sched.c 200.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

158
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
159

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168
#ifdef CONFIG_CGROUP_SCHED
169 170
	struct cgroup_subsys_state css;
#endif
171 172

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
173 174 175 176
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
177 178 179 180 181 182 183 184 185 186 187 188 189

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190
	 *	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
191 192 193 194 195 196 197 198 199
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
200 201 202
	 *	 entity have the same weight on all CPUs. If the group
	 *	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 *	 better distribution of weight could be:
203 204 205 206 207 208 209 210 211
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
212
	unsigned long shares;
213 214 215 216 217 218 219 220
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
221

222
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
223
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
224 225
};

226
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
227 228 229 230 231
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

232 233
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
234 235 236 237 238
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
239

P
Peter Zijlstra 已提交
240 241
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
242
#endif
P
Peter Zijlstra 已提交
243

244
/* task_group_lock serializes add/remove of task groups and also changes to
245 246
 * a task group's cpu shares.
 */
247
static DEFINE_SPINLOCK(task_group_lock);
248

249 250 251
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

252
#ifdef CONFIG_FAIR_GROUP_SCHED
253 254 255 256 257 258 259 260
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

261 262 263 264 265 266 267 268 269 270 271
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

#define MIN_GROUP_SHARES	2

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
272
/* Default task group.
I
Ingo Molnar 已提交
273
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
274
 */
275
struct task_group init_task_group = {
276
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
277
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
278
	.cfs_rq = init_cfs_rq_p,
279
#endif
P
Peter Zijlstra 已提交
280

281
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
282 283
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
284
#endif
285
};
S
Srivatsa Vaddagiri 已提交
286 287

/* return group to which a task belongs */
288
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
289
{
290
	struct task_group *tg;
291

292
#ifdef CONFIG_USER_SCHED
293
	tg = p->user->tg;
294
#elif defined(CONFIG_CGROUP_SCHED)
295 296
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
297
#else
I
Ingo Molnar 已提交
298
	tg = &init_task_group;
299
#endif
300
	return tg;
S
Srivatsa Vaddagiri 已提交
301 302 303
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
304
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
305
{
306
#ifdef CONFIG_FAIR_GROUP_SCHED
307 308
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
309
#endif
P
Peter Zijlstra 已提交
310

311
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
312 313
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
314
#endif
S
Srivatsa Vaddagiri 已提交
315 316
}

317 318 319 320 321 322 323 324 325 326
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
327 328
#else

P
Peter Zijlstra 已提交
329
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
330 331
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
332

333
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
334

I
Ingo Molnar 已提交
335 336 337 338 339 340
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
341
	u64 min_vruntime;
I
Ingo Molnar 已提交
342 343 344 345 346 347 348 349

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
350 351 352

	unsigned long nr_spread_over;

353
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
354 355
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
356 357
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
358 359 360 361 362 363
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
364 365
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
366 367
#endif
};
L
Linus Torvalds 已提交
368

I
Ingo Molnar 已提交
369 370 371
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
372
	unsigned long rt_nr_running;
373
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
374 375
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
376
#ifdef CONFIG_SMP
377
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
378
	int overloaded;
P
Peter Zijlstra 已提交
379
#endif
P
Peter Zijlstra 已提交
380
	int rt_throttled;
P
Peter Zijlstra 已提交
381
	u64 rt_time;
P
Peter Zijlstra 已提交
382

383
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
384 385
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
386 387 388 389 390
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
391 392
};

G
Gregory Haskins 已提交
393 394 395 396
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
397 398
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
399 400 401 402 403 404 405 406
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
407

I
Ingo Molnar 已提交
408
	/*
409 410 411 412
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
413
	atomic_t rto_count;
G
Gregory Haskins 已提交
414 415
};

416 417 418 419
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
420 421 422 423
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
424 425 426 427 428 429 430
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
431
struct rq {
432 433
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
434 435 436 437 438 439

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
440 441
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
442
	unsigned char idle_at_tick;
443 444 445
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
446 447
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
448 449 450 451
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
452 453
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
454
	int rt_throttled;
P
Peter Zijlstra 已提交
455

I
Ingo Molnar 已提交
456
#ifdef CONFIG_FAIR_GROUP_SCHED
457 458
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
459 460
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
461
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

472
	struct task_struct *curr, *idle;
473
	unsigned long next_balance;
L
Linus Torvalds 已提交
474
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
475 476 477 478

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

479
	unsigned int clock_warps, clock_overflows, clock_underflows;
480 481
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
482
	u64 tick_timestamp;
I
Ingo Molnar 已提交
483

L
Linus Torvalds 已提交
484 485 486
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
487
	struct root_domain *rd;
L
Linus Torvalds 已提交
488 489 490 491 492
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
493 494
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
495

496
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
497 498 499
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
500 501 502 503 504 505
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
506 507 508 509 510
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
511 512 513 514
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
515 516

	/* schedule() stats */
517 518 519
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
520 521

	/* try_to_wake_up() stats */
522 523
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
524 525

	/* BKL stats */
526
	unsigned int bkl_count;
L
Linus Torvalds 已提交
527
#endif
528
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
529 530
};

531
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
532

I
Ingo Molnar 已提交
533 534 535 536 537
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

538 539 540 541 542 543 544 545 546
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
547
/*
I
Ingo Molnar 已提交
548 549
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
550
 */
I
Ingo Molnar 已提交
551
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
552 553 554 555 556 557
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
558 559 560
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
561 562 563 564 565 566 567 568 569 570
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
571 572 573 574 575
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
576 577 578 579 580 581 582 583 584 585
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
586
}
I
Ingo Molnar 已提交
587

I
Ingo Molnar 已提交
588 589 590 591
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
592 593
}

N
Nick Piggin 已提交
594 595
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
597 598 599 600
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
601 602
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
603 604 605 606 607 608

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
639
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
640 641
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
642 643
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
644 645
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
646 647 648
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
649
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
650
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
651 652
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
653 654 655
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
656 657 658

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

659 660 661 662 663 664
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
665
/*
P
Peter Zijlstra 已提交
666
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
667 668
 * default: 1s
 */
P
Peter Zijlstra 已提交
669
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
670

671 672
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
673 674 675 676 677
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
678 679

/*
P
Peter Zijlstra 已提交
680
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
681
 */
P
Peter Zijlstra 已提交
682
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
683

684 685 686 687 688 689 690 691
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
692
	struct rq *rq;
693

694 695 696 697
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
698 699 700 701 702 703
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
704
	now = rq->clock;
705
	local_irq_restore(flags);
706 707 708

	return now;
}
P
Paul E. McKenney 已提交
709
EXPORT_SYMBOL_GPL(cpu_clock);
710

L
Linus Torvalds 已提交
711
#ifndef prepare_arch_switch
712 713 714 715 716 717
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

718 719 720 721 722
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

723
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
724
static inline int task_running(struct rq *rq, struct task_struct *p)
725
{
726
	return task_current(rq, p);
727 728
}

729
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
730 731 732
{
}

733
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
734
{
735 736 737 738
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
739 740 741 742 743 744 745
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

746 747 748 749
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
750
static inline int task_running(struct rq *rq, struct task_struct *p)
751 752 753 754
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
755
	return task_current(rq, p);
756 757 758
#endif
}

759
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

776
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
777 778 779 780 781 782 783 784 785 786 787 788
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
789
#endif
790 791
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
792

793 794 795 796
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
797
static inline struct rq *__task_rq_lock(struct task_struct *p)
798 799
	__acquires(rq->lock)
{
800 801 802 803 804
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
805 806 807 808
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
809 810
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
811
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
812 813
 * explicitly disabling preemption.
 */
814
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
815 816
	__acquires(rq->lock)
{
817
	struct rq *rq;
L
Linus Torvalds 已提交
818

819 820 821 822 823 824
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
825 826 827 828
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
829
static void __task_rq_unlock(struct rq *rq)
830 831 832 833 834
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

835
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
836 837 838 839 840 841
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
842
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
843
 */
A
Alexey Dobriyan 已提交
844
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
845 846
	__acquires(rq->lock)
{
847
	struct rq *rq;
L
Linus Torvalds 已提交
848 849 850 851 852 853 854 855

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

856
/*
857
 * We are going deep-idle (irqs are disabled):
858
 */
859
void sched_clock_idle_sleep_event(void)
860
{
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
877

878 879 880 881 882 883 884 885 886 887 888
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
889
	touch_softlockup_watchdog();
890
}
891
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
892

P
Peter Zijlstra 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1073
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1074 1075 1076 1077 1078
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1079
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1080 1081
		return;

P
Peter Zijlstra 已提交
1082
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1105
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1106 1107
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1108
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1109 1110 1111
}
#endif

1112 1113 1114 1115 1116 1117 1118 1119
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1120 1121 1122
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1123
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1124

1125
static unsigned long
1126 1127 1128 1129 1130 1131
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1132
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1133 1134 1135 1136 1137

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1138
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1139
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1140 1141
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1142
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1143

1144
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1145 1146 1147 1148 1149 1150 1151 1152
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1153
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1154 1155 1156 1157
{
	lw->weight += inc;
}

1158
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1159 1160 1161 1162
{
	lw->weight -= dec;
}

1163 1164 1165 1166
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1167
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1168 1169 1170 1171
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1183 1184 1185
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1186 1187
 */
static const int prio_to_weight[40] = {
1188 1189 1190 1191 1192 1193 1194 1195
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1196 1197
};

1198 1199 1200 1201 1202 1203 1204
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1205
static const u32 prio_to_wmult[40] = {
1206 1207 1208 1209 1210 1211 1212 1213
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1214
};
1215

I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1241

1242 1243 1244 1245 1246 1247
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1258 1259 1260 1261 1262 1263 1264
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1265 1266
#include "sched_stats.h"
#include "sched_idletask.c"
1267 1268
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1269 1270 1271 1272 1273 1274
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

G
Gerald Stralko 已提交
1275
static void inc_nr_running(struct rq *rq)
1276 1277 1278 1279
{
	rq->nr_running++;
}

G
Gerald Stralko 已提交
1280
static void dec_nr_running(struct rq *rq)
1281 1282 1283 1284
{
	rq->nr_running--;
}

1285 1286 1287
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1288 1289 1290 1291
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1292

I
Ingo Molnar 已提交
1293 1294 1295 1296 1297 1298 1299 1300
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1301

I
Ingo Molnar 已提交
1302 1303
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1304 1305
}

1306
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1307
{
I
Ingo Molnar 已提交
1308
	sched_info_queued(p);
1309
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1310
	p->se.on_rq = 1;
1311 1312
}

1313
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1314
{
1315
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1316
	p->se.on_rq = 0;
1317 1318
}

1319
/*
I
Ingo Molnar 已提交
1320
 * __normal_prio - return the priority that is based on the static prio
1321 1322 1323
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1324
	return p->static_prio;
1325 1326
}

1327 1328 1329 1330 1331 1332 1333
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1334
static inline int normal_prio(struct task_struct *p)
1335 1336 1337
{
	int prio;

1338
	if (task_has_rt_policy(p))
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1352
static int effective_prio(struct task_struct *p)
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1365
/*
I
Ingo Molnar 已提交
1366
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1367
 */
I
Ingo Molnar 已提交
1368
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1369
{
1370
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1371
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1372

1373
	enqueue_task(rq, p, wakeup);
G
Gerald Stralko 已提交
1374
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1380
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1381
{
1382
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1383 1384
		rq->nr_uninterruptible++;

1385
	dequeue_task(rq, p, sleep);
G
Gerald Stralko 已提交
1386
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1387 1388 1389 1390 1391 1392
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1393
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1394 1395 1396 1397
{
	return cpu_curr(task_cpu(p)) == p;
}

1398 1399 1400
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1401
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1402 1403 1404 1405
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1406
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1407
#ifdef CONFIG_SMP
1408 1409 1410 1411 1412 1413
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1414 1415
	task_thread_info(p)->cpu = cpu;
#endif
1416 1417
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1430
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1431

1432 1433 1434
/*
 * Is this task likely cache-hot:
 */
1435
static int
1436 1437 1438 1439 1440 1441 1442
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1443 1444 1445 1446 1447
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1448 1449 1450 1451 1452 1453
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1454
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1455
{
I
Ingo Molnar 已提交
1456 1457
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1458 1459
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1460
	u64 clock_offset;
I
Ingo Molnar 已提交
1461 1462

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1463 1464 1465 1466

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1467 1468 1469 1470
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1471 1472 1473 1474 1475
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1476
#endif
1477 1478
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1479 1480

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1481 1482
}

1483
struct migration_req {
L
Linus Torvalds 已提交
1484 1485
	struct list_head list;

1486
	struct task_struct *task;
L
Linus Torvalds 已提交
1487 1488 1489
	int dest_cpu;

	struct completion done;
1490
};
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1496
static int
1497
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1498
{
1499
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1500 1501 1502 1503 1504

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1505
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1506 1507 1508 1509 1510 1511 1512 1513
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1514

L
Linus Torvalds 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1527
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1528 1529
{
	unsigned long flags;
I
Ingo Molnar 已提交
1530
	int running, on_rq;
1531
	struct rq *rq;
L
Linus Torvalds 已提交
1532

1533 1534 1535 1536 1537 1538 1539 1540
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1555

1556 1557 1558 1559 1560 1561 1562 1563 1564
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1576

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1590

1591 1592 1593 1594 1595 1596 1597
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1613
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1625 1626
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1627 1628 1629 1630
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1631
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1632
{
1633
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1634
	unsigned long total = weighted_cpuload(cpu);
1635

1636
	if (type == 0)
I
Ingo Molnar 已提交
1637
		return total;
1638

I
Ingo Molnar 已提交
1639
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1640 1641 1642
}

/*
1643 1644
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1645
 */
A
Alexey Dobriyan 已提交
1646
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1647
{
1648
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1649
	unsigned long total = weighted_cpuload(cpu);
1650

N
Nick Piggin 已提交
1651
	if (type == 0)
I
Ingo Molnar 已提交
1652
		return total;
1653

I
Ingo Molnar 已提交
1654
	return max(rq->cpu_load[type-1], total);
1655 1656 1657 1658 1659
}

/*
 * Return the average load per task on the cpu's run queue
 */
1660
static unsigned long cpu_avg_load_per_task(int cpu)
1661
{
1662
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1663
	unsigned long total = weighted_cpuload(cpu);
1664 1665
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1666
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1667 1668
}

N
Nick Piggin 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1686 1687
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1688
			continue;
1689

N
Nick Piggin 已提交
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1706 1707
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1708 1709 1710 1711 1712 1713 1714 1715

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1716
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1717 1718 1719 1720 1721 1722 1723

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1724
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1725
 */
I
Ingo Molnar 已提交
1726 1727
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1728
{
1729
	cpumask_t tmp;
N
Nick Piggin 已提交
1730 1731 1732 1733
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1734 1735 1736 1737
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1738
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1764

1765
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1766 1767 1768
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1769 1770
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1771 1772
		if (tmp->flags & flag)
			sd = tmp;
1773
	}
N
Nick Piggin 已提交
1774 1775 1776 1777

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1778 1779 1780 1781 1782 1783
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1784 1785 1786

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1787 1788 1789 1790
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1791

1792
		new_cpu = find_idlest_cpu(group, t, cpu);
1793 1794 1795 1796 1797
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1798

1799
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1831
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1832
{
1833
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1834 1835
	unsigned long flags;
	long old_state;
1836
	struct rq *rq;
L
Linus Torvalds 已提交
1837

1838
	smp_wmb();
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1844
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1845 1846 1847
		goto out_running;

	cpu = task_cpu(p);
1848
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1855 1856 1857
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1858 1859 1860 1861 1862 1863
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1864
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1886 1887
out_activate:
#endif /* CONFIG_SMP */
1888 1889 1890 1891 1892 1893 1894 1895 1896
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1897
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1898
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1899
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1900 1901 1902 1903
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1904 1905 1906 1907
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1908 1909 1910 1911 1912 1913
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1914
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1915
{
1916
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1917 1918 1919
}
EXPORT_SYMBOL(wake_up_process);

1920
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1921 1922 1923 1924 1925 1926 1927
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1928 1929 1930 1931 1932 1933 1934
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1935
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1936 1937 1938

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1939 1940 1941 1942 1943 1944
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1945
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1946
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1947
#endif
N
Nick Piggin 已提交
1948

P
Peter Zijlstra 已提交
1949
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1950
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1951

1952 1953 1954 1955
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1956 1957 1958 1959 1960 1961 1962
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1977
	set_task_cpu(p, cpu);
1978 1979 1980 1981 1982

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1983 1984
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1985

1986
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1987
	if (likely(sched_info_on()))
1988
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1989
#endif
1990
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1991 1992
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1993
#ifdef CONFIG_PREEMPT
1994
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1995
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1996
#endif
N
Nick Piggin 已提交
1997
	put_cpu();
L
Linus Torvalds 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2007
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2008 2009
{
	unsigned long flags;
I
Ingo Molnar 已提交
2010
	struct rq *rq;
L
Linus Torvalds 已提交
2011 2012

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2013
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2014
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2015 2016 2017

	p->prio = effective_prio(p);

2018
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2019
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2020 2021
	} else {
		/*
I
Ingo Molnar 已提交
2022 2023
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2024
		 */
2025
		p->sched_class->task_new(rq, p);
G
Gerald Stralko 已提交
2026
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2027
	}
I
Ingo Molnar 已提交
2028
	check_preempt_curr(rq, p);
2029 2030 2031 2032
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2033
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2034 2035
}

2036 2037 2038
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2039 2040
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2041 2042 2043 2044 2045 2046 2047 2048 2049
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2050
 * @notifier: notifier struct to unregister
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2094 2095 2096
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2097
 * @prev: the current task that is being switched out
2098 2099 2100 2101 2102 2103 2104 2105 2106
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2107 2108 2109
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2110
{
2111
	fire_sched_out_preempt_notifiers(prev, next);
2112 2113 2114 2115
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2116 2117
/**
 * finish_task_switch - clean up after a task-switch
2118
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2119 2120
 * @prev: the thread we just switched away from.
 *
2121 2122 2123 2124
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2125 2126
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2127
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2128 2129 2130
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2131
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2132 2133 2134
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2135
	long prev_state;
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2141
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2142 2143
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2144
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2145 2146 2147 2148 2149
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2150
	prev_state = prev->state;
2151 2152
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2153 2154 2155 2156
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2157

2158
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2159 2160
	if (mm)
		mmdrop(mm);
2161
	if (unlikely(prev_state == TASK_DEAD)) {
2162 2163 2164
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2165
		 */
2166
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2167
		put_task_struct(prev);
2168
	}
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2175
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2176 2177
	__releases(rq->lock)
{
2178 2179
	struct rq *rq = this_rq();

2180 2181 2182 2183 2184
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2185
	if (current->set_child_tid)
2186
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2193
static inline void
2194
context_switch(struct rq *rq, struct task_struct *prev,
2195
	       struct task_struct *next)
L
Linus Torvalds 已提交
2196
{
I
Ingo Molnar 已提交
2197
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2198

2199
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2200 2201
	mm = next->mm;
	oldmm = prev->active_mm;
2202 2203 2204 2205 2206 2207 2208
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2209
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2210 2211 2212 2213 2214 2215
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2216
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2217 2218 2219
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2220 2221 2222 2223 2224 2225 2226
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2227
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2228
#endif
L
Linus Torvalds 已提交
2229 2230 2231 2232

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2233 2234 2235 2236 2237 2238 2239
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2263
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2278 2279
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2280

2281
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2291
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2292 2293 2294 2295 2296
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2312
/*
I
Ingo Molnar 已提交
2313 2314
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2315
 */
I
Ingo Molnar 已提交
2316
static void update_cpu_load(struct rq *this_rq)
2317
{
2318
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2331 2332 2333 2334 2335 2336 2337
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2338 2339
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2340 2341
}

I
Ingo Molnar 已提交
2342 2343
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2344 2345 2346 2347 2348 2349
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2350
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2351 2352 2353
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2354
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2355 2356 2357 2358
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2359
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2360 2361 2362 2363 2364 2365 2366
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2367 2368
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373 2374 2375 2376
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2377
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2391
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2392 2393 2394 2395
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2396 2397
	int ret = 0;

2398 2399 2400 2401 2402
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2403
	if (unlikely(!spin_trylock(&busiest->lock))) {
2404
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2405 2406 2407
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2408
			ret = 1;
L
Linus Torvalds 已提交
2409 2410 2411
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2412
	return ret;
L
Linus Torvalds 已提交
2413 2414 2415 2416 2417
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2418
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2419 2420
 * the cpu_allowed mask is restored.
 */
2421
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2422
{
2423
	struct migration_req req;
L
Linus Torvalds 已提交
2424
	unsigned long flags;
2425
	struct rq *rq;
L
Linus Torvalds 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2436

L
Linus Torvalds 已提交
2437 2438 2439 2440 2441
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2442

L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2450 2451
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2452 2453 2454 2455
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2456
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2457
	put_cpu();
N
Nick Piggin 已提交
2458 2459
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2466 2467
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2468
{
2469
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2470
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2471
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2472 2473 2474 2475
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2476
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2482
static
2483
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2484
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2485
		     int *all_pinned)
L
Linus Torvalds 已提交
2486 2487 2488 2489 2490 2491 2492
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2493 2494
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2495
		return 0;
2496
	}
2497 2498
	*all_pinned = 0;

2499 2500
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2501
		return 0;
2502
	}
L
Linus Torvalds 已提交
2503

2504 2505 2506 2507 2508 2509
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2510 2511
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2512
#ifdef CONFIG_SCHEDSTATS
2513
		if (task_hot(p, rq->clock, sd)) {
2514
			schedstat_inc(sd, lb_hot_gained[idle]);
2515 2516
			schedstat_inc(p, se.nr_forced_migrations);
		}
2517 2518 2519 2520
#endif
		return 1;
	}

2521 2522
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2523
		return 0;
2524
	}
L
Linus Torvalds 已提交
2525 2526 2527
	return 1;
}

2528 2529 2530 2531 2532
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2533
{
2534
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2535 2536
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2537

2538
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2539 2540
		goto out;

2541 2542
	pinned = 1;

L
Linus Torvalds 已提交
2543
	/*
I
Ingo Molnar 已提交
2544
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2545
	 */
I
Ingo Molnar 已提交
2546 2547
	p = iterator->start(iterator->arg);
next:
2548
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2549
		goto out;
2550
	/*
2551
	 * To help distribute high priority tasks across CPUs we don't
2552 2553 2554
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2555 2556
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2557
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2558 2559 2560
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2561 2562
	}

I
Ingo Molnar 已提交
2563
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2564
	pulled++;
I
Ingo Molnar 已提交
2565
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2566

2567
	/*
2568
	 * We only want to steal up to the prescribed amount of weighted load.
2569
	 */
2570
	if (rem_load_move > 0) {
2571 2572
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2573 2574
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2575 2576 2577
	}
out:
	/*
2578
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2579 2580 2581 2582
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2583 2584 2585

	if (all_pinned)
		*all_pinned = pinned;
2586 2587

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2588 2589
}

I
Ingo Molnar 已提交
2590
/*
P
Peter Williams 已提交
2591 2592 2593
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2594 2595 2596 2597
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2598
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2599 2600 2601
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2602
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2603
	unsigned long total_load_moved = 0;
2604
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2605 2606

	do {
P
Peter Williams 已提交
2607 2608
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2609
				max_load_move - total_load_moved,
2610
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2611
		class = class->next;
P
Peter Williams 已提交
2612
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2613

P
Peter Williams 已提交
2614 2615 2616
	return total_load_moved > 0;
}

2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2653
	const struct sched_class *class;
P
Peter Williams 已提交
2654 2655

	for (class = sched_class_highest; class; class = class->next)
2656
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2657 2658 2659
			return 1;

	return 0;
I
Ingo Molnar 已提交
2660 2661
}

L
Linus Torvalds 已提交
2662 2663
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2664 2665
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2666 2667 2668
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2669 2670
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2671 2672 2673
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2674
	unsigned long max_pull;
2675 2676
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2677
	int load_idx, group_imb = 0;
2678 2679 2680 2681 2682 2683
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2684 2685

	max_load = this_load = total_load = total_pwr = 0;
2686 2687
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2688
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2689
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2690
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2691 2692 2693
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2694 2695

	do {
2696
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2697 2698
		int local_group;
		int i;
2699
		int __group_imb = 0;
2700
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2701
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2702 2703 2704

		local_group = cpu_isset(this_cpu, group->cpumask);

2705 2706 2707
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2708
		/* Tally up the load of all CPUs in the group */
2709
		sum_weighted_load = sum_nr_running = avg_load = 0;
2710 2711
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2712 2713

		for_each_cpu_mask(i, group->cpumask) {
2714 2715 2716 2717 2718 2719
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2720

2721
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2722 2723
				*sd_idle = 0;

L
Linus Torvalds 已提交
2724
			/* Bias balancing toward cpus of our domain */
2725 2726 2727 2728 2729 2730
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2731
				load = target_load(i, load_idx);
2732
			} else {
N
Nick Piggin 已提交
2733
				load = source_load(i, load_idx);
2734 2735 2736 2737 2738
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2739 2740

			avg_load += load;
2741
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2742
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2743 2744
		}

2745 2746 2747
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2748 2749
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2750
		 */
2751 2752
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2753 2754 2755 2756
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2757
		total_load += avg_load;
2758
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2759 2760

		/* Adjust by relative CPU power of the group */
2761 2762
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2763

2764 2765 2766
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2767
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2768

L
Linus Torvalds 已提交
2769 2770 2771
		if (local_group) {
			this_load = avg_load;
			this = group;
2772 2773 2774
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2775
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2776 2777
			max_load = avg_load;
			busiest = group;
2778 2779
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2780
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2781
		}
2782 2783 2784 2785 2786 2787

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2788 2789 2790
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2791 2792 2793 2794 2795 2796 2797 2798 2799

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2800
		/*
2801 2802
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2803 2804
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2805
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2806
			goto group_next;
2807

I
Ingo Molnar 已提交
2808
		/*
2809
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2810 2811 2812 2813 2814
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2815 2816
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2817 2818
			group_min = group;
			min_nr_running = sum_nr_running;
2819 2820
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2821
		}
2822

I
Ingo Molnar 已提交
2823
		/*
2824
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2836
		}
2837 2838
group_next:
#endif
L
Linus Torvalds 已提交
2839 2840 2841
		group = group->next;
	} while (group != sd->groups);

2842
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2843 2844 2845 2846 2847 2848 2849 2850
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2851
	busiest_load_per_task /= busiest_nr_running;
2852 2853 2854
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860 2861 2862
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2863
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2864 2865
	 * appear as very large values with unsigned longs.
	 */
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2878 2879

	/* Don't want to pull so many tasks that a group would go idle */
2880
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2881

L
Linus Torvalds 已提交
2882
	/* How much load to actually move to equalise the imbalance */
2883 2884
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2885 2886
			/ SCHED_LOAD_SCALE;

2887 2888 2889 2890 2891 2892
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2893
	if (*imbalance < busiest_load_per_task) {
2894
		unsigned long tmp, pwr_now, pwr_move;
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2906

I
Ingo Molnar 已提交
2907 2908
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2909
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2910 2911 2912 2913 2914 2915 2916 2917 2918
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2919 2920 2921 2922
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2923 2924 2925
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2926 2927
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2928
		if (max_load > tmp)
2929
			pwr_move += busiest->__cpu_power *
2930
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2931 2932

		/* Amount of load we'd add */
2933
		if (max_load * busiest->__cpu_power <
2934
				busiest_load_per_task * SCHED_LOAD_SCALE)
2935 2936
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2937
		else
2938 2939 2940 2941
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2942 2943 2944
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2945 2946
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951
	}

	return busiest;

out_balanced:
2952
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2953
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2954
		goto ret;
L
Linus Torvalds 已提交
2955

2956 2957 2958 2959 2960
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2961
ret:
L
Linus Torvalds 已提交
2962 2963 2964 2965 2966 2967 2968
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2969
static struct rq *
I
Ingo Molnar 已提交
2970
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2971
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2972
{
2973
	struct rq *busiest = NULL, *rq;
2974
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2975 2976 2977
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2978
		unsigned long wl;
2979 2980 2981 2982

		if (!cpu_isset(i, *cpus))
			continue;

2983
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2984
		wl = weighted_cpuload(i);
2985

I
Ingo Molnar 已提交
2986
		if (rq->nr_running == 1 && wl > imbalance)
2987
			continue;
L
Linus Torvalds 已提交
2988

I
Ingo Molnar 已提交
2989 2990
		if (wl > max_load) {
			max_load = wl;
2991
			busiest = rq;
L
Linus Torvalds 已提交
2992 2993 2994 2995 2996 2997
		}
	}

	return busiest;
}

2998 2999 3000 3001 3002 3003
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3004 3005 3006 3007
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3008
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3009
			struct sched_domain *sd, enum cpu_idle_type idle,
3010
			int *balance)
L
Linus Torvalds 已提交
3011
{
P
Peter Williams 已提交
3012
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3013 3014
	struct sched_group *group;
	unsigned long imbalance;
3015
	struct rq *busiest;
3016
	cpumask_t cpus = CPU_MASK_ALL;
3017
	unsigned long flags;
N
Nick Piggin 已提交
3018

3019 3020 3021
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3022
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3023
	 * portraying it as CPU_NOT_IDLE.
3024
	 */
I
Ingo Molnar 已提交
3025
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3026
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3027
		sd_idle = 1;
L
Linus Torvalds 已提交
3028

3029
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3030

3031 3032
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3033 3034
				   &cpus, balance);

3035
	if (*balance == 0)
3036 3037
		goto out_balanced;

L
Linus Torvalds 已提交
3038 3039 3040 3041 3042
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3043
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3044 3045 3046 3047 3048
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3049
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3050 3051 3052

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3053
	ld_moved = 0;
L
Linus Torvalds 已提交
3054 3055 3056 3057
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3058
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3059 3060
		 * correctly treated as an imbalance.
		 */
3061
		local_irq_save(flags);
N
Nick Piggin 已提交
3062
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3063
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3064
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3065
		double_rq_unlock(this_rq, busiest);
3066
		local_irq_restore(flags);
3067

3068 3069 3070
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3071
		if (ld_moved && this_cpu != smp_processor_id())
3072 3073
			resched_cpu(this_cpu);

3074
		/* All tasks on this runqueue were pinned by CPU affinity */
3075 3076 3077 3078
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3079
			goto out_balanced;
3080
		}
L
Linus Torvalds 已提交
3081
	}
3082

P
Peter Williams 已提交
3083
	if (!ld_moved) {
L
Linus Torvalds 已提交
3084 3085 3086 3087 3088
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3089
			spin_lock_irqsave(&busiest->lock, flags);
3090 3091 3092 3093 3094

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3095
				spin_unlock_irqrestore(&busiest->lock, flags);
3096 3097 3098 3099
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3100 3101 3102
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3103
				active_balance = 1;
L
Linus Torvalds 已提交
3104
			}
3105
			spin_unlock_irqrestore(&busiest->lock, flags);
3106
			if (active_balance)
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3113
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3114
		}
3115
	} else
L
Linus Torvalds 已提交
3116 3117
		sd->nr_balance_failed = 0;

3118
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3119 3120
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3121 3122 3123 3124 3125 3126 3127 3128 3129
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3130 3131
	}

P
Peter Williams 已提交
3132
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3133
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3134
		return -1;
P
Peter Williams 已提交
3135
	return ld_moved;
L
Linus Torvalds 已提交
3136 3137 3138 3139

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3140
	sd->nr_balance_failed = 0;
3141 3142

out_one_pinned:
L
Linus Torvalds 已提交
3143
	/* tune up the balancing interval */
3144 3145
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3146 3147
		sd->balance_interval *= 2;

3148
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3149
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3150
		return -1;
L
Linus Torvalds 已提交
3151 3152 3153 3154 3155 3156 3157
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3158
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3159 3160
 * this_rq is locked.
 */
3161
static int
3162
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3163 3164
{
	struct sched_group *group;
3165
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3166
	unsigned long imbalance;
P
Peter Williams 已提交
3167
	int ld_moved = 0;
N
Nick Piggin 已提交
3168
	int sd_idle = 0;
3169
	int all_pinned = 0;
3170
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3171

3172 3173 3174 3175
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3176
	 * portraying it as CPU_NOT_IDLE.
3177 3178 3179
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3180
		sd_idle = 1;
L
Linus Torvalds 已提交
3181

3182
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3183
redo:
I
Ingo Molnar 已提交
3184
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3185
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3186
	if (!group) {
I
Ingo Molnar 已提交
3187
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3188
		goto out_balanced;
L
Linus Torvalds 已提交
3189 3190
	}

I
Ingo Molnar 已提交
3191
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3192
				&cpus);
N
Nick Piggin 已提交
3193
	if (!busiest) {
I
Ingo Molnar 已提交
3194
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3195
		goto out_balanced;
L
Linus Torvalds 已提交
3196 3197
	}

N
Nick Piggin 已提交
3198 3199
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3200
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3201

P
Peter Williams 已提交
3202
	ld_moved = 0;
3203 3204 3205
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3206 3207
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3208
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3209 3210
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3211
		spin_unlock(&busiest->lock);
3212

3213
		if (unlikely(all_pinned)) {
3214 3215 3216 3217
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3218 3219
	}

P
Peter Williams 已提交
3220
	if (!ld_moved) {
I
Ingo Molnar 已提交
3221
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3222 3223
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3224 3225
			return -1;
	} else
3226
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3227

P
Peter Williams 已提交
3228
	return ld_moved;
3229 3230

out_balanced:
I
Ingo Molnar 已提交
3231
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3232
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3233
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3234
		return -1;
3235
	sd->nr_balance_failed = 0;
3236

3237
	return 0;
L
Linus Torvalds 已提交
3238 3239 3240 3241 3242 3243
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3244
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3245 3246
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3247 3248
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3249 3250

	for_each_domain(this_cpu, sd) {
3251 3252 3253 3254 3255 3256
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3257
			/* If we've pulled tasks over stop searching: */
3258
			pulled_task = load_balance_newidle(this_cpu,
3259 3260 3261 3262 3263 3264 3265
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3266
	}
I
Ingo Molnar 已提交
3267
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3268 3269 3270 3271 3272
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3273
	}
L
Linus Torvalds 已提交
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3284
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3285
{
3286
	int target_cpu = busiest_rq->push_cpu;
3287 3288
	struct sched_domain *sd;
	struct rq *target_rq;
3289

3290
	/* Is there any task to move? */
3291 3292 3293 3294
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3295 3296

	/*
3297
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3298
	 * we need to fix it. Originally reported by
3299
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3300
	 */
3301
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3302

3303 3304
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3305 3306
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3307 3308

	/* Search for an sd spanning us and the target CPU. */
3309
	for_each_domain(target_cpu, sd) {
3310
		if ((sd->flags & SD_LOAD_BALANCE) &&
3311
		    cpu_isset(busiest_cpu, sd->span))
3312
				break;
3313
	}
3314

3315
	if (likely(sd)) {
3316
		schedstat_inc(sd, alb_count);
3317

P
Peter Williams 已提交
3318 3319
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3320 3321 3322 3323
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3324
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3325 3326
}

3327 3328 3329
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3330
	cpumask_t cpu_mask;
3331 3332 3333 3334 3335
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3336
/*
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3347
 *
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3404 3405 3406 3407 3408
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3409
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3410
{
3411 3412
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3413 3414
	unsigned long interval;
	struct sched_domain *sd;
3415
	/* Earliest time when we have to do rebalance again */
3416
	unsigned long next_balance = jiffies + 60*HZ;
3417
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3418

3419
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3420 3421 3422 3423
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3424
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3425 3426 3427 3428 3429 3430
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3431 3432 3433
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3434

3435 3436 3437 3438 3439
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3440
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3441
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3442 3443
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3444 3445 3446
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3447
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3448
			}
3449
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3450
		}
3451 3452 3453
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3454
		if (time_after(next_balance, sd->last_balance + interval)) {
3455
			next_balance = sd->last_balance + interval;
3456 3457
			update_next_balance = 1;
		}
3458 3459 3460 3461 3462 3463 3464 3465

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3466
	}
3467 3468 3469 3470 3471 3472 3473 3474

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3475 3476 3477 3478 3479 3480 3481 3482 3483
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3484 3485 3486 3487
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3488

I
Ingo Molnar 已提交
3489
	rebalance_domains(this_cpu, idle);
3490 3491 3492 3493 3494 3495 3496

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3497 3498
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3499 3500 3501 3502
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3503
		cpu_clear(this_cpu, cpus);
3504 3505 3506 3507 3508 3509 3510 3511 3512
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3513
			rebalance_domains(balance_cpu, CPU_IDLE);
3514 3515

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3516 3517
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3530
static inline void trigger_load_balance(struct rq *rq, int cpu)
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3582
}
I
Ingo Molnar 已提交
3583 3584 3585

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3586 3587 3588
/*
 * on UP we do not need to balance between CPUs:
 */
3589
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3590 3591
{
}
I
Ingo Molnar 已提交
3592

L
Linus Torvalds 已提交
3593 3594 3595 3596 3597 3598 3599
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3600 3601
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3602
 */
3603
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3604 3605
{
	unsigned long flags;
3606 3607
	u64 ns, delta_exec;
	struct rq *rq;
3608

3609 3610
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3611
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3612 3613
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3614 3615 3616 3617
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3618

L
Linus Torvalds 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3642 3643 3644 3645 3646
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3647
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3681
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3682 3683
	cputime64_t tmp;

3684 3685
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3686

L
Linus Torvalds 已提交
3687 3688 3689 3690 3691 3692 3693 3694
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3695
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3696
		cpustat->system = cputime64_add(cpustat->system, tmp);
3697
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3698 3699 3700 3701 3702 3703 3704
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3716 3717 3718 3719 3720 3721 3722 3723 3724
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3725
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3726 3727 3728 3729 3730 3731 3732

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3733
	} else
L
Linus Torvalds 已提交
3734 3735 3736
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3748
	struct task_struct *curr = rq->curr;
3749
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3750 3751

	spin_lock(&rq->lock);
3752
	__update_rq_clock(rq);
3753 3754 3755
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3756
	if (unlikely(rq->clock < next_tick)) {
3757
		rq->clock = next_tick;
3758 3759
		rq->clock_underflows++;
	}
3760
	rq->tick_timestamp = rq->clock;
3761
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3762 3763
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3764
	spin_unlock(&rq->lock);
3765

3766
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3767 3768
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3769
#endif
L
Linus Torvalds 已提交
3770 3771 3772 3773
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3774
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3775 3776 3777 3778
{
	/*
	 * Underflow?
	 */
3779 3780
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3781 3782 3783 3784
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3785 3786
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3787 3788 3789
}
EXPORT_SYMBOL(add_preempt_count);

3790
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3791 3792 3793 3794
{
	/*
	 * Underflow?
	 */
3795 3796
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3797 3798 3799
	/*
	 * Is the spinlock portion underflowing?
	 */
3800 3801 3802 3803
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3804 3805 3806 3807 3808 3809 3810
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3811
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3812
 */
I
Ingo Molnar 已提交
3813
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3814
{
3815 3816 3817 3818 3819
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3820 3821 3822
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3823 3824 3825 3826 3827

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3828
}
L
Linus Torvalds 已提交
3829

I
Ingo Molnar 已提交
3830 3831 3832 3833 3834
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3835
	/*
I
Ingo Molnar 已提交
3836
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3837 3838 3839
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3840 3841 3842
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3843 3844
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3845
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3846 3847
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3848 3849
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3850 3851
	}
#endif
I
Ingo Molnar 已提交
3852 3853 3854 3855 3856 3857
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3858
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3859
{
3860
	const struct sched_class *class;
I
Ingo Molnar 已提交
3861
	struct task_struct *p;
L
Linus Torvalds 已提交
3862 3863

	/*
I
Ingo Molnar 已提交
3864 3865
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3866
	 */
I
Ingo Molnar 已提交
3867
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3868
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3869 3870
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3871 3872
	}

I
Ingo Molnar 已提交
3873 3874
	class = sched_class_highest;
	for ( ; ; ) {
3875
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3876 3877 3878 3879 3880 3881 3882 3883 3884
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3885

I
Ingo Molnar 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3908

P
Peter Zijlstra 已提交
3909 3910
	hrtick_clear(rq);

3911 3912 3913 3914
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3915
	__update_rq_clock(rq);
3916 3917
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3918 3919 3920

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3921
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3922
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3923
		} else {
3924
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3925
		}
I
Ingo Molnar 已提交
3926
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3927 3928
	}

3929 3930 3931 3932
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3933

I
Ingo Molnar 已提交
3934
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3935 3936
		idle_balance(cpu, rq);

3937
	prev->sched_class->put_prev_task(rq, prev);
3938
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3939 3940

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3941

L
Linus Torvalds 已提交
3942 3943 3944 3945 3946
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3947
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3948 3949 3950 3951 3952 3953
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3954 3955 3956
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3957 3958 3959
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3960
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3961

L
Linus Torvalds 已提交
3962 3963 3964 3965 3966 3967 3968 3969
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3970
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3971
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3972 3973 3974 3975 3976 3977 3978
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3979

L
Linus Torvalds 已提交
3980 3981
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3982
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3983
	 */
N
Nick Piggin 已提交
3984
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3985 3986
		return;

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4000

4001 4002 4003 4004 4005 4006
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4007 4008 4009 4010
}
EXPORT_SYMBOL(preempt_schedule);

/*
4011
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4021

4022
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4023 4024
	BUG_ON(ti->preempt_count || !irqs_disabled());

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4040

4041 4042 4043 4044 4045 4046
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4047 4048 4049 4050
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4051 4052
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4053
{
4054
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4055 4056 4057 4058
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4059 4060
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4061 4062 4063
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4064
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4070
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4071

4072
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4073 4074
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4075
		if (curr->func(curr, mode, sync, key) &&
4076
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083 4084 4085
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4086
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4087
 */
4088
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4089
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4102
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4108
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4120
void
I
Ingo Molnar 已提交
4121
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4138
void complete(struct completion *x)
L
Linus Torvalds 已提交
4139 4140 4141 4142 4143
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4144
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4145 4146 4147 4148
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4149
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4155
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4156 4157 4158 4159
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4160 4161
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4162 4163 4164 4165 4166 4167 4168
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4169 4170 4171 4172
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4173 4174 4175 4176
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4177 4178 4179 4180 4181
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4182
				return timeout;
L
Linus Torvalds 已提交
4183 4184 4185 4186 4187 4188 4189 4190
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4191 4192
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4193 4194 4195 4196
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4197
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4198
	spin_unlock_irq(&x->wait.lock);
4199 4200
	return timeout;
}
L
Linus Torvalds 已提交
4201

4202
void __sched wait_for_completion(struct completion *x)
4203 4204
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4205
}
4206
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4207

4208
unsigned long __sched
4209
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4210
{
4211
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4212
}
4213
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4214

4215
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4216
{
4217 4218 4219 4220
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4221
}
4222
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4223

4224
unsigned long __sched
4225 4226
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4227
{
4228
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4229
}
4230
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4231

M
Matthew Wilcox 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4241 4242
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4243
{
I
Ingo Molnar 已提交
4244 4245 4246 4247
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4248

4249
	__set_current_state(state);
L
Linus Torvalds 已提交
4250

4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4265 4266 4267
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4268
long __sched
I
Ingo Molnar 已提交
4269
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4270
{
4271
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4272 4273 4274
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4275
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4276
{
4277
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4278 4279 4280
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4281
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4282
{
4283
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4284 4285 4286
}
EXPORT_SYMBOL(sleep_on_timeout);

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4299
void rt_mutex_setprio(struct task_struct *p, int prio)
4300 4301
{
	unsigned long flags;
4302
	int oldprio, on_rq, running;
4303
	struct rq *rq;
4304
	const struct sched_class *prev_class = p->sched_class;
4305 4306 4307 4308

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4309
	update_rq_clock(rq);
4310

4311
	oldprio = p->prio;
I
Ingo Molnar 已提交
4312
	on_rq = p->se.on_rq;
4313
	running = task_current(rq, p);
4314
	if (on_rq) {
4315
		dequeue_task(rq, p, 0);
4316 4317 4318
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4319 4320 4321 4322 4323 4324

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4325 4326
	p->prio = prio;

I
Ingo Molnar 已提交
4327
	if (on_rq) {
4328 4329
		if (running)
			p->sched_class->set_curr_task(rq);
4330

4331
		enqueue_task(rq, p, 0);
4332 4333

		check_class_changed(rq, p, prev_class, oldprio, running);
4334 4335 4336 4337 4338 4339
	}
	task_rq_unlock(rq, &flags);
}

#endif

4340
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4341
{
I
Ingo Molnar 已提交
4342
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4343
	unsigned long flags;
4344
	struct rq *rq;
L
Linus Torvalds 已提交
4345 4346 4347 4348 4349 4350 4351 4352

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4353
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4354 4355 4356 4357
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4358
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4359
	 */
4360
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4361 4362 4363
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4364
	on_rq = p->se.on_rq;
4365
	if (on_rq)
4366
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4367 4368

	p->static_prio = NICE_TO_PRIO(nice);
4369
	set_load_weight(p);
4370 4371 4372
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4373

I
Ingo Molnar 已提交
4374
	if (on_rq) {
4375
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4376
		/*
4377 4378
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4379
		 */
4380
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4388 4389 4390 4391 4392
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4393
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4394
{
4395 4396
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4397

M
Matt Mackall 已提交
4398 4399 4400 4401
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4413
	long nice, retval;
L
Linus Torvalds 已提交
4414 4415 4416 4417 4418 4419

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4420 4421
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4422 4423 4424 4425 4426 4427 4428 4429 4430
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4431 4432 4433
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4452
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4453 4454 4455 4456 4457 4458 4459 4460
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4461
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4480
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4481 4482 4483 4484 4485 4486 4487 4488
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4489
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4490
{
4491
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4492 4493 4494
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4495 4496
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4497
{
I
Ingo Molnar 已提交
4498
	BUG_ON(p->se.on_rq);
4499

L
Linus Torvalds 已提交
4500
	p->policy = policy;
I
Ingo Molnar 已提交
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4513
	p->rt_priority = prio;
4514 4515 4516
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4517
	set_load_weight(p);
L
Linus Torvalds 已提交
4518 4519 4520
}

/**
4521
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4522 4523 4524
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4525
 *
4526
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4527
 */
I
Ingo Molnar 已提交
4528 4529
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4530
{
4531
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4532
	unsigned long flags;
4533
	const struct sched_class *prev_class = p->sched_class;
4534
	struct rq *rq;
L
Linus Torvalds 已提交
4535

4536 4537
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4538 4539 4540 4541 4542
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4543 4544
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4545
		return -EINVAL;
L
Linus Torvalds 已提交
4546 4547
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4548 4549
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4550 4551
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4552
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4553
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4554
		return -EINVAL;
4555
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4556 4557
		return -EINVAL;

4558 4559 4560 4561
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4562
		if (rt_policy(policy)) {
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4579 4580 4581 4582 4583 4584
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4585

4586 4587 4588 4589 4590
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4591

4592 4593 4594 4595 4596 4597 4598 4599 4600
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4601 4602 4603
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4604 4605 4606 4607 4608
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4609 4610 4611 4612
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4613
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4614 4615 4616
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4617 4618
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4619 4620
		goto recheck;
	}
I
Ingo Molnar 已提交
4621
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4622
	on_rq = p->se.on_rq;
4623
	running = task_current(rq, p);
4624
	if (on_rq) {
4625
		deactivate_task(rq, p, 0);
4626 4627 4628
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4629

L
Linus Torvalds 已提交
4630
	oldprio = p->prio;
I
Ingo Molnar 已提交
4631
	__setscheduler(rq, p, policy, param->sched_priority);
4632

I
Ingo Molnar 已提交
4633
	if (on_rq) {
4634 4635
		if (running)
			p->sched_class->set_curr_task(rq);
4636

I
Ingo Molnar 已提交
4637
		activate_task(rq, p, 0);
4638 4639

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4640
	}
4641 4642 4643
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4644 4645
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4646 4647 4648 4649
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4650 4651
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4652 4653 4654
{
	struct sched_param lparam;
	struct task_struct *p;
4655
	int retval;
L
Linus Torvalds 已提交
4656 4657 4658 4659 4660

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4661 4662 4663

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4664
	p = find_process_by_pid(pid);
4665 4666 4667
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4668

L
Linus Torvalds 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4678 4679
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4680
{
4681 4682 4683 4684
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4704
	struct task_struct *p;
4705
	int retval;
L
Linus Torvalds 已提交
4706 4707

	if (pid < 0)
4708
		return -EINVAL;
L
Linus Torvalds 已提交
4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4730
	struct task_struct *p;
4731
	int retval;
L
Linus Torvalds 已提交
4732 4733

	if (!param || pid < 0)
4734
		return -EINVAL;
L
Linus Torvalds 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4764 4765
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4766

4767
	get_online_cpus();
L
Linus Torvalds 已提交
4768 4769 4770 4771 4772
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4773
		put_online_cpus();
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4779
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4790 4791 4792 4793
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4794 4795
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4796
 again:
L
Linus Torvalds 已提交
4797 4798
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4811 4812
out_unlock:
	put_task_struct(p);
4813
	put_online_cpus();
L
Linus Torvalds 已提交
4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4854
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4855 4856 4857
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4858
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4859 4860
EXPORT_SYMBOL(cpu_online_map);

4861
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4862
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4863 4864 4865 4866
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4867
	struct task_struct *p;
L
Linus Torvalds 已提交
4868 4869
	int retval;

4870
	get_online_cpus();
L
Linus Torvalds 已提交
4871 4872 4873 4874 4875 4876 4877
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4878 4879 4880 4881
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4882
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4883 4884 4885

out_unlock:
	read_unlock(&tasklist_lock);
4886
	put_online_cpus();
L
Linus Torvalds 已提交
4887

4888
	return retval;
L
Linus Torvalds 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4919 4920
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4921 4922 4923
 */
asmlinkage long sys_sched_yield(void)
{
4924
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4925

4926
	schedstat_inc(rq, yld_count);
4927
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4928 4929 4930 4931 4932 4933

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4934
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4935 4936 4937 4938 4939 4940 4941 4942
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4943
static void __cond_resched(void)
L
Linus Torvalds 已提交
4944
{
4945 4946 4947
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4948 4949 4950 4951 4952
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4953 4954 4955 4956 4957 4958 4959
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4960 4961
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4962
{
4963 4964
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969
		__cond_resched();
		return 1;
	}
	return 0;
}
4970 4971
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4972 4973 4974 4975 4976

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4977
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4978 4979 4980
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4981
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4982
{
N
Nick Piggin 已提交
4983
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4984 4985
	int ret = 0;

N
Nick Piggin 已提交
4986
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4987
		spin_unlock(lock);
N
Nick Piggin 已提交
4988 4989 4990 4991
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4992
		ret = 1;
L
Linus Torvalds 已提交
4993 4994
		spin_lock(lock);
	}
J
Jan Kara 已提交
4995
	return ret;
L
Linus Torvalds 已提交
4996 4997 4998 4999 5000 5001 5002
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5003
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5004
		local_bh_enable();
L
Linus Torvalds 已提交
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5016
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5027
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5028 5029 5030 5031 5032 5033 5034
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5035
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5036

5037
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5038 5039 5040
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5041
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5042 5043 5044 5045 5046
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5047
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5048 5049
	long ret;

5050
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5051 5052 5053
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5054
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5075
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5076
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5100
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5101
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5118
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5119
	unsigned int time_slice;
5120
	int retval;
L
Linus Torvalds 已提交
5121 5122 5123
	struct timespec t;

	if (pid < 0)
5124
		return -EINVAL;
L
Linus Torvalds 已提交
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5136 5137 5138 5139 5140 5141
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5142
		time_slice = DEF_TIMESLICE;
5143
	} else {
D
Dmitry Adamushko 已提交
5144 5145 5146 5147 5148
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5149 5150
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5151 5152
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5153
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5154
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5155 5156
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5157

L
Linus Torvalds 已提交
5158 5159 5160 5161 5162
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5163
static const char stat_nam[] = "RSDTtZX";
5164

5165
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5166 5167
{
	unsigned long free = 0;
5168
	unsigned state;
L
Linus Torvalds 已提交
5169 5170

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5171
	printk(KERN_INFO "%-13.13s %c", p->comm,
5172
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5173
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5174
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5175
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5176
	else
I
Ingo Molnar 已提交
5177
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5178 5179
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5180
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5181
	else
I
Ingo Molnar 已提交
5182
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5183 5184 5185
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5186
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5187 5188
		while (!*n)
			n++;
5189
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5190 5191
	}
#endif
5192
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5193
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5194

5195
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5196 5197
}

I
Ingo Molnar 已提交
5198
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5199
{
5200
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5201

5202 5203 5204
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5205
#else
5206 5207
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5208 5209 5210 5211 5212 5213 5214 5215
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5216
		if (!state_filter || (p->state & state_filter))
5217
			sched_show_task(p);
L
Linus Torvalds 已提交
5218 5219
	} while_each_thread(g, p);

5220 5221
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5222 5223 5224
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5225
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5226 5227 5228 5229 5230
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5231 5232
}

I
Ingo Molnar 已提交
5233 5234
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5235
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5236 5237
}

5238 5239 5240 5241 5242 5243 5244 5245
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5246
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5247
{
5248
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5249 5250
	unsigned long flags;

I
Ingo Molnar 已提交
5251 5252 5253
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5254
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5255
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5256
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5257 5258 5259

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5260 5261 5262
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5263 5264 5265
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5266
	task_thread_info(idle)->preempt_count = 0;
5267

I
Ingo Molnar 已提交
5268 5269 5270 5271
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5309 5310 5311 5312
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5313
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5332
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5333 5334
 * call is not atomic; no spinlocks may be held.
 */
5335
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5336
{
5337
	struct migration_req req;
L
Linus Torvalds 已提交
5338
	unsigned long flags;
5339
	struct rq *rq;
5340
	int ret = 0;
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346 5347

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5348 5349 5350
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5351
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5352
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5353 5354
	}

L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5369

L
Linus Torvalds 已提交
5370 5371 5372 5373 5374
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5375
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5376 5377 5378 5379 5380 5381
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5382 5383
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5384
 */
5385
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5386
{
5387
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5388
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5389 5390

	if (unlikely(cpu_is_offline(dest_cpu)))
5391
		return ret;
L
Linus Torvalds 已提交
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5404
	on_rq = p->se.on_rq;
5405
	if (on_rq)
5406
		deactivate_task(rq_src, p, 0);
5407

L
Linus Torvalds 已提交
5408
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5409 5410 5411
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5412
	}
5413
	ret = 1;
L
Linus Torvalds 已提交
5414 5415
out:
	double_rq_unlock(rq_src, rq_dest);
5416
	return ret;
L
Linus Torvalds 已提交
5417 5418 5419 5420 5421 5422 5423
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5424
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5425 5426
{
	int cpu = (long)data;
5427
	struct rq *rq;
L
Linus Torvalds 已提交
5428 5429 5430 5431 5432 5433

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5434
		struct migration_req *req;
L
Linus Torvalds 已提交
5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5457
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5458 5459
		list_del_init(head->next);

N
Nick Piggin 已提交
5460 5461 5462
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5492
/*
5493
 * Figure out where task on dead CPU should go, use force if necessary.
5494 5495
 * NOTE: interrupts should be disabled by the caller
 */
5496
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5497
{
5498
	unsigned long flags;
L
Linus Torvalds 已提交
5499
	cpumask_t mask;
5500 5501
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5502

5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5515 5516 5517 5518 5519
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5520
			 * cpuset_cpus_allowed() will not block. It must be
5521 5522
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5523
			rq = task_rq_lock(p, &flags);
5524
			p->cpus_allowed = cpus_allowed;
5525 5526
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5527

5528 5529 5530 5531 5532
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5533
			if (p->mm && printk_ratelimit()) {
5534 5535
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5536 5537
					task_pid_nr(p), p->comm, dead_cpu);
			}
5538
		}
5539
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5540 5541 5542 5543 5544 5545 5546 5547 5548
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5549
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5550
{
5551
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5565
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5566

5567
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5568

5569 5570
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5571 5572
			continue;

5573 5574 5575
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5576

5577
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5578 5579
}

I
Ingo Molnar 已提交
5580 5581
/*
 * Schedules idle task to be the next runnable task on current CPU.
5582 5583
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5584 5585 5586
 */
void sched_idle_next(void)
{
5587
	int this_cpu = smp_processor_id();
5588
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5589 5590 5591 5592
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5593
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5594

5595 5596 5597
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5598 5599 5600
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5601
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5602

5603 5604
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5605 5606 5607 5608

	spin_unlock_irqrestore(&rq->lock, flags);
}

5609 5610
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5624
/* called under rq->lock with disabled interrupts */
5625
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5626
{
5627
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5628 5629

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5630
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5631 5632

	/* Cannot have done final schedule yet: would have vanished. */
5633
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5634

5635
	get_task_struct(p);
L
Linus Torvalds 已提交
5636 5637 5638

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5639
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5640 5641
	 * fine.
	 */
5642
	spin_unlock_irq(&rq->lock);
5643
	move_task_off_dead_cpu(dead_cpu, p);
5644
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5645

5646
	put_task_struct(p);
L
Linus Torvalds 已提交
5647 5648 5649 5650 5651
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5652
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5653
	struct task_struct *next;
5654

I
Ingo Molnar 已提交
5655 5656 5657
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5658
		update_rq_clock(rq);
5659
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5660 5661 5662
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5663

L
Linus Torvalds 已提交
5664 5665 5666 5667
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5668 5669 5670
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5671 5672
	{
		.procname	= "sched_domain",
5673
		.mode		= 0555,
5674
	},
I
Ingo Molnar 已提交
5675
	{0, },
5676 5677 5678
};

static struct ctl_table sd_ctl_root[] = {
5679
	{
5680
		.ctl_name	= CTL_KERN,
5681
		.procname	= "kernel",
5682
		.mode		= 0555,
5683 5684
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5685
	{0, },
5686 5687 5688 5689 5690
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5691
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5692 5693 5694 5695

	return entry;
}

5696 5697
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5698
	struct ctl_table *entry;
5699

5700 5701 5702
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5703
	 * will always be set. In the lowest directory the names are
5704 5705 5706
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5707 5708
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5709 5710 5711
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5712 5713 5714 5715 5716

	kfree(*tablep);
	*tablep = NULL;
}

5717
static void
5718
set_table_entry(struct ctl_table *entry,
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5732
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5733

5734 5735 5736
	if (table == NULL)
		return NULL;

5737
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5738
		sizeof(long), 0644, proc_doulongvec_minmax);
5739
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5740
		sizeof(long), 0644, proc_doulongvec_minmax);
5741
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5742
		sizeof(int), 0644, proc_dointvec_minmax);
5743
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5744
		sizeof(int), 0644, proc_dointvec_minmax);
5745
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5746
		sizeof(int), 0644, proc_dointvec_minmax);
5747
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5748
		sizeof(int), 0644, proc_dointvec_minmax);
5749
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5750
		sizeof(int), 0644, proc_dointvec_minmax);
5751
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5752
		sizeof(int), 0644, proc_dointvec_minmax);
5753
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5754
		sizeof(int), 0644, proc_dointvec_minmax);
5755
	set_table_entry(&table[9], "cache_nice_tries",
5756 5757
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5758
	set_table_entry(&table[10], "flags", &sd->flags,
5759
		sizeof(int), 0644, proc_dointvec_minmax);
5760
	/* &table[11] is terminator */
5761 5762 5763 5764

	return table;
}

5765
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5766 5767 5768 5769 5770 5771 5772 5773 5774
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5775 5776
	if (table == NULL)
		return NULL;
5777 5778 5779 5780 5781

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5782
		entry->mode = 0555;
5783 5784 5785 5786 5787 5788 5789 5790
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5791
static void register_sched_domain_sysctl(void)
5792 5793 5794 5795 5796
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5797 5798 5799
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5800 5801 5802
	if (entry == NULL)
		return;

5803
	for_each_online_cpu(i) {
5804 5805
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5806
		entry->mode = 0555;
5807
		entry->child = sd_alloc_ctl_cpu_table(i);
5808
		entry++;
5809
	}
5810 5811

	WARN_ON(sd_sysctl_header);
5812 5813
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5814

5815
/* may be called multiple times per register */
5816 5817
static void unregister_sched_domain_sysctl(void)
{
5818 5819
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5820
	sd_sysctl_header = NULL;
5821 5822
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5823
}
5824
#else
5825 5826 5827 5828
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5829 5830 5831 5832
{
}
#endif

L
Linus Torvalds 已提交
5833 5834 5835 5836
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5837 5838
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5839 5840
{
	struct task_struct *p;
5841
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5842
	unsigned long flags;
5843
	struct rq *rq;
L
Linus Torvalds 已提交
5844 5845

	switch (action) {
5846

L
Linus Torvalds 已提交
5847
	case CPU_UP_PREPARE:
5848
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5849
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5850 5851 5852 5853 5854
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5855
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5856 5857 5858
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5859

L
Linus Torvalds 已提交
5860
	case CPU_ONLINE:
5861
	case CPU_ONLINE_FROZEN:
5862
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5863
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5864 5865 5866 5867 5868 5869 5870 5871 5872

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5873
		break;
5874

L
Linus Torvalds 已提交
5875 5876
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5877
	case CPU_UP_CANCELED_FROZEN:
5878 5879
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5880
		/* Unbind it from offline cpu so it can run. Fall thru. */
5881 5882
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5883 5884 5885
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5886

L
Linus Torvalds 已提交
5887
	case CPU_DEAD:
5888
	case CPU_DEAD_FROZEN:
5889
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5890 5891 5892 5893 5894
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5895
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5896
		update_rq_clock(rq);
5897
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5898
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5899 5900
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5901
		migrate_dead_tasks(cpu);
5902
		spin_unlock_irq(&rq->lock);
5903
		cpuset_unlock();
L
Linus Torvalds 已提交
5904 5905 5906
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5907 5908 5909 5910 5911
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5912 5913
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5914 5915
			struct migration_req *req;

L
Linus Torvalds 已提交
5916
			req = list_entry(rq->migration_queue.next,
5917
					 struct migration_req, list);
L
Linus Torvalds 已提交
5918 5919 5920 5921 5922
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5934 5935 5936 5937 5938 5939 5940 5941
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5942
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5943 5944 5945 5946
	.notifier_call = migration_call,
	.priority = 10
};

5947
void __init migration_init(void)
L
Linus Torvalds 已提交
5948 5949
{
	void *cpu = (void *)(long)smp_processor_id();
5950
	int err;
5951 5952

	/* Start one for the boot CPU: */
5953 5954
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5955 5956 5957 5958 5959 5960
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5961 5962 5963 5964 5965

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5966
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5967 5968

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5969
{
I
Ingo Molnar 已提交
5970 5971 5972
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5973

I
Ingo Molnar 已提交
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5985 5986
	}

I
Ingo Molnar 已提交
5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5997

I
Ingo Molnar 已提交
5998
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5999
	do {
I
Ingo Molnar 已提交
6000 6001 6002
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6003 6004 6005
			break;
		}

I
Ingo Molnar 已提交
6006 6007 6008 6009 6010 6011
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6012

I
Ingo Molnar 已提交
6013 6014 6015 6016 6017
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6018

I
Ingo Molnar 已提交
6019 6020 6021 6022 6023
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6024

I
Ingo Molnar 已提交
6025
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6026

I
Ingo Molnar 已提交
6027 6028
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6029

I
Ingo Molnar 已提交
6030 6031 6032
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6033

I
Ingo Molnar 已提交
6034 6035
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6036

I
Ingo Molnar 已提交
6037 6038 6039 6040 6041
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6042

I
Ingo Molnar 已提交
6043 6044 6045
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6046

I
Ingo Molnar 已提交
6047 6048 6049 6050
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6051

I
Ingo Molnar 已提交
6052 6053 6054 6055 6056
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6057 6058
		level++;
		sd = sd->parent;
6059
		if (!sd)
I
Ingo Molnar 已提交
6060 6061
			break;
	}
L
Linus Torvalds 已提交
6062 6063
}
#else
6064
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6065 6066
#endif

6067
static int sd_degenerate(struct sched_domain *sd)
6068 6069 6070 6071 6072 6073 6074 6075
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6076 6077 6078
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6092 6093
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6112 6113 6114
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6115 6116 6117 6118 6119 6120 6121
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6132
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6133 6134
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6135
		}
G
Gregory Haskins 已提交
6136

6137 6138 6139
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6140 6141 6142 6143 6144 6145 6146
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6147 6148 6149 6150
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
6151
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6152 6153
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6154
	}
G
Gregory Haskins 已提交
6155 6156 6157 6158

	spin_unlock_irqrestore(&rq->lock, flags);
}

6159
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6160 6161 6162
{
	memset(rd, 0, sizeof(*rd));

6163 6164
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6165 6166 6167 6168
}

static void init_defrootdomain(void)
{
6169
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6170 6171 6172
	atomic_set(&def_root_domain.refcount, 1);
}

6173
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6174 6175 6176 6177 6178 6179 6180
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6181
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6182 6183 6184 6185

	return rd;
}

L
Linus Torvalds 已提交
6186
/*
I
Ingo Molnar 已提交
6187
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6188 6189
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6190 6191
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6192
{
6193
	struct rq *rq = cpu_rq(cpu);
6194 6195 6196 6197 6198 6199 6200
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6201
		if (sd_parent_degenerate(tmp, parent)) {
6202
			tmp->parent = parent->parent;
6203 6204 6205
			if (parent->parent)
				parent->parent->child = tmp;
		}
6206 6207
	}

6208
	if (sd && sd_degenerate(sd)) {
6209
		sd = sd->parent;
6210 6211 6212
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6213 6214 6215

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6216
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6217
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6218 6219 6220
}

/* cpus with isolated domains */
6221
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6236
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6237 6238

/*
6239 6240 6241 6242
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6243 6244 6245 6246 6247
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6248
static void
6249 6250 6251
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6252 6253 6254 6255 6256 6257
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6258 6259
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6260 6261 6262 6263 6264 6265
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6266
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6267 6268

		for_each_cpu_mask(j, span) {
6269
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6284
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6285

6286
#ifdef CONFIG_NUMA
6287

6288 6289 6290 6291 6292
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6293
 * Find the next node to include in a given scheduling domain. Simply
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6333
 * Given a node, construct a good cpumask for its sched_domain to span. It
6334 6335 6336 6337 6338 6339
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6340 6341
	cpumask_t span, nodemask;
	int i;
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6352

6353 6354 6355 6356 6357 6358 6359 6360
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6361
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6362

6363
/*
6364
 * SMT sched-domains:
6365
 */
L
Linus Torvalds 已提交
6366 6367
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6368
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6369

I
Ingo Molnar 已提交
6370 6371
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6372
{
6373 6374
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6375 6376 6377 6378
	return cpu;
}
#endif

6379 6380 6381
/*
 * multi-core sched-domains:
 */
6382 6383
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6384
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6385 6386 6387
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6388 6389
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6390
{
6391
	int group;
6392
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6393
	cpus_and(mask, mask, *cpu_map);
6394 6395 6396 6397
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6398 6399
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6400 6401
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6402
{
6403 6404
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6405 6406 6407 6408
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6409
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6410
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6411

I
Ingo Molnar 已提交
6412 6413
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6414
{
6415
	int group;
6416
#ifdef CONFIG_SCHED_MC
6417
	cpumask_t mask = cpu_coregroup_map(cpu);
6418
	cpus_and(mask, mask, *cpu_map);
6419
	group = first_cpu(mask);
6420
#elif defined(CONFIG_SCHED_SMT)
6421
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6422
	cpus_and(mask, mask, *cpu_map);
6423
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6424
#else
6425
	group = cpu;
L
Linus Torvalds 已提交
6426
#endif
6427 6428 6429
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6430 6431 6432 6433
}

#ifdef CONFIG_NUMA
/*
6434 6435 6436
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6437
 */
6438
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6439
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6440

6441
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6442
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6443

6444 6445
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6446
{
6447 6448 6449 6450 6451 6452 6453 6454 6455
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6456
}
6457

6458 6459 6460 6461 6462 6463 6464
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6465 6466 6467
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6468

6469 6470 6471 6472 6473 6474 6475 6476
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6477

6478 6479 6480 6481
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6482
}
L
Linus Torvalds 已提交
6483 6484
#endif

6485
#ifdef CONFIG_NUMA
6486 6487 6488
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6489
	int cpu, i;
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6520 6521 6522 6523 6524
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6525

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6552 6553
	sd->groups->__cpu_power = 0;

6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6564
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6565 6566 6567 6568 6569 6570 6571 6572
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6573
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6574 6575 6576 6577
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6578
/*
6579 6580
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6581
 */
6582
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6583 6584
{
	int i;
G
Gregory Haskins 已提交
6585
	struct root_domain *rd;
6586 6587
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6588
	int sd_allnodes = 0;
6589 6590 6591 6592

	/*
	 * Allocate the per-node list of sched groups
	 */
6593
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6594
				    GFP_KERNEL);
6595 6596
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6597
		return -ENOMEM;
6598 6599 6600
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6601

6602
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6603 6604 6605 6606 6607
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6608
	/*
6609
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6610
	 */
6611
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6612 6613 6614
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6615
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6616 6617

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6618 6619
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6620 6621 6622
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6623
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6624
			p = sd;
6625
			sd_allnodes = 1;
6626 6627 6628
		} else
			p = NULL;

L
Linus Torvalds 已提交
6629 6630
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6631 6632
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6633 6634
		if (p)
			p->child = sd;
6635
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6636 6637 6638 6639 6640 6641 6642
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6643 6644
		if (p)
			p->child = sd;
6645
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6646

6647 6648 6649 6650 6651 6652 6653
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6654
		p->child = sd;
6655
		cpu_to_core_group(i, cpu_map, &sd->groups);
6656 6657
#endif

L
Linus Torvalds 已提交
6658 6659 6660 6661
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6662
		sd->span = per_cpu(cpu_sibling_map, i);
6663
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6664
		sd->parent = p;
6665
		p->child = sd;
6666
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6667 6668 6669 6670 6671
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6672
	for_each_cpu_mask(i, *cpu_map) {
6673
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6674
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6675 6676 6677
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6678 6679
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6680 6681 6682
	}
#endif

6683 6684 6685 6686 6687 6688 6689
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6690 6691
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6692 6693 6694
	}
#endif

L
Linus Torvalds 已提交
6695 6696 6697 6698
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6699
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6700 6701 6702
		if (cpus_empty(nodemask))
			continue;

6703
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6704 6705 6706 6707
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6708
	if (sd_allnodes)
I
Ingo Molnar 已提交
6709 6710
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6711 6712 6713 6714 6715 6716 6717 6718 6719 6720

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6721 6722
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6723
			continue;
6724
		}
6725 6726 6727 6728

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6729
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6730 6731 6732 6733 6734
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6735 6736 6737
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6738

6739 6740 6741
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6742
		sg->__cpu_power = 0;
6743
		sg->cpumask = nodemask;
6744
		sg->next = sg;
6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6763 6764
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6765 6766 6767
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6768
				goto error;
6769
			}
6770
			sg->__cpu_power = 0;
6771
			sg->cpumask = tmp;
6772
			sg->next = prev->next;
6773 6774 6775 6776 6777
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6778 6779 6780
#endif

	/* Calculate CPU power for physical packages and nodes */
6781
#ifdef CONFIG_SCHED_SMT
6782
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6783 6784
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6785
		init_sched_groups_power(i, sd);
6786
	}
L
Linus Torvalds 已提交
6787
#endif
6788
#ifdef CONFIG_SCHED_MC
6789
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6790 6791
		struct sched_domain *sd = &per_cpu(core_domains, i);

6792
		init_sched_groups_power(i, sd);
6793 6794
	}
#endif
6795

6796
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6797 6798
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6799
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6800 6801
	}

6802
#ifdef CONFIG_NUMA
6803 6804
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6805

6806 6807
	if (sd_allnodes) {
		struct sched_group *sg;
6808

6809
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6810 6811
		init_numa_sched_groups_power(sg);
	}
6812 6813
#endif

L
Linus Torvalds 已提交
6814
	/* Attach the domains */
6815
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6816 6817 6818
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6819 6820
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6821 6822 6823
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6824
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6825
	}
6826 6827 6828

	return 0;

6829
#ifdef CONFIG_NUMA
6830 6831 6832
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6833
#endif
L
Linus Torvalds 已提交
6834
}
P
Paul Jackson 已提交
6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6846
/*
I
Ingo Molnar 已提交
6847
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6848 6849
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6850
 */
6851
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6852
{
6853 6854
	int err;

P
Paul Jackson 已提交
6855 6856 6857 6858 6859
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6860
	err = build_sched_domains(doms_cur);
6861
	register_sched_domain_sysctl();
6862 6863

	return err;
6864 6865 6866
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6867
{
6868
	free_sched_groups(cpu_map);
6869
}
L
Linus Torvalds 已提交
6870

6871 6872 6873 6874
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6875
static void detach_destroy_domains(const cpumask_t *cpu_map)
6876 6877 6878
{
	int i;

6879 6880
	unregister_sched_domain_sysctl();

6881
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6882
		cpu_attach_domain(NULL, &def_root_domain, i);
6883 6884 6885 6886
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6887 6888
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6889
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6890 6891 6892 6893
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6894 6895 6896
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6897 6898 6899
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6900 6901
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6912 6913
	lock_doms_cur();

6914 6915 6916
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6952 6953

	register_sched_domain_sysctl();
6954 6955

	unlock_doms_cur();
P
Paul Jackson 已提交
6956 6957
}

6958
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6959
static int arch_reinit_sched_domains(void)
6960 6961 6962
{
	int err;

6963
	get_online_cpus();
6964 6965
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6966
	put_online_cpus();
6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6993 6994
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6995 6996 6997
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6998 6999
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7000 7001 7002 7003 7004 7005 7006
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7007 7008
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7009 7010 7011
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7032 7033
#endif

L
Linus Torvalds 已提交
7034
/*
I
Ingo Molnar 已提交
7035
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7036
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7037
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7038 7039 7040 7041 7042 7043 7044
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7045
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7046
	case CPU_DOWN_PREPARE:
7047
	case CPU_DOWN_PREPARE_FROZEN:
7048
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7049 7050 7051
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7052
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7053
	case CPU_DOWN_FAILED:
7054
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7055
	case CPU_ONLINE:
7056
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7057
	case CPU_DEAD:
7058
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7059 7060 7061 7062 7063 7064 7065 7066 7067
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7068
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7069 7070 7071 7072 7073 7074

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7075 7076
	cpumask_t non_isolated_cpus;

7077
	get_online_cpus();
7078
	arch_init_sched_domains(&cpu_online_map);
7079
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7080 7081
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7082
	put_online_cpus();
L
Linus Torvalds 已提交
7083 7084
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7085 7086 7087 7088

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7089
	sched_init_granularity();
7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
7105 7106 7107 7108
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7109
	sched_init_granularity();
L
Linus Torvalds 已提交
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7120
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7121 7122 7123 7124 7125
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7126
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7127 7128
}

P
Peter Zijlstra 已提交
7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7142
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7143 7144
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7145 7146 7147 7148 7149 7150 7151
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7152

7153
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7154
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7155 7156
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7157 7158
}

P
Peter Zijlstra 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7177
#endif
P
Peter Zijlstra 已提交
7178

7179
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7199 7200
void __init sched_init(void)
{
7201
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7202 7203
	int i, j;

G
Gregory Haskins 已提交
7204 7205 7206 7207
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7208
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7209 7210 7211
	list_add(&init_task_group.list, &task_groups);
#endif

7212
	for_each_possible_cpu(i) {
7213
		struct rq *rq;
L
Linus Torvalds 已提交
7214 7215 7216

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7217
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7218
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7219 7220
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7221
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7222
#ifdef CONFIG_FAIR_GROUP_SCHED
7223
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7224 7225 7226 7227 7228
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7229 7230
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7231 7232
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7233 7234 7235 7236
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7237
#endif
P
Peter Zijlstra 已提交
7238
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7239
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7240

I
Ingo Molnar 已提交
7241 7242
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7243
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7244
		rq->sd = NULL;
G
Gregory Haskins 已提交
7245
		rq->rd = NULL;
L
Linus Torvalds 已提交
7246
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7247
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7248
		rq->push_cpu = 0;
7249
		rq->cpu = i;
L
Linus Torvalds 已提交
7250 7251
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7252
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7253
#endif
P
Peter Zijlstra 已提交
7254
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7255
		atomic_set(&rq->nr_iowait, 0);
7256
		highest_cpu = i;
L
Linus Torvalds 已提交
7257 7258
	}

7259
	set_load_weight(&init_task);
7260

7261 7262 7263 7264
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7265
#ifdef CONFIG_SMP
7266
	nr_cpu_ids = highest_cpu + 1;
7267 7268 7269
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7270 7271 7272 7273
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7287 7288 7289 7290
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7291 7292

	scheduler_running = 1;
L
Linus Torvalds 已提交
7293 7294 7295 7296 7297
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7298
#ifdef in_atomic
L
Linus Torvalds 已提交
7299 7300 7301 7302 7303 7304 7305
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7306
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7307 7308 7309
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7310
		debug_show_held_locks(current);
7311 7312
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7313 7314 7315 7316 7317 7318 7319 7320
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7335 7336
void normalize_rt_tasks(void)
{
7337
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7338
	unsigned long flags;
7339
	struct rq *rq;
L
Linus Torvalds 已提交
7340

7341
	read_lock_irqsave(&tasklist_lock, flags);
7342
	do_each_thread(g, p) {
7343 7344 7345 7346 7347 7348
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7349 7350
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7351 7352 7353
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7354
#endif
I
Ingo Molnar 已提交
7355 7356 7357 7358 7359 7360 7361 7362 7363
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7364
			continue;
I
Ingo Molnar 已提交
7365
		}
L
Linus Torvalds 已提交
7366

7367
		spin_lock(&p->pi_lock);
7368
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7369

7370
		normalize_task(rq, p);
7371

7372
		__task_rq_unlock(rq);
7373
		spin_unlock(&p->pi_lock);
7374 7375
	} while_each_thread(g, p);

7376
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7377 7378 7379
}

#endif /* CONFIG_MAGIC_SYSRQ */
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7398
struct task_struct *curr_task(int cpu)
7399 7400 7401 7402 7403 7404 7405 7406 7407 7408
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7409 7410
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7411 7412 7413 7414 7415 7416 7417
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7418
void set_curr_task(int cpu, struct task_struct *p)
7419 7420 7421 7422 7423
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7424

7425
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7426

7427
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7428 7429
/*
 * distribute shares of all task groups among their schedulable entities,
P
Peter Zijlstra 已提交
7430
 * to reflect load distribution across cpus.
7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

I
Ingo Molnar 已提交
7449
		/* Nothing to do if this group has no load */
7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
P
Peter Zijlstra 已提交
7497
 * These settings allows for the appropriate trade-off between accuracy of
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7530
		get_online_cpus();
7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7564
		put_online_cpus();
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

7578 7579
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7594
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7595 7596 7597
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7598
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7599 7600
	int i;

7601
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7602 7603
	if (!tg->cfs_rq)
		goto err;
7604
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7605 7606
	if (!tg->se)
		goto err;
7607 7608

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7609 7610

	for_each_possible_cpu(i) {
7611
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7612

P
Peter Zijlstra 已提交
7613 7614
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7615 7616 7617
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7618 7619
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7620 7621 7622
		if (!se)
			goto err;

7623
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7659 7660 7661
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7696 7697 7698 7699
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7700

P
Peter Zijlstra 已提交
7701 7702 7703 7704
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7705

P
Peter Zijlstra 已提交
7706
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7707 7708
	}

7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7768
	spin_lock_irqsave(&task_group_lock, flags);
7769
	for_each_possible_cpu(i) {
7770 7771
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7772
	}
P
Peter Zijlstra 已提交
7773
	list_add_rcu(&tg->list, &task_groups);
7774
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7775

7776
	return tg;
S
Srivatsa Vaddagiri 已提交
7777 7778

err:
P
Peter Zijlstra 已提交
7779
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7780 7781 7782
	return ERR_PTR(-ENOMEM);
}

7783
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7784
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7785 7786
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7787
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7788 7789
}

7790
/* Destroy runqueue etc associated with a task group */
7791
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7792
{
7793
	unsigned long flags;
7794
	int i;
S
Srivatsa Vaddagiri 已提交
7795

7796
	spin_lock_irqsave(&task_group_lock, flags);
7797
	for_each_possible_cpu(i) {
7798 7799
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7800
	}
P
Peter Zijlstra 已提交
7801
	list_del_rcu(&tg->list);
7802
	spin_unlock_irqrestore(&task_group_lock, flags);
7803 7804

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7805
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7806 7807
}

7808
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7809 7810 7811
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7812 7813
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7814 7815 7816 7817 7818 7819 7820 7821 7822
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7823
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7824 7825
	on_rq = tsk->se.on_rq;

7826
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7827
		dequeue_task(rq, tsk, 0);
7828 7829 7830
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7831

P
Peter Zijlstra 已提交
7832
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7833

7834 7835 7836
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7837
		enqueue_task(rq, tsk, 0);
7838
	}
S
Srivatsa Vaddagiri 已提交
7839 7840 7841 7842

	task_rq_unlock(rq, &flags);
}

7843
#ifdef CONFIG_FAIR_GROUP_SCHED
7844
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7845 7846 7847 7848 7849 7850
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7851 7852
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7853 7854

	on_rq = se->on_rq;
7855
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7856
		dequeue_entity(cfs_rq, se, 0);
7857 7858
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7859 7860 7861 7862

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7863
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7864
		enqueue_entity(cfs_rq, se, 0);
7865 7866
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7867 7868
}

7869 7870
static DEFINE_MUTEX(shares_mutex);

7871
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7872 7873
{
	int i;
7874
	unsigned long flags;
7875

7876
	mutex_lock(&shares_mutex);
7877
	if (tg->shares == shares)
7878
		goto done;
S
Srivatsa Vaddagiri 已提交
7879

7880 7881 7882 7883 7884 7885 7886 7887
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
7888
	spin_lock_irqsave(&task_group_lock, flags);
7889 7890
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7891
	spin_unlock_irqrestore(&task_group_lock, flags);
7892 7893 7894 7895 7896 7897 7898 7899

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7900
	tg->shares = shares;
7901 7902
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7903
		set_se_shares(tg->se[i], shares);
7904 7905
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7906

7907 7908 7909 7910
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7911
	spin_lock_irqsave(&task_group_lock, flags);
7912 7913
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7914
	spin_unlock_irqrestore(&task_group_lock, flags);
7915
done:
7916
	mutex_unlock(&shares_mutex);
7917
	return 0;
S
Srivatsa Vaddagiri 已提交
7918 7919
}

7920 7921 7922 7923
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7924
#endif
7925

7926
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7927
/*
P
Peter Zijlstra 已提交
7928
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7929
 */
P
Peter Zijlstra 已提交
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

	runtime *= (1ULL << 16);
	div64_64(runtime, period);
	return runtime;
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7943 7944 7945
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7946 7947 7948 7949
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7950 7951

	rcu_read_lock();
P
Peter Zijlstra 已提交
7952 7953 7954
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7955

P
Peter Zijlstra 已提交
7956 7957 7958
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7959

P
Peter Zijlstra 已提交
7960
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7961 7962
}

P
Peter Zijlstra 已提交
7963
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7964
{
P
Peter Zijlstra 已提交
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984
	u64 rt_runtime, rt_period;
	int err = 0;

	rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
		rt_runtime = rt_period;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	if (rt_runtime_us == -1)
		rt_runtime = RUNTIME_INF;
	tg->rt_runtime = rt_runtime;
 unlock:
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7985 7986
}

P
Peter Zijlstra 已提交
7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7998 7999
#endif
#endif	/* CONFIG_GROUP_SCHED */
8000

8001
#ifdef CONFIG_CGROUP_SCHED
8002 8003

/* return corresponding task_group object of a cgroup */
8004
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8005
{
8006 8007
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8008 8009 8010
}

static struct cgroup_subsys_state *
8011
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8012 8013 8014
{
	struct task_group *tg;

8015
	if (!cgrp->parent) {
8016
		/* This is early initialization for the top cgroup */
8017
		init_task_group.css.cgroup = cgrp;
8018 8019 8020 8021
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
8022
	if (cgrp->parent->parent)
8023 8024 8025 8026 8027 8028 8029
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8030
	tg->css.cgroup = cgrp;
8031 8032 8033 8034

	return &tg->css;
}

I
Ingo Molnar 已提交
8035 8036
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8037
{
8038
	struct task_group *tg = cgroup_tg(cgrp);
8039 8040 8041 8042

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8043 8044 8045
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8046
{
8047 8048 8049 8050 8051
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
8052 8053 8054
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8055
#endif
8056 8057 8058 8059 8060

	return 0;
}

static void
8061
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8062 8063 8064 8065 8066
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8067
#ifdef CONFIG_FAIR_GROUP_SCHED
8068 8069
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8070
{
8071
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8072 8073
}

8074
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8075
{
8076
	struct task_group *tg = cgroup_tg(cgrp);
8077 8078 8079

	return (u64) tg->shares;
}
8080
#endif
8081

8082
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8083 8084 8085 8086
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8087
{
P
Peter Zijlstra 已提交
8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8114 8115
}

P
Peter Zijlstra 已提交
8116 8117 8118 8119
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8120
{
P
Peter Zijlstra 已提交
8121 8122 8123
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8124

P
Peter Zijlstra 已提交
8125
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8126
}
8127
#endif
P
Peter Zijlstra 已提交
8128

8129
static struct cftype cpu_files[] = {
8130
#ifdef CONFIG_FAIR_GROUP_SCHED
8131 8132 8133 8134 8135
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8136 8137
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8138
	{
P
Peter Zijlstra 已提交
8139 8140 8141
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8142
	},
8143
#endif
8144 8145 8146 8147
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8148
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8149 8150 8151
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8152 8153 8154 8155 8156 8157 8158
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8159 8160 8161
	.early_init	= 1,
};

8162
#endif	/* CONFIG_CGROUP_SCHED */
8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8215 8216
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */