sched.c 216.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156
	struct list_head queue[MAX_RT_PRIO];
I
Ingo Molnar 已提交
157 158
};

159
struct rt_bandwidth {
I
Ingo Molnar 已提交
160 161 162 163 164
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
198 199
	spin_lock_init(&rt_b->rt_runtime_lock);

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

237 238 239 240 241 242
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

243
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
244

245 246
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
247 248
struct cfs_rq;

P
Peter Zijlstra 已提交
249 250
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
251
/* task group related information */
252
struct task_group {
253
#ifdef CONFIG_CGROUP_SCHED
254 255
	struct cgroup_subsys_state css;
#endif
256 257

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
258 259 260 261 262
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
263 264 265 266 267 268
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

269
	struct rt_bandwidth rt_bandwidth;
270
#endif
271

272
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
273
	struct list_head list;
P
Peter Zijlstra 已提交
274 275 276 277

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
278 279
};

D
Dhaval Giani 已提交
280
#ifdef CONFIG_USER_SCHED
281 282 283 284 285 286 287 288

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

289
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
290 291 292 293
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
294
#endif /* CONFIG_FAIR_GROUP_SCHED */
295 296 297 298

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
299 300
#endif /* CONFIG_RT_GROUP_SCHED */
#else /* !CONFIG_FAIR_GROUP_SCHED */
301
#define root_task_group init_task_group
302
#endif /* CONFIG_FAIR_GROUP_SCHED */
P
Peter Zijlstra 已提交
303

304
/* task_group_lock serializes add/remove of task groups and also changes to
305 306
 * a task group's cpu shares.
 */
307
static DEFINE_SPINLOCK(task_group_lock);
308

309 310 311
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
312
#else /* !CONFIG_USER_SCHED */
313
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
314
#endif /* CONFIG_USER_SCHED */
315

316
/*
317 318 319 320
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
321 322 323
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
324
#define MIN_SHARES	2
325
#define MAX_SHARES	(1UL << 18)
326

327 328 329
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
330
/* Default task group.
I
Ingo Molnar 已提交
331
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
332
 */
333
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
334 335

/* return group to which a task belongs */
336
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
337
{
338
	struct task_group *tg;
339

340
#ifdef CONFIG_USER_SCHED
341
	tg = p->user->tg;
342
#elif defined(CONFIG_CGROUP_SCHED)
343 344
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
345
#else
I
Ingo Molnar 已提交
346
	tg = &init_task_group;
347
#endif
348
	return tg;
S
Srivatsa Vaddagiri 已提交
349 350 351
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
352
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
353
{
354
#ifdef CONFIG_FAIR_GROUP_SCHED
355 356
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
357
#endif
P
Peter Zijlstra 已提交
358

359
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
360 361
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
362
#endif
S
Srivatsa Vaddagiri 已提交
363 364 365 366
}

#else

P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
368

369
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
370

I
Ingo Molnar 已提交
371 372 373 374 375 376
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
377
	u64 min_vruntime;
378
	u64 pair_start;
I
Ingo Molnar 已提交
379 380 381

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
382 383 384 385 386 387

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
388 389
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
390
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
391 392 393

	unsigned long nr_spread_over;

394
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
395 396
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
397 398
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
399 400 401 402 403 404
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
405 406
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
407 408 409

#ifdef CONFIG_SMP
	/*
410
	 * the part of load.weight contributed by tasks
411
	 */
412
	unsigned long task_weight;
413

414 415 416 417 418 419 420
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
421

422 423 424 425
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
426
#endif
I
Ingo Molnar 已提交
427 428
#endif
};
L
Linus Torvalds 已提交
429

I
Ingo Molnar 已提交
430 431 432
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
433
	unsigned long rt_nr_running;
434
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
435 436
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
437
#ifdef CONFIG_SMP
438
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
439
	int overloaded;
P
Peter Zijlstra 已提交
440
#endif
P
Peter Zijlstra 已提交
441
	int rt_throttled;
P
Peter Zijlstra 已提交
442
	u64 rt_time;
P
Peter Zijlstra 已提交
443
	u64 rt_runtime;
I
Ingo Molnar 已提交
444
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
445
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
446

447
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
448 449
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
450 451 452 453 454
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
455 456
};

G
Gregory Haskins 已提交
457 458 459 460
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
461 462
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
463 464 465 466 467 468 469 470
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
471

I
Ingo Molnar 已提交
472
	/*
473 474 475 476
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
477
	atomic_t rto_count;
478 479 480
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
481 482
};

483 484 485 486
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
487 488 489 490
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
491 492 493 494 495 496 497
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
498
struct rq {
499 500
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
501 502 503 504 505 506

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
507 508
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
509
	unsigned char idle_at_tick;
510
#ifdef CONFIG_NO_HZ
511
	unsigned long last_tick_seen;
512 513
	unsigned char in_nohz_recently;
#endif
514 515
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
516 517 518 519
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
520 521
	struct rt_rq rt;

I
Ingo Molnar 已提交
522
#ifdef CONFIG_FAIR_GROUP_SCHED
523 524
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
525 526
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
527
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
528 529 530 531 532 533 534 535 536 537
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

538
	struct task_struct *curr, *idle;
539
	unsigned long next_balance;
L
Linus Torvalds 已提交
540
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
541

542
	u64 clock;
I
Ingo Molnar 已提交
543

L
Linus Torvalds 已提交
544 545 546
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
547
	struct root_domain *rd;
L
Linus Torvalds 已提交
548 549 550 551 552
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
553 554
	/* cpu of this runqueue: */
	int cpu;
555
	int online;
L
Linus Torvalds 已提交
556

557
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
558 559 560
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
561 562 563 564 565 566
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
567 568 569 570 571
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
572 573 574 575
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
576 577

	/* schedule() stats */
578 579 580
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
581 582

	/* try_to_wake_up() stats */
583 584
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
585 586

	/* BKL stats */
587
	unsigned int bkl_count;
L
Linus Torvalds 已提交
588
#endif
589
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
590 591
};

592
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
593

I
Ingo Molnar 已提交
594 595 596 597 598
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

599 600 601 602 603 604 605 606 607
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
608 609
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
610
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
611 612 613 614
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
615 616
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
617 618 619 620 621 622

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

623 624 625 626 627
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
628 629 630 631 632 633 634 635 636 637 638 639
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
640 641 642 643

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
644
enum {
P
Peter Zijlstra 已提交
645
#include "sched_features.h"
I
Ingo Molnar 已提交
646 647
};

P
Peter Zijlstra 已提交
648 649 650 651 652
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
653
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
654 655 656 657 658 659 660 661 662
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

663
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
664 665 666 667 668 669
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

670
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
698
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
728
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
771

772 773 774 775 776 777
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
778
/*
P
Peter Zijlstra 已提交
779
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
780 781
 * default: 1s
 */
P
Peter Zijlstra 已提交
782
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
783

784 785
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
786 787 788 789 790
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
791

792 793 794 795 796 797 798 799 800 801 802 803
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
804

L
Linus Torvalds 已提交
805
#ifndef prepare_arch_switch
806 807 808 809 810 811
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

812 813 814 815 816
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

817
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
818
static inline int task_running(struct rq *rq, struct task_struct *p)
819
{
820
	return task_current(rq, p);
821 822
}

823
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
824 825 826
{
}

827
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
828
{
829 830 831 832
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
833 834 835 836 837 838 839
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

840 841 842 843
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
844
static inline int task_running(struct rq *rq, struct task_struct *p)
845 846 847 848
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
849
	return task_current(rq, p);
850 851 852
#endif
}

853
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

870
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 872 873 874 875 876 877 878 879 880 881 882
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
883
#endif
884 885
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
886

887 888 889 890
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
891
static inline struct rq *__task_rq_lock(struct task_struct *p)
892 893
	__acquires(rq->lock)
{
894 895 896 897 898
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
899 900 901 902
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
903 904
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
905
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
906 907
 * explicitly disabling preemption.
 */
908
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
909 910
	__acquires(rq->lock)
{
911
	struct rq *rq;
L
Linus Torvalds 已提交
912

913 914 915 916 917 918
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
919 920 921 922
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
923
static void __task_rq_unlock(struct rq *rq)
924 925 926 927 928
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

929
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
930 931 932 933 934 935
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
936
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
937
 */
A
Alexey Dobriyan 已提交
938
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
939 940
	__acquires(rq->lock)
{
941
	struct rq *rq;
L
Linus Torvalds 已提交
942 943 944 945 946 947 948 949

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
985
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
986 987 988 989 990 991 992 993 994 995 996
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
997 998
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1074
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1075 1076 1077 1078 1079 1080
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1081
#ifdef CONFIG_SMP
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1137
#endif /* CONFIG_SMP */
1138 1139

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1176 1177 1178 1179

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1180 1181
#endif

I
Ingo Molnar 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1195
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1196 1197 1198 1199 1200
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1201
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1202 1203
		return;

P
Peter Zijlstra 已提交
1204
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1267
#endif /* CONFIG_NO_HZ */
1268

1269
#else /* !CONFIG_SMP */
P
Peter Zijlstra 已提交
1270
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1271 1272
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1273
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1274
}
1275
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1276

1277 1278 1279 1280 1281 1282 1283 1284
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1285 1286 1287
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1288
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1289

1290 1291 1292
/*
 * delta *= weight / lw
 */
1293
static unsigned long
1294 1295 1296 1297 1298
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1299 1300 1301 1302 1303 1304 1305
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1306 1307 1308 1309 1310

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1311
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1312
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1313 1314
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1315
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1316

1317
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 1319
}

1320
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1321 1322
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1323
	lw->inv_weight = 0;
1324 1325
}

1326
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1327 1328
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1329
	lw->inv_weight = 0;
1330 1331
}

1332 1333 1334 1335
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1336
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1337 1338 1339 1340
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1352 1353 1354
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1355 1356
 */
static const int prio_to_weight[40] = {
1357 1358 1359 1360 1361 1362 1363 1364
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1365 1366
};

1367 1368 1369 1370 1371 1372 1373
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1374
static const u32 prio_to_wmult[40] = {
1375 1376 1377 1378 1379 1380 1381 1382
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1383
};
1384

I
Ingo Molnar 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1410

1411 1412 1413 1414 1415 1416
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1427 1428 1429 1430 1431
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1432 1433 1434

#ifdef CONFIG_FAIR_GROUP_SCHED

1435
typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
1436 1437 1438 1439 1440

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
1441 1442
static void
walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
1443 1444 1445 1446 1447 1448
{
	struct task_group *parent, *child;

	rcu_read_lock();
	parent = &root_task_group;
down:
1449
	(*down)(parent, cpu, sd);
1450 1451 1452 1453 1454 1455 1456
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
1457
	(*up)(parent, cpu, sd);
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
	rcu_read_unlock();
}

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1472
__update_group_shares_cpu(struct task_group *tg, int cpu,
1473
			  unsigned long sd_shares, unsigned long sd_rq_weight)
1474 1475 1476 1477 1478
{
	int boost = 0;
	unsigned long shares;
	unsigned long rq_weight;

1479
	if (!tg->se[cpu])
1480 1481
		return;

1482
	rq_weight = tg->cfs_rq[cpu]->load.weight;
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	/*
	 * If there are currently no tasks on the cpu pretend there is one of
	 * average load so that when a new task gets to run here it will not
	 * get delayed by group starvation.
	 */
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}

1494 1495 1496
	if (unlikely(rq_weight > sd_rq_weight))
		rq_weight = sd_rq_weight;

1497 1498 1499 1500 1501 1502
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1503
	shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1504 1505 1506 1507

	/*
	 * record the actual number of shares, not the boosted amount.
	 */
1508
	tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1509 1510 1511 1512 1513 1514

	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;

1515
	__set_se_shares(tg->se[cpu], shares);
1516 1517 1518
}

/*
1519 1520 1521
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1522 1523
 */
static void
1524
tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
1525
{
1526 1527 1528
	unsigned long rq_weight = 0;
	unsigned long shares = 0;
	int i;
1529

1530 1531 1532
	for_each_cpu_mask(i, sd->span) {
		rq_weight += tg->cfs_rq[i]->load.weight;
		shares += tg->cfs_rq[i]->shares;
1533 1534
	}

1535 1536 1537 1538 1539
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1540 1541 1542 1543 1544 1545

	for_each_cpu_mask(i, sd->span) {
		struct rq *rq = cpu_rq(i);
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
1546
		__update_group_shares_cpu(tg, i, shares, rq_weight);
1547 1548 1549 1550 1551
		spin_unlock_irqrestore(&rq->lock, flags);
	}
}

/*
1552 1553 1554
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1555
 */
1556
static void
1557
tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
1558
{
1559
	unsigned long load;
1560

1561 1562 1563 1564 1565 1566 1567
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1568

1569
	tg->cfs_rq[cpu]->h_load = load;
1570 1571
}

1572 1573
static void
tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
1574 1575 1576
{
}

1577
static void update_shares(struct sched_domain *sd)
1578
{
1579
	walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1580 1581
}

1582
static void update_h_load(int cpu)
1583
{
1584
	walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
1585 1586 1587 1588 1589 1590 1591 1592 1593
}

static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
	cfs_rq->shares = shares;
}

#else

1594
static inline void update_shares(struct sched_domain *sd)
1595 1596 1597
{
}

1598 1599
#endif

1600 1601
#endif

I
Ingo Molnar 已提交
1602 1603
#include "sched_stats.h"
#include "sched_idletask.c"
1604 1605
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1606 1607 1608 1609 1610
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1611 1612
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1613

1614
static void inc_nr_running(struct rq *rq)
1615 1616 1617 1618
{
	rq->nr_running++;
}

1619
static void dec_nr_running(struct rq *rq)
1620 1621 1622 1623
{
	rq->nr_running--;
}

1624 1625 1626
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1627 1628 1629 1630
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1631

I
Ingo Molnar 已提交
1632 1633 1634 1635 1636 1637 1638 1639
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1640

I
Ingo Molnar 已提交
1641 1642
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1643 1644
}

1645
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1646
{
I
Ingo Molnar 已提交
1647
	sched_info_queued(p);
1648
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1649
	p->se.on_rq = 1;
1650 1651
}

1652
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1653
{
1654
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1655
	p->se.on_rq = 0;
1656 1657
}

1658
/*
I
Ingo Molnar 已提交
1659
 * __normal_prio - return the priority that is based on the static prio
1660 1661 1662
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1663
	return p->static_prio;
1664 1665
}

1666 1667 1668 1669 1670 1671 1672
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1673
static inline int normal_prio(struct task_struct *p)
1674 1675 1676
{
	int prio;

1677
	if (task_has_rt_policy(p))
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1691
static int effective_prio(struct task_struct *p)
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1704
/*
I
Ingo Molnar 已提交
1705
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1706
 */
I
Ingo Molnar 已提交
1707
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1708
{
1709
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1710
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1711

1712
	enqueue_task(rq, p, wakeup);
1713
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1719
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1720
{
1721
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1722 1723
		rq->nr_uninterruptible++;

1724
	dequeue_task(rq, p, sleep);
1725
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1732
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1733 1734 1735 1736
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1737 1738
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1739
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1740
#ifdef CONFIG_SMP
1741 1742 1743 1744 1745 1746
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1747 1748
	task_thread_info(p)->cpu = cpu;
#endif
1749 1750
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1763
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1764

1765 1766 1767 1768 1769 1770
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1771 1772 1773
/*
 * Is this task likely cache-hot:
 */
1774
static int
1775 1776 1777 1778
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1779 1780 1781
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1782
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1783 1784
		return 1;

1785 1786 1787
	if (p->sched_class != &fair_sched_class)
		return 0;

1788 1789 1790 1791 1792
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1793 1794 1795 1796 1797 1798
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1799
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1800
{
I
Ingo Molnar 已提交
1801 1802
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1803 1804
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1805
	u64 clock_offset;
I
Ingo Molnar 已提交
1806 1807

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1808 1809 1810 1811

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1812 1813 1814 1815
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1816 1817 1818 1819 1820
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1821
#endif
1822 1823
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1824 1825

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1826 1827
}

1828
struct migration_req {
L
Linus Torvalds 已提交
1829 1830
	struct list_head list;

1831
	struct task_struct *task;
L
Linus Torvalds 已提交
1832 1833 1834
	int dest_cpu;

	struct completion done;
1835
};
L
Linus Torvalds 已提交
1836 1837 1838 1839 1840

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1841
static int
1842
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1843
{
1844
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1850
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1851 1852 1853 1854 1855 1856 1857 1858
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1859

L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1872
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1873 1874
{
	unsigned long flags;
I
Ingo Molnar 已提交
1875
	int running, on_rq;
1876
	struct rq *rq;
L
Linus Torvalds 已提交
1877

1878 1879 1880 1881 1882 1883 1884 1885
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1910

1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1935

1936 1937 1938 1939 1940 1941 1942
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1958
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1970 1971
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1972 1973 1974 1975
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1976
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1977
{
1978
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1979
	unsigned long total = weighted_cpuload(cpu);
1980

1981
	if (type == 0)
I
Ingo Molnar 已提交
1982
		return total;
1983

I
Ingo Molnar 已提交
1984
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1985 1986 1987
}

/*
1988 1989
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1990
 */
A
Alexey Dobriyan 已提交
1991
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1992
{
1993
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1994
	unsigned long total = weighted_cpuload(cpu);
1995

N
Nick Piggin 已提交
1996
	if (type == 0)
I
Ingo Molnar 已提交
1997
		return total;
1998

I
Ingo Molnar 已提交
1999
	return max(rq->cpu_load[type-1], total);
2000 2001 2002 2003 2004
}

/*
 * Return the average load per task on the cpu's run queue
 */
2005
static unsigned long cpu_avg_load_per_task(int cpu)
2006
{
2007
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2008
	unsigned long total = weighted_cpuload(cpu);
2009 2010
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
2011
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2012 2013
}

N
Nick Piggin 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2031 2032
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2033
			continue;
2034

N
Nick Piggin 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2051 2052
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2053 2054 2055 2056 2057 2058 2059 2060

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2061
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2062 2063 2064 2065 2066 2067 2068

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2069
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2070
 */
I
Ingo Molnar 已提交
2071
static int
2072 2073
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
2074 2075 2076 2077 2078
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2079
	/* Traverse only the allowed CPUs */
2080
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2081

2082
	for_each_cpu_mask(i, *tmp) {
2083
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2109

2110
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2111 2112 2113
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2114 2115
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2116 2117
		if (tmp->flags & flag)
			sd = tmp;
2118
	}
N
Nick Piggin 已提交
2119 2120

	while (sd) {
2121
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2122
		struct sched_group *group;
2123 2124 2125 2126 2127 2128
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2129 2130 2131

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2132 2133 2134 2135
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2136

2137
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2138 2139 2140 2141 2142
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2143

2144
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2176
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2177
{
2178
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2179 2180
	unsigned long flags;
	long old_state;
2181
	struct rq *rq;
L
Linus Torvalds 已提交
2182

2183 2184 2185
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2186
	smp_wmb();
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2192
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2193 2194 2195
		goto out_running;

	cpu = task_cpu(p);
2196
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2203 2204 2205
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2212
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217 2218
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2232
#endif /* CONFIG_SCHEDSTATS */
2233

L
Linus Torvalds 已提交
2234 2235
out_activate:
#endif /* CONFIG_SMP */
2236 2237 2238 2239 2240 2241 2242 2243 2244
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2245
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2246
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2247 2248 2249
	success = 1;

out_running:
I
Ingo Molnar 已提交
2250 2251
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2252
	p->state = TASK_RUNNING;
2253 2254 2255 2256
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2257 2258 2259 2260 2261 2262
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2263
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2264
{
2265
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2266 2267 2268
}
EXPORT_SYMBOL(wake_up_process);

2269
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275 2276
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2277 2278 2279 2280 2281 2282 2283
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2284
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2285 2286
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2287 2288 2289

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2290 2291 2292 2293 2294 2295
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2296
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2297
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2298
#endif
N
Nick Piggin 已提交
2299

P
Peter Zijlstra 已提交
2300
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2301
	p->se.on_rq = 0;
2302
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2303

2304 2305 2306 2307
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313 2314
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2329
	set_task_cpu(p, cpu);
2330 2331 2332 2333 2334

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2335 2336
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2337

2338
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2339
	if (likely(sched_info_on()))
2340
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2341
#endif
2342
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2343 2344
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2345
#ifdef CONFIG_PREEMPT
2346
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2347
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2348
#endif
N
Nick Piggin 已提交
2349
	put_cpu();
L
Linus Torvalds 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2359
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2360 2361
{
	unsigned long flags;
I
Ingo Molnar 已提交
2362
	struct rq *rq;
L
Linus Torvalds 已提交
2363 2364

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2365
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2366
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2367 2368 2369

	p->prio = effective_prio(p);

2370
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2371
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2372 2373
	} else {
		/*
I
Ingo Molnar 已提交
2374 2375
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2376
		 */
2377
		p->sched_class->task_new(rq, p);
2378
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2379
	}
I
Ingo Molnar 已提交
2380
	check_preempt_curr(rq, p);
2381 2382 2383 2384
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2385
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2386 2387
}

2388 2389 2390
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2391 2392
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2393 2394 2395 2396 2397 2398 2399 2400 2401
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2402
 * @notifier: notifier struct to unregister
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2432
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2444
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2445

2446 2447 2448
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2449
 * @prev: the current task that is being switched out
2450 2451 2452 2453 2454 2455 2456 2457 2458
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2459 2460 2461
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2462
{
2463
	fire_sched_out_preempt_notifiers(prev, next);
2464 2465 2466 2467
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2468 2469
/**
 * finish_task_switch - clean up after a task-switch
2470
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2471 2472
 * @prev: the thread we just switched away from.
 *
2473 2474 2475 2476
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2477 2478
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2479
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2480 2481 2482
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2483
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2484 2485 2486
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2487
	long prev_state;
L
Linus Torvalds 已提交
2488 2489 2490 2491 2492

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2493
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2494 2495
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2496
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2497 2498 2499 2500 2501
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2502
	prev_state = prev->state;
2503 2504
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2505 2506 2507 2508
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2509

2510
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2511 2512
	if (mm)
		mmdrop(mm);
2513
	if (unlikely(prev_state == TASK_DEAD)) {
2514 2515 2516
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2517
		 */
2518
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2519
		put_task_struct(prev);
2520
	}
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2527
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2528 2529
	__releases(rq->lock)
{
2530 2531
	struct rq *rq = this_rq();

2532 2533 2534 2535 2536
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2537
	if (current->set_child_tid)
2538
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2545
static inline void
2546
context_switch(struct rq *rq, struct task_struct *prev,
2547
	       struct task_struct *next)
L
Linus Torvalds 已提交
2548
{
I
Ingo Molnar 已提交
2549
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2550

2551
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2552 2553
	mm = next->mm;
	oldmm = prev->active_mm;
2554 2555 2556 2557 2558 2559 2560
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2561
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2568
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2569 2570 2571
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2572 2573 2574 2575 2576 2577 2578
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2579
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2580
#endif
L
Linus Torvalds 已提交
2581 2582 2583 2584

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2585 2586 2587 2588 2589 2590 2591
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2615
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2630 2631
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2632

2633
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2643
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2644 2645 2646 2647 2648
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2664
/*
I
Ingo Molnar 已提交
2665 2666
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2667
 */
I
Ingo Molnar 已提交
2668
static void update_cpu_load(struct rq *this_rq)
2669
{
2670
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2683 2684 2685 2686 2687 2688 2689
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2690 2691
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2692 2693
}

I
Ingo Molnar 已提交
2694 2695
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2696 2697 2698 2699 2700 2701
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2702
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2703 2704 2705
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2706
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2707 2708 2709 2710
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2711
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716 2717 2718
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2719 2720
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726 2727 2728
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2729
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2743
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2744 2745 2746 2747
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2748 2749
	int ret = 0;

2750 2751 2752 2753 2754
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2755
	if (unlikely(!spin_trylock(&busiest->lock))) {
2756
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2757 2758 2759
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2760
			ret = 1;
L
Linus Torvalds 已提交
2761 2762 2763
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2764
	return ret;
L
Linus Torvalds 已提交
2765 2766 2767 2768 2769
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2770
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2771 2772
 * the cpu_allowed mask is restored.
 */
2773
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2774
{
2775
	struct migration_req req;
L
Linus Torvalds 已提交
2776
	unsigned long flags;
2777
	struct rq *rq;
L
Linus Torvalds 已提交
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2788

L
Linus Torvalds 已提交
2789 2790 2791 2792 2793
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2794

L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2802 2803
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2804 2805 2806 2807
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2808
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2809
	put_cpu();
N
Nick Piggin 已提交
2810 2811
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2818 2819
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2820
{
2821
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2822
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2823
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2824 2825 2826 2827
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2828
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2829 2830 2831 2832 2833
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2834
static
2835
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2836
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2837
		     int *all_pinned)
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2845 2846
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2847
		return 0;
2848
	}
2849 2850
	*all_pinned = 0;

2851 2852
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2853
		return 0;
2854
	}
L
Linus Torvalds 已提交
2855

2856 2857 2858 2859 2860 2861
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2862 2863
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2864
#ifdef CONFIG_SCHEDSTATS
2865
		if (task_hot(p, rq->clock, sd)) {
2866
			schedstat_inc(sd, lb_hot_gained[idle]);
2867 2868
			schedstat_inc(p, se.nr_forced_migrations);
		}
2869 2870 2871 2872
#endif
		return 1;
	}

2873 2874
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2875
		return 0;
2876
	}
L
Linus Torvalds 已提交
2877 2878 2879
	return 1;
}

2880 2881 2882 2883 2884
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2885
{
2886
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2887 2888
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2889

2890
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2891 2892
		goto out;

2893 2894
	pinned = 1;

L
Linus Torvalds 已提交
2895
	/*
I
Ingo Molnar 已提交
2896
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2897
	 */
I
Ingo Molnar 已提交
2898 2899
	p = iterator->start(iterator->arg);
next:
2900
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2901
		goto out;
2902
	/*
2903
	 * To help distribute high priority tasks across CPUs we don't
2904 2905 2906
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2907 2908
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2909
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2910 2911 2912
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2913 2914
	}

I
Ingo Molnar 已提交
2915
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2916
	pulled++;
I
Ingo Molnar 已提交
2917
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2918

2919
	/*
2920
	 * We only want to steal up to the prescribed amount of weighted load.
2921
	 */
2922
	if (rem_load_move > 0) {
2923 2924
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2925 2926
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2927 2928 2929
	}
out:
	/*
2930
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2931 2932 2933 2934
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2935 2936 2937

	if (all_pinned)
		*all_pinned = pinned;
2938 2939

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2940 2941
}

I
Ingo Molnar 已提交
2942
/*
P
Peter Williams 已提交
2943 2944 2945
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2946 2947 2948 2949
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2950
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2951 2952 2953
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2954
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2955
	unsigned long total_load_moved = 0;
2956
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2957 2958

	do {
P
Peter Williams 已提交
2959 2960
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2961
				max_load_move - total_load_moved,
2962
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2963
		class = class->next;
P
Peter Williams 已提交
2964
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2965

P
Peter Williams 已提交
2966 2967 2968
	return total_load_moved > 0;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3005
	const struct sched_class *class;
P
Peter Williams 已提交
3006 3007

	for (class = sched_class_highest; class; class = class->next)
3008
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3009 3010 3011
			return 1;

	return 0;
I
Ingo Molnar 已提交
3012 3013
}

L
Linus Torvalds 已提交
3014 3015
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3016 3017
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3018 3019 3020
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3021
		   unsigned long *imbalance, enum cpu_idle_type idle,
3022
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
3023 3024 3025
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3026
	unsigned long max_pull;
3027 3028
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3029
	int load_idx, group_imb = 0;
3030 3031 3032 3033 3034 3035
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3036 3037

	max_load = this_load = total_load = total_pwr = 0;
3038 3039
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
3040
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3041
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3042
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3043 3044 3045
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3046 3047

	do {
3048
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3049 3050
		int local_group;
		int i;
3051
		int __group_imb = 0;
3052
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3053
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
3054 3055 3056

		local_group = cpu_isset(this_cpu, group->cpumask);

3057 3058 3059
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
3060
		/* Tally up the load of all CPUs in the group */
3061
		sum_weighted_load = sum_nr_running = avg_load = 0;
3062 3063
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3064 3065

		for_each_cpu_mask(i, group->cpumask) {
3066 3067 3068 3069 3070 3071
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
3072

3073
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3074 3075
				*sd_idle = 0;

L
Linus Torvalds 已提交
3076
			/* Bias balancing toward cpus of our domain */
3077 3078 3079 3080 3081 3082
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3083
				load = target_load(i, load_idx);
3084
			} else {
N
Nick Piggin 已提交
3085
				load = source_load(i, load_idx);
3086 3087 3088 3089 3090
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3091 3092

			avg_load += load;
3093
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3094
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
3095 3096
		}

3097 3098 3099
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3100 3101
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3102
		 */
3103 3104
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3105 3106 3107 3108
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3109
		total_load += avg_load;
3110
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3111 3112

		/* Adjust by relative CPU power of the group */
3113 3114
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3115

3116 3117 3118
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3119
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3120

L
Linus Torvalds 已提交
3121 3122 3123
		if (local_group) {
			this_load = avg_load;
			this = group;
3124 3125 3126
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3127
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3128 3129
			max_load = avg_load;
			busiest = group;
3130 3131
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3132
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3133
		}
3134 3135 3136 3137 3138 3139

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3140 3141 3142
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3143 3144 3145 3146 3147 3148 3149 3150 3151

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3152
		/*
3153 3154
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3155 3156
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3157
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3158
			goto group_next;
3159

I
Ingo Molnar 已提交
3160
		/*
3161
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3162 3163 3164 3165 3166
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3167 3168
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3169 3170
			group_min = group;
			min_nr_running = sum_nr_running;
3171 3172
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3173
		}
3174

I
Ingo Molnar 已提交
3175
		/*
3176
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3188
		}
3189 3190
group_next:
#endif
L
Linus Torvalds 已提交
3191 3192 3193
		group = group->next;
	} while (group != sd->groups);

3194
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200 3201 3202
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3203
	busiest_load_per_task /= busiest_nr_running;
3204 3205 3206
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3207 3208 3209 3210 3211 3212 3213 3214
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3215
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3216 3217
	 * appear as very large values with unsigned longs.
	 */
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3230 3231

	/* Don't want to pull so many tasks that a group would go idle */
3232
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3233

L
Linus Torvalds 已提交
3234
	/* How much load to actually move to equalise the imbalance */
3235 3236
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3237 3238
			/ SCHED_LOAD_SCALE;

3239 3240 3241 3242 3243 3244
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3245
	if (*imbalance < busiest_load_per_task) {
3246
		unsigned long tmp, pwr_now, pwr_move;
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3258

I
Ingo Molnar 已提交
3259 3260
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3261
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3271 3272 3273 3274
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3275 3276 3277
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3278 3279
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3280
		if (max_load > tmp)
3281
			pwr_move += busiest->__cpu_power *
3282
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3283 3284

		/* Amount of load we'd add */
3285
		if (max_load * busiest->__cpu_power <
3286
				busiest_load_per_task * SCHED_LOAD_SCALE)
3287 3288
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3289
		else
3290 3291 3292 3293
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3294 3295 3296
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3297 3298
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303
	}

	return busiest;

out_balanced:
3304
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3305
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3306
		goto ret;
L
Linus Torvalds 已提交
3307

3308 3309 3310 3311 3312
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3313
ret:
L
Linus Torvalds 已提交
3314 3315 3316 3317 3318 3319 3320
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3321
static struct rq *
I
Ingo Molnar 已提交
3322
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3323
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3324
{
3325
	struct rq *busiest = NULL, *rq;
3326
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3327 3328 3329
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3330
		unsigned long wl;
3331 3332 3333 3334

		if (!cpu_isset(i, *cpus))
			continue;

3335
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3336
		wl = weighted_cpuload(i);
3337

I
Ingo Molnar 已提交
3338
		if (rq->nr_running == 1 && wl > imbalance)
3339
			continue;
L
Linus Torvalds 已提交
3340

I
Ingo Molnar 已提交
3341 3342
		if (wl > max_load) {
			max_load = wl;
3343
			busiest = rq;
L
Linus Torvalds 已提交
3344 3345 3346 3347 3348 3349
		}
	}

	return busiest;
}

3350 3351 3352 3353 3354 3355
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3356 3357 3358 3359
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3360
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3361
			struct sched_domain *sd, enum cpu_idle_type idle,
3362
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3363
{
P
Peter Williams 已提交
3364
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3365 3366
	struct sched_group *group;
	unsigned long imbalance;
3367
	struct rq *busiest;
3368
	unsigned long flags;
N
Nick Piggin 已提交
3369

3370 3371
	cpus_setall(*cpus);

3372 3373 3374
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3375
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3376
	 * portraying it as CPU_NOT_IDLE.
3377
	 */
I
Ingo Molnar 已提交
3378
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3379
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3380
		sd_idle = 1;
L
Linus Torvalds 已提交
3381

3382
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3383

3384
redo:
3385
	update_shares(sd);
3386
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3387
				   cpus, balance);
3388

3389
	if (*balance == 0)
3390 3391
		goto out_balanced;

L
Linus Torvalds 已提交
3392 3393 3394 3395 3396
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3397
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3398 3399 3400 3401 3402
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3403
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3404 3405 3406

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3407
	ld_moved = 0;
L
Linus Torvalds 已提交
3408 3409 3410 3411
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3412
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3413 3414
		 * correctly treated as an imbalance.
		 */
3415
		local_irq_save(flags);
N
Nick Piggin 已提交
3416
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3417
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3418
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3419
		double_rq_unlock(this_rq, busiest);
3420
		local_irq_restore(flags);
3421

3422 3423 3424
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3425
		if (ld_moved && this_cpu != smp_processor_id())
3426 3427
			resched_cpu(this_cpu);

3428
		/* All tasks on this runqueue were pinned by CPU affinity */
3429
		if (unlikely(all_pinned)) {
3430 3431
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3432
				goto redo;
3433
			goto out_balanced;
3434
		}
L
Linus Torvalds 已提交
3435
	}
3436

P
Peter Williams 已提交
3437
	if (!ld_moved) {
L
Linus Torvalds 已提交
3438 3439 3440 3441 3442
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3443
			spin_lock_irqsave(&busiest->lock, flags);
3444 3445 3446 3447 3448

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3449
				spin_unlock_irqrestore(&busiest->lock, flags);
3450 3451 3452 3453
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3454 3455 3456
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3457
				active_balance = 1;
L
Linus Torvalds 已提交
3458
			}
3459
			spin_unlock_irqrestore(&busiest->lock, flags);
3460
			if (active_balance)
L
Linus Torvalds 已提交
3461 3462 3463 3464 3465 3466
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3467
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3468
		}
3469
	} else
L
Linus Torvalds 已提交
3470 3471
		sd->nr_balance_failed = 0;

3472
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3473 3474
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3475 3476 3477 3478 3479 3480 3481 3482 3483
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3484 3485
	}

P
Peter Williams 已提交
3486
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3487
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3488 3489 3490
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3491 3492 3493 3494

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3495
	sd->nr_balance_failed = 0;
3496 3497

out_one_pinned:
L
Linus Torvalds 已提交
3498
	/* tune up the balancing interval */
3499 3500
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3501 3502
		sd->balance_interval *= 2;

3503
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3504
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3505 3506 3507 3508
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3509 3510
	if (ld_moved)
		update_shares(sd);
3511
	return ld_moved;
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3518
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3519 3520
 * this_rq is locked.
 */
3521
static int
3522 3523
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3524 3525
{
	struct sched_group *group;
3526
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3527
	unsigned long imbalance;
P
Peter Williams 已提交
3528
	int ld_moved = 0;
N
Nick Piggin 已提交
3529
	int sd_idle = 0;
3530
	int all_pinned = 0;
3531 3532

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3533

3534 3535 3536 3537
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3538
	 * portraying it as CPU_NOT_IDLE.
3539 3540 3541
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3542
		sd_idle = 1;
L
Linus Torvalds 已提交
3543

3544
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3545
redo:
I
Ingo Molnar 已提交
3546
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3547
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3548
	if (!group) {
I
Ingo Molnar 已提交
3549
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3550
		goto out_balanced;
L
Linus Torvalds 已提交
3551 3552
	}

3553
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3554
	if (!busiest) {
I
Ingo Molnar 已提交
3555
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3556
		goto out_balanced;
L
Linus Torvalds 已提交
3557 3558
	}

N
Nick Piggin 已提交
3559 3560
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3561
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3562

P
Peter Williams 已提交
3563
	ld_moved = 0;
3564 3565 3566
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3567 3568
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3569
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3570 3571
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3572
		spin_unlock(&busiest->lock);
3573

3574
		if (unlikely(all_pinned)) {
3575 3576
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3577 3578
				goto redo;
		}
3579 3580
	}

P
Peter Williams 已提交
3581
	if (!ld_moved) {
I
Ingo Molnar 已提交
3582
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3583 3584
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3585 3586
			return -1;
	} else
3587
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3588

P
Peter Williams 已提交
3589
	return ld_moved;
3590 3591

out_balanced:
I
Ingo Molnar 已提交
3592
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3593
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3595
		return -1;
3596
	sd->nr_balance_failed = 0;
3597

3598
	return 0;
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3605
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3606 3607
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3608 3609
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3610
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3611 3612

	for_each_domain(this_cpu, sd) {
3613 3614 3615 3616 3617 3618
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3619
			/* If we've pulled tasks over stop searching: */
3620 3621
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3622 3623 3624 3625 3626 3627

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3628
	}
I
Ingo Molnar 已提交
3629
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3630 3631 3632 3633 3634
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3635
	}
L
Linus Torvalds 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3646
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3647
{
3648
	int target_cpu = busiest_rq->push_cpu;
3649 3650
	struct sched_domain *sd;
	struct rq *target_rq;
3651

3652
	/* Is there any task to move? */
3653 3654 3655 3656
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3657 3658

	/*
3659
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3660
	 * we need to fix it. Originally reported by
3661
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3662
	 */
3663
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3664

3665 3666
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3667 3668
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3669 3670

	/* Search for an sd spanning us and the target CPU. */
3671
	for_each_domain(target_cpu, sd) {
3672
		if ((sd->flags & SD_LOAD_BALANCE) &&
3673
		    cpu_isset(busiest_cpu, sd->span))
3674
				break;
3675
	}
3676

3677
	if (likely(sd)) {
3678
		schedstat_inc(sd, alb_count);
3679

P
Peter Williams 已提交
3680 3681
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3682 3683 3684 3685
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3686
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3687 3688
}

3689 3690 3691
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3692
	cpumask_t cpu_mask;
3693 3694 3695 3696 3697
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3698
/*
3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3709
 *
3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3766 3767 3768 3769 3770
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3771
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3772
{
3773 3774
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3775 3776
	unsigned long interval;
	struct sched_domain *sd;
3777
	/* Earliest time when we have to do rebalance again */
3778
	unsigned long next_balance = jiffies + 60*HZ;
3779
	int update_next_balance = 0;
3780
	int need_serialize;
3781
	cpumask_t tmp;
L
Linus Torvalds 已提交
3782

3783
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3784 3785 3786 3787
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3788
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3789 3790 3791 3792 3793 3794
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3795 3796 3797
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3798
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3799

3800
		if (need_serialize) {
3801 3802 3803 3804
			if (!spin_trylock(&balancing))
				goto out;
		}

3805
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3806
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3807 3808
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3809 3810 3811
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3812
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3813
			}
3814
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3815
		}
3816
		if (need_serialize)
3817 3818
			spin_unlock(&balancing);
out:
3819
		if (time_after(next_balance, sd->last_balance + interval)) {
3820
			next_balance = sd->last_balance + interval;
3821 3822
			update_next_balance = 1;
		}
3823 3824 3825 3826 3827 3828 3829 3830

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3831
	}
3832 3833 3834 3835 3836 3837 3838 3839

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3840 3841 3842 3843 3844 3845 3846 3847 3848
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3849 3850 3851 3852
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3853

I
Ingo Molnar 已提交
3854
	rebalance_domains(this_cpu, idle);
3855 3856 3857 3858 3859 3860 3861

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3862 3863
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3864 3865 3866 3867
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3868
		cpu_clear(this_cpu, cpus);
3869 3870 3871 3872 3873 3874 3875 3876 3877
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3878
			rebalance_domains(balance_cpu, CPU_IDLE);
3879 3880

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3881 3882
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3895
static inline void trigger_load_balance(struct rq *rq, int cpu)
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3922
			if (ilb < nr_cpu_ids)
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3947
}
I
Ingo Molnar 已提交
3948 3949 3950

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3951 3952 3953
/*
 * on UP we do not need to balance between CPUs:
 */
3954
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3955 3956
{
}
I
Ingo Molnar 已提交
3957

L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3965 3966
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3967
 */
3968
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3969 3970
{
	unsigned long flags;
3971 3972
	u64 ns, delta_exec;
	struct rq *rq;
3973

3974 3975
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3976
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3977 3978
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3979 3980 3981 3982
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3983

L
Linus Torvalds 已提交
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

4007 4008 4009 4010 4011
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
4012
static void account_guest_time(struct task_struct *p, cputime_t cputime)
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4046
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4047 4048
	cputime64_t tmp;

4049 4050 4051 4052
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
4053

L
Linus Torvalds 已提交
4054 4055 4056 4057 4058 4059 4060 4061
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4062
	else if (p != rq->idle)
L
Linus Torvalds 已提交
4063
		cpustat->system = cputime64_add(cpustat->system, tmp);
4064
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
4065 4066 4067 4068 4069 4070 4071
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
4092
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
4100
	} else
L
Linus Torvalds 已提交
4101 4102 4103
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4115
	struct task_struct *curr = rq->curr;
4116 4117

	sched_clock_tick();
I
Ingo Molnar 已提交
4118 4119

	spin_lock(&rq->lock);
4120
	update_rq_clock(rq);
4121
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4122
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4123
	spin_unlock(&rq->lock);
4124

4125
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4126 4127
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4128
#endif
L
Linus Torvalds 已提交
4129 4130 4131 4132
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4133
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4134 4135 4136 4137
{
	/*
	 * Underflow?
	 */
4138 4139
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4140 4141 4142 4143
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4144 4145
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4146 4147 4148
}
EXPORT_SYMBOL(add_preempt_count);

4149
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4150 4151 4152 4153
{
	/*
	 * Underflow?
	 */
4154 4155
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4156 4157 4158
	/*
	 * Is the spinlock portion underflowing?
	 */
4159 4160 4161 4162
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4163 4164 4165 4166 4167 4168 4169
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4170
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4171
 */
I
Ingo Molnar 已提交
4172
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4173
{
4174 4175 4176 4177 4178
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4179
	debug_show_held_locks(prev);
4180
	print_modules();
I
Ingo Molnar 已提交
4181 4182
	if (irqs_disabled())
		print_irqtrace_events(prev);
4183 4184 4185 4186 4187

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4188
}
L
Linus Torvalds 已提交
4189

I
Ingo Molnar 已提交
4190 4191 4192 4193 4194
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4195
	/*
I
Ingo Molnar 已提交
4196
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4197 4198 4199
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4200
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4201 4202
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4203 4204
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4205
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4206 4207
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4208 4209
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4210 4211
	}
#endif
I
Ingo Molnar 已提交
4212 4213 4214 4215 4216 4217
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4218
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4219
{
4220
	const struct sched_class *class;
I
Ingo Molnar 已提交
4221
	struct task_struct *p;
L
Linus Torvalds 已提交
4222 4223

	/*
I
Ingo Molnar 已提交
4224 4225
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4226
	 */
I
Ingo Molnar 已提交
4227
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4228
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4229 4230
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4231 4232
	}

I
Ingo Molnar 已提交
4233 4234
	class = sched_class_highest;
	for ( ; ; ) {
4235
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4236 4237 4238 4239 4240 4241 4242 4243 4244
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4245

I
Ingo Molnar 已提交
4246 4247 4248 4249 4250 4251
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4252
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4253
	struct rq *rq;
M
Mike Galbraith 已提交
4254
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4268

M
Mike Galbraith 已提交
4269 4270
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4271

4272 4273 4274 4275
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4276
	update_rq_clock(rq);
4277 4278
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4279 4280

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4281
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4282
			prev->state = TASK_RUNNING;
4283
		else
4284
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4285
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4286 4287
	}

4288 4289 4290 4291
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4292

I
Ingo Molnar 已提交
4293
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4294 4295
		idle_balance(cpu, rq);

4296
	prev->sched_class->put_prev_task(rq, prev);
4297
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4298 4299

	if (likely(prev != next)) {
4300 4301
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4302 4303 4304 4305
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4306
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4307 4308 4309 4310 4311 4312
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4313 4314 4315
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4316 4317
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4318 4319

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4320
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4321

L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327 4328 4329
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4330
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4331
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4332 4333 4334 4335 4336
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4337

L
Linus Torvalds 已提交
4338 4339
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4340
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4341
	 */
N
Nick Piggin 已提交
4342
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4343 4344
		return;

4345 4346 4347 4348
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4349

4350 4351 4352 4353 4354 4355
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4356 4357 4358 4359
}
EXPORT_SYMBOL(preempt_schedule);

/*
4360
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4361 4362 4363 4364 4365 4366 4367
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4368

4369
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4370 4371
	BUG_ON(ti->preempt_count || !irqs_disabled());

4372 4373 4374 4375 4376 4377
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4378

4379 4380 4381 4382 4383 4384
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4385 4386 4387 4388
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4389 4390
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4391
{
4392
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4393 4394 4395 4396
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4397 4398
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4399 4400 4401
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4402
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4403 4404 4405 4406 4407
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4408
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4409

4410
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4411 4412
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4413
		if (curr->func(curr, mode, sync, key) &&
4414
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422 4423
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4424
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4425
 */
4426
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4427
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4440
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4446
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4458
void
I
Ingo Molnar 已提交
4459
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4476
void complete(struct completion *x)
L
Linus Torvalds 已提交
4477 4478 4479 4480 4481
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4482
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4483 4484 4485 4486
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4487
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4488 4489 4490 4491 4492
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4493
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4494 4495 4496 4497
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4498 4499
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4500 4501 4502 4503 4504 4505 4506
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4507 4508 4509 4510
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4511 4512
				timeout = -ERESTARTSYS;
				break;
4513 4514
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4515 4516 4517
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4518
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4519
		__remove_wait_queue(&x->wait, &wait);
4520 4521
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4522 4523
	}
	x->done--;
4524
	return timeout ?: 1;
L
Linus Torvalds 已提交
4525 4526
}

4527 4528
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4529 4530 4531 4532
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4533
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4534
	spin_unlock_irq(&x->wait.lock);
4535 4536
	return timeout;
}
L
Linus Torvalds 已提交
4537

4538
void __sched wait_for_completion(struct completion *x)
4539 4540
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4541
}
4542
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4543

4544
unsigned long __sched
4545
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4546
{
4547
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4548
}
4549
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4550

4551
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4552
{
4553 4554 4555 4556
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4557
}
4558
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4559

4560
unsigned long __sched
4561 4562
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4563
{
4564
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4565
}
4566
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4567

M
Matthew Wilcox 已提交
4568 4569 4570 4571 4572 4573 4574 4575 4576
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4577 4578
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4579
{
I
Ingo Molnar 已提交
4580 4581 4582 4583
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4584

4585
	__set_current_state(state);
L
Linus Torvalds 已提交
4586

4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4601 4602 4603
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4604
long __sched
I
Ingo Molnar 已提交
4605
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4606
{
4607
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4608 4609 4610
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4611
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4612
{
4613
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4614 4615 4616
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4617
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4618
{
4619
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4620 4621 4622
}
EXPORT_SYMBOL(sleep_on_timeout);

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4635
void rt_mutex_setprio(struct task_struct *p, int prio)
4636 4637
{
	unsigned long flags;
4638
	int oldprio, on_rq, running;
4639
	struct rq *rq;
4640
	const struct sched_class *prev_class = p->sched_class;
4641 4642 4643 4644

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4645
	update_rq_clock(rq);
4646

4647
	oldprio = p->prio;
I
Ingo Molnar 已提交
4648
	on_rq = p->se.on_rq;
4649
	running = task_current(rq, p);
4650
	if (on_rq)
4651
		dequeue_task(rq, p, 0);
4652 4653
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4654 4655 4656 4657 4658 4659

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4660 4661
	p->prio = prio;

4662 4663
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4664
	if (on_rq) {
4665
		enqueue_task(rq, p, 0);
4666 4667

		check_class_changed(rq, p, prev_class, oldprio, running);
4668 4669 4670 4671 4672 4673
	}
	task_rq_unlock(rq, &flags);
}

#endif

4674
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4675
{
I
Ingo Molnar 已提交
4676
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4677
	unsigned long flags;
4678
	struct rq *rq;
L
Linus Torvalds 已提交
4679 4680 4681 4682 4683 4684 4685 4686

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4687
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4688 4689 4690 4691
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4692
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4693
	 */
4694
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4695 4696 4697
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4698
	on_rq = p->se.on_rq;
4699
	if (on_rq)
4700
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4701 4702

	p->static_prio = NICE_TO_PRIO(nice);
4703
	set_load_weight(p);
4704 4705 4706
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4707

I
Ingo Molnar 已提交
4708
	if (on_rq) {
4709
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4710
		/*
4711 4712
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4713
		 */
4714
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4715 4716 4717 4718 4719 4720 4721
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4722 4723 4724 4725 4726
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4727
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4728
{
4729 4730
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4731

M
Matt Mackall 已提交
4732 4733 4734 4735
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4747
	long nice, retval;
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4754 4755
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760 4761 4762 4763 4764
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4765 4766 4767
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4786
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4787 4788 4789 4790 4791 4792 4793 4794
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4795
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4796 4797 4798
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4799
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4814
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4815 4816 4817 4818 4819 4820 4821 4822
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4823
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4824
{
4825
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4826 4827 4828
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4829 4830
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4831
{
I
Ingo Molnar 已提交
4832
	BUG_ON(p->se.on_rq);
4833

L
Linus Torvalds 已提交
4834
	p->policy = policy;
I
Ingo Molnar 已提交
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4847
	p->rt_priority = prio;
4848 4849 4850
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4851
	set_load_weight(p);
L
Linus Torvalds 已提交
4852 4853 4854
}

/**
4855
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4856 4857 4858
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4859
 *
4860
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4861
 */
I
Ingo Molnar 已提交
4862 4863
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4864
{
4865
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4866
	unsigned long flags;
4867
	const struct sched_class *prev_class = p->sched_class;
4868
	struct rq *rq;
L
Linus Torvalds 已提交
4869

4870 4871
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4872 4873 4874 4875 4876
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4877 4878
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4879
		return -EINVAL;
L
Linus Torvalds 已提交
4880 4881
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4882 4883
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4884 4885
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4886
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4887
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4888
		return -EINVAL;
4889
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4890 4891
		return -EINVAL;

4892 4893 4894 4895
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4896
		if (rt_policy(policy)) {
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4913 4914 4915 4916 4917 4918
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4919

4920 4921 4922 4923 4924
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4925

4926 4927 4928 4929 4930
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4931
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4932 4933 4934
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4935 4936 4937
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4938 4939 4940 4941 4942
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4943 4944 4945 4946
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4947
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4948 4949 4950
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4951 4952
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4953 4954
		goto recheck;
	}
I
Ingo Molnar 已提交
4955
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4956
	on_rq = p->se.on_rq;
4957
	running = task_current(rq, p);
4958
	if (on_rq)
4959
		deactivate_task(rq, p, 0);
4960 4961
	if (running)
		p->sched_class->put_prev_task(rq, p);
4962

L
Linus Torvalds 已提交
4963
	oldprio = p->prio;
I
Ingo Molnar 已提交
4964
	__setscheduler(rq, p, policy, param->sched_priority);
4965

4966 4967
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4968 4969
	if (on_rq) {
		activate_task(rq, p, 0);
4970 4971

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4972
	}
4973 4974 4975
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4976 4977
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4978 4979 4980 4981
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4982 4983
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4984 4985 4986
{
	struct sched_param lparam;
	struct task_struct *p;
4987
	int retval;
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4993 4994 4995

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4996
	p = find_process_by_pid(pid);
4997 4998 4999
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5000

L
Linus Torvalds 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
5010 5011
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5012
{
5013 5014 5015 5016
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
5036
	struct task_struct *p;
5037
	int retval;
L
Linus Torvalds 已提交
5038 5039

	if (pid < 0)
5040
		return -EINVAL;
L
Linus Torvalds 已提交
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
5062
	struct task_struct *p;
5063
	int retval;
L
Linus Torvalds 已提交
5064 5065

	if (!param || pid < 0)
5066
		return -EINVAL;
L
Linus Torvalds 已提交
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5093
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
5094 5095
{
	cpumask_t cpus_allowed;
5096
	cpumask_t new_mask = *in_mask;
5097 5098
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5099

5100
	get_online_cpus();
L
Linus Torvalds 已提交
5101 5102 5103 5104 5105
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5106
		put_online_cpus();
L
Linus Torvalds 已提交
5107 5108 5109 5110 5111
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5112
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5123 5124 5125 5126
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5127
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5128
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5129
 again:
5130
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5131

P
Paul Menage 已提交
5132
	if (!retval) {
5133
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5144 5145
out_unlock:
	put_task_struct(p);
5146
	put_online_cpus();
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5177
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5178 5179 5180 5181
}

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5182
	struct task_struct *p;
L
Linus Torvalds 已提交
5183 5184
	int retval;

5185
	get_online_cpus();
L
Linus Torvalds 已提交
5186 5187 5188 5189 5190 5191 5192
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5193 5194 5195 5196
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5197
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5198 5199 5200

out_unlock:
	read_unlock(&tasklist_lock);
5201
	put_online_cpus();
L
Linus Torvalds 已提交
5202

5203
	return retval;
L
Linus Torvalds 已提交
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5234 5235
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5236 5237 5238
 */
asmlinkage long sys_sched_yield(void)
{
5239
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5240

5241
	schedstat_inc(rq, yld_count);
5242
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5243 5244 5245 5246 5247 5248

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5249
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5250 5251 5252 5253 5254 5255 5256 5257
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5258
static void __cond_resched(void)
L
Linus Torvalds 已提交
5259
{
5260 5261 5262
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5263 5264 5265 5266 5267
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5268 5269 5270 5271 5272 5273 5274
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5275
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5276
{
5277 5278
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5279 5280 5281 5282 5283
		__cond_resched();
		return 1;
	}
	return 0;
}
5284
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5290
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5291 5292 5293
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5294
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5295
{
N
Nick Piggin 已提交
5296
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5297 5298
	int ret = 0;

N
Nick Piggin 已提交
5299
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5300
		spin_unlock(lock);
N
Nick Piggin 已提交
5301 5302 5303 5304
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5305
		ret = 1;
L
Linus Torvalds 已提交
5306 5307
		spin_lock(lock);
	}
J
Jan Kara 已提交
5308
	return ret;
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5316
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5317
		local_bh_enable();
L
Linus Torvalds 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5329
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5340
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5341 5342 5343 5344 5345 5346 5347
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5348
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5349

5350
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5351 5352 5353
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5354
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5360
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5361 5362
	long ret;

5363
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5364 5365 5366
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5367
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5388
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5389
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5413
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5414
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5431
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5432
	unsigned int time_slice;
5433
	int retval;
L
Linus Torvalds 已提交
5434 5435 5436
	struct timespec t;

	if (pid < 0)
5437
		return -EINVAL;
L
Linus Torvalds 已提交
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5449 5450 5451 5452 5453 5454
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5455
		time_slice = DEF_TIMESLICE;
5456
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5457 5458 5459 5460 5461
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5462 5463
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5464 5465
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5466
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5467
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5468 5469
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5470

L
Linus Torvalds 已提交
5471 5472 5473 5474 5475
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5476
static const char stat_nam[] = "RSDTtZX";
5477

5478
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5479 5480
{
	unsigned long free = 0;
5481
	unsigned state;
L
Linus Torvalds 已提交
5482 5483

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5484
	printk(KERN_INFO "%-13.13s %c", p->comm,
5485
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5486
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5487
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5488
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5489
	else
I
Ingo Molnar 已提交
5490
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5491 5492
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5493
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5494
	else
I
Ingo Molnar 已提交
5495
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5496 5497 5498
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5499
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5500 5501
		while (!*n)
			n++;
5502
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5503 5504
	}
#endif
5505
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5506
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5507

5508
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5509 5510
}

I
Ingo Molnar 已提交
5511
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5512
{
5513
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5514

5515 5516 5517
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5518
#else
5519 5520
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5521 5522 5523 5524 5525 5526 5527 5528
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5529
		if (!state_filter || (p->state & state_filter))
5530
			sched_show_task(p);
L
Linus Torvalds 已提交
5531 5532
	} while_each_thread(g, p);

5533 5534
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5535 5536 5537
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5538
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5539 5540 5541 5542 5543
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5544 5545
}

I
Ingo Molnar 已提交
5546 5547
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5548
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5549 5550
}

5551 5552 5553 5554 5555 5556 5557 5558
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5559
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5560
{
5561
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5562 5563
	unsigned long flags;

I
Ingo Molnar 已提交
5564 5565 5566
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5567
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5568
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5569
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5570 5571 5572

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5573 5574 5575
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5576 5577 5578
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5579 5580 5581
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5582
	task_thread_info(idle)->preempt_count = 0;
5583
#endif
I
Ingo Molnar 已提交
5584 5585 5586 5587
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5624 5625 5626 5627
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5628
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5647
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5648 5649
 * call is not atomic; no spinlocks may be held.
 */
5650
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5651
{
5652
	struct migration_req req;
L
Linus Torvalds 已提交
5653
	unsigned long flags;
5654
	struct rq *rq;
5655
	int ret = 0;
L
Linus Torvalds 已提交
5656 5657

	rq = task_rq_lock(p, &flags);
5658
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5659 5660 5661 5662
		ret = -EINVAL;
		goto out;
	}

5663 5664 5665 5666 5667 5668
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
		     !cpus_equal(p->cpus_allowed, *new_mask))) {
		ret = -EINVAL;
		goto out;
	}

5669
	if (p->sched_class->set_cpus_allowed)
5670
		p->sched_class->set_cpus_allowed(p, new_mask);
5671
	else {
5672 5673
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5674 5675
	}

L
Linus Torvalds 已提交
5676
	/* Can the task run on the task's current CPU? If so, we're done */
5677
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5678 5679
		goto out;

5680
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5681 5682 5683 5684 5685 5686 5687 5688 5689
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5690

L
Linus Torvalds 已提交
5691 5692
	return ret;
}
5693
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5694 5695

/*
I
Ingo Molnar 已提交
5696
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5697 5698 5699 5700 5701 5702
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5703 5704
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5705
 */
5706
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5707
{
5708
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5709
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5710 5711

	if (unlikely(cpu_is_offline(dest_cpu)))
5712
		return ret;
L
Linus Torvalds 已提交
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5725
	on_rq = p->se.on_rq;
5726
	if (on_rq)
5727
		deactivate_task(rq_src, p, 0);
5728

L
Linus Torvalds 已提交
5729
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5730 5731 5732
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5733
	}
5734
	ret = 1;
L
Linus Torvalds 已提交
5735 5736
out:
	double_rq_unlock(rq_src, rq_dest);
5737
	return ret;
L
Linus Torvalds 已提交
5738 5739 5740 5741 5742 5743 5744
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5745
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5746 5747
{
	int cpu = (long)data;
5748
	struct rq *rq;
L
Linus Torvalds 已提交
5749 5750 5751 5752 5753 5754

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5755
		struct migration_req *req;
L
Linus Torvalds 已提交
5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5778
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5779 5780
		list_del_init(head->next);

N
Nick Piggin 已提交
5781 5782 5783
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5813
/*
5814
 * Figure out where task on dead CPU should go, use force if necessary.
5815 5816
 * NOTE: interrupts should be disabled by the caller
 */
5817
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5818
{
5819
	unsigned long flags;
L
Linus Torvalds 已提交
5820
	cpumask_t mask;
5821 5822
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5823

5824 5825 5826 5827 5828 5829 5830
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5831
		if (dest_cpu >= nr_cpu_ids)
5832 5833 5834
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5835
		if (dest_cpu >= nr_cpu_ids) {
5836 5837 5838
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5839 5840 5841 5842
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5843
			 * cpuset_cpus_allowed() will not block. It must be
5844 5845
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5846
			rq = task_rq_lock(p, &flags);
5847
			p->cpus_allowed = cpus_allowed;
5848 5849
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5850

5851 5852 5853 5854 5855
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5856
			if (p->mm && printk_ratelimit()) {
5857 5858
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5859 5860
					task_pid_nr(p), p->comm, dead_cpu);
			}
5861
		}
5862
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5863 5864 5865 5866 5867 5868 5869 5870 5871
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5872
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5873
{
5874
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5888
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5889

5890
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5891

5892 5893
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5894 5895
			continue;

5896 5897 5898
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5899

5900
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5901 5902
}

I
Ingo Molnar 已提交
5903 5904
/*
 * Schedules idle task to be the next runnable task on current CPU.
5905 5906
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5907 5908 5909
 */
void sched_idle_next(void)
{
5910
	int this_cpu = smp_processor_id();
5911
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5912 5913 5914 5915
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5916
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5917

5918 5919 5920
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5921 5922 5923
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5924
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5925

5926 5927
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5928 5929 5930 5931

	spin_unlock_irqrestore(&rq->lock, flags);
}

5932 5933
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5947
/* called under rq->lock with disabled interrupts */
5948
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5949
{
5950
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5951 5952

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5953
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5954 5955

	/* Cannot have done final schedule yet: would have vanished. */
5956
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5957

5958
	get_task_struct(p);
L
Linus Torvalds 已提交
5959 5960 5961

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5962
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5963 5964
	 * fine.
	 */
5965
	spin_unlock_irq(&rq->lock);
5966
	move_task_off_dead_cpu(dead_cpu, p);
5967
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5968

5969
	put_task_struct(p);
L
Linus Torvalds 已提交
5970 5971 5972 5973 5974
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5975
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5976
	struct task_struct *next;
5977

I
Ingo Molnar 已提交
5978 5979 5980
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5981
		update_rq_clock(rq);
5982
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5983 5984 5985
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5986

L
Linus Torvalds 已提交
5987 5988 5989 5990
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5991 5992 5993
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5994 5995
	{
		.procname	= "sched_domain",
5996
		.mode		= 0555,
5997
	},
I
Ingo Molnar 已提交
5998
	{0, },
5999 6000 6001
};

static struct ctl_table sd_ctl_root[] = {
6002
	{
6003
		.ctl_name	= CTL_KERN,
6004
		.procname	= "kernel",
6005
		.mode		= 0555,
6006 6007
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6008
	{0, },
6009 6010 6011 6012 6013
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6014
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6015 6016 6017 6018

	return entry;
}

6019 6020
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6021
	struct ctl_table *entry;
6022

6023 6024 6025
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6026
	 * will always be set. In the lowest directory the names are
6027 6028 6029
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6030 6031
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6032 6033 6034
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6035 6036 6037 6038 6039

	kfree(*tablep);
	*tablep = NULL;
}

6040
static void
6041
set_table_entry(struct ctl_table *entry,
6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6055
	struct ctl_table *table = sd_alloc_ctl_entry(12);
6056

6057 6058 6059
	if (table == NULL)
		return NULL;

6060
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6061
		sizeof(long), 0644, proc_doulongvec_minmax);
6062
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6063
		sizeof(long), 0644, proc_doulongvec_minmax);
6064
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6065
		sizeof(int), 0644, proc_dointvec_minmax);
6066
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6067
		sizeof(int), 0644, proc_dointvec_minmax);
6068
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6069
		sizeof(int), 0644, proc_dointvec_minmax);
6070
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6071
		sizeof(int), 0644, proc_dointvec_minmax);
6072
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6073
		sizeof(int), 0644, proc_dointvec_minmax);
6074
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6075
		sizeof(int), 0644, proc_dointvec_minmax);
6076
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6077
		sizeof(int), 0644, proc_dointvec_minmax);
6078
	set_table_entry(&table[9], "cache_nice_tries",
6079 6080
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6081
	set_table_entry(&table[10], "flags", &sd->flags,
6082
		sizeof(int), 0644, proc_dointvec_minmax);
6083
	/* &table[11] is terminator */
6084 6085 6086 6087

	return table;
}

6088
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6089 6090 6091 6092 6093 6094 6095 6096 6097
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6098 6099
	if (table == NULL)
		return NULL;
6100 6101 6102 6103 6104

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6105
		entry->mode = 0555;
6106 6107 6108 6109 6110 6111 6112 6113
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6114
static void register_sched_domain_sysctl(void)
6115 6116 6117 6118 6119
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6120 6121 6122
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6123 6124 6125
	if (entry == NULL)
		return;

6126
	for_each_online_cpu(i) {
6127 6128
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6129
		entry->mode = 0555;
6130
		entry->child = sd_alloc_ctl_cpu_table(i);
6131
		entry++;
6132
	}
6133 6134

	WARN_ON(sd_sysctl_header);
6135 6136
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6137

6138
/* may be called multiple times per register */
6139 6140
static void unregister_sched_domain_sysctl(void)
{
6141 6142
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6143
	sd_sysctl_header = NULL;
6144 6145
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6146
}
6147
#else
6148 6149 6150 6151
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6152 6153 6154 6155
{
}
#endif

6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

		cpu_set(rq->cpu, rq->rd->online);
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

		cpu_clear(rq->cpu, rq->rd->online);
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6186 6187 6188 6189
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6190 6191
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6192 6193
{
	struct task_struct *p;
6194
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6195
	unsigned long flags;
6196
	struct rq *rq;
L
Linus Torvalds 已提交
6197 6198

	switch (action) {
6199

L
Linus Torvalds 已提交
6200
	case CPU_UP_PREPARE:
6201
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6202
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6203 6204 6205 6206 6207
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6208
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6209 6210 6211
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6212

L
Linus Torvalds 已提交
6213
	case CPU_ONLINE:
6214
	case CPU_ONLINE_FROZEN:
6215
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6216
		wake_up_process(cpu_rq(cpu)->migration_thread);
6217 6218 6219 6220 6221 6222

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6223 6224

			set_rq_online(rq);
6225 6226
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6227
		break;
6228

L
Linus Torvalds 已提交
6229 6230
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6231
	case CPU_UP_CANCELED_FROZEN:
6232 6233
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6234
		/* Unbind it from offline cpu so it can run. Fall thru. */
6235 6236
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6237 6238 6239
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6240

L
Linus Torvalds 已提交
6241
	case CPU_DEAD:
6242
	case CPU_DEAD_FROZEN:
6243
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6244 6245 6246 6247 6248
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6249
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6250
		update_rq_clock(rq);
6251
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6252
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6253 6254
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6255
		migrate_dead_tasks(cpu);
6256
		spin_unlock_irq(&rq->lock);
6257
		cpuset_unlock();
L
Linus Torvalds 已提交
6258 6259 6260
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6261 6262 6263 6264 6265
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6266 6267
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6268 6269
			struct migration_req *req;

L
Linus Torvalds 已提交
6270
			req = list_entry(rq->migration_queue.next,
6271
					 struct migration_req, list);
L
Linus Torvalds 已提交
6272 6273 6274 6275 6276
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6277

6278 6279
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6280 6281 6282 6283 6284
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
6285
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6286 6287 6288
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6289 6290 6291 6292 6293 6294 6295 6296
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6297
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6298 6299 6300 6301
	.notifier_call = migration_call,
	.priority = 10
};

6302
void __init migration_init(void)
L
Linus Torvalds 已提交
6303 6304
{
	void *cpu = (void *)(long)smp_processor_id();
6305
	int err;
6306 6307

	/* Start one for the boot CPU: */
6308 6309
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6310 6311 6312 6313 6314 6315
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6316

6317
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6318

6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
static inline const char *sd_level_to_string(enum sched_domain_level lvl)
{
	switch (lvl) {
	case SD_LV_NONE:
			return "NONE";
	case SD_LV_SIBLING:
			return "SIBLING";
	case SD_LV_MC:
			return "MC";
	case SD_LV_CPU:
			return "CPU";
	case SD_LV_NODE:
			return "NODE";
	case SD_LV_ALLNODES:
			return "ALLNODES";
	case SD_LV_MAX:
			return "MAX";

	}
	return "MAX";
}

6341 6342
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6343
{
I
Ingo Molnar 已提交
6344
	struct sched_group *group = sd->groups;
6345
	char str[256];
L
Linus Torvalds 已提交
6346

6347
	cpulist_scnprintf(str, sizeof(str), sd->span);
6348
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6349 6350 6351 6352 6353 6354 6355 6356 6357

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6358 6359
	}

6360 6361
	printk(KERN_CONT "span %s level %s\n",
		str, sd_level_to_string(sd->level));
I
Ingo Molnar 已提交
6362 6363 6364 6365 6366 6367 6368 6369 6370

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6371

I
Ingo Molnar 已提交
6372
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6373
	do {
I
Ingo Molnar 已提交
6374 6375 6376
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6377 6378 6379
			break;
		}

I
Ingo Molnar 已提交
6380 6381 6382 6383 6384 6385
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6386

I
Ingo Molnar 已提交
6387 6388 6389 6390 6391
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6392

6393
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6394 6395 6396 6397
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6398

6399
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6400

6401
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6402
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6403

I
Ingo Molnar 已提交
6404 6405 6406
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6407

6408
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6409
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6410

6411
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6412 6413 6414 6415
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6416

I
Ingo Molnar 已提交
6417 6418
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6419
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6420
	int level = 0;
L
Linus Torvalds 已提交
6421

I
Ingo Molnar 已提交
6422 6423 6424 6425
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6426

I
Ingo Molnar 已提交
6427 6428
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6429 6430 6431 6432 6433 6434
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6435
	for (;;) {
6436
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6437
			break;
L
Linus Torvalds 已提交
6438 6439
		level++;
		sd = sd->parent;
6440
		if (!sd)
I
Ingo Molnar 已提交
6441 6442
			break;
	}
6443
	kfree(groupmask);
L
Linus Torvalds 已提交
6444
}
6445
#else /* !CONFIG_SCHED_DEBUG */
6446
# define sched_domain_debug(sd, cpu) do { } while (0)
6447
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6448

6449
static int sd_degenerate(struct sched_domain *sd)
6450 6451 6452 6453 6454 6455 6456 6457
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6458 6459 6460
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6474 6475
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6494 6495 6496
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6497 6498 6499 6500 6501 6502 6503
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

6513 6514
		if (cpu_isset(rq->cpu, old_rd->online))
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6515

6516 6517
		cpu_clear(rq->cpu, old_rd->span);

G
Gregory Haskins 已提交
6518 6519 6520 6521 6522 6523 6524
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6525
	cpu_set(rq->cpu, rd->span);
6526
	if (cpu_isset(rq->cpu, cpu_online_map))
6527
		set_rq_online(rq);
G
Gregory Haskins 已提交
6528 6529 6530 6531

	spin_unlock_irqrestore(&rq->lock, flags);
}

6532
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6533 6534 6535
{
	memset(rd, 0, sizeof(*rd));

6536 6537
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6538 6539

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6540 6541 6542 6543
}

static void init_defrootdomain(void)
{
6544
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6545 6546 6547
	atomic_set(&def_root_domain.refcount, 1);
}

6548
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6549 6550 6551 6552 6553 6554 6555
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6556
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6557 6558 6559 6560

	return rd;
}

L
Linus Torvalds 已提交
6561
/*
I
Ingo Molnar 已提交
6562
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6563 6564
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6565 6566
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6567
{
6568
	struct rq *rq = cpu_rq(cpu);
6569 6570 6571 6572 6573 6574 6575
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6576
		if (sd_parent_degenerate(tmp, parent)) {
6577
			tmp->parent = parent->parent;
6578 6579 6580
			if (parent->parent)
				parent->parent->child = tmp;
		}
6581 6582
	}

6583
	if (sd && sd_degenerate(sd)) {
6584
		sd = sd->parent;
6585 6586 6587
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6588 6589 6590

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6591
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6592
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6593 6594 6595
}

/* cpus with isolated domains */
6596
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6611
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6612 6613

/*
6614 6615 6616 6617
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6618 6619 6620 6621 6622
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6623
static void
6624
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6625
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6626 6627 6628
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6629 6630 6631 6632
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6633 6634 6635
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6636
		struct sched_group *sg;
6637
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6638 6639
		int j;

6640
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6641 6642
			continue;

6643
		cpus_clear(sg->cpumask);
6644
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6645

6646 6647
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6648 6649
				continue;

6650
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6662
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6663

6664
#ifdef CONFIG_NUMA
6665

6666 6667 6668 6669 6670
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6671
 * Find the next node to include in a given scheduling domain. Simply
6672 6673 6674 6675
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6676
static int find_next_best_node(int node, nodemask_t *used_nodes)
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6690
		if (node_isset(n, *used_nodes))
6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6702
	node_set(best_node, *used_nodes);
6703 6704 6705 6706 6707 6708
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6709
 * @span: resulting cpumask
6710
 *
I
Ingo Molnar 已提交
6711
 * Given a node, construct a good cpumask for its sched_domain to span. It
6712 6713 6714
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6715
static void sched_domain_node_span(int node, cpumask_t *span)
6716
{
6717 6718
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6719
	int i;
6720

6721
	cpus_clear(*span);
6722
	nodes_clear(used_nodes);
6723

6724
	cpus_or(*span, *span, *nodemask);
6725
	node_set(node, used_nodes);
6726 6727

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6728
		int next_node = find_next_best_node(node, &used_nodes);
6729

6730
		node_to_cpumask_ptr_next(nodemask, next_node);
6731
		cpus_or(*span, *span, *nodemask);
6732 6733
	}
}
6734
#endif /* CONFIG_NUMA */
6735

6736
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6737

6738
/*
6739
 * SMT sched-domains:
6740
 */
L
Linus Torvalds 已提交
6741 6742
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6743
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6744

I
Ingo Molnar 已提交
6745
static int
6746 6747
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6748
{
6749 6750
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6751 6752
	return cpu;
}
6753
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
6754

6755 6756 6757
/*
 * multi-core sched-domains:
 */
6758 6759
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6760
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6761
#endif /* CONFIG_SCHED_MC */
6762 6763

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6764
static int
6765 6766
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6767
{
6768
	int group;
6769 6770 6771 6772

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6773 6774 6775
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6776 6777
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6778
static int
6779 6780
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6781
{
6782 6783
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6784 6785 6786 6787
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6788
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6789
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6790

I
Ingo Molnar 已提交
6791
static int
6792 6793
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6794
{
6795
	int group;
6796
#ifdef CONFIG_SCHED_MC
6797 6798 6799
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6800
#elif defined(CONFIG_SCHED_SMT)
6801 6802 6803
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6804
#else
6805
	group = cpu;
L
Linus Torvalds 已提交
6806
#endif
6807 6808 6809
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6810 6811 6812 6813
}

#ifdef CONFIG_NUMA
/*
6814 6815 6816
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6817
 */
6818
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6819
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6820

6821
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6822
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6823

6824
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6825
				 struct sched_group **sg, cpumask_t *nodemask)
6826
{
6827 6828
	int group;

6829 6830 6831
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6832 6833 6834 6835

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6836
}
6837

6838 6839 6840 6841 6842 6843 6844
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6845 6846 6847
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6848

6849 6850 6851 6852 6853 6854 6855 6856
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6857

6858 6859 6860 6861
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6862
}
6863
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
6864

6865
#ifdef CONFIG_NUMA
6866
/* Free memory allocated for various sched_group structures */
6867
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6868
{
6869
	int cpu, i;
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6881 6882 6883
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6900
#else /* !CONFIG_NUMA */
6901
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6902 6903
{
}
6904
#endif /* CONFIG_NUMA */
6905

6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6932 6933
	sd->groups->__cpu_power = 0;

6934 6935 6936 6937 6938 6939 6940 6941 6942 6943
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6944
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6945 6946 6947 6948 6949 6950 6951 6952
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6953
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6954 6955 6956 6957
		group = group->next;
	} while (group != child->groups);
}

6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6969
	sd->level = SD_LV_##type;				\
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

7018 7019 7020 7021
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7022 7023 7024 7025 7026 7027
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7053
/*
7054 7055
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7056
 */
7057 7058
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7059 7060
{
	int i;
G
Gregory Haskins 已提交
7061
	struct root_domain *rd;
7062 7063
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
7064 7065
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
7066
	int sd_allnodes = 0;
7067 7068 7069 7070

	/*
	 * Allocate the per-node list of sched groups
	 */
7071
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7072
				    GFP_KERNEL);
7073 7074
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7075
		return -ENOMEM;
7076 7077
	}
#endif
L
Linus Torvalds 已提交
7078

7079
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7080 7081
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7082 7083 7084
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
7085 7086 7087
		return -ENOMEM;
	}

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
7107
	/*
7108
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7109
	 */
7110
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7111
		struct sched_domain *sd = NULL, *p;
7112
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
7113

7114 7115
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
7116 7117

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
7118
		if (cpus_weight(*cpu_map) >
7119
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7120
			sd = &per_cpu(allnodes_domains, i);
7121
			SD_INIT(sd, ALLNODES);
7122
			set_domain_attribute(sd, attr);
7123
			sd->span = *cpu_map;
7124
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7125
			p = sd;
7126
			sd_allnodes = 1;
7127 7128 7129
		} else
			p = NULL;

L
Linus Torvalds 已提交
7130
		sd = &per_cpu(node_domains, i);
7131
		SD_INIT(sd, NODE);
7132
		set_domain_attribute(sd, attr);
7133
		sched_domain_node_span(cpu_to_node(i), &sd->span);
7134
		sd->parent = p;
7135 7136
		if (p)
			p->child = sd;
7137
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7138 7139 7140 7141
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7142
		SD_INIT(sd, CPU);
7143
		set_domain_attribute(sd, attr);
7144
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7145
		sd->parent = p;
7146 7147
		if (p)
			p->child = sd;
7148
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7149

7150 7151 7152
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7153
		SD_INIT(sd, MC);
7154
		set_domain_attribute(sd, attr);
7155 7156 7157
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7158
		p->child = sd;
7159
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7160 7161
#endif

L
Linus Torvalds 已提交
7162 7163 7164
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7165
		SD_INIT(sd, SIBLING);
7166
		set_domain_attribute(sd, attr);
7167
		sd->span = per_cpu(cpu_sibling_map, i);
7168
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7169
		sd->parent = p;
7170
		p->child = sd;
7171
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7172 7173 7174 7175 7176
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7177
	for_each_cpu_mask(i, *cpu_map) {
7178 7179 7180 7181 7182 7183
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7184 7185
			continue;

I
Ingo Molnar 已提交
7186
		init_sched_build_groups(this_sibling_map, cpu_map,
7187 7188
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7189 7190 7191
	}
#endif

7192 7193 7194
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7195 7196 7197 7198 7199 7200
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7201
			continue;
7202

I
Ingo Molnar 已提交
7203
		init_sched_build_groups(this_core_map, cpu_map,
7204 7205
					&cpu_to_core_group,
					send_covered, tmpmask);
7206 7207 7208
	}
#endif

L
Linus Torvalds 已提交
7209 7210
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7211 7212
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7213

7214 7215 7216
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7217 7218
			continue;

7219 7220 7221
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7222 7223 7224 7225
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7226 7227 7228 7229 7230 7231 7232
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7233 7234 7235 7236

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7237 7238 7239
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7240 7241
		int j;

7242 7243 7244 7245 7246
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7247
			sched_group_nodes[i] = NULL;
7248
			continue;
7249
		}
7250

7251
		sched_domain_node_span(i, domainspan);
7252
		cpus_and(*domainspan, *domainspan, *cpu_map);
7253

7254
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7255 7256 7257 7258 7259
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7260
		sched_group_nodes[i] = sg;
7261
		for_each_cpu_mask(j, *nodemask) {
7262
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7263

7264 7265 7266
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7267
		sg->__cpu_power = 0;
7268
		sg->cpumask = *nodemask;
7269
		sg->next = sg;
7270
		cpus_or(*covered, *covered, *nodemask);
7271 7272 7273
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7274
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7275
			int n = (i + j) % MAX_NUMNODES;
7276
			node_to_cpumask_ptr(pnodemask, n);
7277

7278 7279 7280 7281
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7282 7283
				break;

7284 7285
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7286 7287
				continue;

7288 7289
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7290 7291 7292
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7293
				goto error;
7294
			}
7295
			sg->__cpu_power = 0;
7296
			sg->cpumask = *tmpmask;
7297
			sg->next = prev->next;
7298
			cpus_or(*covered, *covered, *tmpmask);
7299 7300 7301 7302
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7303 7304 7305
#endif

	/* Calculate CPU power for physical packages and nodes */
7306
#ifdef CONFIG_SCHED_SMT
7307
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7308 7309
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7310
		init_sched_groups_power(i, sd);
7311
	}
L
Linus Torvalds 已提交
7312
#endif
7313
#ifdef CONFIG_SCHED_MC
7314
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7315 7316
		struct sched_domain *sd = &per_cpu(core_domains, i);

7317
		init_sched_groups_power(i, sd);
7318 7319
	}
#endif
7320

7321
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7322 7323
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7324
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7325 7326
	}

7327
#ifdef CONFIG_NUMA
7328 7329
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7330

7331 7332
	if (sd_allnodes) {
		struct sched_group *sg;
7333

7334 7335
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7336 7337
		init_numa_sched_groups_power(sg);
	}
7338 7339
#endif

L
Linus Torvalds 已提交
7340
	/* Attach the domains */
7341
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7342 7343 7344
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7345 7346
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7347 7348 7349
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7350
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7351
	}
7352

7353
	SCHED_CPUMASK_FREE((void *)allmasks);
7354 7355
	return 0;

7356
#ifdef CONFIG_NUMA
7357
error:
7358 7359
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7360
	return -ENOMEM;
7361
#endif
L
Linus Torvalds 已提交
7362
}
P
Paul Jackson 已提交
7363

7364 7365 7366 7367 7368
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7369 7370
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7371 7372
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7373 7374 7375 7376 7377 7378 7379 7380

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7381 7382 7383 7384
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396
/*
 * Free current domain masks.
 * Called after all cpus are attached to NULL domain.
 */
static void free_sched_domains(void)
{
	ndoms_cur = 0;
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = &fallback_doms;
}

7397
/*
I
Ingo Molnar 已提交
7398
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7399 7400
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7401
 */
7402
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7403
{
7404 7405
	int err;

7406
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7407 7408 7409 7410 7411
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7412
	dattr_cur = NULL;
7413
	err = build_sched_domains(doms_cur);
7414
	register_sched_domain_sysctl();
7415 7416

	return err;
7417 7418
}

7419 7420
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7421
{
7422
	free_sched_groups(cpu_map, tmpmask);
7423
}
L
Linus Torvalds 已提交
7424

7425 7426 7427 7428
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7429
static void detach_destroy_domains(const cpumask_t *cpu_map)
7430
{
7431
	cpumask_t tmpmask;
7432 7433
	int i;

7434 7435
	unregister_sched_domain_sysctl();

7436
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7437
		cpu_attach_domain(NULL, &def_root_domain, i);
7438
	synchronize_sched();
7439
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7440 7441
}

7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7458 7459
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7460
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7461 7462 7463 7464
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7465 7466 7467
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7468 7469 7470
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7471 7472
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7473 7474 7475 7476 7477 7478
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7479 7480
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7481 7482 7483
{
	int i, j;

7484
	mutex_lock(&sched_domains_mutex);
7485

7486 7487 7488
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7489 7490 7491 7492
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7493
		dattr_new = NULL;
P
Paul Jackson 已提交
7494 7495 7496 7497 7498
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7499 7500
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7512 7513
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7514 7515 7516
				goto match2;
		}
		/* no match - add a new doms_new */
7517 7518
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7519 7520 7521 7522 7523 7524 7525
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7526
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7527
	doms_cur = doms_new;
7528
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7529
	ndoms_cur = ndoms_new;
7530 7531

	register_sched_domain_sysctl();
7532

7533
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7534 7535
}

7536
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7537
int arch_reinit_sched_domains(void)
7538 7539 7540
{
	int err;

7541
	get_online_cpus();
7542
	mutex_lock(&sched_domains_mutex);
7543
	detach_destroy_domains(&cpu_online_map);
7544
	free_sched_domains();
7545
	err = arch_init_sched_domains(&cpu_online_map);
7546
	mutex_unlock(&sched_domains_mutex);
7547
	put_online_cpus();
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7574 7575
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7576 7577 7578
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7579 7580
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7581 7582 7583 7584 7585 7586 7587
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7588 7589
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7590 7591 7592
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7613
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7614

L
Linus Torvalds 已提交
7615
/*
I
Ingo Molnar 已提交
7616
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7617
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7618
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7619 7620 7621 7622 7623
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
P
Peter Zijlstra 已提交
7624 7625
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
7626 7627
	switch (action) {
	case CPU_DOWN_PREPARE:
7628
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
7629 7630 7631 7632
		disable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
7633
		detach_destroy_domains(&cpu_online_map);
7634
		free_sched_domains();
L
Linus Torvalds 已提交
7635 7636
		return NOTIFY_OK;

P
Peter Zijlstra 已提交
7637

L
Linus Torvalds 已提交
7638
	case CPU_DOWN_FAILED:
7639
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7640
	case CPU_ONLINE:
7641
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
7642 7643 7644 7645
		enable_runtime(cpu_rq(cpu));
		/* fall-through */
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7646
	case CPU_DEAD:
7647
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7648 7649 7650 7651 7652 7653 7654 7655
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

7656 7657 7658 7659 7660 7661 7662
#ifndef CONFIG_CPUSETS
	/*
	 * Create default domain partitioning if cpusets are disabled.
	 * Otherwise we let cpusets rebuild the domains based on the
	 * current setup.
	 */

L
Linus Torvalds 已提交
7663
	/* The hotplug lock is already held by cpu_up/cpu_down */
7664
	arch_init_sched_domains(&cpu_online_map);
7665
#endif
L
Linus Torvalds 已提交
7666 7667 7668 7669 7670 7671

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7672 7673
	cpumask_t non_isolated_cpus;

7674 7675 7676 7677 7678
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7679
	get_online_cpus();
7680
	mutex_lock(&sched_domains_mutex);
7681
	arch_init_sched_domains(&cpu_online_map);
7682
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7683 7684
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7685
	mutex_unlock(&sched_domains_mutex);
7686
	put_online_cpus();
L
Linus Torvalds 已提交
7687 7688
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7689
	init_hrtick();
7690 7691

	/* Move init over to a non-isolated CPU */
7692
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7693
		BUG();
I
Ingo Molnar 已提交
7694
	sched_init_granularity();
L
Linus Torvalds 已提交
7695 7696 7697 7698
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7699
	sched_init_granularity();
L
Linus Torvalds 已提交
7700 7701 7702 7703 7704 7705 7706 7707 7708 7709
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7710
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7711 7712
{
	cfs_rq->tasks_timeline = RB_ROOT;
7713
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7714 7715 7716
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7717
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7718 7719
}

P
Peter Zijlstra 已提交
7720 7721 7722 7723 7724 7725 7726
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7727
		INIT_LIST_HEAD(array->queue + i);
P
Peter Zijlstra 已提交
7728 7729 7730 7731 7732
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7733
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7734 7735
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7736 7737 7738 7739 7740 7741 7742
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7743 7744
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7745

7746
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7747
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7748 7749
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7750 7751
}

P
Peter Zijlstra 已提交
7752
#ifdef CONFIG_FAIR_GROUP_SCHED
7753 7754 7755
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7756
{
7757
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7758 7759 7760 7761 7762 7763 7764
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7765 7766 7767 7768
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7769 7770 7771 7772 7773
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7774 7775
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7776
	se->load.inv_weight = 0;
7777
	se->parent = parent;
P
Peter Zijlstra 已提交
7778
}
7779
#endif
P
Peter Zijlstra 已提交
7780

7781
#ifdef CONFIG_RT_GROUP_SCHED
7782 7783 7784
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7785
{
7786 7787
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7788 7789 7790 7791
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7792
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7793 7794 7795 7796
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7797 7798 7799
	if (!rt_se)
		return;

7800 7801 7802 7803 7804
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7805
	rt_se->my_q = rt_rq;
7806
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7807 7808 7809 7810
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7811 7812
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7813
	int i, j;
7814 7815 7816 7817 7818 7819 7820
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7821 7822 7823
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7824 7825 7826 7827 7828 7829
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7830
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7831 7832 7833 7834 7835 7836 7837

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7838 7839 7840 7841 7842 7843 7844

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7845 7846
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
7847 7848 7849 7850 7851
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7852 7853 7854 7855 7856 7857 7858 7859
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7860 7861
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7862
	}
I
Ingo Molnar 已提交
7863

G
Gregory Haskins 已提交
7864 7865 7866 7867
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7868 7869 7870 7871 7872 7873
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7874 7875 7876
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
7877 7878
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
7879

7880
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7881
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7882 7883 7884 7885 7886 7887
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
7888 7889
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
7890

7891
	for_each_possible_cpu(i) {
7892
		struct rq *rq;
L
Linus Torvalds 已提交
7893 7894 7895

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7896
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7897
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7898
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7899
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7900
#ifdef CONFIG_FAIR_GROUP_SCHED
7901
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7902
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7923
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7924
#elif defined CONFIG_USER_SCHED
7925 7926
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7938
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7939
				&per_cpu(init_cfs_rq, i),
7940 7941
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7942

7943
#endif
D
Dhaval Giani 已提交
7944 7945 7946
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7947
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7948
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7949
#ifdef CONFIG_CGROUP_SCHED
7950
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7951
#elif defined CONFIG_USER_SCHED
7952
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7953
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7954
				&per_cpu(init_rt_rq, i),
7955 7956
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7957
#endif
I
Ingo Molnar 已提交
7958
#endif
L
Linus Torvalds 已提交
7959

I
Ingo Molnar 已提交
7960 7961
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7962
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7963
		rq->sd = NULL;
G
Gregory Haskins 已提交
7964
		rq->rd = NULL;
L
Linus Torvalds 已提交
7965
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7966
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7967
		rq->push_cpu = 0;
7968
		rq->cpu = i;
7969
		rq->online = 0;
L
Linus Torvalds 已提交
7970 7971
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7972
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7973
#endif
P
Peter Zijlstra 已提交
7974
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7975 7976 7977
		atomic_set(&rq->nr_iowait, 0);
	}

7978
	set_load_weight(&init_task);
7979

7980 7981 7982 7983
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7984 7985 7986 7987
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7988 7989 7990 7991
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8005 8006 8007 8008
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8009 8010

	scheduler_running = 1;
L
Linus Torvalds 已提交
8011 8012 8013 8014 8015
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8016
#ifdef in_atomic
L
Linus Torvalds 已提交
8017 8018 8019 8020 8021 8022 8023
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
8024
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
8025 8026 8027
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
8028
		debug_show_held_locks(current);
8029 8030
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
8031 8032 8033 8034 8035 8036 8037 8038
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8039 8040 8041
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8042

8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8054 8055
void normalize_rt_tasks(void)
{
8056
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8057
	unsigned long flags;
8058
	struct rq *rq;
L
Linus Torvalds 已提交
8059

8060
	read_lock_irqsave(&tasklist_lock, flags);
8061
	do_each_thread(g, p) {
8062 8063 8064 8065 8066 8067
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8068 8069
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8070 8071 8072
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8073
#endif
I
Ingo Molnar 已提交
8074 8075 8076 8077 8078 8079 8080 8081

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8082
			continue;
I
Ingo Molnar 已提交
8083
		}
L
Linus Torvalds 已提交
8084

8085
		spin_lock(&p->pi_lock);
8086
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8087

8088
		normalize_task(rq, p);
8089

8090
		__task_rq_unlock(rq);
8091
		spin_unlock(&p->pi_lock);
8092 8093
	} while_each_thread(g, p);

8094
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8095 8096 8097
}

#endif /* CONFIG_MAGIC_SYSRQ */
8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8116
struct task_struct *curr_task(int cpu)
8117 8118 8119 8120 8121 8122 8123 8124 8125 8126
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8127 8128
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8129 8130 8131 8132 8133 8134 8135
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8136
void set_curr_task(int cpu, struct task_struct *p)
8137 8138 8139 8140 8141
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8142

8143 8144
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8159 8160
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8161 8162
{
	struct cfs_rq *cfs_rq;
8163
	struct sched_entity *se, *parent_se;
8164
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8165 8166
	int i;

8167
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8168 8169
	if (!tg->cfs_rq)
		goto err;
8170
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8171 8172
	if (!tg->se)
		goto err;
8173 8174

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8175 8176

	for_each_possible_cpu(i) {
8177
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8178

P
Peter Zijlstra 已提交
8179 8180
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8181 8182 8183
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8184 8185
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8186 8187 8188
		if (!se)
			goto err;

8189 8190
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8209
#else /* !CONFG_FAIR_GROUP_SCHED */
8210 8211 8212 8213
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8214 8215
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8227
#endif /* CONFIG_FAIR_GROUP_SCHED */
8228 8229

#ifdef CONFIG_RT_GROUP_SCHED
8230 8231 8232 8233
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8234 8235
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8247 8248
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8249 8250
{
	struct rt_rq *rt_rq;
8251
	struct sched_rt_entity *rt_se, *parent_se;
8252 8253 8254
	struct rq *rq;
	int i;

8255
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8256 8257
	if (!tg->rt_rq)
		goto err;
8258
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8259 8260 8261
	if (!tg->rt_se)
		goto err;

8262 8263
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8264 8265 8266 8267

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8268 8269 8270 8271
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8272

P
Peter Zijlstra 已提交
8273 8274 8275 8276
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8277

8278 8279
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8280 8281
	}

8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8298
#else /* !CONFIG_RT_GROUP_SCHED */
8299 8300 8301 8302
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8303 8304
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8316
#endif /* CONFIG_RT_GROUP_SCHED */
8317

8318
#ifdef CONFIG_GROUP_SCHED
8319 8320 8321 8322 8323 8324 8325 8326
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8327
struct task_group *sched_create_group(struct task_group *parent)
8328 8329 8330 8331 8332 8333 8334 8335 8336
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8337
	if (!alloc_fair_sched_group(tg, parent))
8338 8339
		goto err;

8340
	if (!alloc_rt_sched_group(tg, parent))
8341 8342
		goto err;

8343
	spin_lock_irqsave(&task_group_lock, flags);
8344
	for_each_possible_cpu(i) {
8345 8346
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8347
	}
P
Peter Zijlstra 已提交
8348
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8349 8350 8351 8352 8353 8354

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8355
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8356

8357
	return tg;
S
Srivatsa Vaddagiri 已提交
8358 8359

err:
P
Peter Zijlstra 已提交
8360
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8361 8362 8363
	return ERR_PTR(-ENOMEM);
}

8364
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8365
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8366 8367
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8368
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8369 8370
}

8371
/* Destroy runqueue etc associated with a task group */
8372
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8373
{
8374
	unsigned long flags;
8375
	int i;
S
Srivatsa Vaddagiri 已提交
8376

8377
	spin_lock_irqsave(&task_group_lock, flags);
8378
	for_each_possible_cpu(i) {
8379 8380
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8381
	}
P
Peter Zijlstra 已提交
8382
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8383
	list_del_rcu(&tg->siblings);
8384
	spin_unlock_irqrestore(&task_group_lock, flags);
8385 8386

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8387
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8388 8389
}

8390
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8391 8392 8393
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8394 8395
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8396 8397 8398 8399 8400 8401 8402 8403 8404
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8405
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8406 8407
	on_rq = tsk->se.on_rq;

8408
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8409
		dequeue_task(rq, tsk, 0);
8410 8411
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8412

P
Peter Zijlstra 已提交
8413
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8414

P
Peter Zijlstra 已提交
8415 8416 8417 8418 8419
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8420 8421 8422
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8423
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8424 8425 8426

	task_rq_unlock(rq, &flags);
}
8427
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
8428

8429
#ifdef CONFIG_FAIR_GROUP_SCHED
8430
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8431 8432 8433 8434 8435
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
8436
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8437 8438 8439
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8440
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8441

8442
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8443
		enqueue_entity(cfs_rq, se, 0);
8444
}
8445

8446 8447 8448 8449 8450 8451 8452 8453 8454
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
8455 8456
}

8457 8458
static DEFINE_MUTEX(shares_mutex);

8459
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8460 8461
{
	int i;
8462
	unsigned long flags;
8463

8464 8465 8466 8467 8468 8469
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8470 8471
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8472 8473
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8474

8475
	mutex_lock(&shares_mutex);
8476
	if (tg->shares == shares)
8477
		goto done;
S
Srivatsa Vaddagiri 已提交
8478

8479
	spin_lock_irqsave(&task_group_lock, flags);
8480 8481
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8482
	list_del_rcu(&tg->siblings);
8483
	spin_unlock_irqrestore(&task_group_lock, flags);
8484 8485 8486 8487 8488 8489 8490 8491

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8492
	tg->shares = shares;
8493 8494 8495 8496 8497
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
8498
		set_se_shares(tg->se[i], shares);
8499
	}
S
Srivatsa Vaddagiri 已提交
8500

8501 8502 8503 8504
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8505
	spin_lock_irqsave(&task_group_lock, flags);
8506 8507
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8508
	list_add_rcu(&tg->siblings, &tg->parent->children);
8509
	spin_unlock_irqrestore(&task_group_lock, flags);
8510
done:
8511
	mutex_unlock(&shares_mutex);
8512
	return 0;
S
Srivatsa Vaddagiri 已提交
8513 8514
}

8515 8516 8517 8518
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8519
#endif
8520

8521
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8522
/*
P
Peter Zijlstra 已提交
8523
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8524
 */
P
Peter Zijlstra 已提交
8525 8526 8527 8528 8529 8530 8531
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8532
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8533 8534
}

8535 8536 8537
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
8538
	struct task_group *tgi, *parent = tg->parent;
8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

8562
	return total + to_ratio(period, runtime) <=
8563 8564 8565 8566
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8567
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8568 8569 8570
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8571
	unsigned long global_ratio =
8572
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8573 8574

	rcu_read_lock();
P
Peter Zijlstra 已提交
8575 8576 8577
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8578

8579 8580
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8581 8582
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8583

P
Peter Zijlstra 已提交
8584
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8585
}
8586
#endif
P
Peter Zijlstra 已提交
8587

8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8599 8600
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8601
{
P
Peter Zijlstra 已提交
8602
	int i, err = 0;
P
Peter Zijlstra 已提交
8603 8604

	mutex_lock(&rt_constraints_mutex);
8605
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8606
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8607 8608 8609
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8610 8611 8612 8613
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8614 8615

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8616 8617
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8618 8619 8620 8621 8622 8623 8624 8625 8626

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8627
 unlock:
8628
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8629 8630 8631
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8632 8633
}

8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8646 8647 8648 8649
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8650
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8651 8652
		return -1;

8653
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8654 8655 8656
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
8679 8680
	struct task_group *tg = &root_task_group;
	u64 rt_runtime, rt_period;
8681 8682
	int ret = 0;

8683 8684 8685
	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = tg->rt_bandwidth.rt_runtime;

8686
	mutex_lock(&rt_constraints_mutex);
8687
	if (!__rt_schedulable(tg, rt_period, rt_runtime))
8688 8689 8690 8691 8692
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
8693
#else /* !CONFIG_RT_GROUP_SCHED */
8694 8695
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8709 8710
	return 0;
}
8711
#endif /* CONFIG_RT_GROUP_SCHED */
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8742

8743
#ifdef CONFIG_CGROUP_SCHED
8744 8745

/* return corresponding task_group object of a cgroup */
8746
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8747
{
8748 8749
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8750 8751 8752
}

static struct cgroup_subsys_state *
8753
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8754
{
8755
	struct task_group *tg, *parent;
8756

8757
	if (!cgrp->parent) {
8758
		/* This is early initialization for the top cgroup */
8759
		init_task_group.css.cgroup = cgrp;
8760 8761 8762
		return &init_task_group.css;
	}

8763 8764
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8765 8766 8767 8768
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8769
	tg->css.cgroup = cgrp;
8770 8771 8772 8773

	return &tg->css;
}

I
Ingo Molnar 已提交
8774 8775
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8776
{
8777
	struct task_group *tg = cgroup_tg(cgrp);
8778 8779 8780 8781

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8782 8783 8784
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8785
{
8786 8787
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8788
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8789 8790
		return -EINVAL;
#else
8791 8792 8793
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8794
#endif
8795 8796 8797 8798 8799

	return 0;
}

static void
8800
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8801 8802 8803 8804 8805
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8806
#ifdef CONFIG_FAIR_GROUP_SCHED
8807
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8808
				u64 shareval)
8809
{
8810
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8811 8812
}

8813
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8814
{
8815
	struct task_group *tg = cgroup_tg(cgrp);
8816 8817 8818

	return (u64) tg->shares;
}
8819
#endif /* CONFIG_FAIR_GROUP_SCHED */
8820

8821
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8822
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8823
				s64 val)
P
Peter Zijlstra 已提交
8824
{
8825
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8826 8827
}

8828
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8829
{
8830
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8831
}
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8843
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8844

8845
static struct cftype cpu_files[] = {
8846
#ifdef CONFIG_FAIR_GROUP_SCHED
8847 8848
	{
		.name = "shares",
8849 8850
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8851
	},
8852 8853
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8854
	{
P
Peter Zijlstra 已提交
8855
		.name = "rt_runtime_us",
8856 8857
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8858
	},
8859 8860
	{
		.name = "rt_period_us",
8861 8862
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8863
	},
8864
#endif
8865 8866 8867 8868
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8869
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8870 8871 8872
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8873 8874 8875 8876 8877 8878 8879
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8880 8881 8882
	.early_init	= 1,
};

8883
#endif	/* CONFIG_CGROUP_SCHED */
8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8904
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8905
{
8906
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8919
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8936
static void
8937
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8938
{
8939
	struct cpuacct *ca = cgroup_ca(cgrp);
8940 8941 8942 8943 8944 8945

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8946
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8947
{
8948
	struct cpuacct *ca = cgroup_ca(cgrp);
8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8990 8991 8992
static struct cftype files[] = {
	{
		.name = "usage",
8993 8994
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8995 8996 8997
	},
};

8998
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8999
{
9000
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */