sched.c 225.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

142 143
static inline int rt_policy(int policy)
{
144
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
145 146 147 148 149 150 151 152 153
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
154
/*
I
Ingo Molnar 已提交
155
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
156
 */
I
Ingo Molnar 已提交
157 158 159 160 161
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

162
struct rt_bandwidth {
I
Ingo Molnar 已提交
163 164 165 166 167
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
201 202
	spin_lock_init(&rt_b->rt_runtime_lock);

203 204 205
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
206
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
207 208
}

209 210 211
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
212 213 214 215 216 217
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

218
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
219 220 221 222 223 224 225 226 227 228 229 230
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
231 232
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
233 234 235 236 237 238 239 240 241 242 243
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

244 245 246 247 248 249
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

250
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
251

252 253
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
254 255
struct cfs_rq;

P
Peter Zijlstra 已提交
256 257
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
258
/* task group related information */
259
struct task_group {
260
#ifdef CONFIG_CGROUP_SCHED
261 262
	struct cgroup_subsys_state css;
#endif
263 264

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
265 266 267 268 269
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
270 271 272 273 274 275
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

276
	struct rt_bandwidth rt_bandwidth;
277
#endif
278

279
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
280
	struct list_head list;
P
Peter Zijlstra 已提交
281 282 283 284

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
285 286
};

D
Dhaval Giani 已提交
287
#ifdef CONFIG_USER_SCHED
288 289 290 291 292 293 294 295

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

296
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
297 298 299 300
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
301
#endif /* CONFIG_FAIR_GROUP_SCHED */
302 303 304 305

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
306
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
307
#else /* !CONFIG_USER_SCHED */
308
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
309
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
310

311
/* task_group_lock serializes add/remove of task groups and also changes to
312 313
 * a task group's cpu shares.
 */
314
static DEFINE_SPINLOCK(task_group_lock);
315

316 317 318
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
319
#else /* !CONFIG_USER_SCHED */
320
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
321
#endif /* CONFIG_USER_SCHED */
322

323
/*
324 325 326 327
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
328 329 330
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
331
#define MIN_SHARES	2
332
#define MAX_SHARES	(1UL << 18)
333

334 335 336
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
337
/* Default task group.
I
Ingo Molnar 已提交
338
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
339
 */
340
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
341 342

/* return group to which a task belongs */
343
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
344
{
345
	struct task_group *tg;
346

347
#ifdef CONFIG_USER_SCHED
348
	tg = p->user->tg;
349
#elif defined(CONFIG_CGROUP_SCHED)
350 351
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
352
#else
I
Ingo Molnar 已提交
353
	tg = &init_task_group;
354
#endif
355
	return tg;
S
Srivatsa Vaddagiri 已提交
356 357 358
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
359
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
360
{
361
#ifdef CONFIG_FAIR_GROUP_SCHED
362 363
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
364
#endif
P
Peter Zijlstra 已提交
365

366
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
367 368
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
369
#endif
S
Srivatsa Vaddagiri 已提交
370 371 372 373
}

#else

P
Peter Zijlstra 已提交
374
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
375 376 377 378
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
379

380
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
381

I
Ingo Molnar 已提交
382 383 384 385 386 387
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
388
	u64 min_vruntime;
I
Ingo Molnar 已提交
389 390 391

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
392 393 394 395 396 397

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
398 399
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
400
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
401

P
Peter Zijlstra 已提交
402
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
403

404
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
405 406
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
407 408
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
409 410 411 412 413 414
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
415 416
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
417 418 419

#ifdef CONFIG_SMP
	/*
420
	 * the part of load.weight contributed by tasks
421
	 */
422
	unsigned long task_weight;
423

424 425 426 427 428 429 430
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
431

432 433 434 435
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
436 437 438 439 440

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
441
#endif
I
Ingo Molnar 已提交
442 443
#endif
};
L
Linus Torvalds 已提交
444

I
Ingo Molnar 已提交
445 446 447
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
448
	unsigned long rt_nr_running;
449
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
450 451
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
452
#ifdef CONFIG_SMP
453
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
454
	int overloaded;
P
Peter Zijlstra 已提交
455
#endif
P
Peter Zijlstra 已提交
456
	int rt_throttled;
P
Peter Zijlstra 已提交
457
	u64 rt_time;
P
Peter Zijlstra 已提交
458
	u64 rt_runtime;
I
Ingo Molnar 已提交
459
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
460
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
461

462
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
463 464
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
465 466 467 468 469
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
470 471
};

G
Gregory Haskins 已提交
472 473 474 475
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
476 477
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
478 479 480 481 482 483 484 485
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
486

I
Ingo Molnar 已提交
487
	/*
488 489 490 491
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
492
	atomic_t rto_count;
493 494 495
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
496 497
};

498 499 500 501
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
502 503 504 505
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
506 507 508 509 510 511 512
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
513
struct rq {
514 515
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
516 517 518 519 520 521

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
522 523
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
524
	unsigned char idle_at_tick;
525
#ifdef CONFIG_NO_HZ
526
	unsigned long last_tick_seen;
527 528
	unsigned char in_nohz_recently;
#endif
529 530
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
531 532 533 534
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
535 536
	struct rt_rq rt;

I
Ingo Molnar 已提交
537
#ifdef CONFIG_FAIR_GROUP_SCHED
538 539
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
540 541
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
542
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
543 544 545 546 547 548 549 550 551 552
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

553
	struct task_struct *curr, *idle;
554
	unsigned long next_balance;
L
Linus Torvalds 已提交
555
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
556

557
	u64 clock;
I
Ingo Molnar 已提交
558

L
Linus Torvalds 已提交
559 560 561
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
562
	struct root_domain *rd;
L
Linus Torvalds 已提交
563 564 565 566 567
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
568 569
	/* cpu of this runqueue: */
	int cpu;
570
	int online;
L
Linus Torvalds 已提交
571

572
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
573

574
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
575 576 577
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
578
#ifdef CONFIG_SCHED_HRTICK
579 580 581 582
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
583 584 585
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
586 587 588 589 590
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
591 592 593 594
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
595 596

	/* schedule() stats */
597 598 599
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
600 601

	/* try_to_wake_up() stats */
602 603
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
604 605

	/* BKL stats */
606
	unsigned int bkl_count;
L
Linus Torvalds 已提交
607 608 609
#endif
};

610
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
611

612
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
613
{
614
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
615 616
}

617 618 619 620 621 622 623 624 625
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
626 627
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
628
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
629 630 631 632
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
633 634
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
635 636 637 638 639 640

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

641 642 643 644 645
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
646 647 648 649 650 651 652 653 654
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
673 674 675
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
676 677 678 679

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
680
enum {
P
Peter Zijlstra 已提交
681
#include "sched_features.h"
I
Ingo Molnar 已提交
682 683
};

P
Peter Zijlstra 已提交
684 685 686 687 688
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
689
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
690 691 692 693 694 695 696 697 698
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

699
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
700 701 702 703 704 705
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

706
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
734
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
764
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
819

820 821 822 823 824 825 826
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
827
/*
P
Peter Zijlstra 已提交
828
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
829 830
 * default: 1s
 */
P
Peter Zijlstra 已提交
831
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
832

833 834
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
835 836 837 838 839
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
840

841 842 843 844 845 846 847
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
848
	if (sysctl_sched_rt_runtime < 0)
849 850 851 852
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
853

L
Linus Torvalds 已提交
854
#ifndef prepare_arch_switch
855 856 857 858 859 860
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

861 862 863 864 865
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

866
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
867
static inline int task_running(struct rq *rq, struct task_struct *p)
868
{
869
	return task_current(rq, p);
870 871
}

872
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
873 874 875
{
}

876
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877
{
878 879 880 881
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
882 883 884 885 886 887 888
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

889 890 891 892
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
893
static inline int task_running(struct rq *rq, struct task_struct *p)
894 895 896 897
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
898
	return task_current(rq, p);
899 900 901
#endif
}

902
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

919
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 921 922 923 924 925 926 927 928 929 930 931
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
932
#endif
933 934
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
935

936 937 938 939
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
940
static inline struct rq *__task_rq_lock(struct task_struct *p)
941 942
	__acquires(rq->lock)
{
943 944 945 946 947
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
948 949 950 951
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
952 953
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
954
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
955 956
 * explicitly disabling preemption.
 */
957
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
958 959
	__acquires(rq->lock)
{
960
	struct rq *rq;
L
Linus Torvalds 已提交
961

962 963 964 965 966 967
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
968 969 970 971
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

972 973 974 975 976 977 978 979
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
980
static void __task_rq_unlock(struct rq *rq)
981 982 983 984 985
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

986
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
987 988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
993
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
994
 */
A
Alexey Dobriyan 已提交
995
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
996 997
	__acquires(rq->lock)
{
998
	struct rq *rq;
L
Linus Torvalds 已提交
999 1000 1001 1002 1003 1004 1005 1006

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1028
	if (!cpu_active(cpu_of(rq)))
1029
		return 0;
P
Peter Zijlstra 已提交
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1050
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1057
#ifdef CONFIG_SMP
1058 1059 1060 1061
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1062
{
1063
	struct rq *rq = arg;
1064

1065 1066 1067 1068
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1069 1070
}

1071 1072 1073 1074 1075 1076
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1077
{
1078 1079
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080

1081
	hrtimer_set_expires(timer, time);
1082 1083 1084 1085 1086 1087 1088

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1103
		hrtick_clear(cpu_rq(cpu));
1104 1105 1106 1107 1108 1109
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1110
static __init void init_hrtick(void)
1111 1112 1113
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1124

A
Andrew Morton 已提交
1125
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1126 1127
{
}
1128
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1129

1130
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1131
{
1132 1133
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1134

1135 1136 1137 1138
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1139

1140 1141
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
1142
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
P
Peter Zijlstra 已提交
1143
}
A
Andrew Morton 已提交
1144
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150 1151 1152
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1153 1154 1155
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1156
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1157

I
Ingo Molnar 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1171
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1172 1173 1174 1175 1176
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1177
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1178 1179
		return;

1180
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1243
#endif /* CONFIG_NO_HZ */
1244

1245
#else /* !CONFIG_SMP */
1246
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1247 1248
{
	assert_spin_locked(&task_rq(p)->lock);
1249
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1250
}
1251
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1252

1253 1254 1255 1256 1257 1258 1259 1260
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1261 1262 1263
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1264
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1265

1266 1267 1268
/*
 * delta *= weight / lw
 */
1269
static unsigned long
1270 1271 1272 1273 1274
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1275 1276 1277 1278 1279 1280 1281
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1282 1283 1284 1285 1286

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1287
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1288
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1289 1290
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1291
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1292

1293
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1294 1295
}

1296
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1297 1298
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1299
	lw->inv_weight = 0;
1300 1301
}

1302
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1303 1304
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1305
	lw->inv_weight = 0;
1306 1307
}

1308 1309 1310 1311
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1312
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1313 1314 1315 1316
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1328 1329 1330
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1331 1332
 */
static const int prio_to_weight[40] = {
1333 1334 1335 1336 1337 1338 1339 1340
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1341 1342
};

1343 1344 1345 1346 1347 1348 1349
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1350
static const u32 prio_to_wmult[40] = {
1351 1352 1353 1354 1355 1356 1357 1358
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1359
};
1360

I
Ingo Molnar 已提交
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1386

1387 1388 1389 1390 1391 1392
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1403
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1404
typedef int (*tg_visitor)(struct task_group *, void *);
1405 1406 1407 1408 1409

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1410
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1411 1412
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1413
	int ret;
1414 1415 1416 1417

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1418 1419 1420
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1421 1422 1423 1424 1425 1426 1427
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1428 1429 1430
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1431 1432 1433 1434 1435

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1436
out_unlock:
1437
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1438 1439

	return ret;
1440 1441
}

P
Peter Zijlstra 已提交
1442 1443 1444
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1445
}
P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1456
	unsigned long nr_running = rq->nr_running;
P
Peter Zijlstra 已提交
1457

1458 1459
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1460 1461
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1462 1463 1464 1465 1466

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1467 1468 1469 1470 1471 1472 1473

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1474 1475
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1476
{
1477 1478 1479 1480
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1481
	if (!tg->se[cpu])
1482 1483
		return;

1484
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1496 1497 1498
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1499 1500 1501 1502 1503 1504
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1505
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1506
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1507

1508 1509 1510 1511
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1512

1513 1514 1515 1516 1517 1518
		spin_lock_irqsave(&rq->lock, flags);
		/*
		 * record the actual number of shares, not the boosted amount.
		 */
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
		tg->cfs_rq[cpu]->rq_weight = rq_weight;
1519

1520 1521 1522
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1523
}
1524 1525

/*
1526 1527 1528
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1529
 */
P
Peter Zijlstra 已提交
1530
static int tg_shares_up(struct task_group *tg, void *data)
1531
{
1532 1533
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1534
	struct sched_domain *sd = data;
1535
	int i;
1536

1537 1538 1539
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1540 1541
	}

1542 1543 1544 1545 1546
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1547

P
Peter Zijlstra 已提交
1548 1549 1550
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1551 1552
	for_each_cpu_mask(i, sd->span)
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1553 1554

	return 0;
1555 1556 1557
}

/*
1558 1559 1560
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1561
 */
P
Peter Zijlstra 已提交
1562
static int tg_load_down(struct task_group *tg, void *data)
1563
{
1564
	unsigned long load;
P
Peter Zijlstra 已提交
1565
	long cpu = (long)data;
1566

1567 1568 1569 1570 1571 1572 1573
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1574

1575
	tg->cfs_rq[cpu]->h_load = load;
1576

P
Peter Zijlstra 已提交
1577
	return 0;
1578 1579
}

1580
static void update_shares(struct sched_domain *sd)
1581
{
P
Peter Zijlstra 已提交
1582 1583 1584 1585 1586
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1587
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1588
	}
1589 1590
}

1591 1592 1593 1594 1595 1596 1597
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1598
static void update_h_load(long cpu)
1599
{
P
Peter Zijlstra 已提交
1600
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1601 1602 1603 1604
}

#else

1605
static inline void update_shares(struct sched_domain *sd)
1606 1607 1608
{
}

1609 1610 1611 1612
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1613 1614 1615 1616
#endif

#endif

V
Vegard Nossum 已提交
1617
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1618 1619
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1620
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1621 1622 1623
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1624
#endif
1625

I
Ingo Molnar 已提交
1626 1627
#include "sched_stats.h"
#include "sched_idletask.c"
1628 1629
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1630 1631 1632 1633 1634
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1635 1636
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1637

1638
static void inc_nr_running(struct rq *rq)
1639 1640 1641 1642
{
	rq->nr_running++;
}

1643
static void dec_nr_running(struct rq *rq)
1644 1645 1646 1647
{
	rq->nr_running--;
}

1648 1649 1650
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1651 1652 1653 1654
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1655

I
Ingo Molnar 已提交
1656 1657 1658 1659 1660 1661 1662 1663
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1664

I
Ingo Molnar 已提交
1665 1666
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1667 1668
}

1669 1670 1671 1672 1673 1674
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1675
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1676
{
I
Ingo Molnar 已提交
1677
	sched_info_queued(p);
1678
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1679
	p->se.on_rq = 1;
1680 1681
}

1682
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1683
{
1684 1685 1686 1687 1688 1689
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1690
	sched_info_dequeued(p);
1691
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1692
	p->se.on_rq = 0;
1693 1694
}

1695
/*
I
Ingo Molnar 已提交
1696
 * __normal_prio - return the priority that is based on the static prio
1697 1698 1699
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1700
	return p->static_prio;
1701 1702
}

1703 1704 1705 1706 1707 1708 1709
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1710
static inline int normal_prio(struct task_struct *p)
1711 1712 1713
{
	int prio;

1714
	if (task_has_rt_policy(p))
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1728
static int effective_prio(struct task_struct *p)
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1741
/*
I
Ingo Molnar 已提交
1742
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1743
 */
I
Ingo Molnar 已提交
1744
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1745
{
1746
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1747
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1748

1749
	enqueue_task(rq, p, wakeup);
1750
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1756
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1757
{
1758
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1759 1760
		rq->nr_uninterruptible++;

1761
	dequeue_task(rq, p, sleep);
1762
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1769
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1770 1771 1772 1773
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1774 1775
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1776
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1777
#ifdef CONFIG_SMP
1778 1779 1780 1781 1782 1783
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1784 1785
	task_thread_info(p)->cpu = cpu;
#endif
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1800
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1801

1802 1803 1804 1805 1806 1807
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1808 1809 1810
/*
 * Is this task likely cache-hot:
 */
1811
static int
1812 1813 1814 1815
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1816 1817 1818
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1819 1820 1821
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1822 1823
		return 1;

1824 1825 1826
	if (p->sched_class != &fair_sched_class)
		return 0;

1827 1828 1829 1830 1831
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1832 1833 1834 1835 1836 1837
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1838
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1839
{
I
Ingo Molnar 已提交
1840 1841
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1842 1843
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1844
	u64 clock_offset;
I
Ingo Molnar 已提交
1845 1846

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1847 1848 1849 1850

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1851 1852 1853 1854
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1855 1856 1857 1858 1859
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1860
#endif
1861 1862
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1863 1864

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1865 1866
}

1867
struct migration_req {
L
Linus Torvalds 已提交
1868 1869
	struct list_head list;

1870
	struct task_struct *task;
L
Linus Torvalds 已提交
1871 1872 1873
	int dest_cpu;

	struct completion done;
1874
};
L
Linus Torvalds 已提交
1875 1876 1877 1878 1879

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1880
static int
1881
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1882
{
1883
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1884 1885 1886 1887 1888

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1889
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1890 1891 1892 1893 1894 1895 1896 1897
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1898

L
Linus Torvalds 已提交
1899 1900 1901 1902 1903 1904
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1905 1906 1907 1908 1909 1910 1911
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1912 1913 1914 1915 1916 1917
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1918
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1919 1920
{
	unsigned long flags;
I
Ingo Molnar 已提交
1921
	int running, on_rq;
R
Roland McGrath 已提交
1922
	unsigned long ncsw;
1923
	struct rq *rq;
L
Linus Torvalds 已提交
1924

1925 1926 1927 1928 1929 1930 1931 1932
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1933

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1945 1946 1947
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1948
			cpu_relax();
R
Roland McGrath 已提交
1949
		}
1950

1951 1952 1953 1954 1955 1956
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1957
		trace_sched_wait_task(rq, p);
1958 1959
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1960
		ncsw = 0;
1961
		if (!match_state || p->state == match_state)
1962
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1963
		task_rq_unlock(rq, &flags);
1964

R
Roland McGrath 已提交
1965 1966 1967 1968 1969 1970
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1981

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1995

1996 1997 1998 1999 2000 2001 2002
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2003 2004

	return ncsw;
L
Linus Torvalds 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2020
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2032 2033
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2034 2035 2036 2037
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2038
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2039
{
2040
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2041
	unsigned long total = weighted_cpuload(cpu);
2042

2043
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2044
		return total;
2045

I
Ingo Molnar 已提交
2046
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2047 2048 2049
}

/*
2050 2051
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2052
 */
A
Alexey Dobriyan 已提交
2053
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2054
{
2055
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2056
	unsigned long total = weighted_cpuload(cpu);
2057

2058
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2059
		return total;
2060

I
Ingo Molnar 已提交
2061
	return max(rq->cpu_load[type-1], total);
2062 2063
}

N
Nick Piggin 已提交
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2081 2082
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2083
			continue;
2084

N
Nick Piggin 已提交
2085 2086 2087 2088 2089
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2090
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2101 2102
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2103 2104 2105 2106 2107 2108 2109 2110

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2111
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2112 2113 2114 2115 2116 2117 2118

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2119
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2120
 */
I
Ingo Molnar 已提交
2121
static int
2122 2123
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2124 2125 2126 2127 2128
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2129
	/* Traverse only the allowed CPUs */
2130
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2131

2132
	for_each_cpu_mask_nr(i, *tmp) {
2133
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2159

2160
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2161 2162 2163
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2164 2165
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2166 2167
		if (tmp->flags & flag)
			sd = tmp;
2168
	}
N
Nick Piggin 已提交
2169

2170 2171 2172
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2173
	while (sd) {
2174
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2175
		struct sched_group *group;
2176 2177 2178 2179 2180 2181
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2182 2183 2184

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2185 2186 2187 2188
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2189

2190
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2191 2192 2193 2194 2195
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2196

2197
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2229
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2230
{
2231
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2232 2233
	unsigned long flags;
	long old_state;
2234
	struct rq *rq;
L
Linus Torvalds 已提交
2235

2236 2237 2238
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2255
	smp_wmb();
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2261
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2262 2263 2264
		goto out_running;

	cpu = task_cpu(p);
2265
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2266 2267 2268 2269 2270 2271
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2272 2273 2274
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2281
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2301
#endif /* CONFIG_SCHEDSTATS */
2302

L
Linus Torvalds 已提交
2303 2304
out_activate:
#endif /* CONFIG_SMP */
2305 2306 2307 2308 2309 2310 2311 2312 2313
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2314
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2315
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2316 2317 2318
	success = 1;

out_running:
2319
	trace_sched_wakeup(rq, p);
2320
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2321

L
Linus Torvalds 已提交
2322
	p->state = TASK_RUNNING;
2323 2324 2325 2326
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2327
out:
2328 2329
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2330 2331 2332 2333 2334
	task_rq_unlock(rq, &flags);

	return success;
}

2335
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2336
{
2337
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2338 2339 2340
}
EXPORT_SYMBOL(wake_up_process);

2341
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2342 2343 2344 2345 2346 2347 2348
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2349 2350 2351 2352 2353 2354 2355
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2356
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2357 2358
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2359 2360 2361

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2362 2363 2364 2365 2366 2367
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2368
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2369
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2370
#endif
N
Nick Piggin 已提交
2371

P
Peter Zijlstra 已提交
2372
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2373
	p->se.on_rq = 0;
2374
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2375

2376 2377 2378 2379
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2380 2381 2382 2383 2384 2385 2386
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2401
	set_task_cpu(p, cpu);
2402 2403 2404 2405 2406

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2407 2408
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2409

2410
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2411
	if (likely(sched_info_on()))
2412
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2413
#endif
2414
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2415 2416
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2417
#ifdef CONFIG_PREEMPT
2418
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2419
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2420
#endif
N
Nick Piggin 已提交
2421
	put_cpu();
L
Linus Torvalds 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2431
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2432 2433
{
	unsigned long flags;
I
Ingo Molnar 已提交
2434
	struct rq *rq;
L
Linus Torvalds 已提交
2435 2436

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2437
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2438
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2439 2440 2441

	p->prio = effective_prio(p);

2442
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2443
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2444 2445
	} else {
		/*
I
Ingo Molnar 已提交
2446 2447
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2448
		 */
2449
		p->sched_class->task_new(rq, p);
2450
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2451
	}
2452
	trace_sched_wakeup_new(rq, p);
2453
	check_preempt_curr(rq, p, 0);
2454 2455 2456 2457
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2458
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2459 2460
}

2461 2462 2463
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2464 2465
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2466 2467 2468 2469 2470 2471 2472 2473 2474
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2475
 * @notifier: notifier struct to unregister
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2505
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2517
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2518

2519 2520 2521
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2522
 * @prev: the current task that is being switched out
2523 2524 2525 2526 2527 2528 2529 2530 2531
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2532 2533 2534
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2535
{
2536
	fire_sched_out_preempt_notifiers(prev, next);
2537 2538 2539 2540
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2541 2542
/**
 * finish_task_switch - clean up after a task-switch
2543
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2544 2545
 * @prev: the thread we just switched away from.
 *
2546 2547 2548 2549
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2550 2551
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2552
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2553 2554 2555
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2556
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2557 2558 2559
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2560
	long prev_state;
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2566
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2567 2568
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2569
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2570 2571 2572 2573 2574
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2575
	prev_state = prev->state;
2576 2577
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2578 2579 2580 2581
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2582

2583
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2584 2585
	if (mm)
		mmdrop(mm);
2586
	if (unlikely(prev_state == TASK_DEAD)) {
2587 2588 2589
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2590
		 */
2591
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2592
		put_task_struct(prev);
2593
	}
L
Linus Torvalds 已提交
2594 2595 2596 2597 2598 2599
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2600
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2601 2602
	__releases(rq->lock)
{
2603 2604
	struct rq *rq = this_rq();

2605 2606 2607 2608 2609
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2610
	if (current->set_child_tid)
2611
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2618
static inline void
2619
context_switch(struct rq *rq, struct task_struct *prev,
2620
	       struct task_struct *next)
L
Linus Torvalds 已提交
2621
{
I
Ingo Molnar 已提交
2622
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2623

2624
	prepare_task_switch(rq, prev, next);
2625
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2626 2627
	mm = next->mm;
	oldmm = prev->active_mm;
2628 2629 2630 2631 2632 2633 2634
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2635
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640 2641
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2642
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2643 2644 2645
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2646 2647 2648 2649 2650 2651 2652
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2653
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2654
#endif
L
Linus Torvalds 已提交
2655 2656 2657 2658

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2659 2660 2661 2662 2663 2664 2665
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2689
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2704 2705
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2706

2707
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2708 2709 2710 2711 2712 2713 2714 2715 2716
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2717
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2718 2719 2720 2721 2722
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2738
/*
I
Ingo Molnar 已提交
2739 2740
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2741
 */
I
Ingo Molnar 已提交
2742
static void update_cpu_load(struct rq *this_rq)
2743
{
2744
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2757 2758 2759 2760 2761 2762 2763
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2764 2765
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2766 2767
}

I
Ingo Molnar 已提交
2768 2769
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2770 2771 2772 2773 2774 2775
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2776
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2777 2778 2779
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2780
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2781 2782 2783 2784
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2785
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2786
			spin_lock(&rq1->lock);
2787
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2788 2789
		} else {
			spin_lock(&rq2->lock);
2790
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2791 2792
		}
	}
2793 2794
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2803
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2817
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2818 2819 2820 2821
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2822 2823
	int ret = 0;

2824 2825 2826 2827 2828
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2829
	if (unlikely(!spin_trylock(&busiest->lock))) {
2830
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2831 2832
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2833
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2834
			ret = 1;
L
Linus Torvalds 已提交
2835
		} else
2836
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2837
	}
S
Steven Rostedt 已提交
2838
	return ret;
L
Linus Torvalds 已提交
2839 2840
}

2841 2842 2843 2844 2845 2846 2847
static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}

L
Linus Torvalds 已提交
2848 2849 2850
/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2851
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2852 2853
 * the cpu_allowed mask is restored.
 */
2854
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2855
{
2856
	struct migration_req req;
L
Linus Torvalds 已提交
2857
	unsigned long flags;
2858
	struct rq *rq;
L
Linus Torvalds 已提交
2859 2860 2861

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2862
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2863 2864
		goto out;

2865
	trace_sched_migrate_task(rq, p, dest_cpu);
L
Linus Torvalds 已提交
2866 2867 2868 2869
	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2870

L
Linus Torvalds 已提交
2871 2872 2873 2874 2875
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2876

L
Linus Torvalds 已提交
2877 2878 2879 2880 2881 2882 2883
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2884 2885
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2886 2887 2888 2889
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2890
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2891
	put_cpu();
N
Nick Piggin 已提交
2892 2893
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2894 2895 2896 2897 2898 2899
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2900 2901
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2902
{
2903
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2904
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2905
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2906 2907 2908 2909
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2910
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2916
static
2917
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2918
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2919
		     int *all_pinned)
L
Linus Torvalds 已提交
2920 2921 2922 2923 2924 2925 2926
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2927 2928
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2929
		return 0;
2930
	}
2931 2932
	*all_pinned = 0;

2933 2934
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2935
		return 0;
2936
	}
L
Linus Torvalds 已提交
2937

2938 2939 2940 2941 2942 2943
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2944 2945
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2946
#ifdef CONFIG_SCHEDSTATS
2947
		if (task_hot(p, rq->clock, sd)) {
2948
			schedstat_inc(sd, lb_hot_gained[idle]);
2949 2950
			schedstat_inc(p, se.nr_forced_migrations);
		}
2951 2952 2953 2954
#endif
		return 1;
	}

2955 2956
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2957
		return 0;
2958
	}
L
Linus Torvalds 已提交
2959 2960 2961
	return 1;
}

2962 2963 2964 2965 2966
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2967
{
2968
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2969 2970
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2971

2972
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2973 2974
		goto out;

2975 2976
	pinned = 1;

L
Linus Torvalds 已提交
2977
	/*
I
Ingo Molnar 已提交
2978
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2979
	 */
I
Ingo Molnar 已提交
2980 2981
	p = iterator->start(iterator->arg);
next:
2982
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2983
		goto out;
2984 2985

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2986 2987 2988
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2989 2990
	}

I
Ingo Molnar 已提交
2991
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2992
	pulled++;
I
Ingo Molnar 已提交
2993
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2994

2995
	/*
2996
	 * We only want to steal up to the prescribed amount of weighted load.
2997
	 */
2998
	if (rem_load_move > 0) {
2999 3000
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3001 3002
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3003 3004 3005
	}
out:
	/*
3006
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3007 3008 3009 3010
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3011 3012 3013

	if (all_pinned)
		*all_pinned = pinned;
3014 3015

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3016 3017
}

I
Ingo Molnar 已提交
3018
/*
P
Peter Williams 已提交
3019 3020 3021
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3022 3023 3024 3025
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3026
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3027 3028 3029
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3030
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3031
	unsigned long total_load_moved = 0;
3032
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3033 3034

	do {
P
Peter Williams 已提交
3035 3036
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3037
				max_load_move - total_load_moved,
3038
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3039
		class = class->next;
3040 3041 3042 3043

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3044
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3045

P
Peter Williams 已提交
3046 3047 3048
	return total_load_moved > 0;
}

3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3085
	const struct sched_class *class;
P
Peter Williams 已提交
3086 3087

	for (class = sched_class_highest; class; class = class->next)
3088
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3089 3090 3091
			return 1;

	return 0;
I
Ingo Molnar 已提交
3092 3093
}

L
Linus Torvalds 已提交
3094 3095
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3096 3097
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3098 3099 3100
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3101
		   unsigned long *imbalance, enum cpu_idle_type idle,
3102
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3103 3104 3105
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3106
	unsigned long max_pull;
3107 3108
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3109
	int load_idx, group_imb = 0;
3110 3111 3112 3113 3114 3115
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3116 3117

	max_load = this_load = total_load = total_pwr = 0;
3118 3119
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3120

I
Ingo Molnar 已提交
3121
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3122
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3123
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3124 3125 3126
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3127 3128

	do {
3129
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3130 3131
		int local_group;
		int i;
3132
		int __group_imb = 0;
3133
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3134
		unsigned long sum_nr_running, sum_weighted_load;
3135 3136
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3137 3138 3139

		local_group = cpu_isset(this_cpu, group->cpumask);

3140 3141 3142
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3143
		/* Tally up the load of all CPUs in the group */
3144
		sum_weighted_load = sum_nr_running = avg_load = 0;
3145 3146
		sum_avg_load_per_task = avg_load_per_task = 0;

3147 3148
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3149

3150
		for_each_cpu_mask_nr(i, group->cpumask) {
3151 3152 3153 3154 3155 3156
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3157

3158
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3159 3160
				*sd_idle = 0;

L
Linus Torvalds 已提交
3161
			/* Bias balancing toward cpus of our domain */
3162 3163 3164 3165 3166 3167
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3168
				load = target_load(i, load_idx);
3169
			} else {
N
Nick Piggin 已提交
3170
				load = source_load(i, load_idx);
3171 3172 3173 3174 3175
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3176 3177

			avg_load += load;
3178
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3179
			sum_weighted_load += weighted_cpuload(i);
3180 3181

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3182 3183
		}

3184 3185 3186
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3187 3188
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3189
		 */
3190 3191
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3192 3193 3194 3195
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3196
		total_load += avg_load;
3197
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3198 3199

		/* Adjust by relative CPU power of the group */
3200 3201
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3202

3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3217 3218
			__group_imb = 1;

3219
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3220

L
Linus Torvalds 已提交
3221 3222 3223
		if (local_group) {
			this_load = avg_load;
			this = group;
3224 3225 3226
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3227
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3228 3229
			max_load = avg_load;
			busiest = group;
3230 3231
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3232
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3233
		}
3234 3235 3236 3237 3238 3239

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3240 3241 3242
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3243 3244 3245 3246 3247 3248 3249 3250 3251

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3252
		/*
3253 3254
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3255 3256
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3257
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3258
			goto group_next;
3259

I
Ingo Molnar 已提交
3260
		/*
3261
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3262 3263 3264 3265 3266
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3267 3268
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3269 3270
			group_min = group;
			min_nr_running = sum_nr_running;
3271 3272
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3273
		}
3274

I
Ingo Molnar 已提交
3275
		/*
3276
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3288
		}
3289 3290
group_next:
#endif
L
Linus Torvalds 已提交
3291 3292 3293
		group = group->next;
	} while (group != sd->groups);

3294
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3295 3296 3297 3298 3299 3300 3301 3302
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3303
	busiest_load_per_task /= busiest_nr_running;
3304 3305 3306
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3315
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3316 3317
	 * appear as very large values with unsigned longs.
	 */
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3330 3331

	/* Don't want to pull so many tasks that a group would go idle */
3332
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3333

L
Linus Torvalds 已提交
3334
	/* How much load to actually move to equalise the imbalance */
3335 3336
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3337 3338
			/ SCHED_LOAD_SCALE;

3339 3340 3341 3342 3343 3344
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3345
	if (*imbalance < busiest_load_per_task) {
3346
		unsigned long tmp, pwr_now, pwr_move;
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3357
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3358

3359
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3360
					busiest_load_per_task * imbn) {
3361
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3362 3363 3364 3365 3366 3367 3368 3369 3370
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3371 3372 3373 3374
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3375 3376 3377
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3378 3379
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3380
		if (max_load > tmp)
3381
			pwr_move += busiest->__cpu_power *
3382
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3383 3384

		/* Amount of load we'd add */
3385
		if (max_load * busiest->__cpu_power <
3386
				busiest_load_per_task * SCHED_LOAD_SCALE)
3387 3388
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3389
		else
3390 3391 3392 3393
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3394 3395 3396
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3397 3398
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403
	}

	return busiest;

out_balanced:
3404
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3405
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3406
		goto ret;
L
Linus Torvalds 已提交
3407

3408 3409 3410 3411 3412
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3413
ret:
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418 3419 3420
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3421
static struct rq *
I
Ingo Molnar 已提交
3422
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3423
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3424
{
3425
	struct rq *busiest = NULL, *rq;
3426
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3427 3428
	int i;

3429
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3430
		unsigned long wl;
3431 3432 3433 3434

		if (!cpu_isset(i, *cpus))
			continue;

3435
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3436
		wl = weighted_cpuload(i);
3437

I
Ingo Molnar 已提交
3438
		if (rq->nr_running == 1 && wl > imbalance)
3439
			continue;
L
Linus Torvalds 已提交
3440

I
Ingo Molnar 已提交
3441 3442
		if (wl > max_load) {
			max_load = wl;
3443
			busiest = rq;
L
Linus Torvalds 已提交
3444 3445 3446 3447 3448 3449
		}
	}

	return busiest;
}

3450 3451 3452 3453 3454 3455
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3456 3457 3458 3459
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3460
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3461
			struct sched_domain *sd, enum cpu_idle_type idle,
3462
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3463
{
P
Peter Williams 已提交
3464
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3465 3466
	struct sched_group *group;
	unsigned long imbalance;
3467
	struct rq *busiest;
3468
	unsigned long flags;
N
Nick Piggin 已提交
3469

3470 3471
	cpus_setall(*cpus);

3472 3473 3474
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3475
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3476
	 * portraying it as CPU_NOT_IDLE.
3477
	 */
I
Ingo Molnar 已提交
3478
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3479
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3480
		sd_idle = 1;
L
Linus Torvalds 已提交
3481

3482
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3483

3484
redo:
3485
	update_shares(sd);
3486
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3487
				   cpus, balance);
3488

3489
	if (*balance == 0)
3490 3491
		goto out_balanced;

L
Linus Torvalds 已提交
3492 3493 3494 3495 3496
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3497
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3498 3499 3500 3501 3502
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3503
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3504 3505 3506

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3507
	ld_moved = 0;
L
Linus Torvalds 已提交
3508 3509 3510 3511
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3512
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3513 3514
		 * correctly treated as an imbalance.
		 */
3515
		local_irq_save(flags);
N
Nick Piggin 已提交
3516
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3517
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3518
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3519
		double_rq_unlock(this_rq, busiest);
3520
		local_irq_restore(flags);
3521

3522 3523 3524
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3525
		if (ld_moved && this_cpu != smp_processor_id())
3526 3527
			resched_cpu(this_cpu);

3528
		/* All tasks on this runqueue were pinned by CPU affinity */
3529
		if (unlikely(all_pinned)) {
3530 3531
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3532
				goto redo;
3533
			goto out_balanced;
3534
		}
L
Linus Torvalds 已提交
3535
	}
3536

P
Peter Williams 已提交
3537
	if (!ld_moved) {
L
Linus Torvalds 已提交
3538 3539 3540 3541 3542
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3543
			spin_lock_irqsave(&busiest->lock, flags);
3544 3545 3546 3547 3548

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3549
				spin_unlock_irqrestore(&busiest->lock, flags);
3550 3551 3552 3553
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3554 3555 3556
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3557
				active_balance = 1;
L
Linus Torvalds 已提交
3558
			}
3559
			spin_unlock_irqrestore(&busiest->lock, flags);
3560
			if (active_balance)
L
Linus Torvalds 已提交
3561 3562 3563 3564 3565 3566
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3567
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3568
		}
3569
	} else
L
Linus Torvalds 已提交
3570 3571
		sd->nr_balance_failed = 0;

3572
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3573 3574
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3575 3576 3577 3578 3579 3580 3581 3582 3583
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3584 3585
	}

P
Peter Williams 已提交
3586
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3587
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3588 3589 3590
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3591 3592 3593 3594

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3595
	sd->nr_balance_failed = 0;
3596 3597

out_one_pinned:
L
Linus Torvalds 已提交
3598
	/* tune up the balancing interval */
3599 3600
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3601 3602
		sd->balance_interval *= 2;

3603
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3604
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3605 3606 3607 3608
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3609 3610
	if (ld_moved)
		update_shares(sd);
3611
	return ld_moved;
L
Linus Torvalds 已提交
3612 3613 3614 3615 3616 3617
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3618
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3619 3620
 * this_rq is locked.
 */
3621
static int
3622 3623
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3624 3625
{
	struct sched_group *group;
3626
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3627
	unsigned long imbalance;
P
Peter Williams 已提交
3628
	int ld_moved = 0;
N
Nick Piggin 已提交
3629
	int sd_idle = 0;
3630
	int all_pinned = 0;
3631 3632

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3633

3634 3635 3636 3637
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3638
	 * portraying it as CPU_NOT_IDLE.
3639 3640 3641
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3642
		sd_idle = 1;
L
Linus Torvalds 已提交
3643

3644
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3645
redo:
3646
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3647
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3648
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3649
	if (!group) {
I
Ingo Molnar 已提交
3650
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3651
		goto out_balanced;
L
Linus Torvalds 已提交
3652 3653
	}

3654
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3655
	if (!busiest) {
I
Ingo Molnar 已提交
3656
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3657
		goto out_balanced;
L
Linus Torvalds 已提交
3658 3659
	}

N
Nick Piggin 已提交
3660 3661
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3662
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3663

P
Peter Williams 已提交
3664
	ld_moved = 0;
3665 3666 3667
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3668 3669
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3670
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3671 3672
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3673
		double_unlock_balance(this_rq, busiest);
3674

3675
		if (unlikely(all_pinned)) {
3676 3677
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3678 3679
				goto redo;
		}
3680 3681
	}

P
Peter Williams 已提交
3682
	if (!ld_moved) {
I
Ingo Molnar 已提交
3683
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3684 3685
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3686 3687
			return -1;
	} else
3688
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3689

3690
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3691
	return ld_moved;
3692 3693

out_balanced:
I
Ingo Molnar 已提交
3694
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3695
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3696
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3697
		return -1;
3698
	sd->nr_balance_failed = 0;
3699

3700
	return 0;
L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3707
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3708 3709
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3710 3711
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3712
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3713 3714

	for_each_domain(this_cpu, sd) {
3715 3716 3717 3718 3719 3720
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3721
			/* If we've pulled tasks over stop searching: */
3722 3723
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3724 3725 3726 3727 3728 3729

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3730
	}
I
Ingo Molnar 已提交
3731
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3732 3733 3734 3735 3736
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3737
	}
L
Linus Torvalds 已提交
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3748
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3749
{
3750
	int target_cpu = busiest_rq->push_cpu;
3751 3752
	struct sched_domain *sd;
	struct rq *target_rq;
3753

3754
	/* Is there any task to move? */
3755 3756 3757 3758
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3759 3760

	/*
3761
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3762
	 * we need to fix it. Originally reported by
3763
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3764
	 */
3765
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3766

3767 3768
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3769 3770
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3771 3772

	/* Search for an sd spanning us and the target CPU. */
3773
	for_each_domain(target_cpu, sd) {
3774
		if ((sd->flags & SD_LOAD_BALANCE) &&
3775
		    cpu_isset(busiest_cpu, sd->span))
3776
				break;
3777
	}
3778

3779
	if (likely(sd)) {
3780
		schedstat_inc(sd, alb_count);
3781

P
Peter Williams 已提交
3782 3783
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3784 3785 3786 3787
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3788
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3789 3790
}

3791 3792 3793
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3794
	cpumask_t cpu_mask;
3795 3796 3797 3798 3799
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3800
/*
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3811
 *
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3831
		if (!cpu_active(cpu) &&
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3868 3869 3870 3871 3872
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3873
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3874
{
3875 3876
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3877 3878
	unsigned long interval;
	struct sched_domain *sd;
3879
	/* Earliest time when we have to do rebalance again */
3880
	unsigned long next_balance = jiffies + 60*HZ;
3881
	int update_next_balance = 0;
3882
	int need_serialize;
3883
	cpumask_t tmp;
L
Linus Torvalds 已提交
3884

3885
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3886 3887 3888 3889
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3890
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3891 3892 3893 3894 3895 3896
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3897 3898 3899
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3900
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3901

3902
		if (need_serialize) {
3903 3904 3905 3906
			if (!spin_trylock(&balancing))
				goto out;
		}

3907
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3908
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3909 3910
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3911 3912 3913
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3914
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3915
			}
3916
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3917
		}
3918
		if (need_serialize)
3919 3920
			spin_unlock(&balancing);
out:
3921
		if (time_after(next_balance, sd->last_balance + interval)) {
3922
			next_balance = sd->last_balance + interval;
3923 3924
			update_next_balance = 1;
		}
3925 3926 3927 3928 3929 3930 3931 3932

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3933
	}
3934 3935 3936 3937 3938 3939 3940 3941

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3942 3943 3944 3945 3946 3947 3948 3949 3950
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3951 3952 3953 3954
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3955

I
Ingo Molnar 已提交
3956
	rebalance_domains(this_cpu, idle);
3957 3958 3959 3960 3961 3962 3963

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3964 3965
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3966 3967 3968 3969
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3970
		cpu_clear(this_cpu, cpus);
3971
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3972 3973 3974 3975 3976 3977 3978 3979
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3980
			rebalance_domains(balance_cpu, CPU_IDLE);
3981 3982

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3983 3984
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3997
static inline void trigger_load_balance(struct rq *rq, int cpu)
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

4024
			if (ilb < nr_cpu_ids)
4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4049
}
I
Ingo Molnar 已提交
4050 4051 4052

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4053 4054 4055
/*
 * on UP we do not need to balance between CPUs:
 */
4056
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4057 4058
{
}
I
Ingo Molnar 已提交
4059

L
Linus Torvalds 已提交
4060 4061 4062 4063 4064 4065 4066
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4067 4068
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4069
 */
4070
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4071 4072
{
	unsigned long flags;
4073
	struct rq *rq;
4074
	u64 ns = 0;
4075

4076
	rq = task_rq_lock(p, &flags);
4077

4078
	if (task_current(rq, p)) {
4079 4080
		u64 delta_exec;

I
Ingo Molnar 已提交
4081 4082
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4083
		if ((s64)delta_exec > 0)
4084
			ns = delta_exec;
4085
	}
4086

4087
	task_rq_unlock(rq, &flags);
4088

L
Linus Torvalds 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);
4103
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109 4110

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4111 4112
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4113 4114
}

4115 4116 4117 4118 4119
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4120
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4121 4122 4123 4124 4125 4126 4127
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
4128
	account_group_user_time(p, cputime);
4129 4130 4131 4132 4133 4134
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4155
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4156 4157
	cputime64_t tmp;

4158 4159 4160 4161
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4162

L
Linus Torvalds 已提交
4163
	p->stime = cputime_add(p->stime, cputime);
4164
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4165 4166 4167 4168 4169 4170 4171

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4172
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4173
		cpustat->system = cputime64_add(cpustat->system, tmp);
4174
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4175 4176 4177 4178 4179 4180 4181
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4202
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4203 4204 4205

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
4206
		account_group_system_time(p, steal);
L
Linus Torvalds 已提交
4207 4208 4209 4210
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4211
	} else
L
Linus Torvalds 已提交
4212 4213 4214
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4285
	struct task_struct *curr = rq->curr;
4286 4287

	sched_clock_tick();
I
Ingo Molnar 已提交
4288 4289

	spin_lock(&rq->lock);
4290
	update_rq_clock(rq);
4291
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4292
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4293
	spin_unlock(&rq->lock);
4294

4295
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4296 4297
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4298
#endif
L
Linus Torvalds 已提交
4299 4300
}

4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4313

4314
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4315
{
4316
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4317 4318 4319
	/*
	 * Underflow?
	 */
4320 4321
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4322
#endif
L
Linus Torvalds 已提交
4323
	preempt_count() += val;
4324
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4325 4326 4327
	/*
	 * Spinlock count overflowing soon?
	 */
4328 4329
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4330 4331 4332
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4333 4334 4335
}
EXPORT_SYMBOL(add_preempt_count);

4336
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4337
{
4338
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4339 4340 4341
	/*
	 * Underflow?
	 */
4342 4343
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4344 4345 4346
	/*
	 * Is the spinlock portion underflowing?
	 */
4347 4348 4349
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4350
#endif
4351

4352 4353
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4361
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4362
 */
I
Ingo Molnar 已提交
4363
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4364
{
4365 4366 4367 4368 4369
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4370
	debug_show_held_locks(prev);
4371
	print_modules();
I
Ingo Molnar 已提交
4372 4373
	if (irqs_disabled())
		print_irqtrace_events(prev);
4374 4375 4376 4377 4378

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4379
}
L
Linus Torvalds 已提交
4380

I
Ingo Molnar 已提交
4381 4382 4383 4384 4385
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4386
	/*
I
Ingo Molnar 已提交
4387
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4388 4389 4390
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4391
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4392 4393
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4394 4395
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4396
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4397 4398
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4399 4400
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4401 4402
	}
#endif
I
Ingo Molnar 已提交
4403 4404 4405 4406 4407 4408
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4409
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4410
{
4411
	const struct sched_class *class;
I
Ingo Molnar 已提交
4412
	struct task_struct *p;
L
Linus Torvalds 已提交
4413 4414

	/*
I
Ingo Molnar 已提交
4415 4416
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4417
	 */
I
Ingo Molnar 已提交
4418
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4419
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4420 4421
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4422 4423
	}

I
Ingo Molnar 已提交
4424 4425
	class = sched_class_highest;
	for ( ; ; ) {
4426
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4427 4428 4429 4430 4431 4432 4433 4434 4435
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4436

I
Ingo Molnar 已提交
4437 4438 4439 4440 4441 4442
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4443
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4444
	struct rq *rq;
4445
	int cpu;
I
Ingo Molnar 已提交
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4459

4460
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4461
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4462

4463
	spin_lock_irq(&rq->lock);
4464
	update_rq_clock(rq);
4465
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4466 4467

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4468
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4469
			prev->state = TASK_RUNNING;
4470
		else
4471
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4472
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4473 4474
	}

4475 4476 4477 4478
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4479

I
Ingo Molnar 已提交
4480
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4481 4482
		idle_balance(cpu, rq);

4483
	prev->sched_class->put_prev_task(rq, prev);
4484
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4485 4486

	if (likely(prev != next)) {
4487 4488
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4489 4490 4491 4492
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4493
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4494 4495 4496 4497 4498 4499
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4500 4501 4502
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4503
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4504
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4505

L
Linus Torvalds 已提交
4506 4507 4508 4509 4510 4511 4512 4513
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4514
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4515
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4521

L
Linus Torvalds 已提交
4522 4523
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4524
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4525
	 */
N
Nick Piggin 已提交
4526
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4527 4528
		return;

4529 4530 4531 4532
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4533

4534 4535 4536 4537 4538 4539
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4540 4541 4542 4543
}
EXPORT_SYMBOL(preempt_schedule);

/*
4544
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4545 4546 4547 4548 4549 4550 4551
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4552

4553
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4554 4555
	BUG_ON(ti->preempt_count || !irqs_disabled());

4556 4557 4558 4559 4560 4561
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4562

4563 4564 4565 4566 4567 4568
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4569 4570 4571 4572
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4573 4574
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4575
{
4576
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4577 4578 4579 4580
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4581 4582
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4583 4584 4585
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4586
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4587 4588 4589 4590 4591
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4592
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4593

4594
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4595 4596
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4597
		if (curr->func(curr, mode, sync, key) &&
4598
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4599 4600 4601 4602 4603 4604 4605 4606 4607
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4608
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4609
 */
4610
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4611
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4624
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4625 4626 4627 4628 4629
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4630
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4642
void
I
Ingo Molnar 已提交
4643
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4660 4661 4662 4663 4664 4665 4666 4667 4668
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4669
void complete(struct completion *x)
L
Linus Torvalds 已提交
4670 4671 4672 4673 4674
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4675
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4676 4677 4678 4679
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4680 4681 4682 4683 4684 4685
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4686
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4687 4688 4689 4690 4691
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4692
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4693 4694 4695 4696
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4697 4698
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4706
			if (signal_pending_state(state, current)) {
4707 4708
				timeout = -ERESTARTSYS;
				break;
4709 4710
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4711 4712 4713
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4714
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4715
		__remove_wait_queue(&x->wait, &wait);
4716 4717
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4718 4719
	}
	x->done--;
4720
	return timeout ?: 1;
L
Linus Torvalds 已提交
4721 4722
}

4723 4724
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4725 4726 4727 4728
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4729
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4730
	spin_unlock_irq(&x->wait.lock);
4731 4732
	return timeout;
}
L
Linus Torvalds 已提交
4733

4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4744
void __sched wait_for_completion(struct completion *x)
4745 4746
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4747
}
4748
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4749

4750 4751 4752 4753 4754 4755 4756 4757 4758
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4759
unsigned long __sched
4760
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4761
{
4762
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4763
}
4764
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4765

4766 4767 4768 4769 4770 4771 4772
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4773
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4774
{
4775 4776 4777 4778
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4779
}
4780
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4781

4782 4783 4784 4785 4786 4787 4788 4789
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4790
unsigned long __sched
4791 4792
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4793
{
4794
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4795
}
4796
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4797

4798 4799 4800 4801 4802 4803 4804
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
4805 4806 4807 4808 4809 4810 4811 4812 4813
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

4860 4861
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4862
{
I
Ingo Molnar 已提交
4863 4864 4865 4866
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4867

4868
	__set_current_state(state);
L
Linus Torvalds 已提交
4869

4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4884 4885 4886
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4887
long __sched
I
Ingo Molnar 已提交
4888
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4889
{
4890
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4891 4892 4893
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4894
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4895
{
4896
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4897 4898 4899
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4900
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4901
{
4902
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4903 4904 4905
}
EXPORT_SYMBOL(sleep_on_timeout);

4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4918
void rt_mutex_setprio(struct task_struct *p, int prio)
4919 4920
{
	unsigned long flags;
4921
	int oldprio, on_rq, running;
4922
	struct rq *rq;
4923
	const struct sched_class *prev_class = p->sched_class;
4924 4925 4926 4927

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4928
	update_rq_clock(rq);
4929

4930
	oldprio = p->prio;
I
Ingo Molnar 已提交
4931
	on_rq = p->se.on_rq;
4932
	running = task_current(rq, p);
4933
	if (on_rq)
4934
		dequeue_task(rq, p, 0);
4935 4936
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4937 4938 4939 4940 4941 4942

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4943 4944
	p->prio = prio;

4945 4946
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4947
	if (on_rq) {
4948
		enqueue_task(rq, p, 0);
4949 4950

		check_class_changed(rq, p, prev_class, oldprio, running);
4951 4952 4953 4954 4955 4956
	}
	task_rq_unlock(rq, &flags);
}

#endif

4957
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4958
{
I
Ingo Molnar 已提交
4959
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4960
	unsigned long flags;
4961
	struct rq *rq;
L
Linus Torvalds 已提交
4962 4963 4964 4965 4966 4967 4968 4969

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4970
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4971 4972 4973 4974
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4975
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4976
	 */
4977
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4978 4979 4980
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4981
	on_rq = p->se.on_rq;
4982
	if (on_rq)
4983
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4984 4985

	p->static_prio = NICE_TO_PRIO(nice);
4986
	set_load_weight(p);
4987 4988 4989
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4990

I
Ingo Molnar 已提交
4991
	if (on_rq) {
4992
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4993
		/*
4994 4995
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4996
		 */
4997
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4998 4999 5000 5001 5002 5003 5004
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5005 5006 5007 5008 5009
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5010
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5011
{
5012 5013
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5014

M
Matt Mackall 已提交
5015 5016 5017 5018
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
5030
	long nice, retval;
L
Linus Torvalds 已提交
5031 5032 5033 5034 5035 5036

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5037 5038
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5048 5049 5050
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5069
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5070 5071 5072 5073 5074 5075 5076 5077
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5078
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5079 5080 5081
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5082
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5097
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5098 5099 5100 5101 5102 5103 5104 5105
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5106
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5107
{
5108
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5109 5110 5111
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5112 5113
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5114
{
I
Ingo Molnar 已提交
5115
	BUG_ON(p->se.on_rq);
5116

L
Linus Torvalds 已提交
5117
	p->policy = policy;
I
Ingo Molnar 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5130
	p->rt_priority = prio;
5131 5132 5133
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5134
	set_load_weight(p);
L
Linus Torvalds 已提交
5135 5136
}

5137 5138
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5139
{
5140
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5141
	unsigned long flags;
5142
	const struct sched_class *prev_class = p->sched_class;
5143
	struct rq *rq;
L
Linus Torvalds 已提交
5144

5145 5146
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5152 5153
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5154
		return -EINVAL;
L
Linus Torvalds 已提交
5155 5156
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5157 5158
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5159 5160
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5161
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5162
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5163
		return -EINVAL;
5164
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5165 5166
		return -EINVAL;

5167 5168 5169
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5170
	if (user && !capable(CAP_SYS_NICE)) {
5171
		if (rt_policy(policy)) {
5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5188 5189 5190 5191 5192 5193
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5194

5195 5196 5197 5198 5199
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5200

5201
	if (user) {
5202
#ifdef CONFIG_RT_GROUP_SCHED
5203 5204 5205 5206
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5207 5208
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5209
			return -EPERM;
5210 5211
#endif

5212 5213 5214 5215 5216
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5217 5218 5219 5220 5221
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5222 5223 5224 5225
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5226
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5227 5228 5229
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5230 5231
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5232 5233
		goto recheck;
	}
I
Ingo Molnar 已提交
5234
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5235
	on_rq = p->se.on_rq;
5236
	running = task_current(rq, p);
5237
	if (on_rq)
5238
		deactivate_task(rq, p, 0);
5239 5240
	if (running)
		p->sched_class->put_prev_task(rq, p);
5241

L
Linus Torvalds 已提交
5242
	oldprio = p->prio;
I
Ingo Molnar 已提交
5243
	__setscheduler(rq, p, policy, param->sched_priority);
5244

5245 5246
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5247 5248
	if (on_rq) {
		activate_task(rq, p, 0);
5249 5250

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5251
	}
5252 5253 5254
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5255 5256
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5257 5258
	return 0;
}
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5273 5274
EXPORT_SYMBOL_GPL(sched_setscheduler);

5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5292 5293
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5294 5295 5296
{
	struct sched_param lparam;
	struct task_struct *p;
5297
	int retval;
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5303 5304 5305

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5306
	p = find_process_by_pid(pid);
5307 5308 5309
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5310

L
Linus Torvalds 已提交
5311 5312 5313 5314 5315 5316 5317 5318 5319
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5320 5321
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5322
{
5323 5324 5325 5326
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5346
	struct task_struct *p;
5347
	int retval;
L
Linus Torvalds 已提交
5348 5349

	if (pid < 0)
5350
		return -EINVAL;
L
Linus Torvalds 已提交
5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5372
	struct task_struct *p;
5373
	int retval;
L
Linus Torvalds 已提交
5374 5375

	if (!param || pid < 0)
5376
		return -EINVAL;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5403
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5404 5405
{
	cpumask_t cpus_allowed;
5406
	cpumask_t new_mask = *in_mask;
5407 5408
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5409

5410
	get_online_cpus();
L
Linus Torvalds 已提交
5411 5412 5413 5414 5415
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5416
		put_online_cpus();
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5422
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5433 5434 5435 5436
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5437
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5438
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5439
 again:
5440
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5441

P
Paul Menage 已提交
5442
	if (!retval) {
5443
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5454 5455
out_unlock:
	put_task_struct(p);
5456
	put_online_cpus();
L
Linus Torvalds 已提交
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5487
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5488 5489 5490 5491
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5492
	struct task_struct *p;
L
Linus Torvalds 已提交
5493 5494
	int retval;

5495
	get_online_cpus();
L
Linus Torvalds 已提交
5496 5497 5498 5499 5500 5501 5502
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5503 5504 5505 5506
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5507
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5508 5509 5510

out_unlock:
	read_unlock(&tasklist_lock);
5511
	put_online_cpus();
L
Linus Torvalds 已提交
5512

5513
	return retval;
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5544 5545
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5546 5547 5548
 */
asmlinkage long sys_sched_yield(void)
{
5549
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5550

5551
	schedstat_inc(rq, yld_count);
5552
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5553 5554 5555 5556 5557 5558

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5559
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5560 5561 5562 5563 5564 5565 5566 5567
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5568
static void __cond_resched(void)
L
Linus Torvalds 已提交
5569
{
5570 5571 5572
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5573 5574 5575 5576 5577
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5578 5579 5580 5581 5582 5583 5584
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5585
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5586
{
5587 5588
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5589 5590 5591 5592 5593
		__cond_resched();
		return 1;
	}
	return 0;
}
5594
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5600
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5601 5602 5603
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5604
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5605
{
N
Nick Piggin 已提交
5606
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5607 5608
	int ret = 0;

N
Nick Piggin 已提交
5609
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5610
		spin_unlock(lock);
N
Nick Piggin 已提交
5611 5612 5613 5614
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5615
		ret = 1;
L
Linus Torvalds 已提交
5616 5617
		spin_lock(lock);
	}
J
Jan Kara 已提交
5618
	return ret;
L
Linus Torvalds 已提交
5619 5620 5621 5622 5623 5624 5625
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5626
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5627
		local_bh_enable();
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5639
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5650
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5651 5652 5653 5654 5655 5656 5657
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5658
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5659

5660
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5661 5662 5663
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5664
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5670
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5671 5672
	long ret;

5673
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5674 5675 5676
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5677
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5698
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5699
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5723
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5724
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5741
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5742
	unsigned int time_slice;
5743
	int retval;
L
Linus Torvalds 已提交
5744 5745 5746
	struct timespec t;

	if (pid < 0)
5747
		return -EINVAL;
L
Linus Torvalds 已提交
5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5759 5760 5761 5762 5763 5764
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5765
		time_slice = DEF_TIMESLICE;
5766
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5767 5768 5769 5770 5771
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5772 5773
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5774 5775
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5776
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5777
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5778 5779
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5780

L
Linus Torvalds 已提交
5781 5782 5783 5784 5785
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5786
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5787

5788
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5789 5790
{
	unsigned long free = 0;
5791
	unsigned state;
L
Linus Torvalds 已提交
5792 5793

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5794
	printk(KERN_INFO "%-13.13s %c", p->comm,
5795
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5796
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5797
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5798
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5799
	else
I
Ingo Molnar 已提交
5800
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5801 5802
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5803
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5804
	else
I
Ingo Molnar 已提交
5805
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5806 5807 5808
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5809
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5810 5811
		while (!*n)
			n++;
5812
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5813 5814
	}
#endif
5815
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5816
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5817

5818
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5819 5820
}

I
Ingo Molnar 已提交
5821
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5822
{
5823
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5824

5825 5826 5827
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5828
#else
5829 5830
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5831 5832 5833 5834 5835 5836 5837 5838
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5839
		if (!state_filter || (p->state & state_filter))
5840
			sched_show_task(p);
L
Linus Torvalds 已提交
5841 5842
	} while_each_thread(g, p);

5843 5844
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5845 5846 5847
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5848
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5849 5850 5851 5852 5853
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5854 5855
}

I
Ingo Molnar 已提交
5856 5857
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5858
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5859 5860
}

5861 5862 5863 5864 5865 5866 5867 5868
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5869
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5870
{
5871
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5872 5873
	unsigned long flags;

5874 5875
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5876 5877 5878
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5879
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5880
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5881
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5882 5883

	rq->curr = rq->idle = idle;
5884 5885 5886
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5887 5888 5889
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5890 5891 5892
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5893
	task_thread_info(idle)->preempt_count = 0;
5894
#endif
I
Ingo Molnar 已提交
5895 5896 5897 5898
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
5933 5934

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
5935 5936
}

L
Linus Torvalds 已提交
5937 5938 5939 5940
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5941
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5960
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5961 5962
 * call is not atomic; no spinlocks may be held.
 */
5963
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5964
{
5965
	struct migration_req req;
L
Linus Torvalds 已提交
5966
	unsigned long flags;
5967
	struct rq *rq;
5968
	int ret = 0;
L
Linus Torvalds 已提交
5969 5970

	rq = task_rq_lock(p, &flags);
5971
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5972 5973 5974 5975
		ret = -EINVAL;
		goto out;
	}

5976 5977 5978 5979 5980 5981
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5982
	if (p->sched_class->set_cpus_allowed)
5983
		p->sched_class->set_cpus_allowed(p, new_mask);
5984
	else {
5985 5986
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5987 5988
	}

L
Linus Torvalds 已提交
5989
	/* Can the task run on the task's current CPU? If so, we're done */
5990
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5991 5992
		goto out;

5993
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5994 5995 5996 5997 5998 5999 6000 6001 6002
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6003

L
Linus Torvalds 已提交
6004 6005
	return ret;
}
6006
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6007 6008

/*
I
Ingo Molnar 已提交
6009
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6010 6011 6012 6013 6014 6015
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6016 6017
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6018
 */
6019
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6020
{
6021
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6022
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6023

6024
	if (unlikely(!cpu_active(dest_cpu)))
6025
		return ret;
L
Linus Torvalds 已提交
6026 6027 6028 6029 6030 6031 6032

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6033
		goto done;
L
Linus Torvalds 已提交
6034 6035
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
6036
		goto fail;
L
Linus Torvalds 已提交
6037

I
Ingo Molnar 已提交
6038
	on_rq = p->se.on_rq;
6039
	if (on_rq)
6040
		deactivate_task(rq_src, p, 0);
6041

L
Linus Torvalds 已提交
6042
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6043 6044
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6045
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6046
	}
L
Linus Torvalds 已提交
6047
done:
6048
	ret = 1;
L
Linus Torvalds 已提交
6049
fail:
L
Linus Torvalds 已提交
6050
	double_rq_unlock(rq_src, rq_dest);
6051
	return ret;
L
Linus Torvalds 已提交
6052 6053 6054 6055 6056 6057 6058
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6059
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6060 6061
{
	int cpu = (long)data;
6062
	struct rq *rq;
L
Linus Torvalds 已提交
6063 6064 6065 6066 6067 6068

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6069
		struct migration_req *req;
L
Linus Torvalds 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6092
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6093 6094
		list_del_init(head->next);

N
Nick Piggin 已提交
6095 6096 6097
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6127
/*
6128
 * Figure out where task on dead CPU should go, use force if necessary.
6129 6130
 * NOTE: interrupts should be disabled by the caller
 */
6131
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6132
{
6133
	unsigned long flags;
L
Linus Torvalds 已提交
6134
	cpumask_t mask;
6135 6136
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
6137

6138 6139 6140 6141 6142 6143 6144
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
6145
		if (dest_cpu >= nr_cpu_ids)
6146 6147 6148
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
6149
		if (dest_cpu >= nr_cpu_ids) {
6150 6151 6152
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
6153 6154 6155 6156
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
6157
			 * cpuset_cpus_allowed() will not block. It must be
6158 6159
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
6160
			rq = task_rq_lock(p, &flags);
6161
			p->cpus_allowed = cpus_allowed;
6162 6163
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6164

6165 6166 6167 6168 6169
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
6170
			if (p->mm && printk_ratelimit()) {
6171 6172
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
6173 6174
					task_pid_nr(p), p->comm, dead_cpu);
			}
6175
		}
6176
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
6177 6178 6179 6180 6181 6182 6183 6184 6185
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6186
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6187
{
6188
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6202
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6203

6204
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6205

6206 6207
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6208 6209
			continue;

6210 6211 6212
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6213

6214
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6215 6216
}

I
Ingo Molnar 已提交
6217 6218
/*
 * Schedules idle task to be the next runnable task on current CPU.
6219 6220
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6221 6222 6223
 */
void sched_idle_next(void)
{
6224
	int this_cpu = smp_processor_id();
6225
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6226 6227 6228 6229
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6230
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6231

6232 6233 6234
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6235 6236 6237
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6238
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6239

6240 6241
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6242 6243 6244 6245

	spin_unlock_irqrestore(&rq->lock, flags);
}

6246 6247
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6261
/* called under rq->lock with disabled interrupts */
6262
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6263
{
6264
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6265 6266

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6267
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6268 6269

	/* Cannot have done final schedule yet: would have vanished. */
6270
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6271

6272
	get_task_struct(p);
L
Linus Torvalds 已提交
6273 6274 6275

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6276
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6277 6278
	 * fine.
	 */
6279
	spin_unlock_irq(&rq->lock);
6280
	move_task_off_dead_cpu(dead_cpu, p);
6281
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6282

6283
	put_task_struct(p);
L
Linus Torvalds 已提交
6284 6285 6286 6287 6288
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6289
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6290
	struct task_struct *next;
6291

I
Ingo Molnar 已提交
6292 6293 6294
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6295
		update_rq_clock(rq);
6296
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6297 6298
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6299
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6300
		migrate_dead(dead_cpu, next);
6301

L
Linus Torvalds 已提交
6302 6303 6304 6305
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6306 6307 6308
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6309 6310
	{
		.procname	= "sched_domain",
6311
		.mode		= 0555,
6312
	},
I
Ingo Molnar 已提交
6313
	{0, },
6314 6315 6316
};

static struct ctl_table sd_ctl_root[] = {
6317
	{
6318
		.ctl_name	= CTL_KERN,
6319
		.procname	= "kernel",
6320
		.mode		= 0555,
6321 6322
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6323
	{0, },
6324 6325 6326 6327 6328
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6329
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6330 6331 6332 6333

	return entry;
}

6334 6335
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6336
	struct ctl_table *entry;
6337

6338 6339 6340
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6341
	 * will always be set. In the lowest directory the names are
6342 6343 6344
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6345 6346
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6347 6348 6349
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6350 6351 6352 6353 6354

	kfree(*tablep);
	*tablep = NULL;
}

6355
static void
6356
set_table_entry(struct ctl_table *entry,
6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6370
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6371

6372 6373 6374
	if (table == NULL)
		return NULL;

6375
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6376
		sizeof(long), 0644, proc_doulongvec_minmax);
6377
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6378
		sizeof(long), 0644, proc_doulongvec_minmax);
6379
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6380
		sizeof(int), 0644, proc_dointvec_minmax);
6381
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6382
		sizeof(int), 0644, proc_dointvec_minmax);
6383
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6384
		sizeof(int), 0644, proc_dointvec_minmax);
6385
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6386
		sizeof(int), 0644, proc_dointvec_minmax);
6387
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6388
		sizeof(int), 0644, proc_dointvec_minmax);
6389
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6390
		sizeof(int), 0644, proc_dointvec_minmax);
6391
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6392
		sizeof(int), 0644, proc_dointvec_minmax);
6393
	set_table_entry(&table[9], "cache_nice_tries",
6394 6395
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6396
	set_table_entry(&table[10], "flags", &sd->flags,
6397
		sizeof(int), 0644, proc_dointvec_minmax);
6398 6399 6400
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6401 6402 6403 6404

	return table;
}

6405
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6406 6407 6408 6409 6410 6411 6412 6413 6414
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6415 6416
	if (table == NULL)
		return NULL;
6417 6418 6419 6420 6421

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6422
		entry->mode = 0555;
6423 6424 6425 6426 6427 6428 6429 6430
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6431
static void register_sched_domain_sysctl(void)
6432 6433 6434 6435 6436
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6437 6438 6439
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6440 6441 6442
	if (entry == NULL)
		return;

6443
	for_each_online_cpu(i) {
6444 6445
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6446
		entry->mode = 0555;
6447
		entry->child = sd_alloc_ctl_cpu_table(i);
6448
		entry++;
6449
	}
6450 6451

	WARN_ON(sd_sysctl_header);
6452 6453
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6454

6455
/* may be called multiple times per register */
6456 6457
static void unregister_sched_domain_sysctl(void)
{
6458 6459
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6460
	sd_sysctl_header = NULL;
6461 6462
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6463
}
6464
#else
6465 6466 6467 6468
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6469 6470 6471 6472
{
}
#endif

6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6503 6504 6505 6506
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6507 6508
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6509 6510
{
	struct task_struct *p;
6511
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6512
	unsigned long flags;
6513
	struct rq *rq;
L
Linus Torvalds 已提交
6514 6515

	switch (action) {
6516

L
Linus Torvalds 已提交
6517
	case CPU_UP_PREPARE:
6518
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6519
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6520 6521 6522 6523 6524
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6525
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6526 6527 6528
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6529

L
Linus Torvalds 已提交
6530
	case CPU_ONLINE:
6531
	case CPU_ONLINE_FROZEN:
6532
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6533
		wake_up_process(cpu_rq(cpu)->migration_thread);
6534 6535 6536 6537 6538 6539

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6540 6541

			set_rq_online(rq);
6542 6543
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6544
		break;
6545

L
Linus Torvalds 已提交
6546 6547
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6548
	case CPU_UP_CANCELED_FROZEN:
6549 6550
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6551
		/* Unbind it from offline cpu so it can run. Fall thru. */
6552 6553
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6554 6555 6556
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6557

L
Linus Torvalds 已提交
6558
	case CPU_DEAD:
6559
	case CPU_DEAD_FROZEN:
6560
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6561 6562 6563 6564 6565
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6566
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6567
		update_rq_clock(rq);
6568
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6569
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6570 6571
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6572
		migrate_dead_tasks(cpu);
6573
		spin_unlock_irq(&rq->lock);
6574
		cpuset_unlock();
L
Linus Torvalds 已提交
6575 6576 6577
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6578 6579 6580 6581 6582
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6583 6584
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6585 6586
			struct migration_req *req;

L
Linus Torvalds 已提交
6587
			req = list_entry(rq->migration_queue.next,
6588
					 struct migration_req, list);
L
Linus Torvalds 已提交
6589 6590 6591 6592 6593
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6594

6595 6596
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6597 6598 6599 6600 6601
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6602
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6603 6604 6605
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6606 6607 6608 6609 6610 6611 6612 6613
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6614
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6615 6616 6617 6618
	.notifier_call = migration_call,
	.priority = 10
};

6619
static int __init migration_init(void)
L
Linus Torvalds 已提交
6620 6621
{
	void *cpu = (void *)(long)smp_processor_id();
6622
	int err;
6623 6624

	/* Start one for the boot CPU: */
6625 6626
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6627 6628
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6629 6630

	return err;
L
Linus Torvalds 已提交
6631
}
6632
early_initcall(migration_init);
L
Linus Torvalds 已提交
6633 6634 6635
#endif

#ifdef CONFIG_SMP
6636

6637
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6638

6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6661 6662
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6663
{
I
Ingo Molnar 已提交
6664
	struct sched_group *group = sd->groups;
6665
	char str[256];
L
Linus Torvalds 已提交
6666

6667
	cpulist_scnprintf(str, sizeof(str), sd->span);
6668
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6669 6670 6671 6672 6673 6674 6675 6676 6677

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6678 6679
	}

6680 6681
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6682 6683 6684 6685 6686 6687 6688 6689 6690

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6691

I
Ingo Molnar 已提交
6692
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6693
	do {
I
Ingo Molnar 已提交
6694 6695 6696
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6697 6698 6699
			break;
		}

I
Ingo Molnar 已提交
6700 6701 6702 6703 6704 6705
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6706

I
Ingo Molnar 已提交
6707 6708 6709 6710 6711
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6712

6713
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6714 6715 6716 6717
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6718

6719
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6720

6721
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6722
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6723

I
Ingo Molnar 已提交
6724 6725 6726
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6727

6728
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6729
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6730

6731
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6732 6733 6734 6735
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6736

I
Ingo Molnar 已提交
6737 6738
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6739
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6740
	int level = 0;
L
Linus Torvalds 已提交
6741

I
Ingo Molnar 已提交
6742 6743 6744 6745
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6746

I
Ingo Molnar 已提交
6747 6748
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6749 6750 6751 6752 6753 6754
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6755
	for (;;) {
6756
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6757
			break;
L
Linus Torvalds 已提交
6758 6759
		level++;
		sd = sd->parent;
6760
		if (!sd)
I
Ingo Molnar 已提交
6761 6762
			break;
	}
6763
	kfree(groupmask);
L
Linus Torvalds 已提交
6764
}
6765
#else /* !CONFIG_SCHED_DEBUG */
6766
# define sched_domain_debug(sd, cpu) do { } while (0)
6767
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6768

6769
static int sd_degenerate(struct sched_domain *sd)
6770 6771 6772 6773 6774 6775 6776 6777
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6778 6779 6780
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6794 6795
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6814 6815 6816
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6817 6818 6819 6820 6821 6822 6823
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6833 6834
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6835

6836 6837
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6838 6839 6840 6841 6842 6843 6844
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6845
	cpu_set(rq->cpu, rd->span);
6846
	if (cpu_isset(rq->cpu, cpu_online_map))
6847
		set_rq_online(rq);
G
Gregory Haskins 已提交
6848 6849 6850 6851

	spin_unlock_irqrestore(&rq->lock, flags);
}

6852
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6853 6854 6855
{
	memset(rd, 0, sizeof(*rd));

6856 6857
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6858 6859

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6860 6861 6862 6863
}

static void init_defrootdomain(void)
{
6864
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6865 6866 6867
	atomic_set(&def_root_domain.refcount, 1);
}

6868
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6869 6870 6871 6872 6873 6874 6875
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6876
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6877 6878 6879 6880

	return rd;
}

L
Linus Torvalds 已提交
6881
/*
I
Ingo Molnar 已提交
6882
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6883 6884
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6885 6886
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6887
{
6888
	struct rq *rq = cpu_rq(cpu);
6889 6890 6891
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
6892
	for (tmp = sd; tmp; ) {
6893 6894 6895
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6896

6897
		if (sd_parent_degenerate(tmp, parent)) {
6898
			tmp->parent = parent->parent;
6899 6900
			if (parent->parent)
				parent->parent->child = tmp;
6901 6902
		} else
			tmp = tmp->parent;
6903 6904
	}

6905
	if (sd && sd_degenerate(sd)) {
6906
		sd = sd->parent;
6907 6908 6909
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6910 6911 6912

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6913
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6914
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6915 6916 6917
}

/* cpus with isolated domains */
6918
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6919 6920 6921 6922

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6923 6924
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6925 6926 6927 6928 6929 6930 6931 6932 6933

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6934
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6935 6936

/*
6937 6938 6939 6940
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6941 6942 6943 6944 6945
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6946
static void
6947
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6948
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6949 6950 6951
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6952 6953 6954 6955
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6956 6957
	cpus_clear(*covered);

6958
	for_each_cpu_mask_nr(i, *span) {
6959
		struct sched_group *sg;
6960
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6961 6962
		int j;

6963
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6964 6965
			continue;

6966
		cpus_clear(sg->cpumask);
6967
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6968

6969
		for_each_cpu_mask_nr(j, *span) {
6970
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6971 6972
				continue;

6973
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6985
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6986

6987
#ifdef CONFIG_NUMA
6988

6989 6990 6991 6992 6993
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6994
 * Find the next node to include in a given scheduling domain. Simply
6995 6996 6997 6998
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6999
static int find_next_best_node(int node, nodemask_t *used_nodes)
7000 7001 7002 7003 7004
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7005
	for (i = 0; i < nr_node_ids; i++) {
7006
		/* Start at @node */
7007
		n = (node + i) % nr_node_ids;
7008 7009 7010 7011 7012

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7013
		if (node_isset(n, *used_nodes))
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7025
	node_set(best_node, *used_nodes);
7026 7027 7028 7029 7030 7031
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7032
 * @span: resulting cpumask
7033
 *
I
Ingo Molnar 已提交
7034
 * Given a node, construct a good cpumask for its sched_domain to span. It
7035 7036 7037
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7038
static void sched_domain_node_span(int node, cpumask_t *span)
7039
{
7040 7041
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
7042
	int i;
7043

7044
	cpus_clear(*span);
7045
	nodes_clear(used_nodes);
7046

7047
	cpus_or(*span, *span, *nodemask);
7048
	node_set(node, used_nodes);
7049 7050

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7051
		int next_node = find_next_best_node(node, &used_nodes);
7052

7053
		node_to_cpumask_ptr_next(nodemask, next_node);
7054
		cpus_or(*span, *span, *nodemask);
7055 7056
	}
}
7057
#endif /* CONFIG_NUMA */
7058

7059
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7060

7061
/*
7062
 * SMT sched-domains:
7063
 */
L
Linus Torvalds 已提交
7064 7065
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7066
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7067

I
Ingo Molnar 已提交
7068
static int
7069 7070
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
7071
{
7072 7073
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
7074 7075
	return cpu;
}
7076
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7077

7078 7079 7080
/*
 * multi-core sched-domains:
 */
7081 7082
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
7083
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7084
#endif /* CONFIG_SCHED_MC */
7085 7086

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7087
static int
7088 7089
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
7090
{
7091
	int group;
7092 7093 7094 7095

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7096 7097 7098
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
7099 7100
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7101
static int
7102 7103
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
7104
{
7105 7106
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
7107 7108 7109 7110
	return cpu;
}
#endif

L
Linus Torvalds 已提交
7111
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7112
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7113

I
Ingo Molnar 已提交
7114
static int
7115 7116
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
7117
{
7118
	int group;
7119
#ifdef CONFIG_SCHED_MC
7120 7121 7122
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
7123
#elif defined(CONFIG_SCHED_SMT)
7124 7125 7126
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
7127
#else
7128
	group = cpu;
L
Linus Torvalds 已提交
7129
#endif
7130 7131 7132
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
7133 7134 7135 7136
}

#ifdef CONFIG_NUMA
/*
7137 7138 7139
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7140
 */
7141
static DEFINE_PER_CPU(struct sched_domain, node_domains);
7142
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7143

7144
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7145
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7146

7147
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7148
				 struct sched_group **sg, cpumask_t *nodemask)
7149
{
7150 7151
	int group;

7152 7153 7154
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
7155 7156 7157 7158

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
7159
}
7160

7161 7162 7163 7164 7165 7166 7167
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7168
	do {
7169
		for_each_cpu_mask_nr(j, sg->cpumask) {
7170
			struct sched_domain *sd;
7171

7172 7173 7174 7175 7176 7177 7178 7179
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7180

7181 7182 7183 7184
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7185
}
7186
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7187

7188
#ifdef CONFIG_NUMA
7189
/* Free memory allocated for various sched_group structures */
7190
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7191
{
7192
	int cpu, i;
7193

7194
	for_each_cpu_mask_nr(cpu, *cpu_map) {
7195 7196 7197 7198 7199 7200
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7201
		for (i = 0; i < nr_node_ids; i++) {
7202 7203
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7204 7205 7206
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7223
#else /* !CONFIG_NUMA */
7224
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7225 7226
{
}
7227
#endif /* CONFIG_NUMA */
7228

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7255 7256
	sd->groups->__cpu_power = 0;

7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7267
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7268 7269 7270 7271 7272 7273 7274 7275
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7276
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7277 7278 7279 7280
		group = group->next;
	} while (group != child->groups);
}

7281 7282 7283 7284 7285
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7286 7287 7288 7289 7290 7291
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7292
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7293

7294 7295 7296 7297 7298
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7299
	sd->level = SD_LV_##type;				\
7300
	SD_INIT_NAME(sd, type);					\
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7349 7350 7351 7352
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7353 7354 7355 7356 7357 7358
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7384
/*
7385 7386
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7387
 */
7388 7389
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7390 7391
{
	int i;
G
Gregory Haskins 已提交
7392
	struct root_domain *rd;
7393 7394
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7395 7396
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7397
	int sd_allnodes = 0;
7398 7399 7400 7401

	/*
	 * Allocate the per-node list of sched groups
	 */
7402
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7403
				    GFP_KERNEL);
7404 7405
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7406
		return -ENOMEM;
7407 7408
	}
#endif
L
Linus Torvalds 已提交
7409

7410
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7411 7412
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7413 7414 7415
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7416 7417 7418
		return -ENOMEM;
	}

7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7438
	/*
7439
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7440
	 */
7441
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7442
		struct sched_domain *sd = NULL, *p;
7443
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7444

7445 7446
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7447 7448

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7449
		if (cpus_weight(*cpu_map) >
7450
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7451
			sd = &per_cpu(allnodes_domains, i);
7452
			SD_INIT(sd, ALLNODES);
7453
			set_domain_attribute(sd, attr);
7454
			sd->span = *cpu_map;
7455
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7456
			p = sd;
7457
			sd_allnodes = 1;
7458 7459 7460
		} else
			p = NULL;

L
Linus Torvalds 已提交
7461
		sd = &per_cpu(node_domains, i);
7462
		SD_INIT(sd, NODE);
7463
		set_domain_attribute(sd, attr);
7464
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7465
		sd->parent = p;
7466 7467
		if (p)
			p->child = sd;
7468
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7469 7470 7471 7472
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7473
		SD_INIT(sd, CPU);
7474
		set_domain_attribute(sd, attr);
7475
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7476
		sd->parent = p;
7477 7478
		if (p)
			p->child = sd;
7479
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7480

7481 7482 7483
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7484
		SD_INIT(sd, MC);
7485
		set_domain_attribute(sd, attr);
7486 7487 7488
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7489
		p->child = sd;
7490
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7491 7492
#endif

L
Linus Torvalds 已提交
7493 7494 7495
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7496
		SD_INIT(sd, SIBLING);
7497
		set_domain_attribute(sd, attr);
7498
		sd->span = per_cpu(cpu_sibling_map, i);
7499
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7500
		sd->parent = p;
7501
		p->child = sd;
7502
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7503 7504 7505 7506 7507
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7508
	for_each_cpu_mask_nr(i, *cpu_map) {
7509 7510 7511 7512 7513 7514
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7515 7516
			continue;

I
Ingo Molnar 已提交
7517
		init_sched_build_groups(this_sibling_map, cpu_map,
7518 7519
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7520 7521 7522
	}
#endif

7523 7524
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7525
	for_each_cpu_mask_nr(i, *cpu_map) {
7526 7527 7528 7529 7530 7531
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7532
			continue;
7533

I
Ingo Molnar 已提交
7534
		init_sched_build_groups(this_core_map, cpu_map,
7535 7536
					&cpu_to_core_group,
					send_covered, tmpmask);
7537 7538 7539
	}
#endif

L
Linus Torvalds 已提交
7540
	/* Set up physical groups */
7541
	for (i = 0; i < nr_node_ids; i++) {
7542 7543
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7544

7545 7546 7547
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7548 7549
			continue;

7550 7551 7552
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7553 7554 7555 7556
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7557 7558 7559 7560 7561 7562 7563
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7564

7565
	for (i = 0; i < nr_node_ids; i++) {
7566 7567
		/* Set up node groups */
		struct sched_group *sg, *prev;
7568 7569 7570
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7571 7572
		int j;

7573 7574 7575 7576 7577
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7578
			sched_group_nodes[i] = NULL;
7579
			continue;
7580
		}
7581

7582
		sched_domain_node_span(i, domainspan);
7583
		cpus_and(*domainspan, *domainspan, *cpu_map);
7584

7585
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7586 7587 7588 7589 7590
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7591
		sched_group_nodes[i] = sg;
7592
		for_each_cpu_mask_nr(j, *nodemask) {
7593
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7594

7595 7596 7597
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7598
		sg->__cpu_power = 0;
7599
		sg->cpumask = *nodemask;
7600
		sg->next = sg;
7601
		cpus_or(*covered, *covered, *nodemask);
7602 7603
		prev = sg;

7604
		for (j = 0; j < nr_node_ids; j++) {
7605
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7606
			int n = (i + j) % nr_node_ids;
7607
			node_to_cpumask_ptr(pnodemask, n);
7608

7609 7610 7611 7612
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7613 7614
				break;

7615 7616
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7617 7618
				continue;

7619 7620
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7621 7622 7623
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7624
				goto error;
7625
			}
7626
			sg->__cpu_power = 0;
7627
			sg->cpumask = *tmpmask;
7628
			sg->next = prev->next;
7629
			cpus_or(*covered, *covered, *tmpmask);
7630 7631 7632 7633
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7634 7635 7636
#endif

	/* Calculate CPU power for physical packages and nodes */
7637
#ifdef CONFIG_SCHED_SMT
7638
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7639 7640
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7641
		init_sched_groups_power(i, sd);
7642
	}
L
Linus Torvalds 已提交
7643
#endif
7644
#ifdef CONFIG_SCHED_MC
7645
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7646 7647
		struct sched_domain *sd = &per_cpu(core_domains, i);

7648
		init_sched_groups_power(i, sd);
7649 7650
	}
#endif
7651

7652
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7653 7654
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7655
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7656 7657
	}

7658
#ifdef CONFIG_NUMA
7659
	for (i = 0; i < nr_node_ids; i++)
7660
		init_numa_sched_groups_power(sched_group_nodes[i]);
7661

7662 7663
	if (sd_allnodes) {
		struct sched_group *sg;
7664

7665 7666
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7667 7668
		init_numa_sched_groups_power(sg);
	}
7669 7670
#endif

L
Linus Torvalds 已提交
7671
	/* Attach the domains */
7672
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7673 7674 7675
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7676 7677
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7678 7679 7680
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7681
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7682
	}
7683

7684
	SCHED_CPUMASK_FREE((void *)allmasks);
7685 7686
	return 0;

7687
#ifdef CONFIG_NUMA
7688
error:
7689 7690
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7691
	kfree(rd);
7692
	return -ENOMEM;
7693
#endif
L
Linus Torvalds 已提交
7694
}
P
Paul Jackson 已提交
7695

7696 7697 7698 7699 7700
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7701 7702
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7703 7704
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7705 7706 7707 7708 7709 7710 7711 7712

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7713 7714 7715 7716
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7717
/*
I
Ingo Molnar 已提交
7718
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7719 7720
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7721
 */
7722
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7723
{
7724 7725
	int err;

7726
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7727 7728 7729 7730 7731
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7732
	dattr_cur = NULL;
7733
	err = build_sched_domains(doms_cur);
7734
	register_sched_domain_sysctl();
7735 7736

	return err;
7737 7738
}

7739 7740
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7741
{
7742
	free_sched_groups(cpu_map, tmpmask);
7743
}
L
Linus Torvalds 已提交
7744

7745 7746 7747 7748
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7749
static void detach_destroy_domains(const cpumask_t *cpu_map)
7750
{
7751
	cpumask_t tmpmask;
7752 7753
	int i;

7754 7755
	unregister_sched_domain_sysctl();

7756
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7757
		cpu_attach_domain(NULL, &def_root_domain, i);
7758
	synchronize_sched();
7759
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7760 7761
}

7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7778 7779
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7780
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7781 7782 7783 7784
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7785 7786 7787
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7788 7789 7790
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7791 7792
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
7793 7794 7795 7796
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
7797
 *
7798 7799 7800
 * If doms_new == NULL it will be replaced with cpu_online_map.
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
7801
 *
P
Paul Jackson 已提交
7802 7803
 * Call with hotplug lock held
 */
7804 7805
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7806
{
7807
	int i, j, n;
P
Paul Jackson 已提交
7808

7809
	mutex_lock(&sched_domains_mutex);
7810

7811 7812 7813
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7814
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
7815 7816 7817

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
7818
		for (j = 0; j < n; j++) {
7819 7820
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7821 7822 7823 7824 7825 7826 7827 7828
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7829 7830 7831 7832 7833 7834 7835
	if (doms_new == NULL) {
		ndoms_cur = 0;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7836 7837 7838
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7839 7840
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7841 7842 7843
				goto match2;
		}
		/* no match - add a new doms_new */
7844 7845
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7846 7847 7848 7849 7850 7851 7852
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7853
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7854
	doms_cur = doms_new;
7855
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7856
	ndoms_cur = ndoms_new;
7857 7858

	register_sched_domain_sysctl();
7859

7860
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7861 7862
}

7863
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7864
int arch_reinit_sched_domains(void)
7865
{
7866
	get_online_cpus();
7867 7868 7869 7870

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

7871
	rebuild_sched_domains();
7872
	put_online_cpus();
7873

7874
	return 0;
7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7895 7896
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
7897 7898 7899
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7900
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7901
					    const char *buf, size_t count)
7902 7903 7904
{
	return sched_power_savings_store(buf, count, 0);
}
7905 7906 7907
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
7908 7909 7910
#endif

#ifdef CONFIG_SCHED_SMT
7911 7912
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
7913 7914 7915
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7916
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7917
					     const char *buf, size_t count)
7918 7919 7920
{
	return sched_power_savings_store(buf, count, 1);
}
7921 7922
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7942
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7943

7944
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7945
/*
7946 7947
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7948 7949 7950
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7951 7952 7953 7954 7955 7956
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
7957
		partition_sched_domains(1, NULL, NULL);
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7968
{
P
Peter Zijlstra 已提交
7969 7970
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7971 7972
	switch (action) {
	case CPU_DOWN_PREPARE:
7973
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7974
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7975 7976 7977
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7978
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7979
	case CPU_ONLINE:
7980
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7981
		enable_runtime(cpu_rq(cpu));
7982 7983
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7984 7985 7986 7987 7988 7989 7990
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7991 7992
	cpumask_t non_isolated_cpus;

7993 7994 7995 7996 7997
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7998
	get_online_cpus();
7999
	mutex_lock(&sched_domains_mutex);
8000
	arch_init_sched_domains(&cpu_online_map);
8001
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8002 8003
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
8004
	mutex_unlock(&sched_domains_mutex);
8005
	put_online_cpus();
8006 8007

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8008 8009
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8010 8011 8012 8013 8014
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8015
	init_hrtick();
8016 8017

	/* Move init over to a non-isolated CPU */
8018
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8019
		BUG();
I
Ingo Molnar 已提交
8020
	sched_init_granularity();
L
Linus Torvalds 已提交
8021 8022 8023 8024
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8025
	sched_init_granularity();
L
Linus Torvalds 已提交
8026 8027 8028 8029 8030 8031 8032 8033 8034 8035
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8036
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8037 8038
{
	cfs_rq->tasks_timeline = RB_ROOT;
8039
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8040 8041 8042
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8043
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8044 8045
}

P
Peter Zijlstra 已提交
8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8059
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8060 8061
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
8062 8063 8064 8065 8066 8067 8068
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8069 8070
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8071

8072
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8073
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8074 8075
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8076 8077
}

P
Peter Zijlstra 已提交
8078
#ifdef CONFIG_FAIR_GROUP_SCHED
8079 8080 8081
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8082
{
8083
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8084 8085 8086 8087 8088 8089 8090
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8091 8092 8093 8094
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8095 8096 8097 8098 8099
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8100 8101
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8102
	se->load.inv_weight = 0;
8103
	se->parent = parent;
P
Peter Zijlstra 已提交
8104
}
8105
#endif
P
Peter Zijlstra 已提交
8106

8107
#ifdef CONFIG_RT_GROUP_SCHED
8108 8109 8110
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8111
{
8112 8113
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8114 8115 8116 8117
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8118
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8119 8120 8121 8122
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8123 8124 8125
	if (!rt_se)
		return;

8126 8127 8128 8129 8130
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8131
	rt_se->my_q = rt_rq;
8132
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8133 8134 8135 8136
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8137 8138
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8139
	int i, j;
8140 8141 8142 8143 8144 8145 8146
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8147 8148 8149
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8150 8151 8152 8153 8154 8155
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8156
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8157 8158 8159 8160 8161 8162 8163

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8164 8165 8166 8167 8168 8169 8170

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8171 8172
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8173 8174 8175 8176 8177
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8178 8179 8180 8181 8182 8183 8184 8185
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8186 8187
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8188
	}
I
Ingo Molnar 已提交
8189

G
Gregory Haskins 已提交
8190 8191 8192 8193
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8194 8195 8196 8197 8198 8199
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8200 8201 8202
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8203 8204
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8205

8206
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8207
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8208 8209 8210 8211 8212 8213
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8214 8215
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8216

8217
	for_each_possible_cpu(i) {
8218
		struct rq *rq;
L
Linus Torvalds 已提交
8219 8220 8221

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8222
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8223
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8224
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8225
#ifdef CONFIG_FAIR_GROUP_SCHED
8226
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8227
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8248
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8249
#elif defined CONFIG_USER_SCHED
8250 8251
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8263
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8264
				&per_cpu(init_cfs_rq, i),
8265 8266
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8267

8268
#endif
D
Dhaval Giani 已提交
8269 8270 8271
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8272
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8273
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8274
#ifdef CONFIG_CGROUP_SCHED
8275
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8276
#elif defined CONFIG_USER_SCHED
8277
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8278
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8279
				&per_cpu(init_rt_rq, i),
8280 8281
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8282
#endif
I
Ingo Molnar 已提交
8283
#endif
L
Linus Torvalds 已提交
8284

I
Ingo Molnar 已提交
8285 8286
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8287
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8288
		rq->sd = NULL;
G
Gregory Haskins 已提交
8289
		rq->rd = NULL;
L
Linus Torvalds 已提交
8290
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8291
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8292
		rq->push_cpu = 0;
8293
		rq->cpu = i;
8294
		rq->online = 0;
L
Linus Torvalds 已提交
8295 8296
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8297
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8298
#endif
P
Peter Zijlstra 已提交
8299
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8300 8301 8302
		atomic_set(&rq->nr_iowait, 0);
	}

8303
	set_load_weight(&init_task);
8304

8305 8306 8307 8308
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8309
#ifdef CONFIG_SMP
8310
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8311 8312
#endif

8313 8314 8315 8316
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8330 8331 8332 8333
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8334 8335

	scheduler_running = 1;
L
Linus Torvalds 已提交
8336 8337 8338 8339 8340
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8341
#ifdef in_atomic
L
Linus Torvalds 已提交
8342 8343
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8363 8364 8365 8366 8367 8368
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8369 8370 8371
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8372

8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8384 8385
void normalize_rt_tasks(void)
{
8386
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8387
	unsigned long flags;
8388
	struct rq *rq;
L
Linus Torvalds 已提交
8389

8390
	read_lock_irqsave(&tasklist_lock, flags);
8391
	do_each_thread(g, p) {
8392 8393 8394 8395 8396 8397
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8398 8399
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8400 8401 8402
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8403
#endif
I
Ingo Molnar 已提交
8404 8405 8406 8407 8408 8409 8410 8411

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8412
			continue;
I
Ingo Molnar 已提交
8413
		}
L
Linus Torvalds 已提交
8414

8415
		spin_lock(&p->pi_lock);
8416
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8417

8418
		normalize_task(rq, p);
8419

8420
		__task_rq_unlock(rq);
8421
		spin_unlock(&p->pi_lock);
8422 8423
	} while_each_thread(g, p);

8424
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8425 8426 8427
}

#endif /* CONFIG_MAGIC_SYSRQ */
8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8446
struct task_struct *curr_task(int cpu)
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8457 8458
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8459 8460 8461 8462 8463 8464 8465
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8466
void set_curr_task(int cpu, struct task_struct *p)
8467 8468 8469 8470 8471
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8472

8473 8474
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8489 8490
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8491 8492
{
	struct cfs_rq *cfs_rq;
8493
	struct sched_entity *se, *parent_se;
8494
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8495 8496
	int i;

8497
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8498 8499
	if (!tg->cfs_rq)
		goto err;
8500
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8501 8502
	if (!tg->se)
		goto err;
8503 8504

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8505 8506

	for_each_possible_cpu(i) {
8507
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8508

P
Peter Zijlstra 已提交
8509 8510
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8511 8512 8513
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8514 8515
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8516 8517 8518
		if (!se)
			goto err;

8519 8520
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8539
#else /* !CONFG_FAIR_GROUP_SCHED */
8540 8541 8542 8543
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8544 8545
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8557
#endif /* CONFIG_FAIR_GROUP_SCHED */
8558 8559

#ifdef CONFIG_RT_GROUP_SCHED
8560 8561 8562 8563
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8564 8565
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8577 8578
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8579 8580
{
	struct rt_rq *rt_rq;
8581
	struct sched_rt_entity *rt_se, *parent_se;
8582 8583 8584
	struct rq *rq;
	int i;

8585
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8586 8587
	if (!tg->rt_rq)
		goto err;
8588
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8589 8590 8591
	if (!tg->rt_se)
		goto err;

8592 8593
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8594 8595 8596 8597

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8598 8599 8600 8601
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8602

P
Peter Zijlstra 已提交
8603 8604 8605 8606
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8607

8608 8609
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8610 8611
	}

8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8628
#else /* !CONFIG_RT_GROUP_SCHED */
8629 8630 8631 8632
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8633 8634
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8646
#endif /* CONFIG_RT_GROUP_SCHED */
8647

8648
#ifdef CONFIG_GROUP_SCHED
8649 8650 8651 8652 8653 8654 8655 8656
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8657
struct task_group *sched_create_group(struct task_group *parent)
8658 8659 8660 8661 8662 8663 8664 8665 8666
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8667
	if (!alloc_fair_sched_group(tg, parent))
8668 8669
		goto err;

8670
	if (!alloc_rt_sched_group(tg, parent))
8671 8672
		goto err;

8673
	spin_lock_irqsave(&task_group_lock, flags);
8674
	for_each_possible_cpu(i) {
8675 8676
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8677
	}
P
Peter Zijlstra 已提交
8678
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8679 8680 8681 8682 8683

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8684
	list_add_rcu(&tg->siblings, &parent->children);
8685
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8686

8687
	return tg;
S
Srivatsa Vaddagiri 已提交
8688 8689

err:
P
Peter Zijlstra 已提交
8690
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8691 8692 8693
	return ERR_PTR(-ENOMEM);
}

8694
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8695
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8696 8697
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8698
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8699 8700
}

8701
/* Destroy runqueue etc associated with a task group */
8702
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8703
{
8704
	unsigned long flags;
8705
	int i;
S
Srivatsa Vaddagiri 已提交
8706

8707
	spin_lock_irqsave(&task_group_lock, flags);
8708
	for_each_possible_cpu(i) {
8709 8710
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8711
	}
P
Peter Zijlstra 已提交
8712
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8713
	list_del_rcu(&tg->siblings);
8714
	spin_unlock_irqrestore(&task_group_lock, flags);
8715 8716

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8717
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8718 8719
}

8720
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8721 8722 8723
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8724 8725
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8726 8727 8728 8729 8730 8731 8732 8733 8734
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8735
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8736 8737
	on_rq = tsk->se.on_rq;

8738
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8739
		dequeue_task(rq, tsk, 0);
8740 8741
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8742

P
Peter Zijlstra 已提交
8743
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8744

P
Peter Zijlstra 已提交
8745 8746 8747 8748 8749
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8750 8751 8752
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8753
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8754 8755 8756

	task_rq_unlock(rq, &flags);
}
8757
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8758

8759
#ifdef CONFIG_FAIR_GROUP_SCHED
8760
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8761 8762 8763 8764 8765
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8766
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8767 8768 8769
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8770
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8771

8772
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8773
		enqueue_entity(cfs_rq, se, 0);
8774
}
8775

8776 8777 8778 8779 8780 8781 8782 8783 8784
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8785 8786
}

8787 8788
static DEFINE_MUTEX(shares_mutex);

8789
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8790 8791
{
	int i;
8792
	unsigned long flags;
8793

8794 8795 8796 8797 8798 8799
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8800 8801
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8802 8803
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8804

8805
	mutex_lock(&shares_mutex);
8806
	if (tg->shares == shares)
8807
		goto done;
S
Srivatsa Vaddagiri 已提交
8808

8809
	spin_lock_irqsave(&task_group_lock, flags);
8810 8811
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8812
	list_del_rcu(&tg->siblings);
8813
	spin_unlock_irqrestore(&task_group_lock, flags);
8814 8815 8816 8817 8818 8819 8820 8821

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8822
	tg->shares = shares;
8823 8824 8825 8826 8827
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8828
		set_se_shares(tg->se[i], shares);
8829
	}
S
Srivatsa Vaddagiri 已提交
8830

8831 8832 8833 8834
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8835
	spin_lock_irqsave(&task_group_lock, flags);
8836 8837
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8838
	list_add_rcu(&tg->siblings, &tg->parent->children);
8839
	spin_unlock_irqrestore(&task_group_lock, flags);
8840
done:
8841
	mutex_unlock(&shares_mutex);
8842
	return 0;
S
Srivatsa Vaddagiri 已提交
8843 8844
}

8845 8846 8847 8848
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8849
#endif
8850

8851
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8852
/*
P
Peter Zijlstra 已提交
8853
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8854
 */
P
Peter Zijlstra 已提交
8855 8856 8857 8858 8859
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8860
		return 1ULL << 20;
P
Peter Zijlstra 已提交
8861

P
Peter Zijlstra 已提交
8862
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
8863 8864
}

P
Peter Zijlstra 已提交
8865 8866
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
8867
{
P
Peter Zijlstra 已提交
8868
	struct task_struct *g, *p;
8869

P
Peter Zijlstra 已提交
8870 8871 8872 8873
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
8874

P
Peter Zijlstra 已提交
8875 8876
	return 0;
}
8877

P
Peter Zijlstra 已提交
8878 8879 8880 8881 8882
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
8883

P
Peter Zijlstra 已提交
8884 8885 8886 8887 8888 8889
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
8890

P
Peter Zijlstra 已提交
8891 8892
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
8893

P
Peter Zijlstra 已提交
8894 8895 8896
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
8897 8898
	}

8899 8900 8901 8902 8903
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
8904

8905 8906 8907
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
8908 8909
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
8910

P
Peter Zijlstra 已提交
8911
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8912

8913 8914 8915 8916 8917
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
8918

8919 8920 8921
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
8922 8923 8924
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8925

P
Peter Zijlstra 已提交
8926 8927 8928 8929
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
8930

P
Peter Zijlstra 已提交
8931
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
8932
	}
P
Peter Zijlstra 已提交
8933

P
Peter Zijlstra 已提交
8934 8935 8936 8937
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
8938 8939
}

P
Peter Zijlstra 已提交
8940
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8941
{
P
Peter Zijlstra 已提交
8942 8943 8944 8945 8946 8947 8948
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
8949 8950
}

8951 8952
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8953
{
P
Peter Zijlstra 已提交
8954
	int i, err = 0;
P
Peter Zijlstra 已提交
8955 8956

	mutex_lock(&rt_constraints_mutex);
8957
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8958 8959
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
8960
		goto unlock;
P
Peter Zijlstra 已提交
8961 8962

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8963 8964
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8965 8966 8967 8968 8969 8970 8971 8972 8973

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8974
 unlock:
8975
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8976 8977 8978
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8979 8980
}

8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8993 8994 8995 8996
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8997
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8998 8999
		return -1;

9000
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9001 9002 9003
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9004 9005 9006 9007 9008 9009 9010 9011

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9012 9013 9014
	if (rt_period == 0)
		return -EINVAL;

9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9029
	u64 runtime, period;
9030 9031
	int ret = 0;

9032 9033 9034
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9035 9036 9037 9038 9039 9040 9041 9042
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9043

9044
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9045
	read_lock(&tasklist_lock);
9046
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9047
	read_unlock(&tasklist_lock);
9048 9049 9050 9051
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9052
#else /* !CONFIG_RT_GROUP_SCHED */
9053 9054
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9055 9056 9057
	unsigned long flags;
	int i;

9058 9059 9060
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9071 9072
	return 0;
}
9073
#endif /* CONFIG_RT_GROUP_SCHED */
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9104

9105
#ifdef CONFIG_CGROUP_SCHED
9106 9107

/* return corresponding task_group object of a cgroup */
9108
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9109
{
9110 9111
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9112 9113 9114
}

static struct cgroup_subsys_state *
9115
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9116
{
9117
	struct task_group *tg, *parent;
9118

9119
	if (!cgrp->parent) {
9120 9121 9122 9123
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9124 9125
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9126 9127 9128 9129 9130 9131
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9132 9133
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9134
{
9135
	struct task_group *tg = cgroup_tg(cgrp);
9136 9137 9138 9139

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9140 9141 9142
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9143
{
9144 9145
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9146
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9147 9148
		return -EINVAL;
#else
9149 9150 9151
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9152
#endif
9153 9154 9155 9156 9157

	return 0;
}

static void
9158
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9159 9160 9161 9162 9163
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9164
#ifdef CONFIG_FAIR_GROUP_SCHED
9165
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9166
				u64 shareval)
9167
{
9168
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9169 9170
}

9171
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9172
{
9173
	struct task_group *tg = cgroup_tg(cgrp);
9174 9175 9176

	return (u64) tg->shares;
}
9177
#endif /* CONFIG_FAIR_GROUP_SCHED */
9178

9179
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9180
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9181
				s64 val)
P
Peter Zijlstra 已提交
9182
{
9183
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9184 9185
}

9186
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9187
{
9188
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9189
}
9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9201
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9202

9203
static struct cftype cpu_files[] = {
9204
#ifdef CONFIG_FAIR_GROUP_SCHED
9205 9206
	{
		.name = "shares",
9207 9208
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9209
	},
9210 9211
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9212
	{
P
Peter Zijlstra 已提交
9213
		.name = "rt_runtime_us",
9214 9215
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9216
	},
9217 9218
	{
		.name = "rt_period_us",
9219 9220
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9221
	},
9222
#endif
9223 9224 9225 9226
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9227
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9228 9229 9230
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9231 9232 9233 9234 9235 9236 9237
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9238 9239 9240
	.early_init	= 1,
};

9241
#endif	/* CONFIG_CGROUP_SCHED */
9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9262
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9263
{
9264
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9277
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9294
static void
9295
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9296
{
9297
	struct cpuacct *ca = cgroup_ca(cgrp);
9298 9299 9300 9301 9302 9303

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9304
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9305
{
9306
	struct cpuacct *ca = cgroup_ca(cgrp);
9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9348 9349 9350
static struct cftype files[] = {
	{
		.name = "usage",
9351 9352
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9353 9354 9355
	},
};

9356
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9357
{
9358
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */