sched.c 219.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
99
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
100
 */
101
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
102

I
Ingo Molnar 已提交
103 104 105
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
106 107 108
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
109
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
110 111 112
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
113

114 115 116 117 118
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

140 141
static inline int rt_policy(int policy)
{
142
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
143 144 145 146 147 148 149 150 151
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
152
/*
I
Ingo Molnar 已提交
153
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
154
 */
I
Ingo Molnar 已提交
155 156 157 158 159
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295
#endif /* CONFIG_FAIR_GROUP_SCHED */
296 297 298 299

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
300 301
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
302
#define root_task_group init_task_group
303
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
313
#else /* !CONFIG_USER_SCHED */
314
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
315
#endif /* CONFIG_USER_SCHED */
316

317
/*
318 319 320 321
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
322 323 324
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
325
#define MIN_SHARES	2
326
#define MAX_SHARES	(1UL << 18)
327

328 329 330
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
331
/* Default task group.
I
Ingo Molnar 已提交
332
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
333
 */
334
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
335 336

/* return group to which a task belongs */
337
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
338
{
339
	struct task_group *tg;
340

341
#ifdef CONFIG_USER_SCHED
342
	tg = p->user->tg;
343
#elif defined(CONFIG_CGROUP_SCHED)
344 345
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
346
#else
I
Ingo Molnar 已提交
347
	tg = &init_task_group;
348
#endif
349
	return tg;
S
Srivatsa Vaddagiri 已提交
350 351 352
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
353
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
354
{
355
#ifdef CONFIG_FAIR_GROUP_SCHED
356 357
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
358
#endif
P
Peter Zijlstra 已提交
359

360
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
361 362
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
363
#endif
S
Srivatsa Vaddagiri 已提交
364 365 366 367
}

#else

P
Peter Zijlstra 已提交
368
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
369 370 371 372
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
373

374
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
375

I
Ingo Molnar 已提交
376 377 378 379 380 381
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
382
	u64 min_vruntime;
383
	u64 pair_start;
I
Ingo Molnar 已提交
384 385 386

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
387 388 389 390 391 392

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
393 394
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
395
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
396 397 398

	unsigned long nr_spread_over;

399
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
400 401
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
402 403
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
404 405 406 407 408 409
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
410 411
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
412 413 414

#ifdef CONFIG_SMP
	/*
415
	 * the part of load.weight contributed by tasks
416
	 */
417
	unsigned long task_weight;
418

419 420 421 422 423 424 425
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
426

427 428 429 430
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
431 432 433 434 435

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
436
#endif
I
Ingo Molnar 已提交
437 438
#endif
};
L
Linus Torvalds 已提交
439

I
Ingo Molnar 已提交
440 441 442
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
443
	unsigned long rt_nr_running;
444
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
445 446
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
447
#ifdef CONFIG_SMP
448
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
449
	int overloaded;
P
Peter Zijlstra 已提交
450
#endif
P
Peter Zijlstra 已提交
451
	int rt_throttled;
P
Peter Zijlstra 已提交
452
	u64 rt_time;
P
Peter Zijlstra 已提交
453
	u64 rt_runtime;
I
Ingo Molnar 已提交
454
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
455
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
456

457
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
458 459
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
460 461 462 463 464
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
465 466
};

G
Gregory Haskins 已提交
467 468 469 470
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
471 472
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
473 474 475 476 477 478 479 480
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
481

I
Ingo Molnar 已提交
482
	/*
483 484 485 486
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
487
	atomic_t rto_count;
488 489 490
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
491 492
};

493 494 495 496
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
497 498 499 500
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
501 502 503 504 505 506 507
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
508
struct rq {
509 510
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
511 512 513 514 515 516

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
517 518
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
519
	unsigned char idle_at_tick;
520
#ifdef CONFIG_NO_HZ
521
	unsigned long last_tick_seen;
522 523
	unsigned char in_nohz_recently;
#endif
524 525
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
526 527 528 529
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
530 531
	struct rt_rq rt;

I
Ingo Molnar 已提交
532
#ifdef CONFIG_FAIR_GROUP_SCHED
533 534
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
535 536
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
537
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
538 539 540 541 542 543 544 545 546 547
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

548
	struct task_struct *curr, *idle;
549
	unsigned long next_balance;
L
Linus Torvalds 已提交
550
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
551

552
	u64 clock;
I
Ingo Molnar 已提交
553

L
Linus Torvalds 已提交
554 555 556
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
557
	struct root_domain *rd;
L
Linus Torvalds 已提交
558 559 560 561 562
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
563 564
	/* cpu of this runqueue: */
	int cpu;
565
	int online;
L
Linus Torvalds 已提交
566

567
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
568

569
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
570 571 572
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
573
#ifdef CONFIG_SCHED_HRTICK
574 575 576 577
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
578 579 580
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
581 582 583 584 585
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
586 587 588 589
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
590 591

	/* schedule() stats */
592 593 594
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
595 596

	/* try_to_wake_up() stats */
597 598
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
599 600

	/* BKL stats */
601
	unsigned int bkl_count;
L
Linus Torvalds 已提交
602 603 604
#endif
};

605
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
606

I
Ingo Molnar 已提交
607 608 609 610 611
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

612 613 614 615 616 617 618 619 620
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
621 622
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
623
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
624 625 626 627
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
628 629
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
630 631 632 633 634 635

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

636 637 638 639 640
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
641 642 643 644 645 646 647 648 649
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
668 669 670
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
671 672 673 674

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
675
enum {
P
Peter Zijlstra 已提交
676
#include "sched_features.h"
I
Ingo Molnar 已提交
677 678
};

P
Peter Zijlstra 已提交
679 680 681 682 683
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
684
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
685 686 687 688 689 690 691 692 693
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

694
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
695 696 697 698 699 700
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

701
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
729
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
759
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
802

803 804 805 806 807 808
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
809 810 811 812 813 814
/*
 * ratelimit for updating the group shares.
 * default: 0.5ms
 */
const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;

P
Peter Zijlstra 已提交
815
/*
P
Peter Zijlstra 已提交
816
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
817 818
 * default: 1s
 */
P
Peter Zijlstra 已提交
819
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
820

821 822
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
823 824 825 826 827
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
828

829 830 831 832 833 834 835 836 837 838 839 840
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
841

L
Linus Torvalds 已提交
842
#ifndef prepare_arch_switch
843 844 845 846 847 848
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

849 850 851 852 853
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

854
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
855
static inline int task_running(struct rq *rq, struct task_struct *p)
856
{
857
	return task_current(rq, p);
858 859
}

860
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 862 863
{
}

864
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865
{
866 867 868 869
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
870 871 872 873 874 875 876
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

877 878 879 880
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
881
static inline int task_running(struct rq *rq, struct task_struct *p)
882 883 884 885
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
886
	return task_current(rq, p);
887 888 889
#endif
}

890
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

907
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 909 910 911 912 913 914 915 916 917 918 919
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
920
#endif
921 922
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
923

924 925 926 927
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
928
static inline struct rq *__task_rq_lock(struct task_struct *p)
929 930
	__acquires(rq->lock)
{
931 932 933 934 935
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
936 937 938 939
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
940 941
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
942
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
943 944
 * explicitly disabling preemption.
 */
945
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
946 947
	__acquires(rq->lock)
{
948
	struct rq *rq;
L
Linus Torvalds 已提交
949

950 951 952 953 954 955
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
956 957 958 959
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
960
static void __task_rq_unlock(struct rq *rq)
961 962 963 964 965
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

966
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
967 968 969 970 971 972
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
973
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
974
 */
A
Alexey Dobriyan 已提交
975
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
976 977
	__acquires(rq->lock)
{
978
	struct rq *rq;
L
Linus Torvalds 已提交
979 980 981 982 983 984 985 986

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1008
	if (!cpu_active(cpu_of(rq)))
1009
		return 0;
P
Peter Zijlstra 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1030
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1031 1032 1033 1034 1035 1036
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1037
#ifdef CONFIG_SMP
1038 1039 1040 1041
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1042
{
1043
	struct rq *rq = arg;
1044

1045 1046 1047 1048
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1049 1050
}

1051 1052 1053 1054 1055 1056
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1057
{
1058 1059
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1060

1061 1062 1063 1064 1065 1066 1067 1068
	timer->expires = time;

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1083
		hrtick_clear(cpu_rq(cpu));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1104

1105
static void init_hrtick(void)
P
Peter Zijlstra 已提交
1106 1107
{
}
1108
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1109

1110
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1111
{
1112 1113
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1114

1115 1116 1117 1118
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1119

1120 1121 1122
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
P
Peter Zijlstra 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1133 1134 1135
static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1136 1137
#endif

I
Ingo Molnar 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1151
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1152 1153 1154 1155 1156
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1157
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1158 1159
		return;

1160
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1223
#endif /* CONFIG_NO_HZ */
1224

1225
#else /* !CONFIG_SMP */
1226
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1227 1228
{
	assert_spin_locked(&task_rq(p)->lock);
1229
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1230
}
1231
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1232

1233 1234 1235 1236 1237 1238 1239 1240
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1241 1242 1243
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1244
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1245

1246 1247 1248
/*
 * delta *= weight / lw
 */
1249
static unsigned long
1250 1251 1252 1253 1254
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1255 1256 1257 1258 1259 1260 1261
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1262 1263 1264 1265 1266

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1267
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1268
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1269 1270
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1271
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1272

1273
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1274 1275
}

1276
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1277 1278
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1279
	lw->inv_weight = 0;
1280 1281
}

1282
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1283 1284
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1285
	lw->inv_weight = 0;
1286 1287
}

1288 1289 1290 1291
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1292
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1293 1294 1295 1296
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1308 1309 1310
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1311 1312
 */
static const int prio_to_weight[40] = {
1313 1314 1315 1316 1317 1318 1319 1320
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1321 1322
};

1323 1324 1325 1326 1327 1328 1329
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1330
static const u32 prio_to_wmult[40] = {
1331 1332 1333 1334 1335 1336 1337 1338
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1339
};
1340

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1366

1367 1368 1369 1370 1371 1372
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1383 1384 1385 1386
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1387

1388 1389 1390 1391 1392 1393 1394 1395 1396
static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (rq->nr_running)
		rq->avg_load_per_task = rq->load.weight / rq->nr_running;

	return rq->avg_load_per_task;
}
1397 1398

#ifdef CONFIG_FAIR_GROUP_SCHED
1399

1400
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1401 1402 1403 1404 1405

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1406 1407
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1408 1409 1410 1411 1412 1413
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1414
	(*down)(parent, cpu, sd);
1415 1416 1417 1418 1419 1420 1421
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1422
	(*up)(parent, cpu, sd);
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1437
__update_group_shares_cpu(struct task_group *tg, int cpu,
1438
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1439
{
1440 1441 1442 1443
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1444
	if (!tg->se[cpu])
1445 1446
		return;

1447
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1459 1460 1461
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1462 1463 1464 1465 1466 1467
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1468
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1469 1470 1471 1472

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1473
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1474
	tg->cfs_rq[cpu]->rq_weight = rq_weight;
1475 1476 1477 1478 1479 1480

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1481
	__set_se_shares(tg->se[cpu], shares);
1482
}
1483 1484

/*
1485 1486 1487
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1488 1489
 */
static void
1490
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1491
{
1492 1493 1494
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1495

1496 1497 1498
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1499 1500
	}

1501 1502 1503 1504 1505
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1506

P
Peter Zijlstra 已提交
1507 1508 1509
	if (!rq_weight)
		rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;

1510 1511 1512 1513 1514
	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1515
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1516 1517 1518 1519 1520
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1521 1522 1523
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1524
 */
1525
static void
1526
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1527
{
1528
	unsigned long load;
1529

1530 1531 1532 1533 1534 1535 1536
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1537

1538
	tg->cfs_rq[cpu]->h_load = load;
1539 1540
}

1541 1542
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1543 1544 1545
{
}

1546
static void update_shares(struct sched_domain *sd)
1547
{
P
Peter Zijlstra 已提交
1548 1549 1550 1551 1552 1553 1554
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
		walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
	}
1555 1556
}

1557 1558 1559 1560 1561 1562 1563
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

1564
static void update_h_load(int cpu)
1565
{
1566
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1567 1568 1569 1570
}

#else

1571
static inline void update_shares(struct sched_domain *sd)
1572 1573 1574
{
}

1575 1576 1577 1578
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1579 1580 1581 1582
#endif

#endif

V
Vegard Nossum 已提交
1583
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1584 1585
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1586
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1587 1588 1589
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1590
#endif
1591

I
Ingo Molnar 已提交
1592 1593
#include "sched_stats.h"
#include "sched_idletask.c"
1594 1595
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1596 1597 1598 1599 1600
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1601 1602
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1603

1604
static void inc_nr_running(struct rq *rq)
1605 1606 1607 1608
{
	rq->nr_running++;
}

1609
static void dec_nr_running(struct rq *rq)
1610 1611 1612 1613
{
	rq->nr_running--;
}

1614 1615 1616
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1617 1618 1619 1620
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1621

I
Ingo Molnar 已提交
1622 1623 1624 1625 1626 1627 1628 1629
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1630

I
Ingo Molnar 已提交
1631 1632
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1633 1634
}

1635 1636 1637 1638 1639 1640
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1641
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1642
{
I
Ingo Molnar 已提交
1643
	sched_info_queued(p);
1644
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1645
	p->se.on_rq = 1;
1646 1647
}

1648
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1649
{
1650 1651 1652 1653 1654 1655
	if (sleep && p->se.last_wakeup) {
		update_avg(&p->se.avg_overlap,
			   p->se.sum_exec_runtime - p->se.last_wakeup);
		p->se.last_wakeup = 0;
	}

1656
	sched_info_dequeued(p);
1657
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1658
	p->se.on_rq = 0;
1659 1660
}

1661
/*
I
Ingo Molnar 已提交
1662
 * __normal_prio - return the priority that is based on the static prio
1663 1664 1665
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1666
	return p->static_prio;
1667 1668
}

1669 1670 1671 1672 1673 1674 1675
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1676
static inline int normal_prio(struct task_struct *p)
1677 1678 1679
{
	int prio;

1680
	if (task_has_rt_policy(p))
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1694
static int effective_prio(struct task_struct *p)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1707
/*
I
Ingo Molnar 已提交
1708
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1709
 */
I
Ingo Molnar 已提交
1710
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1711
{
1712
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1713
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1714

1715
	enqueue_task(rq, p, wakeup);
1716
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1717 1718 1719 1720 1721
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1722
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1723
{
1724
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1725 1726
		rq->nr_uninterruptible++;

1727
	dequeue_task(rq, p, sleep);
1728
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1729 1730 1731 1732 1733 1734
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1735
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1736 1737 1738 1739
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1740 1741
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1742
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1743
#ifdef CONFIG_SMP
1744 1745 1746 1747 1748 1749
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1750 1751
	task_thread_info(p)->cpu = cpu;
#endif
1752 1753
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1766
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1767

1768 1769 1770 1771 1772 1773
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1774 1775 1776
/*
 * Is this task likely cache-hot:
 */
1777
static int
1778 1779 1780 1781
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1782 1783 1784
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1785
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1786 1787
		return 1;

1788 1789 1790
	if (p->sched_class != &fair_sched_class)
		return 0;

1791 1792 1793 1794 1795
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1796 1797 1798 1799 1800 1801
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1802
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1803
{
I
Ingo Molnar 已提交
1804 1805
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1806 1807
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1808
	u64 clock_offset;
I
Ingo Molnar 已提交
1809 1810

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1811 1812 1813 1814

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1815 1816 1817 1818
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1819 1820 1821 1822 1823
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1824
#endif
1825 1826
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1827 1828

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1829 1830
}

1831
struct migration_req {
L
Linus Torvalds 已提交
1832 1833
	struct list_head list;

1834
	struct task_struct *task;
L
Linus Torvalds 已提交
1835 1836 1837
	int dest_cpu;

	struct completion done;
1838
};
L
Linus Torvalds 已提交
1839 1840 1841 1842 1843

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1844
static int
1845
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1846
{
1847
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1848 1849 1850 1851 1852

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1853
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859 1860 1861
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1862

L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1869 1870 1871 1872 1873 1874 1875
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1876 1877 1878 1879 1880 1881
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1882
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1883 1884
{
	unsigned long flags;
I
Ingo Molnar 已提交
1885
	int running, on_rq;
R
Roland McGrath 已提交
1886
	unsigned long ncsw;
1887
	struct rq *rq;
L
Linus Torvalds 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1909 1910 1911
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1912
			cpu_relax();
R
Roland McGrath 已提交
1913
		}
1914

1915 1916 1917 1918 1919 1920 1921 1922
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
1923 1924 1925 1926 1927 1928
		ncsw = 0;
		if (!match_state || p->state == match_state) {
			ncsw = p->nivcsw + p->nvcsw;
			if (unlikely(!ncsw))
				ncsw = 1;
		}
1929
		task_rq_unlock(rq, &flags);
1930

R
Roland McGrath 已提交
1931 1932 1933 1934 1935 1936
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1961

1962 1963 1964 1965 1966 1967 1968
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1969 1970

	return ncsw;
L
Linus Torvalds 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1986
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1998 1999
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2000 2001 2002 2003
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2004
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2005
{
2006
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2007
	unsigned long total = weighted_cpuload(cpu);
2008

2009
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2010
		return total;
2011

I
Ingo Molnar 已提交
2012
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2013 2014 2015
}

/*
2016 2017
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2018
 */
A
Alexey Dobriyan 已提交
2019
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2020
{
2021
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2022
	unsigned long total = weighted_cpuload(cpu);
2023

2024
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2025
		return total;
2026

I
Ingo Molnar 已提交
2027
	return max(rq->cpu_load[type-1], total);
2028 2029
}

N
Nick Piggin 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2047 2048
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2049
			continue;
2050

N
Nick Piggin 已提交
2051 2052 2053 2054 2055
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2056
		for_each_cpu_mask_nr(i, group->cpumask) {
N
Nick Piggin 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2067 2068
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2069 2070 2071 2072 2073 2074 2075 2076

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2077
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2078 2079 2080 2081 2082 2083 2084

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2085
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2086
 */
I
Ingo Molnar 已提交
2087
static int
2088 2089
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2090 2091 2092 2093 2094
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2095
	/* Traverse only the allowed CPUs */
2096
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2097

2098
	for_each_cpu_mask_nr(i, *tmp) {
2099
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2125

2126
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2127 2128 2129
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2130 2131
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2132 2133
		if (tmp->flags & flag)
			sd = tmp;
2134
	}
N
Nick Piggin 已提交
2135

2136 2137 2138
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2139
	while (sd) {
2140
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2141
		struct sched_group *group;
2142 2143 2144 2145 2146 2147
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2148 2149 2150

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2151 2152 2153 2154
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2155

2156
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2157 2158 2159 2160 2161
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2162

2163
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2195
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2196
{
2197
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2198 2199
	unsigned long flags;
	long old_state;
2200
	struct rq *rq;
L
Linus Torvalds 已提交
2201

2202 2203 2204
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				update_shares(sd);
				break;
			}
		}
	}
#endif

2221
	smp_wmb();
L
Linus Torvalds 已提交
2222 2223 2224 2225 2226
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2227
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2228 2229 2230
		goto out_running;

	cpu = task_cpu(p);
2231
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2238 2239 2240
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2247
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2267
#endif /* CONFIG_SCHEDSTATS */
2268

L
Linus Torvalds 已提交
2269 2270
out_activate:
#endif /* CONFIG_SMP */
2271 2272 2273 2274 2275 2276 2277 2278 2279
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2280
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2281
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2282 2283 2284
	success = 1;

out_running:
M
Mathieu Desnoyers 已提交
2285 2286 2287
	trace_mark(kernel_sched_wakeup,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2288 2289
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2290
	p->state = TASK_RUNNING;
2291 2292 2293 2294
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2295
out:
2296 2297
	current->se.last_wakeup = current->se.sum_exec_runtime;

L
Linus Torvalds 已提交
2298 2299 2300 2301 2302
	task_rq_unlock(rq, &flags);

	return success;
}

2303
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2304
{
2305
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2306 2307 2308
}
EXPORT_SYMBOL(wake_up_process);

2309
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314 2315 2316
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2317 2318 2319 2320 2321 2322 2323
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2324
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2325 2326
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2327 2328 2329

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2330 2331 2332 2333 2334 2335
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2336
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2337
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2338
#endif
N
Nick Piggin 已提交
2339

P
Peter Zijlstra 已提交
2340
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2341
	p->se.on_rq = 0;
2342
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2343

2344 2345 2346 2347
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353 2354
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2369
	set_task_cpu(p, cpu);
2370 2371 2372 2373 2374

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2375 2376
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2377

2378
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2379
	if (likely(sched_info_on()))
2380
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2381
#endif
2382
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2383 2384
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2385
#ifdef CONFIG_PREEMPT
2386
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2387
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2388
#endif
N
Nick Piggin 已提交
2389
	put_cpu();
L
Linus Torvalds 已提交
2390 2391 2392 2393 2394 2395 2396 2397 2398
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2399
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2400 2401
{
	unsigned long flags;
I
Ingo Molnar 已提交
2402
	struct rq *rq;
L
Linus Torvalds 已提交
2403 2404

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2405
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2406
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2407 2408 2409

	p->prio = effective_prio(p);

2410
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2411
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2412 2413
	} else {
		/*
I
Ingo Molnar 已提交
2414 2415
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2416
		 */
2417
		p->sched_class->task_new(rq, p);
2418
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2419
	}
M
Mathieu Desnoyers 已提交
2420 2421 2422
	trace_mark(kernel_sched_wakeup_new,
		"pid %d state %ld ## rq %p task %p rq->curr %p",
		p->pid, p->state, rq, p, rq->curr);
I
Ingo Molnar 已提交
2423
	check_preempt_curr(rq, p);
2424 2425 2426 2427
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2428
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2429 2430
}

2431 2432 2433
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2434 2435
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2436 2437 2438 2439 2440 2441 2442 2443 2444
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2445
 * @notifier: notifier struct to unregister
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2475
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2487
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2488

2489 2490 2491
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2492
 * @prev: the current task that is being switched out
2493 2494 2495 2496 2497 2498 2499 2500 2501
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2502 2503 2504
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2505
{
2506
	fire_sched_out_preempt_notifiers(prev, next);
2507 2508 2509 2510
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2511 2512
/**
 * finish_task_switch - clean up after a task-switch
2513
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2514 2515
 * @prev: the thread we just switched away from.
 *
2516 2517 2518 2519
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2520 2521
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2522
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2523 2524 2525
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2526
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2527 2528 2529
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2530
	long prev_state;
L
Linus Torvalds 已提交
2531 2532 2533 2534 2535

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2536
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2537 2538
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2539
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2545
	prev_state = prev->state;
2546 2547
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2548 2549 2550 2551
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2552

2553
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2554 2555
	if (mm)
		mmdrop(mm);
2556
	if (unlikely(prev_state == TASK_DEAD)) {
2557 2558 2559
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2560
		 */
2561
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2562
		put_task_struct(prev);
2563
	}
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2570
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2571 2572
	__releases(rq->lock)
{
2573 2574
	struct rq *rq = this_rq();

2575 2576 2577 2578 2579
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2580
	if (current->set_child_tid)
2581
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2582 2583 2584 2585 2586 2587
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2588
static inline void
2589
context_switch(struct rq *rq, struct task_struct *prev,
2590
	       struct task_struct *next)
L
Linus Torvalds 已提交
2591
{
I
Ingo Molnar 已提交
2592
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2593

2594
	prepare_task_switch(rq, prev, next);
M
Mathieu Desnoyers 已提交
2595 2596 2597 2598 2599
	trace_mark(kernel_sched_schedule,
		"prev_pid %d next_pid %d prev_state %ld "
		"## rq %p prev %p next %p",
		prev->pid, next->pid, prev->state,
		rq, prev, next);
I
Ingo Molnar 已提交
2600 2601
	mm = next->mm;
	oldmm = prev->active_mm;
2602 2603 2604 2605 2606 2607 2608
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2609
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2616
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2617 2618 2619
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2620 2621 2622 2623 2624 2625 2626
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2627
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2628
#endif
L
Linus Torvalds 已提交
2629 2630 2631 2632

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2633 2634 2635 2636 2637 2638 2639
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2663
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2678 2679
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2680

2681
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2691
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2712
/*
I
Ingo Molnar 已提交
2713 2714
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2715
 */
I
Ingo Molnar 已提交
2716
static void update_cpu_load(struct rq *this_rq)
2717
{
2718
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2731 2732 2733 2734 2735 2736 2737
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2738 2739
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2740 2741
}

I
Ingo Molnar 已提交
2742 2743
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2744 2745 2746 2747 2748 2749
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2750
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2751 2752 2753
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2754
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2755 2756 2757 2758
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2759
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2760
			spin_lock(&rq1->lock);
2761
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2762 2763
		} else {
			spin_lock(&rq2->lock);
2764
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2765 2766
		}
	}
2767 2768
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2769 2770 2771 2772 2773 2774 2775 2776
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2777
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2791
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2792 2793 2794 2795
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2796 2797
	int ret = 0;

2798 2799 2800 2801 2802
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2803
	if (unlikely(!spin_trylock(&busiest->lock))) {
2804
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2805 2806
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
2807
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
S
Steven Rostedt 已提交
2808
			ret = 1;
L
Linus Torvalds 已提交
2809
		} else
2810
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2811
	}
S
Steven Rostedt 已提交
2812
	return ret;
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2818
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2819 2820
 * the cpu_allowed mask is restored.
 */
2821
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2822
{
2823
	struct migration_req req;
L
Linus Torvalds 已提交
2824
	unsigned long flags;
2825
	struct rq *rq;
L
Linus Torvalds 已提交
2826 2827 2828

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
2829
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2836

L
Linus Torvalds 已提交
2837 2838 2839 2840 2841
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2842

L
Linus Torvalds 已提交
2843 2844 2845 2846 2847 2848 2849
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2850 2851
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2852 2853 2854 2855
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2856
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2857
	put_cpu();
N
Nick Piggin 已提交
2858 2859
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864 2865
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2866 2867
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2868
{
2869
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2870
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2871
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2872 2873 2874 2875
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2876
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2877 2878 2879 2880 2881
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2882
static
2883
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2884
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2885
		     int *all_pinned)
L
Linus Torvalds 已提交
2886 2887 2888 2889 2890 2891 2892
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2893 2894
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2895
		return 0;
2896
	}
2897 2898
	*all_pinned = 0;

2899 2900
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2901
		return 0;
2902
	}
L
Linus Torvalds 已提交
2903

2904 2905 2906 2907 2908 2909
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2910 2911
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2912
#ifdef CONFIG_SCHEDSTATS
2913
		if (task_hot(p, rq->clock, sd)) {
2914
			schedstat_inc(sd, lb_hot_gained[idle]);
2915 2916
			schedstat_inc(p, se.nr_forced_migrations);
		}
2917 2918 2919 2920
#endif
		return 1;
	}

2921 2922
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2923
		return 0;
2924
	}
L
Linus Torvalds 已提交
2925 2926 2927
	return 1;
}

2928 2929 2930 2931 2932
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2933
{
2934
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
2935 2936
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2937

2938
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2939 2940
		goto out;

2941 2942
	pinned = 1;

L
Linus Torvalds 已提交
2943
	/*
I
Ingo Molnar 已提交
2944
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2945
	 */
I
Ingo Molnar 已提交
2946 2947
	p = iterator->start(iterator->arg);
next:
2948
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2949
		goto out;
2950 2951

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
2952 2953 2954
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2955 2956
	}

I
Ingo Molnar 已提交
2957
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2958
	pulled++;
I
Ingo Molnar 已提交
2959
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2960

2961
	/*
2962
	 * We only want to steal up to the prescribed amount of weighted load.
2963
	 */
2964
	if (rem_load_move > 0) {
2965 2966
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2967 2968
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2969 2970 2971
	}
out:
	/*
2972
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2973 2974 2975 2976
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2977 2978 2979

	if (all_pinned)
		*all_pinned = pinned;
2980 2981

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2982 2983
}

I
Ingo Molnar 已提交
2984
/*
P
Peter Williams 已提交
2985 2986 2987
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2988 2989 2990 2991
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2992
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2993 2994 2995
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2996
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2997
	unsigned long total_load_moved = 0;
2998
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2999 3000

	do {
P
Peter Williams 已提交
3001 3002
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3003
				max_load_move - total_load_moved,
3004
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3005
		class = class->next;
3006 3007 3008 3009

		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;

P
Peter Williams 已提交
3010
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3011

P
Peter Williams 已提交
3012 3013 3014
	return total_load_moved > 0;
}

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3051
	const struct sched_class *class;
P
Peter Williams 已提交
3052 3053

	for (class = sched_class_highest; class; class = class->next)
3054
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3055 3056 3057
			return 1;

	return 0;
I
Ingo Molnar 已提交
3058 3059
}

L
Linus Torvalds 已提交
3060 3061
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3062 3063
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3064 3065 3066
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3067
		   unsigned long *imbalance, enum cpu_idle_type idle,
3068
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3069 3070 3071
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3072
	unsigned long max_pull;
3073 3074
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3075
	int load_idx, group_imb = 0;
3076 3077 3078 3079 3080 3081
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3082 3083

	max_load = this_load = total_load = total_pwr = 0;
3084 3085
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3086

I
Ingo Molnar 已提交
3087
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3088
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3089
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3090 3091 3092
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3093 3094

	do {
3095
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3096 3097
		int local_group;
		int i;
3098
		int __group_imb = 0;
3099
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3100
		unsigned long sum_nr_running, sum_weighted_load;
3101 3102
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3103 3104 3105

		local_group = cpu_isset(this_cpu, group->cpumask);

3106 3107 3108
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3109
		/* Tally up the load of all CPUs in the group */
3110
		sum_weighted_load = sum_nr_running = avg_load = 0;
3111 3112
		sum_avg_load_per_task = avg_load_per_task = 0;

3113 3114
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3115

3116
		for_each_cpu_mask_nr(i, group->cpumask) {
3117 3118 3119 3120 3121 3122
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3123

3124
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3125 3126
				*sd_idle = 0;

L
Linus Torvalds 已提交
3127
			/* Bias balancing toward cpus of our domain */
3128 3129 3130 3131 3132 3133
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3134
				load = target_load(i, load_idx);
3135
			} else {
N
Nick Piggin 已提交
3136
				load = source_load(i, load_idx);
3137 3138 3139 3140 3141
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3142 3143

			avg_load += load;
3144
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3145
			sum_weighted_load += weighted_cpuload(i);
3146 3147

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3148 3149
		}

3150 3151 3152
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3153 3154
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3155
		 */
3156 3157
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3158 3159 3160 3161
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3162
		total_load += avg_load;
3163
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3164 3165

		/* Adjust by relative CPU power of the group */
3166 3167
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3168

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3183 3184
			__group_imb = 1;

3185
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3186

L
Linus Torvalds 已提交
3187 3188 3189
		if (local_group) {
			this_load = avg_load;
			this = group;
3190 3191 3192
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3193
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3194 3195
			max_load = avg_load;
			busiest = group;
3196 3197
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3198
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3199
		}
3200 3201 3202 3203 3204 3205

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3206 3207 3208
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3209 3210 3211 3212 3213 3214 3215 3216 3217

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3218
		/*
3219 3220
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3221 3222
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3223
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3224
			goto group_next;
3225

I
Ingo Molnar 已提交
3226
		/*
3227
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3228 3229 3230 3231 3232
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3233 3234
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3235 3236
			group_min = group;
			min_nr_running = sum_nr_running;
3237 3238
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3239
		}
3240

I
Ingo Molnar 已提交
3241
		/*
3242
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3254
		}
3255 3256
group_next:
#endif
L
Linus Torvalds 已提交
3257 3258 3259
		group = group->next;
	} while (group != sd->groups);

3260
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266 3267 3268
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3269
	busiest_load_per_task /= busiest_nr_running;
3270 3271 3272
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3273 3274 3275 3276 3277 3278 3279 3280
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3281
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3282 3283
	 * appear as very large values with unsigned longs.
	 */
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3296 3297

	/* Don't want to pull so many tasks that a group would go idle */
3298
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3299

L
Linus Torvalds 已提交
3300
	/* How much load to actually move to equalise the imbalance */
3301 3302
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3303 3304
			/ SCHED_LOAD_SCALE;

3305 3306 3307 3308 3309 3310
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3311
	if (*imbalance < busiest_load_per_task) {
3312
		unsigned long tmp, pwr_now, pwr_move;
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3323
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3324

3325
		if (max_load - this_load + 2*busiest_load_per_task >=
I
Ingo Molnar 已提交
3326
					busiest_load_per_task * imbn) {
3327
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3337 3338 3339 3340
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3341 3342 3343
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3344 3345
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3346
		if (max_load > tmp)
3347
			pwr_move += busiest->__cpu_power *
3348
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3349 3350

		/* Amount of load we'd add */
3351
		if (max_load * busiest->__cpu_power <
3352
				busiest_load_per_task * SCHED_LOAD_SCALE)
3353 3354
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3355
		else
3356 3357 3358 3359
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3360 3361 3362
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3363 3364
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3365 3366 3367 3368 3369
	}

	return busiest;

out_balanced:
3370
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3371
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3372
		goto ret;
L
Linus Torvalds 已提交
3373

3374 3375 3376 3377 3378
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3379
ret:
L
Linus Torvalds 已提交
3380 3381 3382 3383 3384 3385 3386
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3387
static struct rq *
I
Ingo Molnar 已提交
3388
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3389
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3390
{
3391
	struct rq *busiest = NULL, *rq;
3392
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3393 3394
	int i;

3395
	for_each_cpu_mask_nr(i, group->cpumask) {
I
Ingo Molnar 已提交
3396
		unsigned long wl;
3397 3398 3399 3400

		if (!cpu_isset(i, *cpus))
			continue;

3401
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3402
		wl = weighted_cpuload(i);
3403

I
Ingo Molnar 已提交
3404
		if (rq->nr_running == 1 && wl > imbalance)
3405
			continue;
L
Linus Torvalds 已提交
3406

I
Ingo Molnar 已提交
3407 3408
		if (wl > max_load) {
			max_load = wl;
3409
			busiest = rq;
L
Linus Torvalds 已提交
3410 3411 3412 3413 3414 3415
		}
	}

	return busiest;
}

3416 3417 3418 3419 3420 3421
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3422 3423 3424 3425
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3426
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3427
			struct sched_domain *sd, enum cpu_idle_type idle,
3428
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3429
{
P
Peter Williams 已提交
3430
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3431 3432
	struct sched_group *group;
	unsigned long imbalance;
3433
	struct rq *busiest;
3434
	unsigned long flags;
N
Nick Piggin 已提交
3435

3436 3437
	cpus_setall(*cpus);

3438 3439 3440
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3441
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3442
	 * portraying it as CPU_NOT_IDLE.
3443
	 */
I
Ingo Molnar 已提交
3444
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3445
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3446
		sd_idle = 1;
L
Linus Torvalds 已提交
3447

3448
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3449

3450
redo:
3451
	update_shares(sd);
3452
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3453
				   cpus, balance);
3454

3455
	if (*balance == 0)
3456 3457
		goto out_balanced;

L
Linus Torvalds 已提交
3458 3459 3460 3461 3462
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3463
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3464 3465 3466 3467 3468
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3469
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3470 3471 3472

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3473
	ld_moved = 0;
L
Linus Torvalds 已提交
3474 3475 3476 3477
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3478
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3479 3480
		 * correctly treated as an imbalance.
		 */
3481
		local_irq_save(flags);
N
Nick Piggin 已提交
3482
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3483
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3484
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3485
		double_rq_unlock(this_rq, busiest);
3486
		local_irq_restore(flags);
3487

3488 3489 3490
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3491
		if (ld_moved && this_cpu != smp_processor_id())
3492 3493
			resched_cpu(this_cpu);

3494
		/* All tasks on this runqueue were pinned by CPU affinity */
3495
		if (unlikely(all_pinned)) {
3496 3497
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3498
				goto redo;
3499
			goto out_balanced;
3500
		}
L
Linus Torvalds 已提交
3501
	}
3502

P
Peter Williams 已提交
3503
	if (!ld_moved) {
L
Linus Torvalds 已提交
3504 3505 3506 3507 3508
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3509
			spin_lock_irqsave(&busiest->lock, flags);
3510 3511 3512 3513 3514

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3515
				spin_unlock_irqrestore(&busiest->lock, flags);
3516 3517 3518 3519
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3520 3521 3522
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3523
				active_balance = 1;
L
Linus Torvalds 已提交
3524
			}
3525
			spin_unlock_irqrestore(&busiest->lock, flags);
3526
			if (active_balance)
L
Linus Torvalds 已提交
3527 3528 3529 3530 3531 3532
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3533
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3534
		}
3535
	} else
L
Linus Torvalds 已提交
3536 3537
		sd->nr_balance_failed = 0;

3538
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3539 3540
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3541 3542 3543 3544 3545 3546 3547 3548 3549
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3550 3551
	}

P
Peter Williams 已提交
3552
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3553
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3554 3555 3556
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3557 3558 3559 3560

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3561
	sd->nr_balance_failed = 0;
3562 3563

out_one_pinned:
L
Linus Torvalds 已提交
3564
	/* tune up the balancing interval */
3565 3566
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3567 3568
		sd->balance_interval *= 2;

3569
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3570
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3571 3572 3573 3574
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3575 3576
	if (ld_moved)
		update_shares(sd);
3577
	return ld_moved;
L
Linus Torvalds 已提交
3578 3579 3580 3581 3582 3583
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3584
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3585 3586
 * this_rq is locked.
 */
3587
static int
3588 3589
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3590 3591
{
	struct sched_group *group;
3592
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3593
	unsigned long imbalance;
P
Peter Williams 已提交
3594
	int ld_moved = 0;
N
Nick Piggin 已提交
3595
	int sd_idle = 0;
3596
	int all_pinned = 0;
3597 3598

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3599

3600 3601 3602 3603
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3604
	 * portraying it as CPU_NOT_IDLE.
3605 3606 3607
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3608
		sd_idle = 1;
L
Linus Torvalds 已提交
3609

3610
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3611
redo:
3612
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3613
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3614
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3615
	if (!group) {
I
Ingo Molnar 已提交
3616
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3617
		goto out_balanced;
L
Linus Torvalds 已提交
3618 3619
	}

3620
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3621
	if (!busiest) {
I
Ingo Molnar 已提交
3622
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3623
		goto out_balanced;
L
Linus Torvalds 已提交
3624 3625
	}

N
Nick Piggin 已提交
3626 3627
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3628
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3629

P
Peter Williams 已提交
3630
	ld_moved = 0;
3631 3632 3633
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3634 3635
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3636
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3637 3638
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3639
		spin_unlock(&busiest->lock);
3640

3641
		if (unlikely(all_pinned)) {
3642 3643
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3644 3645
				goto redo;
		}
3646 3647
	}

P
Peter Williams 已提交
3648
	if (!ld_moved) {
I
Ingo Molnar 已提交
3649
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3650 3651
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3652 3653
			return -1;
	} else
3654
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3655

3656
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3657
	return ld_moved;
3658 3659

out_balanced:
I
Ingo Molnar 已提交
3660
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3661
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3662
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3663
		return -1;
3664
	sd->nr_balance_failed = 0;
3665

3666
	return 0;
L
Linus Torvalds 已提交
3667 3668 3669 3670 3671 3672
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3673
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3674 3675
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3676 3677
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3678
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3679 3680

	for_each_domain(this_cpu, sd) {
3681 3682 3683 3684 3685 3686
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3687
			/* If we've pulled tasks over stop searching: */
3688 3689
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3690 3691 3692 3693 3694 3695

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3696
	}
I
Ingo Molnar 已提交
3697
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3698 3699 3700 3701 3702
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3703
	}
L
Linus Torvalds 已提交
3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3714
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3715
{
3716
	int target_cpu = busiest_rq->push_cpu;
3717 3718
	struct sched_domain *sd;
	struct rq *target_rq;
3719

3720
	/* Is there any task to move? */
3721 3722 3723 3724
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3725 3726

	/*
3727
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3728
	 * we need to fix it. Originally reported by
3729
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3730
	 */
3731
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3732

3733 3734
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3735 3736
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3737 3738

	/* Search for an sd spanning us and the target CPU. */
3739
	for_each_domain(target_cpu, sd) {
3740
		if ((sd->flags & SD_LOAD_BALANCE) &&
3741
		    cpu_isset(busiest_cpu, sd->span))
3742
				break;
3743
	}
3744

3745
	if (likely(sd)) {
3746
		schedstat_inc(sd, alb_count);
3747

P
Peter Williams 已提交
3748 3749
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3750 3751 3752 3753
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3754
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3755 3756
}

3757 3758 3759
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3760
	cpumask_t cpu_mask;
3761 3762 3763 3764 3765
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3766
/*
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3777
 *
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
3797
		if (!cpu_active(cpu) &&
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3834 3835 3836 3837 3838
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3839
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3840
{
3841 3842
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3843 3844
	unsigned long interval;
	struct sched_domain *sd;
3845
	/* Earliest time when we have to do rebalance again */
3846
	unsigned long next_balance = jiffies + 60*HZ;
3847
	int update_next_balance = 0;
3848
	int need_serialize;
3849
	cpumask_t tmp;
L
Linus Torvalds 已提交
3850

3851
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3852 3853 3854 3855
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3856
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3857 3858 3859 3860 3861 3862
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3863 3864 3865
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3866
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3867

3868
		if (need_serialize) {
3869 3870 3871 3872
			if (!spin_trylock(&balancing))
				goto out;
		}

3873
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3874
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3875 3876
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3877 3878 3879
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3880
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3881
			}
3882
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3883
		}
3884
		if (need_serialize)
3885 3886
			spin_unlock(&balancing);
out:
3887
		if (time_after(next_balance, sd->last_balance + interval)) {
3888
			next_balance = sd->last_balance + interval;
3889 3890
			update_next_balance = 1;
		}
3891 3892 3893 3894 3895 3896 3897 3898

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3899
	}
3900 3901 3902 3903 3904 3905 3906 3907

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3908 3909 3910 3911 3912 3913 3914 3915 3916
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3917 3918 3919 3920
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3921

I
Ingo Molnar 已提交
3922
	rebalance_domains(this_cpu, idle);
3923 3924 3925 3926 3927 3928 3929

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3930 3931
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3932 3933 3934 3935
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3936
		cpu_clear(this_cpu, cpus);
3937
		for_each_cpu_mask_nr(balance_cpu, cpus) {
3938 3939 3940 3941 3942 3943 3944 3945
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3946
			rebalance_domains(balance_cpu, CPU_IDLE);
3947 3948

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3949 3950
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3963
static inline void trigger_load_balance(struct rq *rq, int cpu)
3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3990
			if (ilb < nr_cpu_ids)
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4015
}
I
Ingo Molnar 已提交
4016 4017 4018

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4019 4020 4021
/*
 * on UP we do not need to balance between CPUs:
 */
4022
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4023 4024
{
}
I
Ingo Molnar 已提交
4025

L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4033 4034
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
4035
 */
4036
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
4037 4038
{
	unsigned long flags;
4039 4040
	u64 ns, delta_exec;
	struct rq *rq;
4041

4042 4043
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
4044
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
4045 4046
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4047 4048 4049 4050
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
4051

L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4073 4074
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4075 4076
}

4077 4078 4079 4080 4081
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4082
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4106 4107 4108 4109 4110 4111 4112 4113 4114 4115
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4116
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4117 4118
	cputime64_t tmp;

4119 4120 4121 4122
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4123

L
Linus Torvalds 已提交
4124 4125 4126 4127 4128 4129 4130 4131
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4132
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4133
		cpustat->system = cputime64_add(cpustat->system, tmp);
4134
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4135 4136 4137 4138 4139 4140 4141
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4162
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4163 4164 4165 4166 4167 4168 4169

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4170
	} else
L
Linus Torvalds 已提交
4171 4172 4173
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4185
	struct task_struct *curr = rq->curr;
4186 4187

	sched_clock_tick();
I
Ingo Molnar 已提交
4188 4189

	spin_lock(&rq->lock);
4190
	update_rq_clock(rq);
4191
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4192
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4193
	spin_unlock(&rq->lock);
4194

4195
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4196 4197
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4198
#endif
L
Linus Torvalds 已提交
4199 4200
}

4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4213

4214
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4215
{
4216
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4217 4218 4219
	/*
	 * Underflow?
	 */
4220 4221
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4222
#endif
L
Linus Torvalds 已提交
4223
	preempt_count() += val;
4224
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4225 4226 4227
	/*
	 * Spinlock count overflowing soon?
	 */
4228 4229
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4230 4231 4232
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4233 4234 4235
}
EXPORT_SYMBOL(add_preempt_count);

4236
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4237
{
4238
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4239 4240 4241
	/*
	 * Underflow?
	 */
4242 4243
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4244 4245 4246
	/*
	 * Is the spinlock portion underflowing?
	 */
4247 4248 4249
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4250
#endif
4251

4252 4253
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259 4260
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4261
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4262
 */
I
Ingo Molnar 已提交
4263
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4264
{
4265 4266 4267 4268 4269
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4270
	debug_show_held_locks(prev);
4271
	print_modules();
I
Ingo Molnar 已提交
4272 4273
	if (irqs_disabled())
		print_irqtrace_events(prev);
4274 4275 4276 4277 4278

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4279
}
L
Linus Torvalds 已提交
4280

I
Ingo Molnar 已提交
4281 4282 4283 4284 4285
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4286
	/*
I
Ingo Molnar 已提交
4287
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4288 4289 4290
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4291
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4292 4293
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4294 4295
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4296
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4297 4298
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4299 4300
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4301 4302
	}
#endif
I
Ingo Molnar 已提交
4303 4304 4305 4306 4307 4308
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4309
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4310
{
4311
	const struct sched_class *class;
I
Ingo Molnar 已提交
4312
	struct task_struct *p;
L
Linus Torvalds 已提交
4313 4314

	/*
I
Ingo Molnar 已提交
4315 4316
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4317
	 */
I
Ingo Molnar 已提交
4318
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4319
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4320 4321
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4322 4323
	}

I
Ingo Molnar 已提交
4324 4325
	class = sched_class_highest;
	for ( ; ; ) {
4326
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4336

I
Ingo Molnar 已提交
4337 4338 4339 4340 4341 4342
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4343
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4344
	struct rq *rq;
4345
	int cpu;
I
Ingo Molnar 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4359

4360
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4361
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4362

4363 4364 4365 4366
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4367
	update_rq_clock(rq);
4368 4369
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4370 4371

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4372
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4373
			prev->state = TASK_RUNNING;
4374
		else
4375
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4376
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4377 4378
	}

4379 4380 4381 4382
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4383

I
Ingo Molnar 已提交
4384
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4385 4386
		idle_balance(cpu, rq);

4387
	prev->sched_class->put_prev_task(rq, prev);
4388
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4389 4390

	if (likely(prev != next)) {
4391 4392
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4393 4394 4395 4396
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4397
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4398 4399 4400 4401 4402 4403
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4404 4405 4406
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4407
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4408
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4409

L
Linus Torvalds 已提交
4410 4411 4412 4413 4414 4415 4416 4417
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4418
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4419
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4420 4421 4422 4423 4424
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4425

L
Linus Torvalds 已提交
4426 4427
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4428
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4429
	 */
N
Nick Piggin 已提交
4430
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4431 4432
		return;

4433 4434 4435 4436
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4437

4438 4439 4440 4441 4442 4443
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4444 4445 4446 4447
}
EXPORT_SYMBOL(preempt_schedule);

/*
4448
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4449 4450 4451 4452 4453 4454 4455
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4456

4457
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4458 4459
	BUG_ON(ti->preempt_count || !irqs_disabled());

4460 4461 4462 4463 4464 4465
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4466

4467 4468 4469 4470 4471 4472
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4473 4474 4475 4476
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4477 4478
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4479
{
4480
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4481 4482 4483 4484
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4485 4486
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4487 4488 4489
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4490
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4491 4492 4493 4494 4495
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4496
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4497

4498
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4499 4500
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4501
		if (curr->func(curr, mode, sync, key) &&
4502
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4503 4504 4505 4506 4507 4508 4509 4510 4511
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4512
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4513
 */
4514
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4515
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4528
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4529 4530 4531 4532 4533
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4534
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4546
void
I
Ingo Molnar 已提交
4547
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4564
void complete(struct completion *x)
L
Linus Torvalds 已提交
4565 4566 4567 4568 4569
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4570
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4571 4572 4573 4574
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4575
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4576 4577 4578 4579 4580
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4581
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4582 4583 4584 4585
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4586 4587
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4588 4589 4590 4591 4592 4593 4594
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4595 4596 4597 4598
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4599 4600
				timeout = -ERESTARTSYS;
				break;
4601 4602
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4603 4604 4605
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4606
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4607
		__remove_wait_queue(&x->wait, &wait);
4608 4609
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4610 4611
	}
	x->done--;
4612
	return timeout ?: 1;
L
Linus Torvalds 已提交
4613 4614
}

4615 4616
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4617 4618 4619 4620
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4621
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4622
	spin_unlock_irq(&x->wait.lock);
4623 4624
	return timeout;
}
L
Linus Torvalds 已提交
4625

4626
void __sched wait_for_completion(struct completion *x)
4627 4628
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4629
}
4630
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4631

4632
unsigned long __sched
4633
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4634
{
4635
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4636
}
4637
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4638

4639
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4640
{
4641 4642 4643 4644
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4645
}
4646
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4647

4648
unsigned long __sched
4649 4650
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4651
{
4652
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4653
}
4654
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4655

M
Matthew Wilcox 已提交
4656 4657 4658 4659 4660 4661 4662 4663 4664
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4665 4666
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4667
{
I
Ingo Molnar 已提交
4668 4669 4670 4671
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4672

4673
	__set_current_state(state);
L
Linus Torvalds 已提交
4674

4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4689 4690 4691
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4692
long __sched
I
Ingo Molnar 已提交
4693
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4694
{
4695
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4696 4697 4698
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4699
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4700
{
4701
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4702 4703 4704
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4705
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4706
{
4707
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4708 4709 4710
}
EXPORT_SYMBOL(sleep_on_timeout);

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4723
void rt_mutex_setprio(struct task_struct *p, int prio)
4724 4725
{
	unsigned long flags;
4726
	int oldprio, on_rq, running;
4727
	struct rq *rq;
4728
	const struct sched_class *prev_class = p->sched_class;
4729 4730 4731 4732

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4733
	update_rq_clock(rq);
4734

4735
	oldprio = p->prio;
I
Ingo Molnar 已提交
4736
	on_rq = p->se.on_rq;
4737
	running = task_current(rq, p);
4738
	if (on_rq)
4739
		dequeue_task(rq, p, 0);
4740 4741
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4742 4743 4744 4745 4746 4747

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4748 4749
	p->prio = prio;

4750 4751
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4752
	if (on_rq) {
4753
		enqueue_task(rq, p, 0);
4754 4755

		check_class_changed(rq, p, prev_class, oldprio, running);
4756 4757 4758 4759 4760 4761
	}
	task_rq_unlock(rq, &flags);
}

#endif

4762
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4763
{
I
Ingo Molnar 已提交
4764
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4765
	unsigned long flags;
4766
	struct rq *rq;
L
Linus Torvalds 已提交
4767 4768 4769 4770 4771 4772 4773 4774

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4775
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4776 4777 4778 4779
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4780
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4781
	 */
4782
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4783 4784 4785
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4786
	on_rq = p->se.on_rq;
4787
	if (on_rq)
4788
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4789 4790

	p->static_prio = NICE_TO_PRIO(nice);
4791
	set_load_weight(p);
4792 4793 4794
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4795

I
Ingo Molnar 已提交
4796
	if (on_rq) {
4797
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4798
		/*
4799 4800
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4801
		 */
4802
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4803 4804 4805 4806 4807 4808 4809
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4810 4811 4812 4813 4814
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4815
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4816
{
4817 4818
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4819

M
Matt Mackall 已提交
4820 4821 4822 4823
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4835
	long nice, retval;
L
Linus Torvalds 已提交
4836 4837 4838 4839 4840 4841

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4842 4843
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4853 4854 4855
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4874
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4875 4876 4877 4878 4879 4880 4881 4882
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4883
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4884 4885 4886
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4887
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4902
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4903 4904 4905 4906 4907 4908 4909 4910
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4911
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4912
{
4913
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4914 4915 4916
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4917 4918
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4919
{
I
Ingo Molnar 已提交
4920
	BUG_ON(p->se.on_rq);
4921

L
Linus Torvalds 已提交
4922
	p->policy = policy;
I
Ingo Molnar 已提交
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4935
	p->rt_priority = prio;
4936 4937 4938
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4939
	set_load_weight(p);
L
Linus Torvalds 已提交
4940 4941
}

4942 4943
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
4944
{
4945
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4946
	unsigned long flags;
4947
	const struct sched_class *prev_class = p->sched_class;
4948
	struct rq *rq;
L
Linus Torvalds 已提交
4949

4950 4951
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4957 4958
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4959
		return -EINVAL;
L
Linus Torvalds 已提交
4960 4961
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4962 4963
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4964 4965
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4966
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4967
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4968
		return -EINVAL;
4969
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4970 4971
		return -EINVAL;

4972 4973 4974
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
4975
	if (user && !capable(CAP_SYS_NICE)) {
4976
		if (rt_policy(policy)) {
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4993 4994 4995 4996 4997 4998
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4999

5000 5001 5002 5003 5004
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
5005

5006 5007 5008 5009 5010
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
5011 5012
	if (user
	    && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
5013 5014 5015
		return -EPERM;
#endif

L
Linus Torvalds 已提交
5016 5017 5018
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
5019 5020 5021 5022 5023
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5024 5025 5026 5027
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5028
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5029 5030 5031
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5032 5033
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5034 5035
		goto recheck;
	}
I
Ingo Molnar 已提交
5036
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5037
	on_rq = p->se.on_rq;
5038
	running = task_current(rq, p);
5039
	if (on_rq)
5040
		deactivate_task(rq, p, 0);
5041 5042
	if (running)
		p->sched_class->put_prev_task(rq, p);
5043

L
Linus Torvalds 已提交
5044
	oldprio = p->prio;
I
Ingo Molnar 已提交
5045
	__setscheduler(rq, p, policy, param->sched_priority);
5046

5047 5048
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5049 5050
	if (on_rq) {
		activate_task(rq, p, 0);
5051 5052

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5053
	}
5054 5055 5056
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5057 5058
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5059 5060
	return 0;
}
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5075 5076
EXPORT_SYMBOL_GPL(sched_setscheduler);

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5094 5095
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5096 5097 5098
{
	struct sched_param lparam;
	struct task_struct *p;
5099
	int retval;
L
Linus Torvalds 已提交
5100 5101 5102 5103 5104

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5105 5106 5107

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5108
	p = find_process_by_pid(pid);
5109 5110 5111
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5112

L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5122 5123
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5124
{
5125 5126 5127 5128
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5148
	struct task_struct *p;
5149
	int retval;
L
Linus Torvalds 已提交
5150 5151

	if (pid < 0)
5152
		return -EINVAL;
L
Linus Torvalds 已提交
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5174
	struct task_struct *p;
5175
	int retval;
L
Linus Torvalds 已提交
5176 5177

	if (!param || pid < 0)
5178
		return -EINVAL;
L
Linus Torvalds 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5205
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5206 5207
{
	cpumask_t cpus_allowed;
5208
	cpumask_t new_mask = *in_mask;
5209 5210
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5211

5212
	get_online_cpus();
L
Linus Torvalds 已提交
5213 5214 5215 5216 5217
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5218
		put_online_cpus();
L
Linus Torvalds 已提交
5219 5220 5221 5222 5223
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5224
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5235 5236 5237 5238
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5239
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5240
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5241
 again:
5242
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5243

P
Paul Menage 已提交
5244
	if (!retval) {
5245
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5256 5257
out_unlock:
	put_task_struct(p);
5258
	put_online_cpus();
L
Linus Torvalds 已提交
5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5289
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5290 5291 5292 5293
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5294
	struct task_struct *p;
L
Linus Torvalds 已提交
5295 5296
	int retval;

5297
	get_online_cpus();
L
Linus Torvalds 已提交
5298 5299 5300 5301 5302 5303 5304
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5305 5306 5307 5308
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5309
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5310 5311 5312

out_unlock:
	read_unlock(&tasklist_lock);
5313
	put_online_cpus();
L
Linus Torvalds 已提交
5314

5315
	return retval;
L
Linus Torvalds 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5346 5347
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5348 5349 5350
 */
asmlinkage long sys_sched_yield(void)
{
5351
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5352

5353
	schedstat_inc(rq, yld_count);
5354
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5361
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5362 5363 5364 5365 5366 5367 5368 5369
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5370
static void __cond_resched(void)
L
Linus Torvalds 已提交
5371
{
5372 5373 5374
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5375 5376 5377 5378 5379
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5380 5381 5382 5383 5384 5385 5386
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5387
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5388
{
5389 5390
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5391 5392 5393 5394 5395
		__cond_resched();
		return 1;
	}
	return 0;
}
5396
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5397 5398 5399 5400 5401

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5402
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5403 5404 5405
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5406
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5407
{
N
Nick Piggin 已提交
5408
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5409 5410
	int ret = 0;

N
Nick Piggin 已提交
5411
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5412
		spin_unlock(lock);
N
Nick Piggin 已提交
5413 5414 5415 5416
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5417
		ret = 1;
L
Linus Torvalds 已提交
5418 5419
		spin_lock(lock);
	}
J
Jan Kara 已提交
5420
	return ret;
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5428
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5429
		local_bh_enable();
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5441
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5452
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5453 5454 5455 5456 5457 5458 5459
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5460
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5461

5462
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5463 5464 5465
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5466
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5467 5468 5469 5470 5471
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5472
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5473 5474
	long ret;

5475
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5476 5477 5478
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5479
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5500
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5501
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5525
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5526
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5543
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5544
	unsigned int time_slice;
5545
	int retval;
L
Linus Torvalds 已提交
5546 5547 5548
	struct timespec t;

	if (pid < 0)
5549
		return -EINVAL;
L
Linus Torvalds 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5561 5562 5563 5564 5565 5566
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5567
		time_slice = DEF_TIMESLICE;
5568
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5569 5570 5571 5572 5573
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5574 5575
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5576 5577
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5578
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5579
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5580 5581
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5582

L
Linus Torvalds 已提交
5583 5584 5585 5586 5587
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5588
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5589

5590
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5591 5592
{
	unsigned long free = 0;
5593
	unsigned state;
L
Linus Torvalds 已提交
5594 5595

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5596
	printk(KERN_INFO "%-13.13s %c", p->comm,
5597
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5598
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5599
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5600
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5601
	else
I
Ingo Molnar 已提交
5602
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5603 5604
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5605
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5606
	else
I
Ingo Molnar 已提交
5607
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5608 5609 5610
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5611
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5612 5613
		while (!*n)
			n++;
5614
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5615 5616
	}
#endif
5617
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5618
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5619

5620
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5621 5622
}

I
Ingo Molnar 已提交
5623
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5624
{
5625
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5626

5627 5628 5629
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5630
#else
5631 5632
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638 5639 5640
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5641
		if (!state_filter || (p->state & state_filter))
5642
			sched_show_task(p);
L
Linus Torvalds 已提交
5643 5644
	} while_each_thread(g, p);

5645 5646
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5647 5648 5649
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5650
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5651 5652 5653 5654 5655
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5656 5657
}

I
Ingo Molnar 已提交
5658 5659
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5660
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5661 5662
}

5663 5664 5665 5666 5667 5668 5669 5670
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5671
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5672
{
5673
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5674 5675
	unsigned long flags;

I
Ingo Molnar 已提交
5676 5677 5678
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5679
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5680
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5681
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5682 5683 5684

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5685 5686 5687
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5688 5689 5690
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5691 5692 5693
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5694
	task_thread_info(idle)->preempt_count = 0;
5695
#endif
I
Ingo Molnar 已提交
5696 5697 5698 5699
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5736 5737 5738 5739
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5740
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5759
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5760 5761
 * call is not atomic; no spinlocks may be held.
 */
5762
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5763
{
5764
	struct migration_req req;
L
Linus Torvalds 已提交
5765
	unsigned long flags;
5766
	struct rq *rq;
5767
	int ret = 0;
L
Linus Torvalds 已提交
5768 5769

	rq = task_rq_lock(p, &flags);
5770
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5771 5772 5773 5774
		ret = -EINVAL;
		goto out;
	}

5775 5776 5777 5778 5779 5780
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5781
	if (p->sched_class->set_cpus_allowed)
5782
		p->sched_class->set_cpus_allowed(p, new_mask);
5783
	else {
5784 5785
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5786 5787
	}

L
Linus Torvalds 已提交
5788
	/* Can the task run on the task's current CPU? If so, we're done */
5789
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5790 5791
		goto out;

5792
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5793 5794 5795 5796 5797 5798 5799 5800 5801
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5802

L
Linus Torvalds 已提交
5803 5804
	return ret;
}
5805
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5806 5807

/*
I
Ingo Molnar 已提交
5808
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5809 5810 5811 5812 5813 5814
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5815 5816
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5817
 */
5818
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5819
{
5820
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5821
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5822

5823
	if (unlikely(!cpu_active(dest_cpu)))
5824
		return ret;
L
Linus Torvalds 已提交
5825 5826 5827 5828 5829 5830 5831

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
5832
		goto done;
L
Linus Torvalds 已提交
5833 5834
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
L
Linus Torvalds 已提交
5835
		goto fail;
L
Linus Torvalds 已提交
5836

I
Ingo Molnar 已提交
5837
	on_rq = p->se.on_rq;
5838
	if (on_rq)
5839
		deactivate_task(rq_src, p, 0);
5840

L
Linus Torvalds 已提交
5841
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5842 5843 5844
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5845
	}
L
Linus Torvalds 已提交
5846
done:
5847
	ret = 1;
L
Linus Torvalds 已提交
5848
fail:
L
Linus Torvalds 已提交
5849
	double_rq_unlock(rq_src, rq_dest);
5850
	return ret;
L
Linus Torvalds 已提交
5851 5852 5853 5854 5855 5856 5857
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5858
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5859 5860
{
	int cpu = (long)data;
5861
	struct rq *rq;
L
Linus Torvalds 已提交
5862 5863 5864 5865 5866 5867

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5868
		struct migration_req *req;
L
Linus Torvalds 已提交
5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5891
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5892 5893
		list_del_init(head->next);

N
Nick Piggin 已提交
5894 5895 5896
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5926
/*
5927
 * Figure out where task on dead CPU should go, use force if necessary.
5928 5929
 * NOTE: interrupts should be disabled by the caller
 */
5930
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5931
{
5932
	unsigned long flags;
L
Linus Torvalds 已提交
5933
	cpumask_t mask;
5934 5935
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5936

5937 5938 5939 5940 5941 5942 5943
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5944
		if (dest_cpu >= nr_cpu_ids)
5945 5946 5947
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5948
		if (dest_cpu >= nr_cpu_ids) {
5949 5950 5951
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5952 5953 5954 5955
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5956
			 * cpuset_cpus_allowed() will not block. It must be
5957 5958
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5959
			rq = task_rq_lock(p, &flags);
5960
			p->cpus_allowed = cpus_allowed;
5961 5962
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5963

5964 5965 5966 5967 5968
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5969
			if (p->mm && printk_ratelimit()) {
5970 5971
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5972 5973
					task_pid_nr(p), p->comm, dead_cpu);
			}
5974
		}
5975
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5976 5977 5978 5979 5980 5981 5982 5983 5984
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5985
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5986
{
5987
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6001
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6002

6003
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6004

6005 6006
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6007 6008
			continue;

6009 6010 6011
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6012

6013
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6014 6015
}

I
Ingo Molnar 已提交
6016 6017
/*
 * Schedules idle task to be the next runnable task on current CPU.
6018 6019
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6020 6021 6022
 */
void sched_idle_next(void)
{
6023
	int this_cpu = smp_processor_id();
6024
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6025 6026 6027 6028
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6029
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6030

6031 6032 6033
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6034 6035 6036
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6037
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6038

6039 6040
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6041 6042 6043 6044

	spin_unlock_irqrestore(&rq->lock, flags);
}

6045 6046
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6060
/* called under rq->lock with disabled interrupts */
6061
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6062
{
6063
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6064 6065

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6066
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6067 6068

	/* Cannot have done final schedule yet: would have vanished. */
6069
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6070

6071
	get_task_struct(p);
L
Linus Torvalds 已提交
6072 6073 6074

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6075
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6076 6077
	 * fine.
	 */
6078
	spin_unlock_irq(&rq->lock);
6079
	move_task_off_dead_cpu(dead_cpu, p);
6080
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6081

6082
	put_task_struct(p);
L
Linus Torvalds 已提交
6083 6084 6085 6086 6087
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6088
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6089
	struct task_struct *next;
6090

I
Ingo Molnar 已提交
6091 6092 6093
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6094
		update_rq_clock(rq);
6095
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6096 6097
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6098
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6099
		migrate_dead(dead_cpu, next);
6100

L
Linus Torvalds 已提交
6101 6102 6103 6104
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6105 6106 6107
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6108 6109
	{
		.procname	= "sched_domain",
6110
		.mode		= 0555,
6111
	},
I
Ingo Molnar 已提交
6112
	{0, },
6113 6114 6115
};

static struct ctl_table sd_ctl_root[] = {
6116
	{
6117
		.ctl_name	= CTL_KERN,
6118
		.procname	= "kernel",
6119
		.mode		= 0555,
6120 6121
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6122
	{0, },
6123 6124 6125 6126 6127
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6128
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6129 6130 6131 6132

	return entry;
}

6133 6134
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6135
	struct ctl_table *entry;
6136

6137 6138 6139
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6140
	 * will always be set. In the lowest directory the names are
6141 6142 6143
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6144 6145
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6146 6147 6148
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6149 6150 6151 6152 6153

	kfree(*tablep);
	*tablep = NULL;
}

6154
static void
6155
set_table_entry(struct ctl_table *entry,
6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6169
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6170

6171 6172 6173
	if (table == NULL)
		return NULL;

6174
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6175
		sizeof(long), 0644, proc_doulongvec_minmax);
6176
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6177
		sizeof(long), 0644, proc_doulongvec_minmax);
6178
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6179
		sizeof(int), 0644, proc_dointvec_minmax);
6180
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6181
		sizeof(int), 0644, proc_dointvec_minmax);
6182
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6183
		sizeof(int), 0644, proc_dointvec_minmax);
6184
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6185
		sizeof(int), 0644, proc_dointvec_minmax);
6186
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6187
		sizeof(int), 0644, proc_dointvec_minmax);
6188
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6189
		sizeof(int), 0644, proc_dointvec_minmax);
6190
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6191
		sizeof(int), 0644, proc_dointvec_minmax);
6192
	set_table_entry(&table[9], "cache_nice_tries",
6193 6194
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6195
	set_table_entry(&table[10], "flags", &sd->flags,
6196
		sizeof(int), 0644, proc_dointvec_minmax);
6197
	/* &table[11] is terminator */
6198 6199 6200 6201

	return table;
}

6202
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6203 6204 6205 6206 6207 6208 6209 6210 6211
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6212 6213
	if (table == NULL)
		return NULL;
6214 6215 6216 6217 6218

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6219
		entry->mode = 0555;
6220 6221 6222 6223 6224 6225 6226 6227
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6228
static void register_sched_domain_sysctl(void)
6229 6230 6231 6232 6233
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6234 6235 6236
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6237 6238 6239
	if (entry == NULL)
		return;

6240
	for_each_online_cpu(i) {
6241 6242
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6243
		entry->mode = 0555;
6244
		entry->child = sd_alloc_ctl_cpu_table(i);
6245
		entry++;
6246
	}
6247 6248

	WARN_ON(sd_sysctl_header);
6249 6250
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6251

6252
/* may be called multiple times per register */
6253 6254
static void unregister_sched_domain_sysctl(void)
{
6255 6256
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6257
	sd_sysctl_header = NULL;
6258 6259
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6260
}
6261
#else
6262 6263 6264 6265
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6266 6267 6268 6269
{
}
#endif

6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6300 6301 6302 6303
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6304 6305
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6306 6307
{
	struct task_struct *p;
6308
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6309
	unsigned long flags;
6310
	struct rq *rq;
L
Linus Torvalds 已提交
6311 6312

	switch (action) {
6313

L
Linus Torvalds 已提交
6314
	case CPU_UP_PREPARE:
6315
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6316
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6317 6318 6319 6320 6321
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6322
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6323 6324 6325
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6326

L
Linus Torvalds 已提交
6327
	case CPU_ONLINE:
6328
	case CPU_ONLINE_FROZEN:
6329
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6330
		wake_up_process(cpu_rq(cpu)->migration_thread);
6331 6332 6333 6334 6335 6336

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6337 6338

			set_rq_online(rq);
6339 6340
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6341
		break;
6342

L
Linus Torvalds 已提交
6343 6344
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6345
	case CPU_UP_CANCELED_FROZEN:
6346 6347
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6348
		/* Unbind it from offline cpu so it can run. Fall thru. */
6349 6350
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6351 6352 6353
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6354

L
Linus Torvalds 已提交
6355
	case CPU_DEAD:
6356
	case CPU_DEAD_FROZEN:
6357
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6358 6359 6360 6361 6362
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6363
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6364
		update_rq_clock(rq);
6365
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6366
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6367 6368
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6369
		migrate_dead_tasks(cpu);
6370
		spin_unlock_irq(&rq->lock);
6371
		cpuset_unlock();
L
Linus Torvalds 已提交
6372 6373 6374
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6375 6376 6377 6378 6379
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6380 6381
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6382 6383
			struct migration_req *req;

L
Linus Torvalds 已提交
6384
			req = list_entry(rq->migration_queue.next,
6385
					 struct migration_req, list);
L
Linus Torvalds 已提交
6386 6387 6388 6389 6390
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6391

6392 6393
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6394 6395 6396 6397 6398
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6399
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6400 6401 6402
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407 6408 6409 6410
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6411
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6412 6413 6414 6415
	.notifier_call = migration_call,
	.priority = 10
};

6416
static int __init migration_init(void)
L
Linus Torvalds 已提交
6417 6418
{
	void *cpu = (void *)(long)smp_processor_id();
6419
	int err;
6420 6421

	/* Start one for the boot CPU: */
6422 6423
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6424 6425
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6426 6427

	return err;
L
Linus Torvalds 已提交
6428
}
6429
early_initcall(migration_init);
L
Linus Torvalds 已提交
6430 6431 6432
#endif

#ifdef CONFIG_SMP
6433

6434
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6435

6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6458 6459
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6460
{
I
Ingo Molnar 已提交
6461
	struct sched_group *group = sd->groups;
6462
	char str[256];
L
Linus Torvalds 已提交
6463

6464
	cpulist_scnprintf(str, sizeof(str), sd->span);
6465
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6466 6467 6468 6469 6470 6471 6472 6473 6474

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6475 6476
	}

6477 6478
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6488

I
Ingo Molnar 已提交
6489
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6490
	do {
I
Ingo Molnar 已提交
6491 6492 6493
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6494 6495 6496
			break;
		}

I
Ingo Molnar 已提交
6497 6498 6499 6500 6501 6502
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6503

I
Ingo Molnar 已提交
6504 6505 6506 6507 6508
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6509

6510
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6511 6512 6513 6514
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6515

6516
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6517

6518
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6519
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6520

I
Ingo Molnar 已提交
6521 6522 6523
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6524

6525
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6526
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6527

6528
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6529 6530 6531 6532
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6533

I
Ingo Molnar 已提交
6534 6535
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6536
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6537
	int level = 0;
L
Linus Torvalds 已提交
6538

I
Ingo Molnar 已提交
6539 6540 6541 6542
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6543

I
Ingo Molnar 已提交
6544 6545
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6546 6547 6548 6549 6550 6551
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6552
	for (;;) {
6553
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6554
			break;
L
Linus Torvalds 已提交
6555 6556
		level++;
		sd = sd->parent;
6557
		if (!sd)
I
Ingo Molnar 已提交
6558 6559
			break;
	}
6560
	kfree(groupmask);
L
Linus Torvalds 已提交
6561
}
6562
#else /* !CONFIG_SCHED_DEBUG */
6563
# define sched_domain_debug(sd, cpu) do { } while (0)
6564
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6565

6566
static int sd_degenerate(struct sched_domain *sd)
6567 6568 6569 6570 6571 6572 6573 6574
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6575 6576 6577
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6591 6592
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6611 6612 6613
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6614 6615 6616 6617 6618 6619 6620
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6630 6631
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6632

6633 6634
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6635 6636 6637 6638 6639 6640 6641
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6642
	cpu_set(rq->cpu, rd->span);
6643
	if (cpu_isset(rq->cpu, cpu_online_map))
6644
		set_rq_online(rq);
G
Gregory Haskins 已提交
6645 6646 6647 6648

	spin_unlock_irqrestore(&rq->lock, flags);
}

6649
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6650 6651 6652
{
	memset(rd, 0, sizeof(*rd));

6653 6654
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6655 6656

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6657 6658 6659 6660
}

static void init_defrootdomain(void)
{
6661
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6662 6663 6664
	atomic_set(&def_root_domain.refcount, 1);
}

6665
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6666 6667 6668 6669 6670 6671 6672
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6673
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6674 6675 6676 6677

	return rd;
}

L
Linus Torvalds 已提交
6678
/*
I
Ingo Molnar 已提交
6679
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6680 6681
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6682 6683
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6684
{
6685
	struct rq *rq = cpu_rq(cpu);
6686 6687 6688 6689 6690 6691 6692
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6693
		if (sd_parent_degenerate(tmp, parent)) {
6694
			tmp->parent = parent->parent;
6695 6696 6697
			if (parent->parent)
				parent->parent->child = tmp;
		}
6698 6699
	}

6700
	if (sd && sd_degenerate(sd)) {
6701
		sd = sd->parent;
6702 6703 6704
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6705 6706 6707

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6708
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6709
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6710 6711 6712
}

/* cpus with isolated domains */
6713
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6714 6715 6716 6717

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
6718 6719
	static int __initdata ints[NR_CPUS];
	int i;
L
Linus Torvalds 已提交
6720 6721 6722 6723 6724 6725 6726 6727 6728

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6729
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6730 6731

/*
6732 6733 6734 6735
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6736 6737 6738 6739 6740
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6741
static void
6742
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6743
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6744 6745 6746
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6747 6748 6749 6750
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6751 6752
	cpus_clear(*covered);

6753
	for_each_cpu_mask_nr(i, *span) {
6754
		struct sched_group *sg;
6755
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6756 6757
		int j;

6758
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6759 6760
			continue;

6761
		cpus_clear(sg->cpumask);
6762
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6763

6764
		for_each_cpu_mask_nr(j, *span) {
6765
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6766 6767
				continue;

6768
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6780
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6781

6782
#ifdef CONFIG_NUMA
6783

6784 6785 6786 6787 6788
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6789
 * Find the next node to include in a given scheduling domain. Simply
6790 6791 6792 6793
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6794
static int find_next_best_node(int node, nodemask_t *used_nodes)
6795 6796 6797 6798 6799
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

6800
	for (i = 0; i < nr_node_ids; i++) {
6801
		/* Start at @node */
6802
		n = (node + i) % nr_node_ids;
6803 6804 6805 6806 6807

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6808
		if (node_isset(n, *used_nodes))
6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6820
	node_set(best_node, *used_nodes);
6821 6822 6823 6824 6825 6826
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6827
 * @span: resulting cpumask
6828
 *
I
Ingo Molnar 已提交
6829
 * Given a node, construct a good cpumask for its sched_domain to span. It
6830 6831 6832
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6833
static void sched_domain_node_span(int node, cpumask_t *span)
6834
{
6835 6836
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6837
	int i;
6838

6839
	cpus_clear(*span);
6840
	nodes_clear(used_nodes);
6841

6842
	cpus_or(*span, *span, *nodemask);
6843
	node_set(node, used_nodes);
6844 6845

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6846
		int next_node = find_next_best_node(node, &used_nodes);
6847

6848
		node_to_cpumask_ptr_next(nodemask, next_node);
6849
		cpus_or(*span, *span, *nodemask);
6850 6851
	}
}
6852
#endif /* CONFIG_NUMA */
6853

6854
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6855

6856
/*
6857
 * SMT sched-domains:
6858
 */
L
Linus Torvalds 已提交
6859 6860
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6861
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6862

I
Ingo Molnar 已提交
6863
static int
6864 6865
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6866
{
6867 6868
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6869 6870
	return cpu;
}
6871
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6872

6873 6874 6875
/*
 * multi-core sched-domains:
 */
6876 6877
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6878
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6879
#endif /* CONFIG_SCHED_MC */
6880 6881

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6882
static int
6883 6884
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6885
{
6886
	int group;
6887 6888 6889 6890

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6891 6892 6893
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6894 6895
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6896
static int
6897 6898
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6899
{
6900 6901
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6902 6903 6904 6905
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6906
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6907
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6908

I
Ingo Molnar 已提交
6909
static int
6910 6911
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6912
{
6913
	int group;
6914
#ifdef CONFIG_SCHED_MC
6915 6916 6917
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6918
#elif defined(CONFIG_SCHED_SMT)
6919 6920 6921
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6922
#else
6923
	group = cpu;
L
Linus Torvalds 已提交
6924
#endif
6925 6926 6927
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6928 6929 6930 6931
}

#ifdef CONFIG_NUMA
/*
6932 6933 6934
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6935
 */
6936
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6937
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6938

6939
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6940
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6941

6942
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6943
				 struct sched_group **sg, cpumask_t *nodemask)
6944
{
6945 6946
	int group;

6947 6948 6949
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6950 6951 6952 6953

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6954
}
6955

6956 6957 6958 6959 6960 6961 6962
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6963
	do {
6964
		for_each_cpu_mask_nr(j, sg->cpumask) {
6965
			struct sched_domain *sd;
6966

6967 6968 6969 6970 6971 6972 6973 6974
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6975

6976 6977 6978 6979
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6980
}
6981
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6982

6983
#ifdef CONFIG_NUMA
6984
/* Free memory allocated for various sched_group structures */
6985
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6986
{
6987
	int cpu, i;
6988

6989
	for_each_cpu_mask_nr(cpu, *cpu_map) {
6990 6991 6992 6993 6994 6995
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

6996
		for (i = 0; i < nr_node_ids; i++) {
6997 6998
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6999 7000 7001
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7018
#else /* !CONFIG_NUMA */
7019
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7020 7021
{
}
7022
#endif /* CONFIG_NUMA */
7023

7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

7050 7051
	sd->groups->__cpu_power = 0;

7052 7053 7054 7055 7056 7057 7058 7059 7060 7061
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7062
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7063 7064 7065 7066 7067 7068 7069 7070
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7071
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7072 7073 7074 7075
		group = group->next;
	} while (group != child->groups);
}

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7087
	sd->level = SD_LV_##type;				\
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7136 7137 7138 7139
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7140 7141 7142 7143 7144 7145
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7171
/*
7172 7173
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7174
 */
7175 7176
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7177 7178
{
	int i;
G
Gregory Haskins 已提交
7179
	struct root_domain *rd;
7180 7181
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7182 7183
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7184
	int sd_allnodes = 0;
7185 7186 7187 7188

	/*
	 * Allocate the per-node list of sched groups
	 */
7189
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7190
				    GFP_KERNEL);
7191 7192
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7193
		return -ENOMEM;
7194 7195
	}
#endif
L
Linus Torvalds 已提交
7196

7197
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7198 7199
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7200 7201 7202
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7203 7204 7205
		return -ENOMEM;
	}

7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7225
	/*
7226
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7227
	 */
7228
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7229
		struct sched_domain *sd = NULL, *p;
7230
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7231

7232 7233
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7234 7235

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7236
		if (cpus_weight(*cpu_map) >
7237
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7238
			sd = &per_cpu(allnodes_domains, i);
7239
			SD_INIT(sd, ALLNODES);
7240
			set_domain_attribute(sd, attr);
7241
			sd->span = *cpu_map;
7242
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7243
			p = sd;
7244
			sd_allnodes = 1;
7245 7246 7247
		} else
			p = NULL;

L
Linus Torvalds 已提交
7248
		sd = &per_cpu(node_domains, i);
7249
		SD_INIT(sd, NODE);
7250
		set_domain_attribute(sd, attr);
7251
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7252
		sd->parent = p;
7253 7254
		if (p)
			p->child = sd;
7255
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7256 7257 7258 7259
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7260
		SD_INIT(sd, CPU);
7261
		set_domain_attribute(sd, attr);
7262
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7263
		sd->parent = p;
7264 7265
		if (p)
			p->child = sd;
7266
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7267

7268 7269 7270
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7271
		SD_INIT(sd, MC);
7272
		set_domain_attribute(sd, attr);
7273 7274 7275
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7276
		p->child = sd;
7277
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7278 7279
#endif

L
Linus Torvalds 已提交
7280 7281 7282
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7283
		SD_INIT(sd, SIBLING);
7284
		set_domain_attribute(sd, attr);
7285
		sd->span = per_cpu(cpu_sibling_map, i);
7286
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7287
		sd->parent = p;
7288
		p->child = sd;
7289
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7290 7291 7292 7293 7294
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7295
	for_each_cpu_mask_nr(i, *cpu_map) {
7296 7297 7298 7299 7300 7301
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7302 7303
			continue;

I
Ingo Molnar 已提交
7304
		init_sched_build_groups(this_sibling_map, cpu_map,
7305 7306
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7307 7308 7309
	}
#endif

7310 7311
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7312
	for_each_cpu_mask_nr(i, *cpu_map) {
7313 7314 7315 7316 7317 7318
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7319
			continue;
7320

I
Ingo Molnar 已提交
7321
		init_sched_build_groups(this_core_map, cpu_map,
7322 7323
					&cpu_to_core_group,
					send_covered, tmpmask);
7324 7325 7326
	}
#endif

L
Linus Torvalds 已提交
7327
	/* Set up physical groups */
7328
	for (i = 0; i < nr_node_ids; i++) {
7329 7330
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7331

7332 7333 7334
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7335 7336
			continue;

7337 7338 7339
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7340 7341 7342 7343
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7344 7345 7346 7347 7348 7349 7350
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7351

7352
	for (i = 0; i < nr_node_ids; i++) {
7353 7354
		/* Set up node groups */
		struct sched_group *sg, *prev;
7355 7356 7357
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7358 7359
		int j;

7360 7361 7362 7363 7364
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7365
			sched_group_nodes[i] = NULL;
7366
			continue;
7367
		}
7368

7369
		sched_domain_node_span(i, domainspan);
7370
		cpus_and(*domainspan, *domainspan, *cpu_map);
7371

7372
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7373 7374 7375 7376 7377
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7378
		sched_group_nodes[i] = sg;
7379
		for_each_cpu_mask_nr(j, *nodemask) {
7380
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7381

7382 7383 7384
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7385
		sg->__cpu_power = 0;
7386
		sg->cpumask = *nodemask;
7387
		sg->next = sg;
7388
		cpus_or(*covered, *covered, *nodemask);
7389 7390
		prev = sg;

7391
		for (j = 0; j < nr_node_ids; j++) {
7392
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7393
			int n = (i + j) % nr_node_ids;
7394
			node_to_cpumask_ptr(pnodemask, n);
7395

7396 7397 7398 7399
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7400 7401
				break;

7402 7403
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7404 7405
				continue;

7406 7407
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7408 7409 7410
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7411
				goto error;
7412
			}
7413
			sg->__cpu_power = 0;
7414
			sg->cpumask = *tmpmask;
7415
			sg->next = prev->next;
7416
			cpus_or(*covered, *covered, *tmpmask);
7417 7418 7419 7420
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7421 7422 7423
#endif

	/* Calculate CPU power for physical packages and nodes */
7424
#ifdef CONFIG_SCHED_SMT
7425
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7426 7427
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7428
		init_sched_groups_power(i, sd);
7429
	}
L
Linus Torvalds 已提交
7430
#endif
7431
#ifdef CONFIG_SCHED_MC
7432
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7433 7434
		struct sched_domain *sd = &per_cpu(core_domains, i);

7435
		init_sched_groups_power(i, sd);
7436 7437
	}
#endif
7438

7439
	for_each_cpu_mask_nr(i, *cpu_map) {
I
Ingo Molnar 已提交
7440 7441
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7442
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7443 7444
	}

7445
#ifdef CONFIG_NUMA
7446
	for (i = 0; i < nr_node_ids; i++)
7447
		init_numa_sched_groups_power(sched_group_nodes[i]);
7448

7449 7450
	if (sd_allnodes) {
		struct sched_group *sg;
7451

7452 7453
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7454 7455
		init_numa_sched_groups_power(sg);
	}
7456 7457
#endif

L
Linus Torvalds 已提交
7458
	/* Attach the domains */
7459
	for_each_cpu_mask_nr(i, *cpu_map) {
L
Linus Torvalds 已提交
7460 7461 7462
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7463 7464
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7465 7466 7467
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7468
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7469
	}
7470

7471
	SCHED_CPUMASK_FREE((void *)allmasks);
7472 7473
	return 0;

7474
#ifdef CONFIG_NUMA
7475
error:
7476 7477
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7478
	return -ENOMEM;
7479
#endif
L
Linus Torvalds 已提交
7480
}
P
Paul Jackson 已提交
7481

7482 7483 7484 7485 7486
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7487 7488
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7489 7490
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7491 7492 7493 7494 7495 7496 7497 7498

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7499 7500 7501 7502
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7503
/*
I
Ingo Molnar 已提交
7504
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7505 7506
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7507
 */
7508
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7509
{
7510 7511
	int err;

7512
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7513 7514 7515 7516 7517
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7518
	dattr_cur = NULL;
7519
	err = build_sched_domains(doms_cur);
7520
	register_sched_domain_sysctl();
7521 7522

	return err;
7523 7524
}

7525 7526
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7527
{
7528
	free_sched_groups(cpu_map, tmpmask);
7529
}
L
Linus Torvalds 已提交
7530

7531 7532 7533 7534
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7535
static void detach_destroy_domains(const cpumask_t *cpu_map)
7536
{
7537
	cpumask_t tmpmask;
7538 7539
	int i;

7540 7541
	unregister_sched_domain_sysctl();

7542
	for_each_cpu_mask_nr(i, *cpu_map)
G
Gregory Haskins 已提交
7543
		cpu_attach_domain(NULL, &def_root_domain, i);
7544
	synchronize_sched();
7545
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7546 7547
}

7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7564 7565
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7566
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7567 7568 7569 7570
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7571 7572 7573
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7574 7575 7576
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7577 7578
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7579 7580
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
7581
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
7582 7583 7584
 *
 * Call with hotplug lock held
 */
7585 7586
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7587 7588 7589
{
	int i, j;

7590
	mutex_lock(&sched_domains_mutex);
7591

7592 7593 7594
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

7595 7596
	if (doms_new == NULL)
		ndoms_new = 0;
P
Paul Jackson 已提交
7597 7598 7599 7600

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7601 7602
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7603 7604 7605 7606 7607 7608 7609 7610
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

7611 7612 7613 7614 7615 7616 7617 7618
	if (doms_new == NULL) {
		ndoms_cur = 0;
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
		dattr_new = NULL;
	}

P
Paul Jackson 已提交
7619 7620 7621
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7622 7623
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7624 7625 7626
				goto match2;
		}
		/* no match - add a new doms_new */
7627 7628
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7629 7630 7631 7632 7633 7634 7635
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7636
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7637
	doms_cur = doms_new;
7638
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7639
	ndoms_cur = ndoms_new;
7640 7641

	register_sched_domain_sysctl();
7642

7643
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7644 7645
}

7646
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7647
int arch_reinit_sched_domains(void)
7648
{
7649
	get_online_cpus();
7650
	rebuild_sched_domains();
7651
	put_online_cpus();
7652
	return 0;
7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
7673 7674
static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
				struct sysdev_attribute *attr, char *page)
7675 7676 7677
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7678
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7679
					    struct sysdev_attribute *attr,
7680
					    const char *buf, size_t count)
7681 7682 7683
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7684 7685
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7686 7687 7688
#endif

#ifdef CONFIG_SCHED_SMT
7689 7690
static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
				struct sysdev_attribute *attr, char *page)
7691 7692 7693
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7694
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7695
					     struct sysdev_attribute *attr,
7696
					     const char *buf, size_t count)
7697 7698 7699
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7720
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7721

7722
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7723
/*
7724 7725
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
7726 7727 7728
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		partition_sched_domains(0, NULL, NULL);
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7746
{
P
Peter Zijlstra 已提交
7747 7748
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7749 7750
	switch (action) {
	case CPU_DOWN_PREPARE:
7751
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7752
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
7753 7754 7755
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
7756
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7757
	case CPU_ONLINE:
7758
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7759
		enable_runtime(cpu_rq(cpu));
7760 7761
		return NOTIFY_OK;

L
Linus Torvalds 已提交
7762 7763 7764 7765 7766 7767 7768
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
7769 7770
	cpumask_t non_isolated_cpus;

7771 7772 7773 7774 7775
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7776
	get_online_cpus();
7777
	mutex_lock(&sched_domains_mutex);
7778
	arch_init_sched_domains(&cpu_online_map);
7779
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7780 7781
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7782
	mutex_unlock(&sched_domains_mutex);
7783
	put_online_cpus();
7784 7785

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
7786 7787
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7788 7789 7790 7791 7792
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

7793
	init_hrtick();
7794 7795

	/* Move init over to a non-isolated CPU */
7796
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7797
		BUG();
I
Ingo Molnar 已提交
7798
	sched_init_granularity();
L
Linus Torvalds 已提交
7799 7800 7801 7802
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7803
	sched_init_granularity();
L
Linus Torvalds 已提交
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7814
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7815 7816
{
	cfs_rq->tasks_timeline = RB_ROOT;
7817
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7818 7819 7820
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7821
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7822 7823
}

P
Peter Zijlstra 已提交
7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7837
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7838 7839
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7840 7841 7842 7843 7844 7845 7846
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7847 7848
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7849

7850
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7851
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7852 7853
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7854 7855
}

P
Peter Zijlstra 已提交
7856
#ifdef CONFIG_FAIR_GROUP_SCHED
7857 7858 7859
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7860
{
7861
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7862 7863 7864 7865 7866 7867 7868
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7869 7870 7871 7872
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7873 7874 7875 7876 7877
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7878 7879
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7880
	se->load.inv_weight = 0;
7881
	se->parent = parent;
P
Peter Zijlstra 已提交
7882
}
7883
#endif
P
Peter Zijlstra 已提交
7884

7885
#ifdef CONFIG_RT_GROUP_SCHED
7886 7887 7888
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7889
{
7890 7891
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7892 7893 7894 7895
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7896
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7897 7898 7899 7900
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7901 7902 7903
	if (!rt_se)
		return;

7904 7905 7906 7907 7908
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7909
	rt_se->my_q = rt_rq;
7910
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7911 7912 7913 7914
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7915 7916
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7917
	int i, j;
7918 7919 7920 7921 7922 7923 7924
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7925 7926 7927
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7928 7929 7930 7931 7932 7933
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7934
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7935 7936 7937 7938 7939 7940 7941

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7942 7943 7944 7945 7946 7947 7948

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7949 7950
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7951 7952 7953 7954 7955
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7956 7957 7958 7959 7960 7961 7962 7963
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7964 7965
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7966
	}
I
Ingo Molnar 已提交
7967

G
Gregory Haskins 已提交
7968 7969 7970 7971
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7972 7973 7974 7975 7976 7977
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7978 7979 7980
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7981 7982
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7983

7984
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7985
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7986 7987 7988 7989 7990 7991
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7992 7993
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7994

7995
	for_each_possible_cpu(i) {
7996
		struct rq *rq;
L
Linus Torvalds 已提交
7997 7998 7999

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8000
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8001
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8002
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8003
#ifdef CONFIG_FAIR_GROUP_SCHED
8004
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8005
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8026
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8027
#elif defined CONFIG_USER_SCHED
8028 8029
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8041
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8042
				&per_cpu(init_cfs_rq, i),
8043 8044
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8045

8046
#endif
D
Dhaval Giani 已提交
8047 8048 8049
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8050
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8051
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8052
#ifdef CONFIG_CGROUP_SCHED
8053
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8054
#elif defined CONFIG_USER_SCHED
8055
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8056
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8057
				&per_cpu(init_rt_rq, i),
8058 8059
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8060
#endif
I
Ingo Molnar 已提交
8061
#endif
L
Linus Torvalds 已提交
8062

I
Ingo Molnar 已提交
8063 8064
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8065
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8066
		rq->sd = NULL;
G
Gregory Haskins 已提交
8067
		rq->rd = NULL;
L
Linus Torvalds 已提交
8068
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8069
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8070
		rq->push_cpu = 0;
8071
		rq->cpu = i;
8072
		rq->online = 0;
L
Linus Torvalds 已提交
8073 8074
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8075
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8076
#endif
P
Peter Zijlstra 已提交
8077
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8078 8079 8080
		atomic_set(&rq->nr_iowait, 0);
	}

8081
	set_load_weight(&init_task);
8082

8083 8084 8085 8086
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8087
#ifdef CONFIG_SMP
8088
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8089 8090
#endif

8091 8092 8093 8094
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8108 8109 8110 8111
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8112 8113

	scheduler_running = 1;
L
Linus Torvalds 已提交
8114 8115 8116 8117 8118
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8119
#ifdef in_atomic
L
Linus Torvalds 已提交
8120 8121 8122 8123 8124 8125 8126
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8127
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8128 8129 8130
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8131
		debug_show_held_locks(current);
8132 8133
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8134 8135 8136 8137 8138 8139 8140 8141
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8142 8143 8144
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8145

8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8157 8158
void normalize_rt_tasks(void)
{
8159
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8160
	unsigned long flags;
8161
	struct rq *rq;
L
Linus Torvalds 已提交
8162

8163
	read_lock_irqsave(&tasklist_lock, flags);
8164
	do_each_thread(g, p) {
8165 8166 8167 8168 8169 8170
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8171 8172
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8173 8174 8175
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8176
#endif
I
Ingo Molnar 已提交
8177 8178 8179 8180 8181 8182 8183 8184

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8185
			continue;
I
Ingo Molnar 已提交
8186
		}
L
Linus Torvalds 已提交
8187

8188
		spin_lock(&p->pi_lock);
8189
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8190

8191
		normalize_task(rq, p);
8192

8193
		__task_rq_unlock(rq);
8194
		spin_unlock(&p->pi_lock);
8195 8196
	} while_each_thread(g, p);

8197
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8198 8199 8200
}

#endif /* CONFIG_MAGIC_SYSRQ */
8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8219
struct task_struct *curr_task(int cpu)
8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8230 8231
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8232 8233 8234 8235 8236 8237 8238
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8239
void set_curr_task(int cpu, struct task_struct *p)
8240 8241 8242 8243 8244
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8245

8246 8247
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8262 8263
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8264 8265
{
	struct cfs_rq *cfs_rq;
8266
	struct sched_entity *se, *parent_se;
8267
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8268 8269
	int i;

8270
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8271 8272
	if (!tg->cfs_rq)
		goto err;
8273
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8274 8275
	if (!tg->se)
		goto err;
8276 8277

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8278 8279

	for_each_possible_cpu(i) {
8280
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8281

P
Peter Zijlstra 已提交
8282 8283
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8284 8285 8286
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8287 8288
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8289 8290 8291
		if (!se)
			goto err;

8292 8293
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8312
#else /* !CONFG_FAIR_GROUP_SCHED */
8313 8314 8315 8316
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8317 8318
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8330
#endif /* CONFIG_FAIR_GROUP_SCHED */
8331 8332

#ifdef CONFIG_RT_GROUP_SCHED
8333 8334 8335 8336
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8337 8338
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8350 8351
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8352 8353
{
	struct rt_rq *rt_rq;
8354
	struct sched_rt_entity *rt_se, *parent_se;
8355 8356 8357
	struct rq *rq;
	int i;

8358
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8359 8360
	if (!tg->rt_rq)
		goto err;
8361
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8362 8363 8364
	if (!tg->rt_se)
		goto err;

8365 8366
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8367 8368 8369 8370

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8371 8372 8373 8374
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8375

P
Peter Zijlstra 已提交
8376 8377 8378 8379
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8380

8381 8382
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8383 8384
	}

8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8401
#else /* !CONFIG_RT_GROUP_SCHED */
8402 8403 8404 8405
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8406 8407
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8419
#endif /* CONFIG_RT_GROUP_SCHED */
8420

8421
#ifdef CONFIG_GROUP_SCHED
8422 8423 8424 8425 8426 8427 8428 8429
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8430
struct task_group *sched_create_group(struct task_group *parent)
8431 8432 8433 8434 8435 8436 8437 8438 8439
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8440
	if (!alloc_fair_sched_group(tg, parent))
8441 8442
		goto err;

8443
	if (!alloc_rt_sched_group(tg, parent))
8444 8445
		goto err;

8446
	spin_lock_irqsave(&task_group_lock, flags);
8447
	for_each_possible_cpu(i) {
8448 8449
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8450
	}
P
Peter Zijlstra 已提交
8451
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8452 8453 8454 8455 8456 8457

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8458
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8459

8460
	return tg;
S
Srivatsa Vaddagiri 已提交
8461 8462

err:
P
Peter Zijlstra 已提交
8463
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8464 8465 8466
	return ERR_PTR(-ENOMEM);
}

8467
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8468
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8469 8470
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8471
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8472 8473
}

8474
/* Destroy runqueue etc associated with a task group */
8475
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8476
{
8477
	unsigned long flags;
8478
	int i;
S
Srivatsa Vaddagiri 已提交
8479

8480
	spin_lock_irqsave(&task_group_lock, flags);
8481
	for_each_possible_cpu(i) {
8482 8483
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8484
	}
P
Peter Zijlstra 已提交
8485
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8486
	list_del_rcu(&tg->siblings);
8487
	spin_unlock_irqrestore(&task_group_lock, flags);
8488 8489

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8490
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8491 8492
}

8493
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8494 8495 8496
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8497 8498
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8499 8500 8501 8502 8503 8504 8505 8506 8507
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8508
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8509 8510
	on_rq = tsk->se.on_rq;

8511
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8512
		dequeue_task(rq, tsk, 0);
8513 8514
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8515

P
Peter Zijlstra 已提交
8516
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8517

P
Peter Zijlstra 已提交
8518 8519 8520 8521 8522
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8523 8524 8525
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8526
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8527 8528 8529

	task_rq_unlock(rq, &flags);
}
8530
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8531

8532
#ifdef CONFIG_FAIR_GROUP_SCHED
8533
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8534 8535 8536 8537 8538
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8539
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8540 8541 8542
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8543
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8544

8545
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8546
		enqueue_entity(cfs_rq, se, 0);
8547
}
8548

8549 8550 8551 8552 8553 8554 8555 8556 8557
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8558 8559
}

8560 8561
static DEFINE_MUTEX(shares_mutex);

8562
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8563 8564
{
	int i;
8565
	unsigned long flags;
8566

8567 8568 8569 8570 8571 8572
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8573 8574
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8575 8576
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8577

8578
	mutex_lock(&shares_mutex);
8579
	if (tg->shares == shares)
8580
		goto done;
S
Srivatsa Vaddagiri 已提交
8581

8582
	spin_lock_irqsave(&task_group_lock, flags);
8583 8584
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8585
	list_del_rcu(&tg->siblings);
8586
	spin_unlock_irqrestore(&task_group_lock, flags);
8587 8588 8589 8590 8591 8592 8593 8594

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8595
	tg->shares = shares;
8596 8597 8598 8599 8600
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8601
		set_se_shares(tg->se[i], shares);
8602
	}
S
Srivatsa Vaddagiri 已提交
8603

8604 8605 8606 8607
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8608
	spin_lock_irqsave(&task_group_lock, flags);
8609 8610
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8611
	list_add_rcu(&tg->siblings, &tg->parent->children);
8612
	spin_unlock_irqrestore(&task_group_lock, flags);
8613
done:
8614
	mutex_unlock(&shares_mutex);
8615
	return 0;
S
Srivatsa Vaddagiri 已提交
8616 8617
}

8618 8619 8620 8621
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8622
#endif
8623

8624
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8625
/*
P
Peter Zijlstra 已提交
8626
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8627
 */
P
Peter Zijlstra 已提交
8628 8629 8630 8631 8632 8633 8634
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8635
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8636 8637
}

8638 8639 8640
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8641
	struct task_group *tgi, *parent = tg->parent;
8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8665
	return total + to_ratio(period, runtime) <=
8666 8667 8668 8669
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8670
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8671 8672 8673
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8674
	unsigned long global_ratio =
8675
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8676 8677

	rcu_read_lock();
P
Peter Zijlstra 已提交
8678 8679 8680
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8681

8682 8683
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8684 8685
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8686

P
Peter Zijlstra 已提交
8687
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8688
}
8689
#endif
P
Peter Zijlstra 已提交
8690

8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8702 8703
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8704
{
P
Peter Zijlstra 已提交
8705
	int i, err = 0;
P
Peter Zijlstra 已提交
8706 8707

	mutex_lock(&rt_constraints_mutex);
8708
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8709
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8710 8711 8712
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8713 8714 8715 8716
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8717 8718

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8719 8720
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8721 8722 8723 8724 8725 8726 8727 8728 8729

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8730
 unlock:
8731
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8732 8733 8734
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8735 8736
}

8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8749 8750 8751 8752
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8753
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8754 8755
		return -1;

8756
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8757 8758 8759
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8760 8761 8762 8763 8764 8765 8766 8767

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8768 8769 8770
	if (rt_period == 0)
		return -EINVAL;

8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8785 8786
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8787 8788
	int ret = 0;

8789 8790 8791
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8792
	mutex_lock(&rt_constraints_mutex);
8793
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8794 8795 8796 8797 8798
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8799
#else /* !CONFIG_RT_GROUP_SCHED */
8800 8801
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8815 8816
	return 0;
}
8817
#endif /* CONFIG_RT_GROUP_SCHED */
8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8848

8849
#ifdef CONFIG_CGROUP_SCHED
8850 8851

/* return corresponding task_group object of a cgroup */
8852
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8853
{
8854 8855
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8856 8857 8858
}

static struct cgroup_subsys_state *
8859
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8860
{
8861
	struct task_group *tg, *parent;
8862

8863
	if (!cgrp->parent) {
8864
		/* This is early initialization for the top cgroup */
8865
		init_task_group.css.cgroup = cgrp;
8866 8867 8868
		return &init_task_group.css;
	}

8869 8870
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8871 8872 8873 8874
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8875
	tg->css.cgroup = cgrp;
8876 8877 8878 8879

	return &tg->css;
}

I
Ingo Molnar 已提交
8880 8881
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8882
{
8883
	struct task_group *tg = cgroup_tg(cgrp);
8884 8885 8886 8887

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8888 8889 8890
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8891
{
8892 8893
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8894
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8895 8896
		return -EINVAL;
#else
8897 8898 8899
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8900
#endif
8901 8902 8903 8904 8905

	return 0;
}

static void
8906
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8907 8908 8909 8910 8911
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8912
#ifdef CONFIG_FAIR_GROUP_SCHED
8913
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8914
				u64 shareval)
8915
{
8916
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8917 8918
}

8919
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8920
{
8921
	struct task_group *tg = cgroup_tg(cgrp);
8922 8923 8924

	return (u64) tg->shares;
}
8925
#endif /* CONFIG_FAIR_GROUP_SCHED */
8926

8927
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8928
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8929
				s64 val)
P
Peter Zijlstra 已提交
8930
{
8931
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8932 8933
}

8934
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8935
{
8936
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8937
}
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8949
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8950

8951
static struct cftype cpu_files[] = {
8952
#ifdef CONFIG_FAIR_GROUP_SCHED
8953 8954
	{
		.name = "shares",
8955 8956
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8957
	},
8958 8959
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8960
	{
P
Peter Zijlstra 已提交
8961
		.name = "rt_runtime_us",
8962 8963
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8964
	},
8965 8966
	{
		.name = "rt_period_us",
8967 8968
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8969
	},
8970
#endif
8971 8972 8973 8974
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8975
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8976 8977 8978
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8979 8980 8981 8982 8983 8984 8985
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8986 8987 8988
	.early_init	= 1,
};

8989
#endif	/* CONFIG_CGROUP_SCHED */
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9010
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9011
{
9012
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9025
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9042
static void
9043
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9044
{
9045
	struct cpuacct *ca = cgroup_ca(cgrp);
9046 9047 9048 9049 9050 9051

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
9052
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9053
{
9054
	struct cpuacct *ca = cgroup_ca(cgrp);
9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

9096 9097 9098
static struct cftype files[] = {
	{
		.name = "usage",
9099 9100
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9101 9102 9103
	},
};

9104
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9105
{
9106
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */