;
2596
	cpumask_t cpus = CPU_MASK_ALL;
2597
	unsigned long flags;
N
Nick Piggin 已提交
2598

2599 2600 2601
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2602
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2603
	 * portraying it as CPU_NOT_IDLE.
2604
	 */
I
Ingo Molnar 已提交
2605
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2606
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2607
		sd_idle = 1;
L
Linus Torvalds 已提交
2608

2609
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2610

2611 2612
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2613 2614
				   &cpus, balance);

2615
	if (*balance == 0)
2616 2617
		goto out_balanced;

L
Linus Torvalds 已提交
2618 2619 2620 2621 2622
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2623
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2624 2625 2626 2627 2628
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2629
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2630 2631 2632

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2633
	ld_moved = 0;
L
Linus Torvalds 已提交
2634 2635 2636 2637
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2638
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2639 2640
		 * correctly treated as an imbalance.
		 */
2641
		local_irq_save(flags);
N
Nick Piggin 已提交
2642
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2643
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2644
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2645
		double_rq_unlock(this_rq, busiest);
2646
		local_irq_restore(flags);
2647

2648 2649 2650
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2651
		if (ld_moved && this_cpu != smp_processor_id())
2652 2653
			resched_cpu(this_cpu);

2654
		/* All tasks on this runqueue were pinned by CPU affinity */
2655 2656 2657 2658
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2659
			goto out_balanced;
2660
		}
L
Linus Torvalds 已提交
2661
	}
2662

P
Peter Williams 已提交
2663
	if (!ld_moved) {
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2669
			spin_lock_irqsave(&busiest->lock, flags);
2670 2671 2672 2673 2674

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2675
				spin_unlock_irqrestore(&busiest->lock, flags);
2676 2677 2678 2679
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2680 2681 2682
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2683
				active_balance = 1;
L
Linus Torvalds 已提交
2684
			}
2685
			spin_unlock_irqrestore(&busiest->lock, flags);
2686
			if (active_balance)
L
Linus Torvalds 已提交
2687 2688 2689 2690 2691 2692
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2693
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2694
		}
2695
	} else
L
Linus Torvalds 已提交
2696 2697
		sd->nr_balance_failed = 0;

2698
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2699 2700
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2701 2702 2703 2704 2705 2706 2707 2708 2709
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2710 2711
	}

P
Peter Williams 已提交
2712
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2713
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2714
		return -1;
P
Peter Williams 已提交
2715
	return ld_moved;
L
Linus Torvalds 已提交
2716 2717 2718 2719

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2720
	sd->nr_balance_failed = 0;
2721 2722

out_one_pinned:
L
Linus Torvalds 已提交
2723
	/* tune up the balancing interval */
2724 2725
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2726 2727
		sd->balance_interval *= 2;

2728
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2729
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2730
		return -1;
L
Linus Torvalds 已提交
2731 2732 2733 2734 2735 2736 2737
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2738
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2739 2740
 * this_rq is locked.
 */
2741
static int
2742
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2743 2744
{
	struct sched_group *group;
2745
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2746
	unsigned long imbalance;
P
Peter Williams 已提交
2747
	int ld_moved = 0;
N
Nick Piggin 已提交
2748
	int sd_idle = 0;
2749
	int all_pinned = 0;
2750
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2751

2752 2753 2754 2755
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2756
	 * portraying it as CPU_NOT_IDLE.
2757 2758 2759
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2760
		sd_idle = 1;
L
Linus Torvalds 已提交
2761

2762
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2763
redo:
I
Ingo Molnar 已提交
2764
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2765
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2766
	if (!group) {
I
Ingo Molnar 已提交
2767
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2768
		goto out_balanced;
L
Linus Torvalds 已提交
2769 2770
	}

I
Ingo Molnar 已提交
2771
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2772
				&cpus);
N
Nick Piggin 已提交
2773
	if (!busiest) {
I
Ingo Molnar 已提交
2774
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2775
		goto out_balanced;
L
Linus Torvalds 已提交
2776 2777
	}

N
Nick Piggin 已提交
2778 2779
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2780
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2781

P
Peter Williams 已提交
2782
	ld_moved = 0;
2783 2784 2785
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2786 2787
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2788
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2789 2790
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2791
		spin_unlock(&busiest->lock);
2792

2793
		if (unlikely(all_pinned)) {
2794 2795 2796 2797
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2798 2799
	}

P
Peter Williams 已提交
2800
	if (!ld_moved) {
I
Ingo Molnar 已提交
2801
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2802 2803
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2804 2805
			return -1;
	} else
2806
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2807

P
Peter Williams 已提交
2808
	return ld_moved;
2809 2810

out_balanced:
I
Ingo Molnar 已提交
2811
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2812
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2813
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2814
		return -1;
2815
	sd->nr_balance_failed = 0;
2816

2817
	return 0;
L
Linus Torvalds 已提交
2818 2819 2820 2821 2822 2823
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2824
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2825 2826
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2827 2828
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2829 2830

	for_each_domain(this_cpu, sd) {
2831 2832 2833 2834 2835 2836
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2837
			/* If we've pulled tasks over stop searching: */
2838
			pulled_task = load_balance_newidle(this_cpu,
2839 2840 2841 2842 2843 2844 2845
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2846
	}
I
Ingo Molnar 已提交
2847
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2848 2849 2850 2851 2852
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2853
	}
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
2864
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
2865
{
2866
	int target_cpu = busiest_rq->push_cpu;
2867 2868
	struct sched_domain *sd;
	struct rq *target_rq;
2869

2870
	/* Is there any task to move? */
2871 2872 2873 2874
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
2875 2876

	/*
2877 2878 2879
	 * This condition is "impossible", if it occurs
	 * we need to fix it.  Originally reported by
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
2880
	 */
2881
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
2882

2883 2884
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
2885 2886
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
2887 2888

	/* Search for an sd spanning us and the target CPU. */
2889
	for_each_domain(target_cpu, sd) {
2890
		if ((sd->flags & SD_LOAD_BALANCE) &&
2891
		    cpu_isset(busiest_cpu, sd->span))
2892
				break;
2893
	}
2894

2895
	if (likely(sd)) {
2896
		schedstat_inc(sd, alb_count);
2897

P
Peter Williams 已提交
2898 2899
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
2900 2901 2902 2903
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
2904
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
2905 2906
}

2907 2908 2909 2910 2911 2912 2913 2914 2915
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
	cpumask_t  cpu_mask;
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

2916
/*
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
2927
 *
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
2984 2985 2986 2987 2988
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
2989
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
2990
{
2991 2992
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
2993 2994
	unsigned long interval;
	struct sched_domain *sd;
2995
	/* Earliest time when we have to do rebalance again */
2996
	unsigned long next_balance = jiffies + 60*HZ;
2997
	int update_next_balance = 0;
L
Linus Torvalds 已提交
2998

2999
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3000 3001 3002 3003
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3004
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3011 3012 3013
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3014

3015 3016 3017 3018 3019
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3020
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3021
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3022 3023
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3024 3025 3026
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3027
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3028
			}
3029
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3030
		}
3031 3032 3033
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3034
		if (time_after(next_balance, sd->last_balance + interval)) {
3035
			next_balance = sd->last_balance + interval;
3036 3037
			update_next_balance = 1;
		}
3038 3039 3040 3041 3042 3043 3044 3045

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3046
	}
3047 3048 3049 3050 3051 3052 3053 3054

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3055 3056 3057 3058 3059 3060 3061 3062 3063
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3064 3065 3066 3067
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3068

I
Ingo Molnar 已提交
3069
	rebalance_domains(this_cpu, idle);
3070 3071 3072 3073 3074 3075 3076

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3077 3078
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3079 3080 3081 3082
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3083
		cpu_clear(this_cpu, cpus);
3084 3085 3086 3087 3088 3089 3090 3091 3092
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3093
			rebalance_domains(balance_cpu, CPU_IDLE);
3094 3095

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3096 3097
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3110
static inline void trigger_load_balance(struct rq *rq, int cpu)
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3162
}
I
Ingo Molnar 已提交
3163 3164 3165

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3166 3167 3168
/*
 * on UP we do not need to balance between CPUs:
 */
3169
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3170 3171
{
}
I
Ingo Molnar 已提交
3172 3173 3174 3175 3176 3177

/* Avoid "used but not defined" warning on UP */
static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
		      unsigned long max_nr_move, unsigned long max_load_move,
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned, unsigned long *load_moved,
3178
		      int *this_best_prio, struct rq_iterator *iterator)
I
Ingo Molnar 已提交
3179 3180 3181 3182 3183 3184
{
	*load_moved = 0;

	return 0;
}

L
Linus Torvalds 已提交
3185 3186 3187 3188 3189 3190 3191
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3192 3193
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3194
 */
3195
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3196 3197
{
	unsigned long flags;
3198 3199
	u64 ns, delta_exec;
	struct rq *rq;
3200

3201 3202 3203
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3204 3205
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3206 3207 3208 3209
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3210

L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3245
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
	cputime64_t tmp;

	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else if (p != rq->idle)
		cpustat->system = cputime64_add(cpustat->system, tmp);
	else if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3275
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
	} else
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3298
	struct task_struct *curr = rq->curr;
3299
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3300 3301

	spin_lock(&rq->lock);
3302
	__update_rq_clock(rq);
3303 3304 3305 3306 3307 3308
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3309
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3310 3311 3312
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3313

3314
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3315 3316
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3317
#endif
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3327 3328
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3329 3330 3331 3332
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3333 3334
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3335 3336 3337 3338 3339 3340 3341 3342
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3343 3344
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3345 3346 3347
	/*
	 * Is the spinlock portion underflowing?
	 */
3348 3349 3350 3351
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3359
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3360
 */
I
Ingo Molnar 已提交
3361
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3362
{
I
Ingo Molnar 已提交
3363 3364 3365 3366 3367 3368 3369
	printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
		prev->comm, preempt_count(), prev->pid);
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
	dump_stack();
}
L
Linus Torvalds 已提交
3370

I
Ingo Molnar 已提交
3371 3372 3373 3374 3375
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3376 3377 3378 3379 3380
	/*
	 * Test if we are atomic.  Since do_exit() needs to call into
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3381 3382 3383
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3384 3385
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3386
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3387 3388
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3389 3390
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3391 3392
	}
#endif
I
Ingo Molnar 已提交
3393 3394 3395 3396 3397 3398
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3399
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3400
{
3401
	const struct sched_class *class;
I
Ingo Molnar 已提交
3402
	struct task_struct *p;
L
Linus Torvalds 已提交
3403 3404

	/*
I
Ingo Molnar 已提交
3405 3406
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3407
	 */
I
Ingo Molnar 已提交
3408
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3409
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3410 3411
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3412 3413
	}

I
Ingo Molnar 已提交
3414 3415
	class = sched_class_highest;
	for ( ; ; ) {
3416
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3426

I
Ingo Molnar 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3449

3450 3451 3452 3453
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3454
	__update_rq_clock(rq);
3455 3456
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3457 3458 3459

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3460
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3461
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3462
		} else {
3463
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3464
		}
I
Ingo Molnar 已提交
3465
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3466 3467
	}

I
Ingo Molnar 已提交
3468
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3469 3470
		idle_balance(cpu, rq);

3471
	prev->sched_class->put_prev_task(rq, prev);
3472
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3473 3474

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3475

L
Linus Torvalds 已提交
3476 3477 3478 3479 3480
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3481
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3482 3483 3484
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3485 3486 3487
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3488
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3489
	}
L
Linus Torvalds 已提交
3490 3491 3492 3493 3494 3495 3496 3497
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3498
 * this is the entry point to schedule() from in-kernel preemption
L
Linus Torvalds 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 * off of preempt_enable.  Kernel preemptions off return from interrupt
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
	 * we do not want to preempt the current task.  Just return..
	 */
N
Nick Piggin 已提交
3513
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
		return;

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	schedule();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(preempt_schedule);

/*
3541
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3553
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
	BUG_ON(ti->preempt_count || !irqs_disabled());

need_resched:
	add_preempt_count(PREEMPT_ACTIVE);
	/*
	 * We keep the big kernel semaphore locked, but we
	 * clear ->lock_depth so that schedule() doesnt
	 * auto-release the semaphore:
	 */
#ifdef CONFIG_PREEMPT_BKL
	saved_lock_depth = task->lock_depth;
	task->lock_depth = -1;
#endif
	local_irq_enable();
	schedule();
	local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
	task->lock_depth = saved_lock_depth;
#endif
	sub_preempt_count(PREEMPT_ACTIVE);

	/* we could miss a preemption opportunity between schedule and now */
	barrier();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3583 3584
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3585
{
3586
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
}
EXPORT_SYMBOL(default_wake_function);

/*
 * The core wakeup function.  Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up.  If it's an exclusive wakeup (nr_exclusive == small +ve
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
 * started to run but is not in state TASK_RUNNING.  try_to_wake_up() returns
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3602
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3603

3604
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3605 3606
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3607
		if (curr->func(curr, mode, sync, key) &&
3608
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3618
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3619 3620
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3621
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3640
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3652 3653
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

void fastcall complete(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 1, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

void fastcall complete_all(struct completion *x)
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
	__wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
			 0, 0, NULL);
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

void fastcall __sched wait_for_completion(struct completion *x)
{
	might_sleep();
3697

L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	spin_unlock_irq(&x->wait.lock);
}
EXPORT_SYMBOL(wait_for_completion);

unsigned long fastcall __sched
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			__set_current_state(TASK_UNINTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_timeout);

int fastcall __sched wait_for_completion_interruptible(struct completion *x)
{
	int ret = 0;

	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				ret = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			schedule();
			spin_lock_irq(&x->wait.lock);
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);

	return ret;
}
EXPORT_SYMBOL(wait_for_completion_interruptible);

unsigned long fastcall __sched
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
			if (signal_pending(current)) {
				timeout = -ERESTARTSYS;
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
			__set_current_state(TASK_INTERRUPTIBLE);
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
				goto out;
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
out:
	spin_unlock_irq(&x->wait.lock);
	return timeout;
}
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);

I
Ingo Molnar 已提交
3816 3817 3818 3819 3820
static inline void
sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irqsave(&q->lock, *flags);
	__add_wait_queue(q, wait);
L
Linus Torvalds 已提交
3821
	spin_unlock(&q->lock);
I
Ingo Molnar 已提交
3822
}
L
Linus Torvalds 已提交
3823

I
Ingo Molnar 已提交
3824 3825 3826 3827 3828 3829 3830
static inline void
sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
{
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, wait);
	spin_unlock_irqrestore(&q->lock, *flags);
}
L
Linus Torvalds 已提交
3831

I
Ingo Molnar 已提交
3832
void __sched interruptible_sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3833
{
I
Ingo Molnar 已提交
3834 3835 3836 3837
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3838 3839 3840

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3841
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3842
	schedule();
I
Ingo Molnar 已提交
3843
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3844 3845 3846
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3847
long __sched
I
Ingo Molnar 已提交
3848
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3849
{
I
Ingo Molnar 已提交
3850 3851 3852 3853
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3854 3855 3856

	current->state = TASK_INTERRUPTIBLE;

I
Ingo Molnar 已提交
3857
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3858
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3859
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3860 3861 3862 3863 3864

	return timeout;
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3865
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3866
{
I
Ingo Molnar 已提交
3867 3868 3869 3870
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3871 3872 3873

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3874
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3875
	schedule();
I
Ingo Molnar 已提交
3876
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3877 3878 3879
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3880
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3881
{
I
Ingo Molnar 已提交
3882 3883 3884 3885
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3886 3887 3888

	current->state = TASK_UNINTERRUPTIBLE;

I
Ingo Molnar 已提交
3889
	sleep_on_head(q, &wait, &flags);
L
Linus Torvalds 已提交
3890
	timeout = schedule_timeout(timeout);
I
Ingo Molnar 已提交
3891
	sleep_on_tail(q, &wait, &flags);
L
Linus Torvalds 已提交
3892 3893 3894 3895 3896

	return timeout;
}
EXPORT_SYMBOL(sleep_on_timeout);

3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
3909
void rt_mutex_setprio(struct task_struct *p, int prio)
3910 3911
{
	unsigned long flags;
3912
	int oldprio, on_rq, running;
3913
	struct rq *rq;
3914 3915 3916 3917

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3918
	update_rq_clock(rq);
3919

3920
	oldprio = p->prio;
I
Ingo Molnar 已提交
3921
	on_rq = p->se.on_rq;
3922 3923
	running = task_running(rq, p);
	if (on_rq) {
3924
		dequeue_task(rq, p, 0);
3925 3926 3927
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
3928 3929 3930 3931 3932 3933

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

3934 3935
	p->prio = prio;

I
Ingo Molnar 已提交
3936
	if (on_rq) {
3937 3938
		if (running)
			p->sched_class->set_curr_task(rq);
3939
		enqueue_task(rq, p, 0);
3940 3941
		/*
		 * Reschedule if we are currently running on this runqueue and
3942 3943
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
3944
		 */
3945
		if (running) {
3946 3947
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
3948 3949 3950
		} else {
			check_preempt_curr(rq, p);
		}
3951 3952 3953 3954 3955 3956
	}
	task_rq_unlock(rq, &flags);
}

#endif

3957
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3958
{
I
Ingo Molnar 已提交
3959
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3960
	unsigned long flags;
3961
	struct rq *rq;
L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968 3969

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
3970
	update_rq_clock(rq);
L
Linus Torvalds 已提交
3971 3972 3973 3974
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
3975
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
3976
	 */
3977
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3978 3979 3980
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
3981 3982
	on_rq = p->se.on_rq;
	if (on_rq) {
3983
		dequeue_task(rq, p, 0);
3984
		dec_load(rq, p);
3985
	}
L
Linus Torvalds 已提交
3986 3987

	p->static_prio = NICE_TO_PRIO(nice);
3988
	set_load_weight(p);
3989 3990 3991
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3992

I
Ingo Molnar 已提交
3993
	if (on_rq) {
3994
		enqueue_task(rq, p, 0);
3995
		inc_load(rq, p);
L
Linus Torvalds 已提交
3996
		/*
3997 3998
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3999
		 */
4000
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4001 4002 4003 4004 4005 4006 4007
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4008 4009 4010 4011 4012
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4013
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4014
{
4015 4016
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4017

M
Matt Mackall 已提交
4018 4019 4020 4021
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4033
	long nice, retval;
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4040 4041
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4042 4043 4044 4045 4046 4047 4048 4049 4050
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4051 4052 4053
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4072
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4081
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4100
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107 4108
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4109
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114
{
	return pid ? find_task_by_pid(pid) : current;
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4115 4116
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4117
{
I
Ingo Molnar 已提交
4118
	BUG_ON(p->se.on_rq);
4119

L
Linus Torvalds 已提交
4120
	p->policy = policy;
I
Ingo Molnar 已提交
4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4133
	p->rt_priority = prio;
4134 4135 4136
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4137
	set_load_weight(p);
L
Linus Torvalds 已提交
4138 4139 4140
}

/**
4141
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4142 4143 4144
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4145
 *
4146
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4147
 */
I
Ingo Molnar 已提交
4148 4149
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4150
{
4151
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4152
	unsigned long flags;
4153
	struct rq *rq;
L
Linus Torvalds 已提交
4154

4155 4156
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4162 4163
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4164
		return -EINVAL;
L
Linus Torvalds 已提交
4165 4166
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4167 4168
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4169 4170
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4171
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4172
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4173
		return -EINVAL;
4174
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4175 4176
		return -EINVAL;

4177 4178 4179 4180
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4181
		if (rt_policy(policy)) {
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4198 4199 4200 4201 4202 4203
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4204

4205 4206 4207 4208 4209
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4210 4211 4212 4213

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4214 4215 4216 4217 4218
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4219 4220 4221 4222
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4223
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4224 4225 4226
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4227 4228
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4229 4230
		goto recheck;
	}
I
Ingo Molnar 已提交
4231
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4232
	on_rq = p->se.on_rq;
4233 4234
	running = task_running(rq, p);
	if (on_rq) {
4235
		deactivate_task(rq, p, 0);
4236 4237 4238
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4239

L
Linus Torvalds 已提交
4240
	oldprio = p->prio;
I
Ingo Molnar 已提交
4241
	__setscheduler(rq, p, policy, param->sched_priority);
4242

I
Ingo Molnar 已提交
4243
	if (on_rq) {
4244 4245
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4246
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4247 4248
		/*
		 * Reschedule if we are currently running on this runqueue and
4249 4250
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4251
		 */
4252
		if (running) {
4253 4254
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4255 4256 4257
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4258
	}
4259 4260 4261
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4262 4263
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4264 4265 4266 4267
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4268 4269
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4270 4271 4272
{
	struct sched_param lparam;
	struct task_struct *p;
4273
	int retval;
L
Linus Torvalds 已提交
4274 4275 4276 4277 4278

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4279 4280 4281

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4282
	p = find_process_by_pid(pid);
4283 4284 4285
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4286

L
Linus Torvalds 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
				       struct sched_param __user *param)
{
4299 4300 4301 4302
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4322
	struct task_struct *p;
L
Linus Torvalds 已提交
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
	int retval = -EINVAL;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);

out_nounlock:
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4350
	struct task_struct *p;
L
Linus Torvalds 已提交
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
	int retval = -EINVAL;

	if (!param || pid < 0)
		goto out_nounlock;

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

out_nounlock:
	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4385 4386
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4387

4388
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4389 4390 4391 4392 4393
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4394
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
	 * tasklist_lock held.  We will bump the task_struct's
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4411 4412 4413 4414
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
	retval = set_cpus_allowed(p, new_mask);

out_unlock:
	put_task_struct(p);
4421
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4462
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4463 4464 4465
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4466
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4467 4468
EXPORT_SYMBOL(cpu_online_map);

4469
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4470
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4471 4472 4473 4474
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4475
	struct task_struct *p;
L
Linus Torvalds 已提交
4476 4477
	int retval;

4478
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484 4485
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4486 4487 4488 4489
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4490
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4491 4492 4493

out_unlock:
	read_unlock(&tasklist_lock);
4494
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4495

4496
	return retval;
L
Linus Torvalds 已提交
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4527 4528
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4529 4530 4531
 */
asmlinkage long sys_sched_yield(void)
{
4532
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4533

4534
	schedstat_inc(rq, yld_count);
4535
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4536 4537 4538 4539 4540 4541

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4542
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547 4548 4549 4550
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4551
static void __cond_resched(void)
L
Linus Torvalds 已提交
4552
{
4553 4554 4555
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4556 4557 4558 4559 4560
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4561 4562 4563 4564 4565 4566 4567 4568 4569
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4570 4571
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
 * This works OK both with and without CONFIG_PREEMPT.  We do strange low-level
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4587
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4588
{
J
Jan Kara 已提交
4589 4590
	int ret = 0;

L
Linus Torvalds 已提交
4591 4592 4593
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4594
		ret = 1;
L
Linus Torvalds 已提交
4595 4596
		spin_lock(lock);
	}
4597
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4598
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4599 4600 4601
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4602
		ret = 1;
L
Linus Torvalds 已提交
4603 4604
		spin_lock(lock);
	}
J
Jan Kara 已提交
4605
	return ret;
L
Linus Torvalds 已提交
4606 4607 4608 4609 4610 4611 4612
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4613
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4614
		local_bh_enable();
L
Linus Torvalds 已提交
4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4626
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
 * This task is about to go to sleep on IO.  Increment rq->nr_iowait so
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4645
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4646

4647
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4648 4649 4650
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4651
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4652 4653 4654 4655 4656
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4657
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4658 4659
	long ret;

4660
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4661 4662 4663
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4664
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4685
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4686
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4710
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4711
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4728
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4729
	unsigned int time_slice;
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	int retval = -EINVAL;
	struct timespec t;

	if (pid < 0)
		goto out_nounlock;

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

D
Dmitry Adamushko 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
	if (p->policy == SCHED_FIFO)
		time_slice = 0;
	else if (p->policy == SCHED_RR)
		time_slice = DEF_TIMESLICE;
	else {
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
		time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4759
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4760
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4761 4762 4763 4764 4765 4766 4767 4768
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
out_nounlock:
	return retval;
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4769
static const char stat_nam[] = "RSDTtZX";
4770 4771

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4772 4773
{
	unsigned long free = 0;
4774
	unsigned state;
L
Linus Torvalds 已提交
4775 4776

	state = p->state ? __ffs(p->state) + 1 : 0;
4777 4778
	printk("%-13.13s %c", p->comm,
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4779
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4780
	if (state == TASK_RUNNING)
4781
		printk(" running  ");
L
Linus Torvalds 已提交
4782
	else
4783
		printk(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4784 4785
#else
	if (state == TASK_RUNNING)
4786
		printk("  running task    ");
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791
	else
		printk(" %016lx ", thread_saved_pc(p));
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4792
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4793 4794
		while (!*n)
			n++;
4795
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4796 4797
	}
#endif
4798
	printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
L
Linus Torvalds 已提交
4799 4800 4801 4802 4803

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4804
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4805
{
4806
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4807

4808 4809 4810
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4811
#else
4812 4813
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4822
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4823
			show_task(p);
L
Linus Torvalds 已提交
4824 4825
	} while_each_thread(g, p);

4826 4827
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4828 4829 4830
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4831
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4832 4833 4834 4835 4836
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4837 4838
}

I
Ingo Molnar 已提交
4839 4840
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4841
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4842 4843
}

4844 4845 4846 4847 4848 4849 4850 4851
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4852
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4853
{
4854
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4855 4856
	unsigned long flags;

I
Ingo Molnar 已提交
4857 4858 4859
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4860
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4861
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4862
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4863 4864 4865

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4866 4867 4868
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4869 4870 4871 4872
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4873
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4874
#else
A
Al Viro 已提交
4875
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4876
#endif
I
Ingo Molnar 已提交
4877 4878 4879 4880
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
4896
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
 * task must not exit() & deallocate itself prematurely.  The
 * call is not atomic; no spinlocks may be held.
 */
4918
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
4919
{
4920
	struct migration_req req;
L
Linus Torvalds 已提交
4921
	unsigned long flags;
4922
	struct rq *rq;
4923
	int ret = 0;
L
Linus Torvalds 已提交
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
4946

L
Linus Torvalds 已提交
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
 * Move (not current) task off this cpu, onto dest cpu.  We're doing
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4959 4960
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4961
 */
4962
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4963
{
4964
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
4965
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
4966 4967

	if (unlikely(cpu_is_offline(dest_cpu)))
4968
		return ret;
L
Linus Torvalds 已提交
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
4981
	on_rq = p->se.on_rq;
4982
	if (on_rq)
4983
		deactivate_task(rq_src, p, 0);
4984

L
Linus Torvalds 已提交
4985
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
4986 4987 4988
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
4989
	}
4990
	ret = 1;
L
Linus Torvalds 已提交
4991 4992
out:
	double_rq_unlock(rq_src, rq_dest);
4993
	return ret;
L
Linus Torvalds 已提交
4994 4995 4996 4997 4998 4999 5000
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5001
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5002 5003
{
	int cpu = (long)data;
5004
	struct rq *rq;
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5011
		struct migration_req *req;
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5034
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5035 5036
		list_del_init(head->next);

N
Nick Piggin 已提交
5037 5038 5039
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5058 5059 5060 5061
/*
 * Figure out where task on dead CPU should go, use force if neccessary.
 * NOTE: interrupts should be disabled by the caller
 */
5062
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5063
{
5064
	unsigned long flags;
L
Linus Torvalds 已提交
5065
	cpumask_t mask;
5066 5067
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5068

5069
restart:
L
Linus Torvalds 已提交
5070 5071
	/* On same node? */
	mask = node_to_cpumask(cpu_to_node(dead_cpu));
5072
	cpus_and(mask, mask, p->cpus_allowed);
L
Linus Torvalds 已提交
5073 5074 5075 5076
	dest_cpu = any_online_cpu(mask);

	/* On any allowed CPU? */
	if (dest_cpu == NR_CPUS)
5077
		dest_cpu = any_online_cpu(p->cpus_allowed);
L
Linus Torvalds 已提交
5078 5079 5080

	/* No more Mr. Nice Guy. */
	if (dest_cpu == NR_CPUS) {
5081 5082 5083
		rq = task_rq_lock(p, &flags);
		cpus_setall(p->cpus_allowed);
		dest_cpu = any_online_cpu(p->cpus_allowed);
5084
		task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090

		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
5091
		if (p->mm && printk_ratelimit())
L
Linus Torvalds 已提交
5092 5093
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
5094
			       p->pid, p->comm, dead_cpu);
L
Linus Torvalds 已提交
5095
	}
5096
	if (!__migrate_task(p, dead_cpu, dest_cpu))
5097
		goto restart;
L
Linus Torvalds 已提交
5098 5099 5100 5101 5102 5103 5104 5105 5106
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5107
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5108
{
5109
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5123
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5124 5125 5126

	write_lock_irq(&tasklist_lock);

5127 5128
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5129 5130
			continue;

5131 5132 5133
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5134 5135 5136 5137

	write_unlock_irq(&tasklist_lock);
}

A
Alexey Dobriyan 已提交
5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
/*
 * activate_idle_task - move idle task to the _front_ of runqueue.
 */
static void activate_idle_task(struct task_struct *p, struct rq *rq)
{
	update_rq_clock(rq);

	if (p->state == TASK_UNINTERRUPTIBLE)
		rq->nr_uninterruptible--;

	enqueue_task(rq, p, 0);
	inc_nr_running(p, rq);
}

I
Ingo Molnar 已提交
5152 5153
/*
 * Schedules idle task to be the next runnable task on current CPU.
L
Linus Torvalds 已提交
5154
 * It does so by boosting its priority to highest possible and adding it to
5155
 * the _front_ of the runqueue. Used by CPU offline code.
L
Linus Torvalds 已提交
5156 5157 5158
 */
void sched_idle_next(void)
{
5159
	int this_cpu = smp_processor_id();
5160
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5161 5162 5163 5164
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5165
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5166

5167 5168 5169
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5170 5171 5172
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5173
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5174 5175

	/* Add idle task to the _front_ of its priority queue: */
I
Ingo Molnar 已提交
5176
	activate_idle_task(p, rq);
L
Linus Torvalds 已提交
5177 5178 5179 5180

	spin_unlock_irqrestore(&rq->lock, flags);
}

5181 5182
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5196
/* called under rq->lock with disabled interrupts */
5197
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5198
{
5199
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5200 5201

	/* Must be exiting, otherwise would be on tasklist. */
5202
	BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
L
Linus Torvalds 已提交
5203 5204

	/* Cannot have done final schedule yet: would have vanished. */
5205
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5206

5207
	get_task_struct(p);
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212

	/*
	 * Drop lock around migration; if someone else moves it,
	 * that's OK.  No task can be added to this CPU, so iteration is
	 * fine.
5213
	 * NOTE: interrupts should be left disabled  --dev@
L
Linus Torvalds 已提交
5214
	 */
5215
	spin_unlock(&rq->lock);
5216
	move_task_off_dead_cpu(dead_cpu, p);
5217
	spin_lock(&rq->lock);
L
Linus Torvalds 已提交
5218

5219
	put_task_struct(p);
L
Linus Torvalds 已提交
5220 5221 5222 5223 5224
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5225
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5226
	struct task_struct *next;
5227

I
Ingo Molnar 已提交
5228 5229 5230
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5231
		update_rq_clock(rq);
5232
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5233 5234 5235
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5236

L
Linus Torvalds 已提交
5237 5238 5239 5240
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5241 5242 5243
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5244 5245
	{
		.procname	= "sched_domain",
5246
		.mode		= 0555,
5247
	},
5248 5249 5250 5251
	{0,},
};

static struct ctl_table sd_ctl_root[] = {
5252
	{
5253
		.ctl_name	= CTL_KERN,
5254
		.procname	= "kernel",
5255
		.mode		= 0555,
5256 5257
		.child		= sd_ctl_dir,
	},
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
	{0,},
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
		kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);

	BUG_ON(!entry);
	memset(entry, 0, n * sizeof(struct ctl_table));

	return entry;
}

static void
5273
set_table_entry(struct ctl_table *entry,
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
	struct ctl_table *table = sd_alloc_ctl_entry(14);

5289
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5290
		sizeof(long), 0644, proc_doulongvec_minmax);
5291
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5292
		sizeof(long), 0644, proc_doulongvec_minmax);
5293
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5294
		sizeof(int), 0644, proc_dointvec_minmax);
5295
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5296
		sizeof(int), 0644, proc_dointvec_minmax);
5297
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5298
		sizeof(int), 0644, proc_dointvec_minmax);
5299
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5300
		sizeof(int), 0644, proc_dointvec_minmax);
5301
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5302
		sizeof(int), 0644, proc_dointvec_minmax);
5303
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5304
		sizeof(int), 0644, proc_dointvec_minmax);
5305
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5306
		sizeof(int), 0644, proc_dointvec_minmax);
5307
	set_table_entry(&table[10], "cache_nice_tries",
5308 5309
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5310
	set_table_entry(&table[12], "flags", &sd->flags,
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330
		sizeof(int), 0644, proc_dointvec_minmax);

	return table;
}

static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5331
		entry->mode = 0555;
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
static void init_sched_domain_sysctl(void)
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

	sd_ctl_dir[0].child = entry;

	for (i = 0; i < cpu_num; i++, entry++) {
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5351
		entry->mode = 0555;
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361
		entry->child = sd_alloc_ctl_cpu_table(i);
	}
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
#else
static void init_sched_domain_sysctl(void)
{
}
#endif

L
Linus Torvalds 已提交
5362 5363 5364 5365
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5366 5367
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5368 5369
{
	struct task_struct *p;
5370
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5371
	unsigned long flags;
5372
	struct rq *rq;
L
Linus Torvalds 已提交
5373 5374

	switch (action) {
5375 5376 5377 5378
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5379
	case CPU_UP_PREPARE:
5380
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5381
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5382 5383 5384 5385 5386
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5387
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5388 5389 5390
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5391

L
Linus Torvalds 已提交
5392
	case CPU_ONLINE:
5393
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
5394 5395 5396
		/* Strictly unneccessary, as first user will wake it. */
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5397

L
Linus Torvalds 已提交
5398 5399
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5400
	case CPU_UP_CANCELED_FROZEN:
5401 5402
		if (!cpu_rq(cpu)->migration_thread)
			break;
L
Linus Torvalds 已提交
5403
		/* Unbind it from offline cpu so it can run.  Fall thru. */
5404 5405
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5406 5407 5408
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5409

L
Linus Torvalds 已提交
5410
	case CPU_DEAD:
5411
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
		rq = task_rq_lock(rq->idle, &flags);
I
Ingo Molnar 已提交
5418
		update_rq_clock(rq);
5419
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5420
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5421 5422
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428
		migrate_dead_tasks(cpu);
		task_rq_unlock(rq, &flags);
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

		/* No need to migrate the tasks: it was best-effort if
5429
		 * they didn't take sched_hotcpu_mutex.  Just wake up
L
Linus Torvalds 已提交
5430 5431 5432
		 * the requestors. */
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5433 5434
			struct migration_req *req;

L
Linus Torvalds 已提交
5435
			req = list_entry(rq->migration_queue.next,
5436
					 struct migration_req, list);
L
Linus Torvalds 已提交
5437 5438 5439 5440 5441 5442
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5443 5444 5445
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5446 5447 5448 5449 5450 5451 5452
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5453
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5454 5455 5456 5457 5458 5459 5460
	.notifier_call = migration_call,
	.priority = 10
};

int __init migration_init(void)
{
	void *cpu = (void *)(long)smp_processor_id();
5461
	int err;
5462 5463

	/* Start one for the boot CPU: */
5464 5465
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5466 5467
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5468

L
Linus Torvalds 已提交
5469 5470 5471 5472 5473
	return 0;
}
#endif

#ifdef CONFIG_SMP
5474 5475 5476 5477 5478

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5479
#undef SCHED_DOMAIN_DEBUG
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484
#ifdef SCHED_DOMAIN_DEBUG
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;

N
Nick Piggin 已提交
5485 5486 5487 5488 5489
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}

L
Linus Torvalds 已提交
5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	do {
		int i;
		char str[NR_CPUS];
		struct sched_group *group = sd->groups;
		cpumask_t groupmask;

		cpumask_scnprintf(str, NR_CPUS, sd->span);
		cpus_clear(groupmask);

		printk(KERN_DEBUG);
		for (i = 0; i < level + 1; i++)
			printk(" ");
		printk("domain %d: ", level);

		if (!(sd->flags & SD_LOAD_BALANCE)) {
			printk("does not load-balance\n");
			if (sd->parent)
5509 5510
				printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
						" has parent");
L
Linus Torvalds 已提交
5511 5512 5513 5514 5515 5516
			break;
		}

		printk("span %s\n", str);

		if (!cpu_isset(cpu, sd->span))
5517 5518
			printk(KERN_ERR "ERROR: domain->span does not contain "
					"CPU%d\n", cpu);
L
Linus Torvalds 已提交
5519
		if (!cpu_isset(cpu, group->cpumask))
5520 5521
			printk(KERN_ERR "ERROR: domain->groups does not contain"
					" CPU%d\n", cpu);
L
Linus Torvalds 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533

		printk(KERN_DEBUG);
		for (i = 0; i < level + 2; i++)
			printk(" ");
		printk("groups:");
		do {
			if (!group) {
				printk("\n");
				printk(KERN_ERR "ERROR: group is NULL\n");
				break;
			}

5534
			if (!group->__cpu_power) {
L
Linus Torvalds 已提交
5535
				printk("\n");
5536 5537
				printk(KERN_ERR "ERROR: domain->cpu_power not "
						"set\n");
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
			}

			if (!cpus_weight(group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: empty group\n");
			}

			if (cpus_intersects(groupmask, group->cpumask)) {
				printk("\n");
				printk(KERN_ERR "ERROR: repeated CPUs\n");
			}

			cpus_or(groupmask, groupmask, group->cpumask);

			cpumask_scnprintf(str, NR_CPUS, group->cpumask);
			printk(" %s", str);

			group = group->next;
		} while (group != sd->groups);
		printk("\n");

		if (!cpus_equal(sd->span, groupmask))
5560 5561
			printk(KERN_ERR "ERROR: groups don't span "
					"domain->span\n");
L
Linus Torvalds 已提交
5562 5563 5564

		level++;
		sd = sd->parent;
5565 5566
		if (!sd)
			continue;
L
Linus Torvalds 已提交
5567

5568 5569 5570
		if (!cpus_subset(groupmask, sd->span))
			printk(KERN_ERR "ERROR: parent span is not a superset "
				"of domain->span\n");
L
Linus Torvalds 已提交
5571 5572 5573 5574

	} while (sd);
}
#else
5575
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5576 5577
#endif

5578
static int sd_degenerate(struct sched_domain *sd)
5579 5580 5581 5582 5583 5584 5585 5586
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5587 5588 5589
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5603 5604
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5623 5624 5625
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5626 5627 5628 5629 5630 5631 5632
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5633 5634 5635 5636
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5637
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5638
{
5639
	struct rq *rq = cpu_rq(cpu);
5640 5641 5642 5643 5644 5645 5646
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5647
		if (sd_parent_degenerate(tmp, parent)) {
5648
			tmp->parent = parent->parent;
5649 5650 5651
			if (parent->parent)
				parent->parent->child = tmp;
		}
5652 5653
	}

5654
	if (sd && sd_degenerate(sd)) {
5655
		sd = sd->parent;
5656 5657 5658
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5659 5660 5661

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5662
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5663 5664 5665
}

/* cpus with isolated domains */
5666
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

__setup ("isolcpus=", isolated_cpu_setup);

/*
5684 5685 5686 5687
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5688 5689 5690 5691 5692
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5693
static void
5694 5695 5696
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5697 5698 5699 5700 5701 5702
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5703 5704
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5705 5706 5707 5708 5709 5710
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5711
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5712 5713

		for_each_cpu_mask(j, span) {
5714
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5729
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5730

5731
#ifdef CONFIG_NUMA
5732

5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
 * Find the next node to include in a given scheduling domain.  Simply
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
 * Given a node, construct a good cpumask for its sched_domain to span.  It
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5785 5786
	cpumask_t span, nodemask;
	int i;
5787 5788 5789 5790 5791 5792 5793 5794 5795 5796

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5797

5798 5799 5800 5801 5802 5803 5804 5805
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5806
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5807

5808
/*
5809
 * SMT sched-domains:
5810
 */
L
Linus Torvalds 已提交
5811 5812
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5813
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5814

5815 5816
static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
			    struct sched_group **sg)
L
Linus Torvalds 已提交
5817
{
5818 5819
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
5820 5821 5822 5823
	return cpu;
}
#endif

5824 5825 5826
/*
 * multi-core sched-domains:
 */
5827 5828
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
5829
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5830 5831 5832
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5833 5834
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5835
{
5836
	int group;
5837 5838
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5839 5840 5841 5842
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
5843 5844
}
#elif defined(CONFIG_SCHED_MC)
5845 5846
static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
5847
{
5848 5849
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
5850 5851 5852 5853
	return cpu;
}
#endif

L
Linus Torvalds 已提交
5854
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5855
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5856

5857 5858
static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
			     struct sched_group **sg)
L
Linus Torvalds 已提交
5859
{
5860
	int group;
5861
#ifdef CONFIG_SCHED_MC
5862
	cpumask_t mask = cpu_coregroup_map(cpu);
5863
	cpus_and(mask, mask, *cpu_map);
5864
	group = first_cpu(mask);
5865
#elif defined(CONFIG_SCHED_SMT)
5866 5867
	cpumask_t mask = cpu_sibling_map[cpu];
	cpus_and(mask, mask, *cpu_map);
5868
	group = first_cpu(mask);
L
Linus Torvalds 已提交
5869
#else
5870
	group = cpu;
L
Linus Torvalds 已提交
5871
#endif
5872 5873 5874
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
5875 5876 5877 5878
}

#ifdef CONFIG_NUMA
/*
5879 5880 5881
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
5882
 */
5883
static DEFINE_PER_CPU(struct sched_domain, node_domains);
5884
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
5885

5886
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5887
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5888

5889 5890
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
5891
{
5892 5893 5894 5895 5896 5897 5898 5899 5900
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
5901
}
5902

5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
next_sg:
	for_each_cpu_mask(j, sg->cpumask) {
		struct sched_domain *sd;

		sd = &per_cpu(phys_domains, j);
		if (j != first_cpu(sd->groups->cpumask)) {
			/*
			 * Only add "power" once for each
			 * physical package.
			 */
			continue;
		}

5923
		sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5924 5925 5926 5927 5928
	}
	sg = sg->next;
	if (sg != group_head)
		goto next_sg;
}
L
Linus Torvalds 已提交
5929 5930
#endif

5931
#ifdef CONFIG_NUMA
5932 5933 5934
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
5935
	int cpu, i;
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
5966 5967 5968 5969 5970
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
5971

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

5998 5999
	sd->groups->__cpu_power = 0;

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6010
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6011 6012 6013 6014 6015 6016 6017 6018
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6019
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6020 6021 6022 6023
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6024
/*
6025 6026
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6027
 */
6028
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6029 6030
{
	int i;
6031 6032
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6033
	int sd_allnodes = 0;
6034 6035 6036 6037

	/*
	 * Allocate the per-node list of sched groups
	 */
I
Ingo Molnar 已提交
6038
	sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6039
					   GFP_KERNEL);
6040 6041
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6042
		return -ENOMEM;
6043 6044 6045
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6046 6047

	/*
6048
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6049
	 */
6050
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6051 6052 6053
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6054
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6055 6056

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6057 6058
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6059 6060 6061
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6062
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6063
			p = sd;
6064
			sd_allnodes = 1;
6065 6066 6067
		} else
			p = NULL;

L
Linus Torvalds 已提交
6068 6069
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6070 6071
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6072 6073
		if (p)
			p->child = sd;
6074
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6075 6076 6077 6078 6079 6080 6081
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6082 6083
		if (p)
			p->child = sd;
6084
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6085

6086 6087 6088 6089 6090 6091 6092
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6093
		p->child = sd;
6094
		cpu_to_core_group(i, cpu_map, &sd->groups);
6095 6096
#endif

L
Linus Torvalds 已提交
6097 6098 6099 6100 6101
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
		sd->span = cpu_sibling_map[i];
6102
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6103
		sd->parent = p;
6104
		p->child = sd;
6105
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6106 6107 6108 6109 6110
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6111
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6112
		cpumask_t this_sibling_map = cpu_sibling_map[i];
6113
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6114 6115 6116
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6117 6118
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6119 6120 6121
	}
#endif

6122 6123 6124 6125 6126 6127 6128
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6129 6130
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6131 6132 6133
	}
#endif

L
Linus Torvalds 已提交
6134 6135 6136 6137
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6138
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6139 6140 6141
		if (cpus_empty(nodemask))
			continue;

6142
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6143 6144 6145 6146
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6147
	if (sd_allnodes)
I
Ingo Molnar 已提交
6148 6149
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6160 6161
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6162
			continue;
6163
		}
6164 6165 6166 6167

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6168
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6169 6170 6171 6172 6173
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6174 6175 6176
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6177

6178 6179 6180
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6181
		sg->__cpu_power = 0;
6182
		sg->cpumask = nodemask;
6183
		sg->next = sg;
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6202 6203
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6204 6205 6206
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6207
				goto error;
6208
			}
6209
			sg->__cpu_power = 0;
6210
			sg->cpumask = tmp;
6211
			sg->next = prev->next;
6212 6213 6214 6215 6216
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6217 6218 6219
#endif

	/* Calculate CPU power for physical packages and nodes */
6220
#ifdef CONFIG_SCHED_SMT
6221
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6222 6223
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6224
		init_sched_groups_power(i, sd);
6225
	}
L
Linus Torvalds 已提交
6226
#endif
6227
#ifdef CONFIG_SCHED_MC
6228
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6229 6230
		struct sched_domain *sd = &per_cpu(core_domains, i);

6231
		init_sched_groups_power(i, sd);
6232 6233
	}
#endif
6234

6235
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6236 6237
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6238
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6239 6240
	}

6241
#ifdef CONFIG_NUMA
6242 6243
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6244

6245 6246
	if (sd_allnodes) {
		struct sched_group *sg;
6247

6248
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6249 6250
		init_numa_sched_groups_power(sg);
	}
6251 6252
#endif

L
Linus Torvalds 已提交
6253
	/* Attach the domains */
6254
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6255 6256 6257
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6258 6259
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6260 6261 6262 6263 6264
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6265 6266 6267

	return 0;

6268
#ifdef CONFIG_NUMA
6269 6270 6271
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6272
#endif
L
Linus Torvalds 已提交
6273
}
6274 6275 6276
/*
 * Set up scheduler domains and groups.  Callers must hold the hotplug lock.
 */
6277
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6278 6279
{
	cpumask_t cpu_default_map;
6280
	int err;
L
Linus Torvalds 已提交
6281

6282 6283 6284 6285 6286 6287 6288
	/*
	 * Setup mask for cpus without special case scheduling requirements.
	 * For now this just excludes isolated cpus, but could be used to
	 * exclude other special cases in the future.
	 */
	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);

6289 6290 6291
	err = build_sched_domains(&cpu_default_map);

	return err;
6292 6293 6294
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6295
{
6296
	free_sched_groups(cpu_map);
6297
}
L
Linus Torvalds 已提交
6298

6299 6300 6301 6302
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6303
static void detach_destroy_domains(const cpumask_t *cpu_map)
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320
{
	int i;

	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

/*
 * Partition sched domains as specified by the cpumasks below.
 * This attaches all cpus from the cpumasks to the NULL domain,
 * waits for a RCU quiescent period, recalculates sched
 * domain information and then attaches them back to the
 * correct sched domains
 * Call with hotplug lock held
 */
6321
int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6322 6323
{
	cpumask_t change_map;
6324
	int err = 0;
6325 6326 6327 6328 6329 6330 6331 6332

	cpus_and(*partition1, *partition1, cpu_online_map);
	cpus_and(*partition2, *partition2, cpu_online_map);
	cpus_or(change_map, *partition1, *partition2);

	/* Detach sched domains from all of the affected cpus */
	detach_destroy_domains(&change_map);
	if (!cpus_empty(*partition1))
6333 6334 6335 6336 6337
		err = build_sched_domains(partition1);
	if (!err && !cpus_empty(*partition2))
		err = build_sched_domains(partition2);

	return err;
6338 6339
}

6340
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6341
static int arch_reinit_sched_domains(void)
6342 6343 6344
{
	int err;

6345
	mutex_lock(&sched_hotcpu_mutex);
6346 6347
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6348
	mutex_unlock(&sched_hotcpu_mutex);
6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6375 6376
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6377 6378 6379
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6380 6381
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6382 6383 6384 6385 6386 6387 6388
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6389 6390
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6391 6392 6393
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6414 6415
#endif

L
Linus Torvalds 已提交
6416 6417 6418
/*
 * Force a reinitialization of the sched domains hierarchy.  The domains
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6419
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425 6426
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6427
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6428
	case CPU_DOWN_PREPARE:
6429
	case CPU_DOWN_PREPARE_FROZEN:
6430
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6431 6432 6433
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6434
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6435
	case CPU_DOWN_FAILED:
6436
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6437
	case CPU_ONLINE:
6438
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6439
	case CPU_DEAD:
6440
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6450
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6451 6452 6453 6454 6455 6456

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6457 6458
	cpumask_t non_isolated_cpus;

6459
	mutex_lock(&sched_hotcpu_mutex);
6460
	arch_init_sched_domains(&cpu_online_map);
6461
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6462 6463
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6464
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6465 6466
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6467

6468 6469
	init_sched_domain_sysctl();

6470 6471 6472
	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
L
Linus Torvalds 已提交
6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483
}
#else
void __init sched_init_smp(void)
{
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	/* Linker adds these: start and end of __sched functions */
	extern char __sched_text_start[], __sched_text_end[];
6484

L
Linus Torvalds 已提交
6485 6486 6487 6488 6489
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6490
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6491 6492 6493 6494 6495
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6496
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6497 6498
}

L
Linus Torvalds 已提交
6499 6500
void __init sched_init(void)
{
6501
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6502 6503
	int i, j;

6504
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6505
		struct rt_prio_array *array;
6506
		struct rq *rq;
L
Linus Torvalds 已提交
6507 6508 6509

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6510
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6511
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6512 6513 6514 6515
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6516 6517 6518 6519 6520 6521 6522 6523 6524
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
			cfs_rq->tg = &init_task_grp;
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6525 6526
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6527 6528 6529 6530
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
			se->load.weight = init_task_grp_load;
6531 6532
			se->load.inv_weight =
				 div64_64(1ULL<<32, init_task_grp_load);
I
Ingo Molnar 已提交
6533 6534
			se->parent = NULL;
		}
6535
		init_task_grp.shares = init_task_grp_load;
I
Ingo Molnar 已提交
6536
#endif
L
Linus Torvalds 已提交
6537

I
Ingo Molnar 已提交
6538 6539
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6540
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6541
		rq->sd = NULL;
L
Linus Torvalds 已提交
6542
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6543
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6544
		rq->push_cpu = 0;
6545
		rq->cpu = i;
L
Linus Torvalds 已提交
6546 6547 6548 6549 6550
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6551 6552 6553 6554
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6555
		}
6556
		highest_cpu = i;
I
Ingo Molnar 已提交
6557 6558
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6559 6560
	}

6561
	set_load_weight(&init_task);
6562

6563 6564 6565 6566
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6567
#ifdef CONFIG_SMP
6568
	nr_cpu_ids = highest_cpu + 1;
6569 6570 6571
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6572 6573 6574 6575
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6589 6590 6591 6592
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6593 6594 6595 6596 6597
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6598
#ifdef in_atomic
L
Linus Torvalds 已提交
6599 6600 6601 6602 6603 6604 6605
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6606
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6607 6608 6609
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6610
		debug_show_held_locks(current);
6611 6612
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
void normalize_rt_tasks(void)
{
6623
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6624
	unsigned long flags;
6625
	struct rq *rq;
I
Ingo Molnar 已提交
6626
	int on_rq;
L
Linus Torvalds 已提交
6627 6628

	read_lock_irq(&tasklist_lock);
6629
	do_each_thread(g, p) {
I
Ingo Molnar 已提交
6630 6631
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6632 6633 6634
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6635
#endif
I
Ingo Molnar 已提交
6636 6637 6638 6639 6640 6641 6642 6643 6644
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6645
			continue;
I
Ingo Molnar 已提交
6646
		}
L
Linus Torvalds 已提交
6647

6648 6649
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
I
Ingo Molnar 已提交
6650 6651 6652 6653 6654 6655 6656
#ifdef CONFIG_SMP
		/*
		 * Do not touch the migration thread:
		 */
		if (p == rq->migration_thread)
			goto out_unlock;
#endif
L
Linus Torvalds 已提交
6657

I
Ingo Molnar 已提交
6658
		update_rq_clock(rq);
I
Ingo Molnar 已提交
6659
		on_rq = p->se.on_rq;
I
Ingo Molnar 已提交
6660 6661
		if (on_rq)
			deactivate_task(rq, p, 0);
I
Ingo Molnar 已提交
6662 6663
		__setscheduler(rq, p, SCHED_NORMAL, 0);
		if (on_rq) {
I
Ingo Molnar 已提交
6664
			activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6665 6666
			resched_task(rq->curr);
		}
I
Ingo Molnar 已提交
6667 6668 6669
#ifdef CONFIG_SMP
 out_unlock:
#endif
6670 6671
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6672 6673
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6674 6675 6676 6677
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6696
struct task_struct *curr_task(int cpu)
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
 * are serviced on a separate stack.  It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner.  This function
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6716
void set_curr_task(int cpu, struct task_struct *p)
6717 6718 6719 6720 6721
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6722 6723 6724 6725

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6726
struct task_grp *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6727 6728 6729 6730
{
	struct task_grp *tg;
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6731
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6732 6733 6734 6735 6736 6737
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6738
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6739 6740
	if (!tg->cfs_rq)
		goto err;
6741
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6742 6743 6744 6745
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6746
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

6773 6774 6775 6776 6777
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
6778

6779
	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
6780

6781
	return tg;
S
Srivatsa Vaddagiri 已提交
6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799

err:
	for_each_possible_cpu(i) {
		if (tg->cfs_rq && tg->cfs_rq[i])
			kfree(tg->cfs_rq[i]);
		if (tg->se && tg->se[i])
			kfree(tg->se[i]);
	}
	if (tg->cfs_rq)
		kfree(tg->cfs_rq);
	if (tg->se)
		kfree(tg->se);
	if (tg)
		kfree(tg);

	return ERR_PTR(-ENOMEM);
}

6800 6801
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
6802
{
6803 6804
	struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
	struct task_grp *tg = cfs_rq->tg;
S
Srivatsa Vaddagiri 已提交
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

6822 6823
/* Destroy runqueue etc associated with a task group */
void sched_destroy_group(struct task_grp *tg)
S
Srivatsa Vaddagiri 已提交
6824
{
6825 6826
	struct cfs_rq *cfs_rq;
	int i;
S
Srivatsa Vaddagiri 已提交
6827

6828 6829 6830 6831 6832 6833 6834 6835 6836
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

	cfs_rq = tg->cfs_rq[0];

	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&cfs_rq->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
6837 6838
}

6839
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
6840 6841 6842
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
6843 6844
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	if (tsk->sched_class != &fair_sched_class)
		goto done;

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

6860
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
6861
		dequeue_task(rq, tsk, 0);
6862 6863 6864
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
6865 6866 6867

	set_task_cfs_rq(tsk);

6868 6869 6870
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
6871
		enqueue_task(rq, tsk, 0);
6872
	}
S
Srivatsa Vaddagiri 已提交
6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

6899
int sched_group_set_shares(struct task_grp *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
6900 6901 6902
{
	int i;

6903 6904
	if (tg->shares == shares)
		return 0;
S
Srivatsa Vaddagiri 已提交
6905

6906
	/* return -EINVAL if the new value is not sane */
S
Srivatsa Vaddagiri 已提交
6907

6908
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
6909
	for_each_possible_cpu(i)
6910
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
6911

6912
	return 0;
S
Srivatsa Vaddagiri 已提交
6913 6914
}

I
Ingo Molnar 已提交
6915
#endif	/* CONFIG_FAIR_GROUP_SCHED */