sched.c 234.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
58
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
59
#include <linux/seq_file.h>
60
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
61 62
#include <linux/syscalls.h>
#include <linux/times.h>
63
#include <linux/tsacct_kern.h>
64
#include <linux/kprobes.h>
65
#include <linux/delayacct.h>
66
#include <linux/reciprocal_div.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
71
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
75
#include <trace/sched.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
101
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
102
 */
103
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
104

I
Ingo Molnar 已提交
105 106 107
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
108 109 110
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
111
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
112 113 114
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
115

116 117 118 119 120
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

121 122 123 124 125 126
DEFINE_TRACE(sched_wait_task);
DEFINE_TRACE(sched_wakeup);
DEFINE_TRACE(sched_wakeup_new);
DEFINE_TRACE(sched_switch);
DEFINE_TRACE(sched_migrate_task);

127
#ifdef CONFIG_SMP
128 129 130

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

151 152
static inline int rt_policy(int policy)
{
153
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
154 155 156 157 158 159 160 161 162
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
163
/*
I
Ingo Molnar 已提交
164
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
165
 */
I
Ingo Molnar 已提交
166 167 168 169 170
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

171
struct rt_bandwidth {
I
Ingo Molnar 已提交
172 173 174 175 176
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
210 211
	spin_lock_init(&rt_b->rt_runtime_lock);

212 213 214 215 216
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

217 218 219
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
220 221 222 223 224 225
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

226
	if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
227 228 229 230 231 232 233 234 235 236 237 238
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
239 240
		hrtimer_start_expires(&rt_b->rt_period_timer,
				HRTIMER_MODE_ABS);
241 242 243 244 245 246 247 248 249 250 251
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

252 253 254 255 256 257
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

258
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259

260 261
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
262 263
struct cfs_rq;

P
Peter Zijlstra 已提交
264 265
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
266
/* task group related information */
267
struct task_group {
268
#ifdef CONFIG_CGROUP_SCHED
269 270
	struct cgroup_subsys_state css;
#endif
271

272 273 274 275
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

276
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
277 278 279 280 281
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
282 283 284 285 286 287
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

288
	struct rt_bandwidth rt_bandwidth;
289
#endif
290

291
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
292
	struct list_head list;
P
Peter Zijlstra 已提交
293 294 295 296

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
297 298
};

D
Dhaval Giani 已提交
299
#ifdef CONFIG_USER_SCHED
300

301 302 303 304 305 306
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

307 308 309 310 311 312 313
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

314
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
315 316 317 318
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
319
#endif /* CONFIG_FAIR_GROUP_SCHED */
320 321 322 323

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
324
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
325
#else /* !CONFIG_USER_SCHED */
326
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
327
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
328

329
/* task_group_lock serializes add/remove of task groups and also changes to
330 331
 * a task group's cpu shares.
 */
332
static DEFINE_SPINLOCK(task_group_lock);
333

334 335 336
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
337
#else /* !CONFIG_USER_SCHED */
338
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
339
#endif /* CONFIG_USER_SCHED */
340

341
/*
342 343 344 345
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
346 347 348
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
349
#define MIN_SHARES	2
350
#define MAX_SHARES	(1UL << 18)
351

352 353 354
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
355
/* Default task group.
I
Ingo Molnar 已提交
356
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
357
 */
358
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
359 360

/* return group to which a task belongs */
361
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
362
{
363
	struct task_group *tg;
364

365
#ifdef CONFIG_USER_SCHED
366 367 368
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
369
#elif defined(CONFIG_CGROUP_SCHED)
370 371
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
372
#else
I
Ingo Molnar 已提交
373
	tg = &init_task_group;
374
#endif
375
	return tg;
S
Srivatsa Vaddagiri 已提交
376 377 378
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
379
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
380
{
381
#ifdef CONFIG_FAIR_GROUP_SCHED
382 383
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
384
#endif
P
Peter Zijlstra 已提交
385

386
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
387 388
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
389
#endif
S
Srivatsa Vaddagiri 已提交
390 391 392 393
}

#else

P
Peter Zijlstra 已提交
394
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
395 396 397 398
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
399

400
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
401

I
Ingo Molnar 已提交
402 403 404 405 406 407
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
408
	u64 min_vruntime;
I
Ingo Molnar 已提交
409 410 411

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
412 413 414 415 416 417

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
418 419
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
420
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
421

P
Peter Zijlstra 已提交
422
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
425 426
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
427 428
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
429 430 431 432 433 434
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
435 436
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
437 438 439

#ifdef CONFIG_SMP
	/*
440
	 * the part of load.weight contributed by tasks
441
	 */
442
	unsigned long task_weight;
443

444 445 446 447 448 449 450
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
451

452 453 454 455
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
456 457 458 459 460

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
461
#endif
I
Ingo Molnar 已提交
462 463
#endif
};
L
Linus Torvalds 已提交
464

I
Ingo Molnar 已提交
465 466 467
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
468
	unsigned long rt_nr_running;
469
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
470 471
	struct {
		int curr; /* highest queued rt task prio */
472
#ifdef CONFIG_SMP
473
		int next; /* next highest */
474
#endif
475
	} highest_prio;
P
Peter Zijlstra 已提交
476
#endif
P
Peter Zijlstra 已提交
477
#ifdef CONFIG_SMP
478
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
479
	int overloaded;
480
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
481
#endif
P
Peter Zijlstra 已提交
482
	int rt_throttled;
P
Peter Zijlstra 已提交
483
	u64 rt_time;
P
Peter Zijlstra 已提交
484
	u64 rt_runtime;
I
Ingo Molnar 已提交
485
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
486
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
487

488
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
489 490
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
491 492 493 494 495
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
496 497
};

G
Gregory Haskins 已提交
498 499 500 501
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
502 503
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
504 505 506 507 508 509
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
510 511
	cpumask_var_t span;
	cpumask_var_t online;
512

I
Ingo Molnar 已提交
513
	/*
514 515 516
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
517
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
518
	atomic_t rto_count;
519 520 521
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
522 523 524 525 526 527 528 529
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
530 531
};

532 533 534 535
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
536 537 538 539
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
540 541 542 543 544 545 546
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
547
struct rq {
548 549
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
550 551 552 553 554 555

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
556 557
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
558
#ifdef CONFIG_NO_HZ
559
	unsigned long last_tick_seen;
560 561
	unsigned char in_nohz_recently;
#endif
562 563
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
564 565 566 567
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
568 569
	struct rt_rq rt;

I
Ingo Molnar 已提交
570
#ifdef CONFIG_FAIR_GROUP_SCHED
571 572
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
573 574
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
575
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
576 577 578 579 580 581 582 583 584 585
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

586
	struct task_struct *curr, *idle;
587
	unsigned long next_balance;
L
Linus Torvalds 已提交
588
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
589

590
	u64 clock;
I
Ingo Molnar 已提交
591

L
Linus Torvalds 已提交
592 593 594
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
595
	struct root_domain *rd;
L
Linus Torvalds 已提交
596 597
	struct sched_domain *sd;

598
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
599 600 601
	/* For active balancing */
	int active_balance;
	int push_cpu;
602 603
	/* cpu of this runqueue: */
	int cpu;
604
	int online;
L
Linus Torvalds 已提交
605

606
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
607

608
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
609 610 611
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
612
#ifdef CONFIG_SCHED_HRTICK
613 614 615 616
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
617 618 619
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
620 621 622
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
623 624
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
625 626

	/* sys_sched_yield() stats */
627 628 629 630
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
631 632

	/* schedule() stats */
633 634 635
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
636 637

	/* try_to_wake_up() stats */
638 639
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
640 641

	/* BKL stats */
642
	unsigned int bkl_count;
L
Linus Torvalds 已提交
643 644 645
#endif
};

646
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
647

648
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
649
{
650
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
651 652
}

653 654 655 656 657 658 659 660 661
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
662 663
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
664
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
665 666 667 668
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
669 670
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
671 672 673 674 675 676

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

677 678 679 680 681
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
682 683 684 685 686 687 688 689 690
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
709 710 711
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
712 713 714 715

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
716
enum {
P
Peter Zijlstra 已提交
717
#include "sched_features.h"
I
Ingo Molnar 已提交
718 719
};

P
Peter Zijlstra 已提交
720 721 722 723 724
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
725
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
726 727 728 729 730 731 732 733 734
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

735
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
736 737 738 739 740 741
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
742
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
743 744 745 746
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
747 748 749
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
750
	}
L
Li Zefan 已提交
751
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
752

L
Li Zefan 已提交
753
	return 0;
P
Peter Zijlstra 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
773
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
798 799 800 801 802
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
803
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
804 805 806 807 808
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
823

824 825 826 827 828 829
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
830 831
/*
 * ratelimit for updating the group shares.
832
 * default: 0.25ms
P
Peter Zijlstra 已提交
833
 */
834
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
835

836 837 838 839 840 841 842
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
843
/*
P
Peter Zijlstra 已提交
844
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
845 846
 * default: 1s
 */
P
Peter Zijlstra 已提交
847
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
848

849 850
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
851 852 853 854 855
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
856

857 858 859 860 861 862 863
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
864
	if (sysctl_sched_rt_runtime < 0)
865 866 867 868
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
869

L
Linus Torvalds 已提交
870
#ifndef prepare_arch_switch
871 872 873 874 875 876
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

877 878 879 880 881
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

882
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
883
static inline int task_running(struct rq *rq, struct task_struct *p)
884
{
885
	return task_current(rq, p);
886 887
}

888
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
889 890 891
{
}

892
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
893
{
894 895 896 897
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
898 899 900 901 902 903 904
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

905 906 907 908
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
909
static inline int task_running(struct rq *rq, struct task_struct *p)
910 911 912 913
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
914
	return task_current(rq, p);
915 916 917
#endif
}

918
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

935
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
936 937 938 939 940 941 942 943 944 945 946 947
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
948
#endif
949 950
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
951

952 953 954 955
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
956
static inline struct rq *__task_rq_lock(struct task_struct *p)
957 958
	__acquires(rq->lock)
{
959 960 961 962 963
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
964 965 966 967
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
968 969
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
970
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
971 972
 * explicitly disabling preemption.
 */
973
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
974 975
	__acquires(rq->lock)
{
976
	struct rq *rq;
L
Linus Torvalds 已提交
977

978 979 980 981 982 983
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
984 985 986 987
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

988 989 990 991 992 993 994 995
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
996
static void __task_rq_unlock(struct rq *rq)
997 998 999 1000 1001
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1002
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1003 1004 1005 1006 1007 1008
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1009
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1010
 */
A
Alexey Dobriyan 已提交
1011
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1012 1013
	__acquires(rq->lock)
{
1014
	struct rq *rq;
L
Linus Torvalds 已提交
1015 1016 1017 1018 1019 1020 1021 1022

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1044
	if (!cpu_active(cpu_of(rq)))
1045
		return 0;
P
Peter Zijlstra 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1066
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1067 1068 1069 1070 1071 1072
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1073
#ifdef CONFIG_SMP
1074 1075 1076 1077
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1078
{
1079
	struct rq *rq = arg;
1080

1081 1082 1083 1084
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1085 1086
}

1087 1088 1089 1090 1091 1092
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1093
{
1094 1095
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1096

1097
	hrtimer_set_expires(timer, time);
1098 1099 1100 1101 1102 1103 1104

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
		rq->hrtick_csd_pending = 1;
	}
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1119
		hrtick_clear(cpu_rq(cpu));
1120 1121 1122 1123 1124 1125
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1126
static __init void init_hrtick(void)
1127 1128 1129
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
}
1140

A
Andrew Morton 已提交
1141
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1142 1143
{
}
1144
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1145

1146
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1147
{
1148 1149
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1150

1151 1152 1153 1154
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1155

1156 1157
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1158
}
A
Andrew Morton 已提交
1159
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1160 1161 1162 1163 1164 1165 1166 1167
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1168 1169 1170
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1171
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1172

I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1186
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1187 1188 1189 1190 1191
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1192
	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
I
Ingo Molnar 已提交
1193 1194
		return;

1195
	set_tsk_thread_flag(p, TIF_NEED_RESCHED);
I
Ingo Molnar 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1258
#endif /* CONFIG_NO_HZ */
1259

1260
#else /* !CONFIG_SMP */
1261
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1262 1263
{
	assert_spin_locked(&task_rq(p)->lock);
1264
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1265
}
1266
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1267

1268 1269 1270 1271 1272 1273 1274 1275
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1276 1277 1278
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1279
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1280

1281 1282 1283
/*
 * delta *= weight / lw
 */
1284
static unsigned long
1285 1286 1287 1288 1289
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1290 1291 1292 1293 1294 1295 1296
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1297 1298 1299 1300 1301

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1302
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1303
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1304 1305
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1306
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1307

1308
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1309 1310
}

1311
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1312 1313
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1314
	lw->inv_weight = 0;
1315 1316
}

1317
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1318 1319
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1320
	lw->inv_weight = 0;
1321 1322
}

1323 1324 1325 1326
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1327
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1328 1329 1330 1331
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1332 1333
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1343 1344 1345
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1346 1347
 */
static const int prio_to_weight[40] = {
1348 1349 1350 1351 1352 1353 1354 1355
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1356 1357
};

1358 1359 1360 1361 1362 1363 1364
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1365
static const u32 prio_to_wmult[40] = {
1366 1367 1368 1369 1370 1371 1372 1373
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1374
};
1375

I
Ingo Molnar 已提交
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1401

1402 1403 1404 1405 1406 1407
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1418
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1419
typedef int (*tg_visitor)(struct task_group *, void *);
1420 1421 1422 1423 1424

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1425
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1426 1427
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1428
	int ret;
1429 1430 1431 1432

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1433 1434 1435
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1436 1437 1438 1439 1440 1441 1442
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1443 1444 1445
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1446 1447 1448 1449 1450

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1451
out_unlock:
1452
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1453 1454

	return ret;
1455 1456
}

P
Peter Zijlstra 已提交
1457 1458 1459
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1460
}
P
Peter Zijlstra 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1471
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1472

1473 1474
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1475 1476
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1477 1478 1479 1480 1481

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1482 1483 1484 1485 1486 1487 1488

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1489 1490
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1491
{
1492 1493 1494
	unsigned long shares;
	unsigned long rq_weight;

1495
	if (!tg->se[cpu])
1496 1497
		return;

1498
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1499

1500 1501 1502 1503 1504 1505
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1506
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1507
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1508

1509 1510 1511 1512
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1513

1514
		spin_lock_irqsave(&rq->lock, flags);
1515
		tg->cfs_rq[cpu]->shares = shares;
1516

1517 1518 1519
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1520
}
1521 1522

/*
1523 1524 1525
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1526
 */
P
Peter Zijlstra 已提交
1527
static int tg_shares_up(struct task_group *tg, void *data)
1528
{
1529
	unsigned long weight, rq_weight = 0;
1530
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1531
	struct sched_domain *sd = data;
1532
	int i;
1533

1534
	for_each_cpu(i, sched_domain_span(sd)) {
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1546
		shares += tg->cfs_rq[i]->shares;
1547 1548
	}

1549 1550 1551 1552 1553
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1554

1555
	for_each_cpu(i, sched_domain_span(sd))
1556
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1557 1558

	return 0;
1559 1560 1561
}

/*
1562 1563 1564
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1565
 */
P
Peter Zijlstra 已提交
1566
static int tg_load_down(struct task_group *tg, void *data)
1567
{
1568
	unsigned long load;
P
Peter Zijlstra 已提交
1569
	long cpu = (long)data;
1570

1571 1572 1573 1574 1575 1576 1577
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1578

1579
	tg->cfs_rq[cpu]->h_load = load;
1580

P
Peter Zijlstra 已提交
1581
	return 0;
1582 1583
}

1584
static void update_shares(struct sched_domain *sd)
1585
{
P
Peter Zijlstra 已提交
1586 1587 1588 1589 1590
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1591
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1592
	}
1593 1594
}

1595 1596 1597 1598 1599 1600 1601
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1602
static void update_h_load(long cpu)
1603
{
P
Peter Zijlstra 已提交
1604
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1605 1606 1607 1608
}

#else

1609
static inline void update_shares(struct sched_domain *sd)
1610 1611 1612
{
}

1613 1614 1615 1616
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1617 1618
#endif

1619 1620
#ifdef CONFIG_PREEMPT

1621
/*
1622 1623 1624 1625 1626 1627
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1628
 */
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1683 1684 1685 1686 1687 1688
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1689 1690
#endif

V
Vegard Nossum 已提交
1691
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1692 1693
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1694
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1695 1696 1697
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1698
#endif
1699

I
Ingo Molnar 已提交
1700 1701
#include "sched_stats.h"
#include "sched_idletask.c"
1702 1703
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1704 1705 1706 1707 1708
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1709 1710
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1711

1712
static void inc_nr_running(struct rq *rq)
1713 1714 1715 1716
{
	rq->nr_running++;
}

1717
static void dec_nr_running(struct rq *rq)
1718 1719 1720 1721
{
	rq->nr_running--;
}

1722 1723 1724
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1725 1726 1727 1728
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1729

I
Ingo Molnar 已提交
1730 1731 1732 1733 1734 1735 1736 1737
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1738

I
Ingo Molnar 已提交
1739 1740
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 1742
}

1743 1744 1745 1746 1747 1748
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1749
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1750
{
P
Peter Zijlstra 已提交
1751 1752 1753
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1754
	sched_info_queued(p);
1755
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1756
	p->se.on_rq = 1;
1757 1758
}

1759
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1760
{
P
Peter Zijlstra 已提交
1761 1762 1763 1764 1765 1766 1767 1768 1769
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1770 1771
	}

1772
	sched_info_dequeued(p);
1773
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1774
	p->se.on_rq = 0;
1775 1776
}

1777
/*
I
Ingo Molnar 已提交
1778
 * __normal_prio - return the priority that is based on the static prio
1779 1780 1781
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1782
	return p->static_prio;
1783 1784
}

1785 1786 1787 1788 1789 1790 1791
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1792
static inline int normal_prio(struct task_struct *p)
1793 1794 1795
{
	int prio;

1796
	if (task_has_rt_policy(p))
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1810
static int effective_prio(struct task_struct *p)
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1823
/*
I
Ingo Molnar 已提交
1824
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1825
 */
I
Ingo Molnar 已提交
1826
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1827
{
1828
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1829
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1830

1831
	enqueue_task(rq, p, wakeup);
1832
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1838
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1839
{
1840
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1841 1842
		rq->nr_uninterruptible++;

1843
	dequeue_task(rq, p, sleep);
1844
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1845 1846 1847 1848 1849 1850
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1851
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1852 1853 1854 1855
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1856 1857
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1858
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1859
#ifdef CONFIG_SMP
1860 1861 1862 1863 1864 1865
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1866 1867
	task_thread_info(p)->cpu = cpu;
#endif
1868 1869
}

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1882
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1883

1884 1885 1886 1887 1888 1889
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1890 1891 1892
/*
 * Is this task likely cache-hot:
 */
1893
static int
1894 1895 1896 1897
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1898 1899 1900
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1901 1902 1903
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1904 1905
		return 1;

1906 1907 1908
	if (p->sched_class != &fair_sched_class)
		return 0;

1909 1910 1911 1912 1913
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1914 1915 1916 1917 1918 1919
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1920
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1921
{
I
Ingo Molnar 已提交
1922 1923
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1924 1925
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1926
	u64 clock_offset;
I
Ingo Molnar 已提交
1927 1928

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1929

1930 1931
	trace_sched_migrate_task(p, task_cpu(p), new_cpu);

I
Ingo Molnar 已提交
1932 1933 1934
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1935 1936 1937 1938
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1939 1940 1941 1942 1943
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1944
#endif
1945 1946
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1947 1948

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1949 1950
}

1951
struct migration_req {
L
Linus Torvalds 已提交
1952 1953
	struct list_head list;

1954
	struct task_struct *task;
L
Linus Torvalds 已提交
1955 1956 1957
	int dest_cpu;

	struct completion done;
1958
};
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1964
static int
1965
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1966
{
1967
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1968 1969 1970 1971 1972

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1973
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1974 1975 1976 1977 1978 1979 1980 1981
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1982

L
Linus Torvalds 已提交
1983 1984 1985 1986 1987 1988
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1989 1990 1991 1992 1993 1994 1995
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1996 1997 1998 1999 2000 2001
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2002
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2003 2004
{
	unsigned long flags;
I
Ingo Molnar 已提交
2005
	int running, on_rq;
R
Roland McGrath 已提交
2006
	unsigned long ncsw;
2007
	struct rq *rq;
L
Linus Torvalds 已提交
2008

2009 2010 2011 2012 2013 2014 2015 2016
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2029 2030 2031
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2032
			cpu_relax();
R
Roland McGrath 已提交
2033
		}
2034

2035 2036 2037 2038 2039 2040
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2041
		trace_sched_wait_task(rq, p);
2042 2043
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2044
		ncsw = 0;
2045
		if (!match_state || p->state == match_state)
2046
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2047
		task_rq_unlock(rq, &flags);
2048

R
Roland McGrath 已提交
2049 2050 2051 2052 2053 2054
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2065

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2079

2080 2081 2082 2083 2084 2085 2086
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2087 2088

	return ncsw;
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2104
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
2116 2117
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2118 2119 2120 2121
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2122
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2123
{
2124
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2125
	unsigned long total = weighted_cpuload(cpu);
2126

2127
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2128
		return total;
2129

I
Ingo Molnar 已提交
2130
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2131 2132 2133
}

/*
2134 2135
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2136
 */
A
Alexey Dobriyan 已提交
2137
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2138
{
2139
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2140
	unsigned long total = weighted_cpuload(cpu);
2141

2142
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2143
		return total;
2144

I
Ingo Molnar 已提交
2145
	return max(rq->cpu_load[type-1], total);
2146 2147
}

N
Nick Piggin 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2165
		/* Skip over this group if it has no CPUs allowed */
2166 2167
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2168
			continue;
2169

2170 2171
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2172 2173 2174 2175

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2176
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2187 2188
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2189 2190 2191 2192 2193 2194 2195 2196

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2197
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2198 2199 2200 2201 2202 2203 2204

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2205
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2206
 */
I
Ingo Molnar 已提交
2207
static int
2208
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2209 2210 2211 2212 2213
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2214
	/* Traverse only the allowed CPUs */
2215
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2216
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2242

2243
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2244 2245 2246
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2247 2248
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2249 2250
		if (tmp->flags & flag)
			sd = tmp;
2251
	}
N
Nick Piggin 已提交
2252

2253 2254 2255
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2256 2257
	while (sd) {
		struct sched_group *group;
2258 2259 2260 2261 2262 2263
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2264 2265

		group = find_idlest_group(sd, t, cpu);
2266 2267 2268 2269
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2270

2271
		new_cpu = find_idlest_cpu(group, t, cpu);
2272 2273 2274 2275 2276
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2277

2278
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2279
		cpu = new_cpu;
2280
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2281 2282
		sd = NULL;
		for_each_domain(cpu, tmp) {
2283
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2310
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2311
{
2312
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2313 2314
	unsigned long flags;
	long old_state;
2315
	struct rq *rq;
L
Linus Torvalds 已提交
2316

2317 2318 2319
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2320 2321 2322 2323 2324 2325 2326 2327
#ifdef CONFIG_SMP
	if (sched_feat(LB_WAKEUP_UPDATE)) {
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2328
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2329 2330 2331 2332 2333 2334 2335
				update_shares(sd);
				break;
			}
		}
	}
#endif

2336
	smp_wmb();
L
Linus Torvalds 已提交
2337
	rq = task_rq_lock(p, &flags);
2338
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2339 2340 2341 2342
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2343
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2344 2345 2346
		goto out_running;

	cpu = task_cpu(p);
2347
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2348 2349 2350 2351 2352 2353
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2354 2355 2356
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2357 2358 2359 2360 2361 2362
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2363
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368 2369
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2370 2371 2372 2373 2374 2375 2376
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2377
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2378 2379 2380 2381 2382
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2383
#endif /* CONFIG_SCHEDSTATS */
2384

L
Linus Torvalds 已提交
2385 2386
out_activate:
#endif /* CONFIG_SMP */
2387 2388 2389 2390 2391 2392 2393 2394 2395
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2396
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2397 2398
	success = 1;

P
Peter Zijlstra 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2415
out_running:
2416
	trace_sched_wakeup(rq, p, success);
2417
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2418

L
Linus Torvalds 已提交
2419
	p->state = TASK_RUNNING;
2420 2421 2422 2423
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2424 2425 2426 2427 2428 2429
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2430
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2431
{
2432
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2433 2434 2435
}
EXPORT_SYMBOL(wake_up_process);

2436
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2444 2445 2446 2447 2448 2449 2450
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2451
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2452 2453
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2454 2455
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2456 2457 2458

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2459 2460 2461 2462 2463 2464
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2465
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2466
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2467
#endif
N
Nick Piggin 已提交
2468

P
Peter Zijlstra 已提交
2469
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2470
	p->se.on_rq = 0;
2471
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2472

2473 2474 2475 2476
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2498
	set_task_cpu(p, cpu);
2499 2500 2501 2502 2503

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2504 2505
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2506

2507
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2508
	if (likely(sched_info_on()))
2509
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2510
#endif
2511
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2512 2513
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2514
#ifdef CONFIG_PREEMPT
2515
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2516
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2517
#endif
2518 2519
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2520
	put_cpu();
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2530
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2531 2532
{
	unsigned long flags;
I
Ingo Molnar 已提交
2533
	struct rq *rq;
L
Linus Torvalds 已提交
2534 2535

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2536
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2537
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2538 2539 2540

	p->prio = effective_prio(p);

2541
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2542
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2543 2544
	} else {
		/*
I
Ingo Molnar 已提交
2545 2546
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2547
		 */
2548
		p->sched_class->task_new(rq, p);
2549
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2550
	}
2551
	trace_sched_wakeup_new(rq, p, 1);
2552
	check_preempt_curr(rq, p, 0);
2553 2554 2555 2556
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2557
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2558 2559
}

2560 2561 2562
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2563 2564
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2565 2566 2567 2568 2569 2570 2571 2572 2573
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2574
 * @notifier: notifier struct to unregister
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2604
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2616
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2617

2618 2619 2620
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2621
 * @prev: the current task that is being switched out
2622 2623 2624 2625 2626 2627 2628 2629 2630
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2631 2632 2633
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2634
{
2635
	fire_sched_out_preempt_notifiers(prev, next);
2636 2637 2638 2639
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2640 2641
/**
 * finish_task_switch - clean up after a task-switch
2642
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2643 2644
 * @prev: the thread we just switched away from.
 *
2645 2646 2647 2648
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2649 2650
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2651
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2652 2653 2654
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2655
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2656 2657 2658
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2659
	long prev_state;
2660 2661 2662 2663 2664 2665
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2666 2667 2668 2669 2670

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2671
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2672 2673
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2674
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2675 2676 2677 2678 2679
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2680
	prev_state = prev->state;
2681 2682
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2683
#ifdef CONFIG_SMP
2684
	if (post_schedule)
2685 2686
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2687

2688
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2689 2690
	if (mm)
		mmdrop(mm);
2691
	if (unlikely(prev_state == TASK_DEAD)) {
2692 2693 2694
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2695
		 */
2696
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2697
		put_task_struct(prev);
2698
	}
L
Linus Torvalds 已提交
2699 2700 2701 2702 2703 2704
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2705
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2706 2707
	__releases(rq->lock)
{
2708 2709
	struct rq *rq = this_rq();

2710 2711 2712 2713 2714
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2715
	if (current->set_child_tid)
2716
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2717 2718 2719 2720 2721 2722
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2723
static inline void
2724
context_switch(struct rq *rq, struct task_struct *prev,
2725
	       struct task_struct *next)
L
Linus Torvalds 已提交
2726
{
I
Ingo Molnar 已提交
2727
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2728

2729
	prepare_task_switch(rq, prev, next);
2730
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2731 2732
	mm = next->mm;
	oldmm = prev->active_mm;
2733 2734 2735 2736 2737 2738 2739
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2740
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2741 2742 2743 2744 2745 2746
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2747
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2748 2749 2750
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2751 2752 2753 2754 2755 2756 2757
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2758
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2759
#endif
L
Linus Torvalds 已提交
2760 2761 2762 2763

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2764 2765 2766 2767 2768 2769 2770
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2794
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2809 2810
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2811

2812
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2813 2814 2815 2816 2817 2818 2819 2820 2821
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2822
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2823 2824 2825 2826 2827
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2843
/*
I
Ingo Molnar 已提交
2844 2845
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2846
 */
I
Ingo Molnar 已提交
2847
static void update_cpu_load(struct rq *this_rq)
2848
{
2849
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2862 2863 2864 2865 2866 2867 2868
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2869 2870
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2871 2872
}

I
Ingo Molnar 已提交
2873 2874
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2875 2876 2877 2878 2879 2880
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2881
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2882 2883 2884
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2885
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2886 2887 2888 2889
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2890
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2891
			spin_lock(&rq1->lock);
2892
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2893 2894
		} else {
			spin_lock(&rq2->lock);
2895
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
2896 2897
		}
	}
2898 2899
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2900 2901 2902 2903 2904 2905 2906 2907
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2908
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2922
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2923 2924
 * the cpu_allowed mask is restored.
 */
2925
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2926
{
2927
	struct migration_req req;
L
Linus Torvalds 已提交
2928
	unsigned long flags;
2929
	struct rq *rq;
L
Linus Torvalds 已提交
2930 2931

	rq = task_rq_lock(p, &flags);
2932
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2933
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
2934 2935 2936 2937 2938 2939
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2940

L
Linus Torvalds 已提交
2941 2942 2943 2944 2945
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2946

L
Linus Torvalds 已提交
2947 2948 2949 2950 2951 2952 2953
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2954 2955
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2956 2957 2958 2959
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2960
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2961
	put_cpu();
N
Nick Piggin 已提交
2962 2963
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2970 2971
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2972
{
2973
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2974
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2975
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2976 2977 2978 2979
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
2980
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
2981 2982 2983 2984 2985
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2986
static
2987
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2988
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2989
		     int *all_pinned)
L
Linus Torvalds 已提交
2990 2991 2992 2993 2994 2995 2996
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2997
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2998
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2999
		return 0;
3000
	}
3001 3002
	*all_pinned = 0;

3003 3004
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3005
		return 0;
3006
	}
L
Linus Torvalds 已提交
3007

3008 3009 3010 3011 3012 3013
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3014 3015
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
3016
#ifdef CONFIG_SCHEDSTATS
3017
		if (task_hot(p, rq->clock, sd)) {
3018
			schedstat_inc(sd, lb_hot_gained[idle]);
3019 3020
			schedstat_inc(p, se.nr_forced_migrations);
		}
3021 3022 3023 3024
#endif
		return 1;
	}

3025 3026
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
3027
		return 0;
3028
	}
L
Linus Torvalds 已提交
3029 3030 3031
	return 1;
}

3032 3033 3034 3035 3036
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3037
{
3038
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3039 3040
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3041

3042
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3043 3044
		goto out;

3045 3046
	pinned = 1;

L
Linus Torvalds 已提交
3047
	/*
I
Ingo Molnar 已提交
3048
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3049
	 */
I
Ingo Molnar 已提交
3050 3051
	p = iterator->start(iterator->arg);
next:
3052
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3053
		goto out;
3054 3055

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3056 3057 3058
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3059 3060
	}

I
Ingo Molnar 已提交
3061
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3062
	pulled++;
I
Ingo Molnar 已提交
3063
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3064

3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3075
	/*
3076
	 * We only want to steal up to the prescribed amount of weighted load.
3077
	 */
3078
	if (rem_load_move > 0) {
3079 3080
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3081 3082
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3083 3084 3085
	}
out:
	/*
3086
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3087 3088 3089 3090
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3091 3092 3093

	if (all_pinned)
		*all_pinned = pinned;
3094 3095

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3096 3097
}

I
Ingo Molnar 已提交
3098
/*
P
Peter Williams 已提交
3099 3100 3101
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3102 3103 3104 3105
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3106
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3107 3108 3109
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3110
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3111
	unsigned long total_load_moved = 0;
3112
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3113 3114

	do {
P
Peter Williams 已提交
3115 3116
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3117
				max_load_move - total_load_moved,
3118
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3119
		class = class->next;
3120

3121 3122 3123 3124 3125 3126
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3127 3128
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3129
#endif
P
Peter Williams 已提交
3130
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3131

P
Peter Williams 已提交
3132 3133 3134
	return total_load_moved > 0;
}

3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3171
	const struct sched_class *class;
P
Peter Williams 已提交
3172 3173

	for (class = sched_class_highest; class; class = class->next)
3174
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3175 3176 3177
			return 1;

	return 0;
I
Ingo Molnar 已提交
3178 3179
}

L
Linus Torvalds 已提交
3180 3181
/*
 * find_busiest_group finds and returns the busiest CPU group within the
3182 3183
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
3184 3185 3186
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
3187
		   unsigned long *imbalance, enum cpu_idle_type idle,
3188
		   int *sd_idle, const struct cpumask *cpus, int *balance)
L
Linus Torvalds 已提交
3189 3190 3191
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3192
	unsigned long max_pull;
3193 3194
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
3195
	int load_idx, group_imb = 0;
3196 3197 3198 3199 3200 3201
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
3202 3203

	max_load = this_load = total_load = total_pwr = 0;
3204 3205
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
3206

I
Ingo Molnar 已提交
3207
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
3208
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
3209
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
3210 3211 3212
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
3213 3214

	do {
3215
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
3216 3217
		int local_group;
		int i;
3218
		int __group_imb = 0;
3219
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
3220
		unsigned long sum_nr_running, sum_weighted_load;
3221 3222
		unsigned long sum_avg_load_per_task;
		unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
3223

3224 3225
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
L
Linus Torvalds 已提交
3226

3227
		if (local_group)
3228
			balance_cpu = cpumask_first(sched_group_cpus(group));
3229

L
Linus Torvalds 已提交
3230
		/* Tally up the load of all CPUs in the group */
3231
		sum_weighted_load = sum_nr_running = avg_load = 0;
3232 3233
		sum_avg_load_per_task = avg_load_per_task = 0;

3234 3235
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
3236

3237 3238
		for_each_cpu_and(i, sched_group_cpus(group), cpus) {
			struct rq *rq = cpu_rq(i);
3239

3240
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
3241 3242
				*sd_idle = 0;

L
Linus Torvalds 已提交
3243
			/* Bias balancing toward cpus of our domain */
3244 3245 3246 3247 3248 3249
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
3250
				load = target_load(i, load_idx);
3251
			} else {
N
Nick Piggin 已提交
3252
				load = source_load(i, load_idx);
3253 3254 3255 3256 3257
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
3258 3259

			avg_load += load;
3260
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
3261
			sum_weighted_load += weighted_cpuload(i);
3262 3263

			sum_avg_load_per_task += cpu_avg_load_per_task(i);
L
Linus Torvalds 已提交
3264 3265
		}

3266 3267 3268
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3269 3270
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3271
		 */
3272 3273
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3274 3275 3276 3277
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3278
		total_load += avg_load;
3279
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3280 3281

		/* Adjust by relative CPU power of the group */
3282 3283
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3284

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298

		/*
		 * Consider the group unbalanced when the imbalance is larger
		 * than the average weight of two tasks.
		 *
		 * APZ: with cgroup the avg task weight can vary wildly and
		 *      might not be a suitable number - should we keep a
		 *      normalized nr_running number somewhere that negates
		 *      the hierarchy?
		 */
		avg_load_per_task = sg_div_cpu_power(group,
				sum_avg_load_per_task * SCHED_LOAD_SCALE);

		if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3299 3300
			__group_imb = 1;

3301
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3302

L
Linus Torvalds 已提交
3303 3304 3305
		if (local_group) {
			this_load = avg_load;
			this = group;
3306 3307 3308
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3309
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3310 3311
			max_load = avg_load;
			busiest = group;
3312 3313
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3314
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3315
		}
3316 3317 3318 3319 3320 3321

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3322 3323 3324
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3325 3326 3327 3328 3329 3330 3331 3332 3333

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3334
		/*
3335 3336
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3337 3338
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3339
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3340
			goto group_next;
3341

I
Ingo Molnar 已提交
3342
		/*
3343
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3344 3345 3346 3347 3348
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3349
		     cpumask_first(sched_group_cpus(group)) >
3350
		     cpumask_first(sched_group_cpus(group_min)))) {
I
Ingo Molnar 已提交
3351 3352
			group_min = group;
			min_nr_running = sum_nr_running;
3353 3354
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3355
		}
3356

I
Ingo Molnar 已提交
3357
		/*
3358
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3359 3360 3361 3362 3363 3364
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
3365
			     cpumask_first(sched_group_cpus(group)) <
3366
			     cpumask_first(sched_group_cpus(group_leader)))) {
I
Ingo Molnar 已提交
3367 3368 3369
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3370
		}
3371 3372
group_next:
#endif
L
Linus Torvalds 已提交
3373 3374 3375
		group = group->next;
	} while (group != sd->groups);

3376
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381 3382 3383 3384
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3385
	busiest_load_per_task /= busiest_nr_running;
3386 3387 3388
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3389 3390 3391 3392 3393 3394 3395 3396
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3397
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3398 3399
	 * appear as very large values with unsigned longs.
	 */
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3412 3413

	/* Don't want to pull so many tasks that a group would go idle */
3414
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3415

L
Linus Torvalds 已提交
3416
	/* How much load to actually move to equalise the imbalance */
3417 3418
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3419 3420
			/ SCHED_LOAD_SCALE;

3421 3422 3423 3424 3425 3426
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3427
	if (*imbalance < busiest_load_per_task) {
3428
		unsigned long tmp, pwr_now, pwr_move;
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
3439
			this_load_per_task = cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3440

3441
		if (max_load - this_load + busiest_load_per_task >=
I
Ingo Molnar 已提交
3442
					busiest_load_per_task * imbn) {
3443
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3444 3445 3446 3447 3448 3449 3450 3451 3452
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3453 3454 3455 3456
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3457 3458 3459
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3460 3461
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3462
		if (max_load > tmp)
3463
			pwr_move += busiest->__cpu_power *
3464
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3465 3466

		/* Amount of load we'd add */
3467
		if (max_load * busiest->__cpu_power <
3468
				busiest_load_per_task * SCHED_LOAD_SCALE)
3469 3470
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3471
		else
3472 3473 3474 3475
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3476 3477 3478
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3479 3480
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
	}

	return busiest;

out_balanced:
3486
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3487
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3488
		goto ret;
L
Linus Torvalds 已提交
3489

3490 3491
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
3492 3493
		if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
			cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
I
Ingo Molnar 已提交
3494
				cpumask_first(sched_group_cpus(group_leader));
3495
		}
3496 3497 3498
		return group_min;
	}
#endif
3499
ret:
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504 3505 3506
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3507
static struct rq *
I
Ingo Molnar 已提交
3508
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3509
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3510
{
3511
	struct rq *busiest = NULL, *rq;
3512
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3513 3514
	int i;

3515
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3516
		unsigned long wl;
3517

3518
		if (!cpumask_test_cpu(i, cpus))
3519 3520
			continue;

3521
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3522
		wl = weighted_cpuload(i);
3523

I
Ingo Molnar 已提交
3524
		if (rq->nr_running == 1 && wl > imbalance)
3525
			continue;
L
Linus Torvalds 已提交
3526

I
Ingo Molnar 已提交
3527 3528
		if (wl > max_load) {
			max_load = wl;
3529
			busiest = rq;
L
Linus Torvalds 已提交
3530 3531 3532 3533 3534 3535
		}
	}

	return busiest;
}

3536 3537 3538 3539 3540 3541
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3542 3543 3544 3545
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3546
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3547
			struct sched_domain *sd, enum cpu_idle_type idle,
3548
			int *balance, struct cpumask *cpus)
L
Linus Torvalds 已提交
3549
{
P
Peter Williams 已提交
3550
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3551 3552
	struct sched_group *group;
	unsigned long imbalance;
3553
	struct rq *busiest;
3554
	unsigned long flags;
N
Nick Piggin 已提交
3555

3556
	cpumask_setall(cpus);
3557

3558 3559 3560
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3561
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3562
	 * portraying it as CPU_NOT_IDLE.
3563
	 */
I
Ingo Molnar 已提交
3564
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3565
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3566
		sd_idle = 1;
L
Linus Torvalds 已提交
3567

3568
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3569

3570
redo:
3571
	update_shares(sd);
3572
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3573
				   cpus, balance);
3574

3575
	if (*balance == 0)
3576 3577
		goto out_balanced;

L
Linus Torvalds 已提交
3578 3579 3580 3581 3582
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3583
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3584 3585 3586 3587 3588
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3589
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3590 3591 3592

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3593
	ld_moved = 0;
L
Linus Torvalds 已提交
3594 3595 3596 3597
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3598
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3599 3600
		 * correctly treated as an imbalance.
		 */
3601
		local_irq_save(flags);
N
Nick Piggin 已提交
3602
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3603
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3604
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3605
		double_rq_unlock(this_rq, busiest);
3606
		local_irq_restore(flags);
3607

3608 3609 3610
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3611
		if (ld_moved && this_cpu != smp_processor_id())
3612 3613
			resched_cpu(this_cpu);

3614
		/* All tasks on this runqueue were pinned by CPU affinity */
3615
		if (unlikely(all_pinned)) {
3616 3617
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3618
				goto redo;
3619
			goto out_balanced;
3620
		}
L
Linus Torvalds 已提交
3621
	}
3622

P
Peter Williams 已提交
3623
	if (!ld_moved) {
L
Linus Torvalds 已提交
3624 3625 3626 3627 3628
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3629
			spin_lock_irqsave(&busiest->lock, flags);
3630 3631 3632 3633

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
3634 3635
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
3636
				spin_unlock_irqrestore(&busiest->lock, flags);
3637 3638 3639 3640
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3641 3642 3643
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3644
				active_balance = 1;
L
Linus Torvalds 已提交
3645
			}
3646
			spin_unlock_irqrestore(&busiest->lock, flags);
3647
			if (active_balance)
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3654
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3655
		}
3656
	} else
L
Linus Torvalds 已提交
3657 3658
		sd->nr_balance_failed = 0;

3659
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3660 3661
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3662 3663 3664 3665 3666 3667 3668 3669 3670
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3671 3672
	}

P
Peter Williams 已提交
3673
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3674
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3675 3676 3677
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
3678 3679 3680 3681

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3682
	sd->nr_balance_failed = 0;
3683 3684

out_one_pinned:
L
Linus Torvalds 已提交
3685
	/* tune up the balancing interval */
3686 3687
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3688 3689
		sd->balance_interval *= 2;

3690
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3691
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3692 3693 3694 3695
		ld_moved = -1;
	else
		ld_moved = 0;
out:
3696 3697
	if (ld_moved)
		update_shares(sd);
3698
	return ld_moved;
L
Linus Torvalds 已提交
3699 3700 3701 3702 3703 3704
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3705
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3706 3707
 * this_rq is locked.
 */
3708
static int
3709
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3710
			struct cpumask *cpus)
L
Linus Torvalds 已提交
3711 3712
{
	struct sched_group *group;
3713
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3714
	unsigned long imbalance;
P
Peter Williams 已提交
3715
	int ld_moved = 0;
N
Nick Piggin 已提交
3716
	int sd_idle = 0;
3717
	int all_pinned = 0;
3718

3719
	cpumask_setall(cpus);
N
Nick Piggin 已提交
3720

3721 3722 3723 3724
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3725
	 * portraying it as CPU_NOT_IDLE.
3726 3727 3728
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3729
		sd_idle = 1;
L
Linus Torvalds 已提交
3730

3731
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3732
redo:
3733
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
3734
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3735
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3736
	if (!group) {
I
Ingo Molnar 已提交
3737
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3738
		goto out_balanced;
L
Linus Torvalds 已提交
3739 3740
	}

3741
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3742
	if (!busiest) {
I
Ingo Molnar 已提交
3743
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3744
		goto out_balanced;
L
Linus Torvalds 已提交
3745 3746
	}

N
Nick Piggin 已提交
3747 3748
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3749
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3750

P
Peter Williams 已提交
3751
	ld_moved = 0;
3752 3753 3754
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3755 3756
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3757
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3758 3759
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3760
		double_unlock_balance(this_rq, busiest);
3761

3762
		if (unlikely(all_pinned)) {
3763 3764
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
3765 3766
				goto redo;
		}
3767 3768
	}

P
Peter Williams 已提交
3769
	if (!ld_moved) {
3770
		int active_balance = 0;
3771

I
Ingo Molnar 已提交
3772
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3773 3774
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3775
			return -1;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
3812
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
3825 3826 3827 3828
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
3829 3830
		if (active_balance)
			wake_up_process(busiest->migration_thread);
3831
		spin_lock(&this_rq->lock);
3832

N
Nick Piggin 已提交
3833
	} else
3834
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3835

3836
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
3837
	return ld_moved;
3838 3839

out_balanced:
I
Ingo Molnar 已提交
3840
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3841
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3842
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3843
		return -1;
3844
	sd->nr_balance_failed = 0;
3845

3846
	return 0;
L
Linus Torvalds 已提交
3847 3848 3849 3850 3851 3852
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3853
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3854 3855
{
	struct sched_domain *sd;
3856
	int pulled_task = 0;
I
Ingo Molnar 已提交
3857
	unsigned long next_balance = jiffies + HZ;
3858 3859 3860 3861
	cpumask_var_t tmpmask;

	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
3862 3863

	for_each_domain(this_cpu, sd) {
3864 3865 3866 3867 3868 3869
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3870
			/* If we've pulled tasks over stop searching: */
3871
			pulled_task = load_balance_newidle(this_cpu, this_rq,
3872
							   sd, tmpmask);
3873 3874 3875 3876 3877 3878

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3879
	}
I
Ingo Molnar 已提交
3880
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3881 3882 3883 3884 3885
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3886
	}
3887
	free_cpumask_var(tmpmask);
L
Linus Torvalds 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3898
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3899
{
3900
	int target_cpu = busiest_rq->push_cpu;
3901 3902
	struct sched_domain *sd;
	struct rq *target_rq;
3903

3904
	/* Is there any task to move? */
3905 3906 3907 3908
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3909 3910

	/*
3911
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3912
	 * we need to fix it. Originally reported by
3913
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3914
	 */
3915
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3916

3917 3918
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3919 3920
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3921 3922

	/* Search for an sd spanning us and the target CPU. */
3923
	for_each_domain(target_cpu, sd) {
3924
		if ((sd->flags & SD_LOAD_BALANCE) &&
3925
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3926
				break;
3927
	}
3928

3929
	if (likely(sd)) {
3930
		schedstat_inc(sd, alb_count);
3931

P
Peter Williams 已提交
3932 3933
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3934 3935 3936 3937
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3938
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
3939 3940
}

3941 3942 3943
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
3944
	cpumask_var_t cpu_mask;
3945 3946 3947 3948
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

3949
/*
3950 3951 3952 3953 3954 3955 3956 3957 3958 3959
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3960
 *
3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

3976 3977 3978 3979 3980 3981 3982 3983
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
3984 3985
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
3986

3987 3988 3989
			return 0;
		}

3990 3991
		cpumask_set_cpu(cpu, nohz.cpu_mask);

3992
		/* time for ilb owner also to sleep */
3993
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
4006
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4007 4008
			return 0;

4009
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4022 4023 4024 4025 4026
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4027
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4028
{
4029 4030
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4031 4032
	unsigned long interval;
	struct sched_domain *sd;
4033
	/* Earliest time when we have to do rebalance again */
4034
	unsigned long next_balance = jiffies + 60*HZ;
4035
	int update_next_balance = 0;
4036
	int need_serialize;
4037 4038 4039 4040 4041
	cpumask_var_t tmp;

	/* Fails alloc?  Rebalancing probably not a priority right now. */
	if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
		return;
L
Linus Torvalds 已提交
4042

4043
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4044 4045 4046 4047
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4048
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4055 4056 4057
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4058
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4059

4060
		if (need_serialize) {
4061 4062 4063 4064
			if (!spin_trylock(&balancing))
				goto out;
		}

4065
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4066
			if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
4067 4068
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4069 4070 4071
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4072
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4073
			}
4074
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4075
		}
4076
		if (need_serialize)
4077 4078
			spin_unlock(&balancing);
out:
4079
		if (time_after(next_balance, sd->last_balance + interval)) {
4080
			next_balance = sd->last_balance + interval;
4081 4082
			update_next_balance = 1;
		}
4083 4084 4085 4086 4087 4088 4089 4090

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4091
	}
4092 4093 4094 4095 4096 4097 4098 4099

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4100 4101

	free_cpumask_var(tmp);
4102 4103 4104 4105 4106 4107 4108 4109 4110
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4111 4112 4113 4114
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4115

I
Ingo Molnar 已提交
4116
	rebalance_domains(this_cpu, idle);
4117 4118 4119 4120 4121 4122 4123

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4124 4125
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4126 4127 4128
		struct rq *rq;
		int balance_cpu;

4129 4130 4131 4132
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4133 4134 4135 4136 4137 4138 4139 4140
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4141
			rebalance_domains(balance_cpu, CPU_IDLE);
4142 4143

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4144 4145
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4158
static inline void trigger_load_balance(struct rq *rq, int cpu)
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4170
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
4183
			int ilb = cpumask_first(nohz.cpu_mask);
4184

4185
			if (ilb < nr_cpu_ids)
4186 4187 4188 4189 4190 4191 4192 4193 4194
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4195
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4196 4197 4198 4199 4200 4201 4202 4203 4204
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4205
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4206 4207 4208 4209
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4210
}
I
Ingo Molnar 已提交
4211 4212 4213

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4214 4215 4216
/*
 * on UP we do not need to balance between CPUs:
 */
4217
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4218 4219
{
}
I
Ingo Molnar 已提交
4220

L
Linus Torvalds 已提交
4221 4222 4223 4224 4225 4226 4227
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4228 4229
 * Return any ns on the sched_clock that have not yet been banked in
 * @p in case that task is currently running.
L
Linus Torvalds 已提交
4230
 */
4231
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4232 4233
{
	unsigned long flags;
4234
	struct rq *rq;
4235
	u64 ns = 0;
4236

4237
	rq = task_rq_lock(p, &flags);
4238

4239
	if (task_current(rq, p)) {
4240 4241
		u64 delta_exec;

I
Ingo Molnar 已提交
4242 4243
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
4244
		if ((s64)delta_exec > 0)
4245
			ns = delta_exec;
4246
	}
4247

4248
	task_rq_unlock(rq, &flags);
4249

L
Linus Torvalds 已提交
4250 4251 4252 4253 4254 4255 4256
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4257
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4258
 */
4259 4260
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4261 4262 4263 4264
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4265
	/* Add user time to process. */
L
Linus Torvalds 已提交
4266
	p->utime = cputime_add(p->utime, cputime);
4267
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4268
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4269 4270 4271 4272 4273 4274 4275

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4276 4277
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4278 4279
}

4280 4281 4282 4283
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4284
 * @cputime_scaled: cputime scaled by cpu frequency
4285
 */
4286 4287
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4288 4289 4290 4291 4292 4293
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4294
	/* Add guest time to process. */
4295
	p->utime = cputime_add(p->utime, cputime);
4296
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4297
	account_group_user_time(p, cputime);
4298 4299
	p->gtime = cputime_add(p->gtime, cputime);

4300
	/* Add guest time to cpustat. */
4301 4302 4303 4304
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4305 4306 4307 4308 4309
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4310
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4311 4312
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4313
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4314 4315 4316 4317
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4318
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4319
		account_guest_time(p, cputime, cputime_scaled);
4320 4321
		return;
	}
4322

4323
	/* Add system time to process. */
L
Linus Torvalds 已提交
4324
	p->stime = cputime_add(p->stime, cputime);
4325
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4326
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4335 4336
		cpustat->system = cputime64_add(cpustat->system, tmp);

L
Linus Torvalds 已提交
4337 4338 4339 4340
	/* Account for system time used */
	acct_update_integrals(p);
}

4341
/*
L
Linus Torvalds 已提交
4342 4343
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4344
 */
4345
void account_steal_time(cputime_t cputime)
4346
{
4347 4348 4349 4350
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4351 4352
}

L
Linus Torvalds 已提交
4353
/*
4354 4355
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4356
 */
4357
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4358 4359
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4360
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4361
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4362

4363 4364 4365 4366
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4367 4368
}

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
	else if (p != rq->idle)
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
4408 4409
}

4410 4411
#endif

4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4482
	struct task_struct *curr = rq->curr;
4483 4484

	sched_clock_tick();
I
Ingo Molnar 已提交
4485 4486

	spin_lock(&rq->lock);
4487
	update_rq_clock(rq);
4488
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4489
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4490
	spin_unlock(&rq->lock);
4491

4492
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4493 4494
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4495
#endif
L
Linus Torvalds 已提交
4496 4497
}

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

static inline unsigned long get_parent_ip(unsigned long addr)
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
4510

4511
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4512
{
4513
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4514 4515 4516
	/*
	 * Underflow?
	 */
4517 4518
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
4519
#endif
L
Linus Torvalds 已提交
4520
	preempt_count() += val;
4521
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4522 4523 4524
	/*
	 * Spinlock count overflowing soon?
	 */
4525 4526
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
4527 4528 4529
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4530 4531 4532
}
EXPORT_SYMBOL(add_preempt_count);

4533
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4534
{
4535
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
4536 4537 4538
	/*
	 * Underflow?
	 */
4539
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4540
		return;
L
Linus Torvalds 已提交
4541 4542 4543
	/*
	 * Is the spinlock portion underflowing?
	 */
4544 4545 4546
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
4547
#endif
4548

4549 4550
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
4551 4552 4553 4554 4555 4556 4557
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4558
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4559
 */
I
Ingo Molnar 已提交
4560
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4561
{
4562 4563 4564 4565 4566
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4567
	debug_show_held_locks(prev);
4568
	print_modules();
I
Ingo Molnar 已提交
4569 4570
	if (irqs_disabled())
		print_irqtrace_events(prev);
4571 4572 4573 4574 4575

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4576
}
L
Linus Torvalds 已提交
4577

I
Ingo Molnar 已提交
4578 4579 4580 4581 4582
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4583
	/*
I
Ingo Molnar 已提交
4584
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4585 4586 4587
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4588
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4589 4590
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4591 4592
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4593
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4594 4595
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4596 4597
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4598 4599
	}
#endif
I
Ingo Molnar 已提交
4600 4601 4602 4603 4604 4605
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4606
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4607
{
4608
	const struct sched_class *class;
I
Ingo Molnar 已提交
4609
	struct task_struct *p;
L
Linus Torvalds 已提交
4610 4611

	/*
I
Ingo Molnar 已提交
4612 4613
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4614
	 */
I
Ingo Molnar 已提交
4615
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4616
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4617 4618
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4619 4620
	}

I
Ingo Molnar 已提交
4621 4622
	class = sched_class_highest;
	for ( ; ; ) {
4623
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4633

I
Ingo Molnar 已提交
4634 4635 4636 4637 4638 4639
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4640
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4641
	struct rq *rq;
4642
	int cpu;
I
Ingo Molnar 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4656

4657
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
4658
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4659

4660
	spin_lock_irq(&rq->lock);
4661
	update_rq_clock(rq);
4662
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4663 4664

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4665
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
4666
			prev->state = TASK_RUNNING;
4667
		else
4668
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
4669
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4670 4671
	}

4672 4673 4674 4675
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4676

I
Ingo Molnar 已提交
4677
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4678 4679
		idle_balance(cpu, rq);

4680
	prev->sched_class->put_prev_task(rq, prev);
4681
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4682 4683

	if (likely(prev != next)) {
4684 4685
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4686 4687 4688 4689
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4690
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4691 4692 4693 4694 4695 4696
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4697 4698 4699
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
4700
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4701
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4702

L
Linus Torvalds 已提交
4703 4704 4705 4706 4707 4708 4709 4710
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4711
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4712
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4713 4714 4715 4716 4717
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4718

L
Linus Torvalds 已提交
4719 4720
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4721
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4722
	 */
N
Nick Piggin 已提交
4723
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4724 4725
		return;

4726 4727 4728 4729
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4730

4731 4732 4733 4734 4735 4736
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4737 4738 4739 4740
}
EXPORT_SYMBOL(preempt_schedule);

/*
4741
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4749

4750
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4751 4752
	BUG_ON(ti->preempt_count || !irqs_disabled());

4753 4754 4755 4756 4757 4758
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4759

4760 4761 4762 4763 4764 4765
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4766 4767 4768 4769
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4770 4771
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4772
{
4773
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4774 4775 4776 4777
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4778 4779
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4780 4781 4782
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4783
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4784 4785
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
4786 4787
void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
4788
{
4789
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4790

4791
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4792 4793
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4794
		if (curr->func(curr, mode, sync, key) &&
4795
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4796 4797 4798 4799 4800 4801 4802 4803 4804
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4805
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4806
 */
4807
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4808
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4821
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4822 4823 4824 4825 4826
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4827
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4839
void
I
Ingo Molnar 已提交
4840
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4857 4858 4859 4860 4861 4862 4863 4864 4865
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
 */
4866
void complete(struct completion *x)
L
Linus Torvalds 已提交
4867 4868 4869 4870 4871
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4872
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4873 4874 4875 4876
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4877 4878 4879 4880 4881 4882
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
 */
4883
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4889
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4890 4891 4892 4893
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4894 4895
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4896 4897 4898 4899 4900 4901 4902
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
4903
			if (signal_pending_state(state, current)) {
4904 4905
				timeout = -ERESTARTSYS;
				break;
4906 4907
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4908 4909 4910
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
4911
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
4912
		__remove_wait_queue(&x->wait, &wait);
4913 4914
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
4915 4916
	}
	x->done--;
4917
	return timeout ?: 1;
L
Linus Torvalds 已提交
4918 4919
}

4920 4921
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4922 4923 4924 4925
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4926
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4927
	spin_unlock_irq(&x->wait.lock);
4928 4929
	return timeout;
}
L
Linus Torvalds 已提交
4930

4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
4941
void __sched wait_for_completion(struct completion *x)
4942 4943
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4944
}
4945
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4946

4947 4948 4949 4950 4951 4952 4953 4954 4955
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
4956
unsigned long __sched
4957
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4958
{
4959
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4960
}
4961
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4962

4963 4964 4965 4966 4967 4968 4969
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
4970
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4971
{
4972 4973 4974 4975
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4976
}
4977
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4978

4979 4980 4981 4982 4983 4984 4985 4986
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
4987
unsigned long __sched
4988 4989
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4990
{
4991
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4992
}
4993
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4994

4995 4996 4997 4998 4999 5000 5001
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5002 5003 5004 5005 5006 5007 5008 5009 5010
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5057 5058
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5059
{
I
Ingo Molnar 已提交
5060 5061 5062 5063
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5064

5065
	__set_current_state(state);
L
Linus Torvalds 已提交
5066

5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5081 5082 5083
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5084
long __sched
I
Ingo Molnar 已提交
5085
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5086
{
5087
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5088 5089 5090
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5091
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5092
{
5093
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5094 5095 5096
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5097
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5098
{
5099
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5100 5101 5102
}
EXPORT_SYMBOL(sleep_on_timeout);

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5115
void rt_mutex_setprio(struct task_struct *p, int prio)
5116 5117
{
	unsigned long flags;
5118
	int oldprio, on_rq, running;
5119
	struct rq *rq;
5120
	const struct sched_class *prev_class = p->sched_class;
5121 5122 5123 5124

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5125
	update_rq_clock(rq);
5126

5127
	oldprio = p->prio;
I
Ingo Molnar 已提交
5128
	on_rq = p->se.on_rq;
5129
	running = task_current(rq, p);
5130
	if (on_rq)
5131
		dequeue_task(rq, p, 0);
5132 5133
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5134 5135 5136 5137 5138 5139

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5140 5141
	p->prio = prio;

5142 5143
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5144
	if (on_rq) {
5145
		enqueue_task(rq, p, 0);
5146 5147

		check_class_changed(rq, p, prev_class, oldprio, running);
5148 5149 5150 5151 5152 5153
	}
	task_rq_unlock(rq, &flags);
}

#endif

5154
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5155
{
I
Ingo Molnar 已提交
5156
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5157
	unsigned long flags;
5158
	struct rq *rq;
L
Linus Torvalds 已提交
5159 5160 5161 5162 5163 5164 5165 5166

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5167
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5168 5169 5170 5171
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5172
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5173
	 */
5174
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5175 5176 5177
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5178
	on_rq = p->se.on_rq;
5179
	if (on_rq)
5180
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5181 5182

	p->static_prio = NICE_TO_PRIO(nice);
5183
	set_load_weight(p);
5184 5185 5186
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5187

I
Ingo Molnar 已提交
5188
	if (on_rq) {
5189
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5190
		/*
5191 5192
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5193
		 */
5194
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5195 5196 5197 5198 5199 5200 5201
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5202 5203 5204 5205 5206
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5207
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5208
{
5209 5210
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5211

M
Matt Mackall 已提交
5212 5213 5214 5215
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5225
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5226
{
5227
	long nice, retval;
L
Linus Torvalds 已提交
5228 5229 5230 5231 5232 5233

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5234 5235
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5236 5237 5238
	if (increment > 40)
		increment = 40;

5239
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5240 5241 5242 5243 5244
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5245 5246 5247
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
5266
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
5275
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
5276 5277 5278
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
5279
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
5294
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
5295 5296 5297 5298 5299 5300 5301 5302
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
5303
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
5304
{
5305
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
5306 5307 5308
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
5309 5310
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
5311
{
I
Ingo Molnar 已提交
5312
	BUG_ON(p->se.on_rq);
5313

L
Linus Torvalds 已提交
5314
	p->policy = policy;
I
Ingo Molnar 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
5327
	p->rt_priority = prio;
5328 5329 5330
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
5331
	set_load_weight(p);
L
Linus Torvalds 已提交
5332 5333
}

5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

5350 5351
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
5352
{
5353
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
5354
	unsigned long flags;
5355
	const struct sched_class *prev_class = p->sched_class;
5356
	struct rq *rq;
L
Linus Torvalds 已提交
5357

5358 5359
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
5360 5361 5362 5363 5364
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
5365 5366
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
5367
		return -EINVAL;
L
Linus Torvalds 已提交
5368 5369
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
5370 5371
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
5372 5373
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
5374
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5375
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
5376
		return -EINVAL;
5377
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
5378 5379
		return -EINVAL;

5380 5381 5382
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
5383
	if (user && !capable(CAP_SYS_NICE)) {
5384
		if (rt_policy(policy)) {
5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
5401 5402 5403 5404 5405 5406
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
5407

5408
		/* can't change other user's priorities */
5409
		if (!check_same_owner(p))
5410 5411
			return -EPERM;
	}
L
Linus Torvalds 已提交
5412

5413
	if (user) {
5414
#ifdef CONFIG_RT_GROUP_SCHED
5415 5416 5417 5418
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
5419 5420
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
5421
			return -EPERM;
5422 5423
#endif

5424 5425 5426 5427 5428
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

5429 5430 5431 5432 5433
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5434 5435 5436 5437
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
5438
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
5439 5440 5441
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
5442 5443
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
5444 5445
		goto recheck;
	}
I
Ingo Molnar 已提交
5446
	update_rq_clock(rq);
I
Ingo Molnar 已提交
5447
	on_rq = p->se.on_rq;
5448
	running = task_current(rq, p);
5449
	if (on_rq)
5450
		deactivate_task(rq, p, 0);
5451 5452
	if (running)
		p->sched_class->put_prev_task(rq, p);
5453

L
Linus Torvalds 已提交
5454
	oldprio = p->prio;
I
Ingo Molnar 已提交
5455
	__setscheduler(rq, p, policy, param->sched_priority);
5456

5457 5458
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5459 5460
	if (on_rq) {
		activate_task(rq, p, 0);
5461 5462

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
5463
	}
5464 5465 5466
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

5467 5468
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
5469 5470
	return 0;
}
5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
5485 5486
EXPORT_SYMBOL_GPL(sched_setscheduler);

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
5504 5505
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
5506 5507 5508
{
	struct sched_param lparam;
	struct task_struct *p;
5509
	int retval;
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
5515 5516 5517

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
5518
	p = find_process_by_pid(pid);
5519 5520 5521
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
5522

L
Linus Torvalds 已提交
5523 5524 5525 5526 5527 5528 5529 5530 5531
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
5532 5533
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
5534
{
5535 5536 5537 5538
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
5539 5540 5541 5542 5543 5544 5545 5546
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
5547
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5548 5549 5550 5551 5552 5553 5554 5555
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
5556
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
5557
{
5558
	struct task_struct *p;
5559
	int retval;
L
Linus Torvalds 已提交
5560 5561

	if (pid < 0)
5562
		return -EINVAL;
L
Linus Torvalds 已提交
5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
5581
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
5582 5583
{
	struct sched_param lp;
5584
	struct task_struct *p;
5585
	int retval;
L
Linus Torvalds 已提交
5586 5587

	if (!param || pid < 0)
5588
		return -EINVAL;
L
Linus Torvalds 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5615
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
5616
{
5617
	cpumask_var_t cpus_allowed, new_mask;
5618 5619
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
5620

5621
	get_online_cpus();
L
Linus Torvalds 已提交
5622 5623 5624 5625 5626
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5627
		put_online_cpus();
L
Linus Torvalds 已提交
5628 5629 5630 5631 5632
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5633
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5634 5635 5636 5637 5638
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

5639 5640 5641 5642 5643 5644 5645 5646
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
5647
	retval = -EPERM;
5648
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
5649 5650
		goto out_unlock;

5651 5652 5653 5654
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5655 5656
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
5657
 again:
5658
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
5659

P
Paul Menage 已提交
5660
	if (!retval) {
5661 5662
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
5663 5664 5665 5666 5667
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
5668
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
5669 5670 5671
			goto again;
		}
	}
L
Linus Torvalds 已提交
5672
out_unlock:
5673 5674 5675 5676
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
5677
	put_task_struct(p);
5678
	put_online_cpus();
L
Linus Torvalds 已提交
5679 5680 5681 5682
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5683
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
5684
{
5685 5686 5687 5688 5689
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
5699 5700
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5701
{
5702
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
5703 5704
	int retval;

5705 5706
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5707

5708 5709 5710 5711 5712
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
5713 5714
}

5715
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
5716
{
5717
	struct task_struct *p;
L
Linus Torvalds 已提交
5718 5719
	int retval;

5720
	get_online_cpus();
L
Linus Torvalds 已提交
5721 5722 5723 5724 5725 5726 5727
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5728 5729 5730 5731
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5732
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
5733 5734 5735

out_unlock:
	read_unlock(&tasklist_lock);
5736
	put_online_cpus();
L
Linus Torvalds 已提交
5737

5738
	return retval;
L
Linus Torvalds 已提交
5739 5740 5741 5742 5743 5744 5745 5746
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
5747 5748
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
5749 5750
{
	int ret;
5751
	cpumask_var_t mask;
L
Linus Torvalds 已提交
5752

5753
	if (len < cpumask_size())
L
Linus Torvalds 已提交
5754 5755
		return -EINVAL;

5756 5757
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
5758

5759 5760 5761 5762 5763 5764 5765 5766
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
5767

5768
	return ret;
L
Linus Torvalds 已提交
5769 5770 5771 5772 5773
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5774 5775
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5776
 */
5777
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
5778
{
5779
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5780

5781
	schedstat_inc(rq, yld_count);
5782
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5783 5784 5785 5786 5787 5788

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5789
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5790 5791 5792 5793 5794 5795 5796 5797
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5798
static void __cond_resched(void)
L
Linus Torvalds 已提交
5799
{
5800 5801 5802
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5803 5804 5805 5806 5807
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5808 5809 5810 5811 5812 5813 5814
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5815
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5816
{
5817 5818
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5819 5820 5821 5822 5823
		__cond_resched();
		return 1;
	}
	return 0;
}
5824
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5825 5826 5827 5828 5829

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5830
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5831 5832 5833
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5834
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5835
{
N
Nick Piggin 已提交
5836
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5837 5838
	int ret = 0;

N
Nick Piggin 已提交
5839
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5840
		spin_unlock(lock);
N
Nick Piggin 已提交
5841 5842 5843 5844
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5845
		ret = 1;
L
Linus Torvalds 已提交
5846 5847
		spin_lock(lock);
	}
J
Jan Kara 已提交
5848
	return ret;
L
Linus Torvalds 已提交
5849 5850 5851 5852 5853 5854 5855
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5856
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5857
		local_bh_enable();
L
Linus Torvalds 已提交
5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5869
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5870 5871 5872 5873 5874 5875 5876 5877 5878 5879
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5880
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5881 5882 5883 5884 5885 5886 5887
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5888
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5889

5890
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5891 5892 5893
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5894
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5895 5896 5897 5898 5899
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5900
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5901 5902
	long ret;

5903
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5904 5905 5906
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5907
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5908 5909 5910 5911 5912 5913 5914 5915 5916 5917
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
5918
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
5919 5920 5921 5922 5923 5924 5925 5926 5927
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5928
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5929
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
5943
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
5944 5945 5946 5947 5948 5949 5950 5951 5952
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5953
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5954
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
5968
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5969
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
5970
{
5971
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5972
	unsigned int time_slice;
5973
	int retval;
L
Linus Torvalds 已提交
5974 5975 5976
	struct timespec t;

	if (pid < 0)
5977
		return -EINVAL;
L
Linus Torvalds 已提交
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5989 5990 5991 5992 5993 5994
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5995
		time_slice = DEF_TIMESLICE;
5996
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5997 5998 5999 6000 6001
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6002 6003
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6004 6005
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6006
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6007
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6008 6009
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6010

L
Linus Torvalds 已提交
6011 6012 6013 6014 6015
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6016
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6017

6018
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6019 6020
{
	unsigned long free = 0;
6021
	unsigned state;
L
Linus Torvalds 已提交
6022 6023

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6024
	printk(KERN_INFO "%-13.13s %c", p->comm,
6025
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6026
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6027
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6028
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6029
	else
I
Ingo Molnar 已提交
6030
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6031 6032
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6033
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6034
	else
I
Ingo Molnar 已提交
6035
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6036 6037 6038
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
6039
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
6040 6041
		while (!*n)
			n++;
6042
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
6043 6044
	}
#endif
6045
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
6046
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
6047

6048
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6049 6050
}

I
Ingo Molnar 已提交
6051
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6052
{
6053
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6054

6055 6056 6057
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6058
#else
6059 6060
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6061 6062 6063 6064 6065 6066 6067 6068
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6069
		if (!state_filter || (p->state & state_filter))
6070
			sched_show_task(p);
L
Linus Torvalds 已提交
6071 6072
	} while_each_thread(g, p);

6073 6074
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6075 6076 6077
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6078
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6079 6080 6081 6082 6083
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6084 6085
}

I
Ingo Molnar 已提交
6086 6087
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6088
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6089 6090
}

6091 6092 6093 6094 6095 6096 6097 6098
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6099
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6100
{
6101
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6102 6103
	unsigned long flags;

6104 6105
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6106 6107 6108
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6109
	idle->prio = idle->normal_prio = MAX_PRIO;
6110
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6111
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6112 6113

	rq->curr = rq->idle = idle;
6114 6115 6116
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6117 6118 6119
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6120 6121 6122
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6123
	task_thread_info(idle)->preempt_count = 0;
6124
#endif
I
Ingo Molnar 已提交
6125 6126 6127 6128
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6129
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6130 6131 6132 6133 6134 6135 6136
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6137
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6138
 */
6139
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6140

I
Ingo Molnar 已提交
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6164 6165

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6166 6167
}

L
Linus Torvalds 已提交
6168 6169 6170 6171
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6172
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6191
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6192 6193
 * call is not atomic; no spinlocks may be held.
 */
6194
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6195
{
6196
	struct migration_req req;
L
Linus Torvalds 已提交
6197
	unsigned long flags;
6198
	struct rq *rq;
6199
	int ret = 0;
L
Linus Torvalds 已提交
6200 6201

	rq = task_rq_lock(p, &flags);
6202
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6203 6204 6205 6206
		ret = -EINVAL;
		goto out;
	}

6207
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6208
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6209 6210 6211 6212
		ret = -EINVAL;
		goto out;
	}

6213
	if (p->sched_class->set_cpus_allowed)
6214
		p->sched_class->set_cpus_allowed(p, new_mask);
6215
	else {
6216 6217
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6218 6219
	}

L
Linus Torvalds 已提交
6220
	/* Can the task run on the task's current CPU? If so, we're done */
6221
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6222 6223
		goto out;

R
Rusty Russell 已提交
6224
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6225 6226 6227 6228 6229 6230 6231 6232 6233
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6234

L
Linus Torvalds 已提交
6235 6236
	return ret;
}
6237
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6238 6239

/*
I
Ingo Molnar 已提交
6240
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6241 6242 6243 6244 6245 6246
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6247 6248
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6249
 */
6250
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6251
{
6252
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6253
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6254

6255
	if (unlikely(!cpu_active(dest_cpu)))
6256
		return ret;
L
Linus Torvalds 已提交
6257 6258 6259 6260 6261 6262 6263

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
6264
		goto done;
L
Linus Torvalds 已提交
6265
	/* Affinity changed (again). */
6266
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
6267
		goto fail;
L
Linus Torvalds 已提交
6268

I
Ingo Molnar 已提交
6269
	on_rq = p->se.on_rq;
6270
	if (on_rq)
6271
		deactivate_task(rq_src, p, 0);
6272

L
Linus Torvalds 已提交
6273
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
6274 6275
	if (on_rq) {
		activate_task(rq_dest, p, 0);
6276
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
6277
	}
L
Linus Torvalds 已提交
6278
done:
6279
	ret = 1;
L
Linus Torvalds 已提交
6280
fail:
L
Linus Torvalds 已提交
6281
	double_rq_unlock(rq_src, rq_dest);
6282
	return ret;
L
Linus Torvalds 已提交
6283 6284 6285 6286 6287 6288 6289
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
6290
static int migration_thread(void *data)
L
Linus Torvalds 已提交
6291 6292
{
	int cpu = (long)data;
6293
	struct rq *rq;
L
Linus Torvalds 已提交
6294 6295 6296 6297 6298 6299

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
6300
		struct migration_req *req;
L
Linus Torvalds 已提交
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
6323
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
6324 6325
		list_del_init(head->next);

N
Nick Piggin 已提交
6326 6327 6328
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

6358
/*
6359
 * Figure out where task on dead CPU should go, use force if necessary.
6360
 */
6361
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6362
{
6363
	int dest_cpu;
6364
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
6381

6382 6383 6384 6385 6386 6387 6388 6389 6390
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
6391
		}
6392 6393 6394 6395 6396 6397
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
6398 6399 6400 6401 6402 6403 6404 6405 6406
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
6407
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
6408
{
R
Rusty Russell 已提交
6409
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
6423
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
6424

6425
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
6426

6427 6428
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
6429 6430
			continue;

6431 6432 6433
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
6434

6435
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
6436 6437
}

I
Ingo Molnar 已提交
6438 6439
/*
 * Schedules idle task to be the next runnable task on current CPU.
6440 6441
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
6442 6443 6444
 */
void sched_idle_next(void)
{
6445
	int this_cpu = smp_processor_id();
6446
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
6447 6448 6449 6450
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
6451
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
6452

6453 6454 6455
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
6456 6457 6458
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6459
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6460

6461 6462
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
6463 6464 6465 6466

	spin_unlock_irqrestore(&rq->lock, flags);
}

6467 6468
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

6482
/* called under rq->lock with disabled interrupts */
6483
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
6484
{
6485
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
6486 6487

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
6488
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
6489 6490

	/* Cannot have done final schedule yet: would have vanished. */
6491
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
6492

6493
	get_task_struct(p);
L
Linus Torvalds 已提交
6494 6495 6496

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
6497
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
6498 6499
	 * fine.
	 */
6500
	spin_unlock_irq(&rq->lock);
6501
	move_task_off_dead_cpu(dead_cpu, p);
6502
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6503

6504
	put_task_struct(p);
L
Linus Torvalds 已提交
6505 6506 6507 6508 6509
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
6510
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
6511
	struct task_struct *next;
6512

I
Ingo Molnar 已提交
6513 6514 6515
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
6516
		update_rq_clock(rq);
6517
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
6518 6519
		if (!next)
			break;
D
Dmitry Adamushko 已提交
6520
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
6521
		migrate_dead(dead_cpu, next);
6522

L
Linus Torvalds 已提交
6523 6524 6525 6526
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

6527 6528 6529
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
6530 6531
	{
		.procname	= "sched_domain",
6532
		.mode		= 0555,
6533
	},
I
Ingo Molnar 已提交
6534
	{0, },
6535 6536 6537
};

static struct ctl_table sd_ctl_root[] = {
6538
	{
6539
		.ctl_name	= CTL_KERN,
6540
		.procname	= "kernel",
6541
		.mode		= 0555,
6542 6543
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
6544
	{0, },
6545 6546 6547 6548 6549
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
6550
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6551 6552 6553 6554

	return entry;
}

6555 6556
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
6557
	struct ctl_table *entry;
6558

6559 6560 6561
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
6562
	 * will always be set. In the lowest directory the names are
6563 6564 6565
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
6566 6567
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
6568 6569 6570
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
6571 6572 6573 6574 6575

	kfree(*tablep);
	*tablep = NULL;
}

6576
static void
6577
set_table_entry(struct ctl_table *entry,
6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
6591
	struct ctl_table *table = sd_alloc_ctl_entry(13);
6592

6593 6594 6595
	if (table == NULL)
		return NULL;

6596
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
6597
		sizeof(long), 0644, proc_doulongvec_minmax);
6598
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
6599
		sizeof(long), 0644, proc_doulongvec_minmax);
6600
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6601
		sizeof(int), 0644, proc_dointvec_minmax);
6602
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6603
		sizeof(int), 0644, proc_dointvec_minmax);
6604
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6605
		sizeof(int), 0644, proc_dointvec_minmax);
6606
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6607
		sizeof(int), 0644, proc_dointvec_minmax);
6608
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6609
		sizeof(int), 0644, proc_dointvec_minmax);
6610
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6611
		sizeof(int), 0644, proc_dointvec_minmax);
6612
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6613
		sizeof(int), 0644, proc_dointvec_minmax);
6614
	set_table_entry(&table[9], "cache_nice_tries",
6615 6616
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
6617
	set_table_entry(&table[10], "flags", &sd->flags,
6618
		sizeof(int), 0644, proc_dointvec_minmax);
6619 6620 6621
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
6622 6623 6624 6625

	return table;
}

6626
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6627 6628 6629 6630 6631 6632 6633 6634 6635
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6636 6637
	if (table == NULL)
		return NULL;
6638 6639 6640 6641 6642

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6643
		entry->mode = 0555;
6644 6645 6646 6647 6648 6649 6650 6651
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6652
static void register_sched_domain_sysctl(void)
6653 6654 6655 6656 6657
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6658 6659 6660
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6661 6662 6663
	if (entry == NULL)
		return;

6664
	for_each_online_cpu(i) {
6665 6666
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6667
		entry->mode = 0555;
6668
		entry->child = sd_alloc_ctl_cpu_table(i);
6669
		entry++;
6670
	}
6671 6672

	WARN_ON(sd_sysctl_header);
6673 6674
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6675

6676
/* may be called multiple times per register */
6677 6678
static void unregister_sched_domain_sysctl(void)
{
6679 6680
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6681
	sd_sysctl_header = NULL;
6682 6683
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6684
}
6685
#else
6686 6687 6688 6689
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6690 6691 6692 6693
{
}
#endif

6694 6695 6696 6697 6698
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

6699
		cpumask_set_cpu(rq->cpu, rq->rd->online);
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

6719
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
6720 6721 6722 6723
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
6724 6725 6726 6727
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6728 6729
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6730 6731
{
	struct task_struct *p;
6732
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6733
	unsigned long flags;
6734
	struct rq *rq;
L
Linus Torvalds 已提交
6735 6736

	switch (action) {
6737

L
Linus Torvalds 已提交
6738
	case CPU_UP_PREPARE:
6739
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6740
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6741 6742 6743 6744 6745
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6746
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6747 6748 6749
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6750

L
Linus Torvalds 已提交
6751
	case CPU_ONLINE:
6752
	case CPU_ONLINE_FROZEN:
6753
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6754
		wake_up_process(cpu_rq(cpu)->migration_thread);
6755 6756 6757 6758 6759

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6760
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6761 6762

			set_rq_online(rq);
6763 6764
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6765
		break;
6766

L
Linus Torvalds 已提交
6767 6768
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6769
	case CPU_UP_CANCELED_FROZEN:
6770 6771
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6772
		/* Unbind it from offline cpu so it can run. Fall thru. */
6773
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
6774
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
6775 6776 6777
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6778

L
Linus Torvalds 已提交
6779
	case CPU_DEAD:
6780
	case CPU_DEAD_FROZEN:
6781
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6782 6783 6784 6785 6786
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6787
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6788
		update_rq_clock(rq);
6789
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6790
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6791 6792
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6793
		migrate_dead_tasks(cpu);
6794
		spin_unlock_irq(&rq->lock);
6795
		cpuset_unlock();
L
Linus Torvalds 已提交
6796 6797 6798
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6799 6800 6801 6802 6803
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6804 6805
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6806 6807
			struct migration_req *req;

L
Linus Torvalds 已提交
6808
			req = list_entry(rq->migration_queue.next,
6809
					 struct migration_req, list);
L
Linus Torvalds 已提交
6810
			list_del_init(&req->list);
B
Brian King 已提交
6811
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
6812
			complete(&req->done);
B
Brian King 已提交
6813
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
6814 6815 6816
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6817

6818 6819
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6820 6821 6822 6823
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
6824
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6825
			set_rq_offline(rq);
G
Gregory Haskins 已提交
6826 6827 6828
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835 6836
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6837
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6838 6839 6840 6841
	.notifier_call = migration_call,
	.priority = 10
};

6842
static int __init migration_init(void)
L
Linus Torvalds 已提交
6843 6844
{
	void *cpu = (void *)(long)smp_processor_id();
6845
	int err;
6846 6847

	/* Start one for the boot CPU: */
6848 6849
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6850 6851
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
6852 6853

	return err;
L
Linus Torvalds 已提交
6854
}
6855
early_initcall(migration_init);
L
Linus Torvalds 已提交
6856 6857 6858
#endif

#ifdef CONFIG_SMP
6859

6860
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6861

6862
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6863
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
6864
{
I
Ingo Molnar 已提交
6865
	struct sched_group *group = sd->groups;
6866
	char str[256];
L
Linus Torvalds 已提交
6867

R
Rusty Russell 已提交
6868
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6869
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
6870 6871 6872 6873 6874 6875 6876 6877 6878

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6879 6880
	}

6881
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
6882

6883
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
6884 6885 6886
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
6887
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6888 6889 6890
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6891

I
Ingo Molnar 已提交
6892
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6893
	do {
I
Ingo Molnar 已提交
6894 6895 6896
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6897 6898 6899
			break;
		}

I
Ingo Molnar 已提交
6900 6901 6902 6903 6904 6905
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6906

6907
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6908 6909 6910 6911
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6912

6913
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
6914 6915 6916 6917
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6918

6919
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
6920

R
Rusty Russell 已提交
6921
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
I
Ingo Molnar 已提交
6922
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6923

I
Ingo Molnar 已提交
6924 6925 6926
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6927

6928
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
6929
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6930

6931 6932
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
6933 6934 6935 6936
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6937

I
Ingo Molnar 已提交
6938 6939
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6940
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
6941
	int level = 0;
L
Linus Torvalds 已提交
6942

I
Ingo Molnar 已提交
6943 6944 6945 6946
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6947

I
Ingo Molnar 已提交
6948 6949
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6950
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6951 6952 6953 6954
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6955
	for (;;) {
6956
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6957
			break;
L
Linus Torvalds 已提交
6958 6959
		level++;
		sd = sd->parent;
6960
		if (!sd)
I
Ingo Molnar 已提交
6961 6962
			break;
	}
6963
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
6964
}
6965
#else /* !CONFIG_SCHED_DEBUG */
6966
# define sched_domain_debug(sd, cpu) do { } while (0)
6967
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
6968

6969
static int sd_degenerate(struct sched_domain *sd)
6970
{
6971
	if (cpumask_weight(sched_domain_span(sd)) == 1)
6972 6973 6974 6975 6976 6977
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6978 6979 6980
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6994 6995
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6996 6997 6998 6999 7000 7001
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7002
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7014 7015 7016
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7017 7018
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7019 7020 7021 7022 7023 7024 7025
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7026 7027
static void free_rootdomain(struct root_domain *rd)
{
7028 7029
	cpupri_cleanup(&rd->cpupri);

7030 7031 7032 7033 7034 7035
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7036 7037
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7038
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7039 7040 7041 7042 7043
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7044
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7045

7046
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7047
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7048

7049
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7050

I
Ingo Molnar 已提交
7051 7052 7053 7054 7055 7056 7057
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7058 7059 7060 7061 7062
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7063 7064
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7065
		set_rq_online(rq);
G
Gregory Haskins 已提交
7066 7067

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7068 7069 7070

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7071 7072
}

L
Li Zefan 已提交
7073
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7074 7075 7076
{
	memset(rd, 0, sizeof(*rd));

7077 7078 7079 7080
	if (bootmem) {
		alloc_bootmem_cpumask_var(&def_root_domain.span);
		alloc_bootmem_cpumask_var(&def_root_domain.online);
		alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7081
		cpupri_init(&rd->cpupri, true);
7082 7083 7084 7085
		return 0;
	}

	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7086
		goto out;
7087 7088 7089 7090
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
		goto free_span;
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_online;
7091

7092 7093
	if (cpupri_init(&rd->cpupri, false) != 0)
		goto free_rto_mask;
7094
	return 0;
7095

7096 7097
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7098 7099 7100 7101
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7102
out:
7103
	return -ENOMEM;
G
Gregory Haskins 已提交
7104 7105 7106 7107
}

static void init_defrootdomain(void)
{
7108 7109
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7110 7111 7112
	atomic_set(&def_root_domain.refcount, 1);
}

7113
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7114 7115 7116 7117 7118 7119 7120
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7121 7122 7123 7124
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7125 7126 7127 7128

	return rd;
}

L
Linus Torvalds 已提交
7129
/*
I
Ingo Molnar 已提交
7130
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7131 7132
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7133 7134
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7135
{
7136
	struct rq *rq = cpu_rq(cpu);
7137 7138 7139
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7140
	for (tmp = sd; tmp; ) {
7141 7142 7143
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7144

7145
		if (sd_parent_degenerate(tmp, parent)) {
7146
			tmp->parent = parent->parent;
7147 7148
			if (parent->parent)
				parent->parent->child = tmp;
7149 7150
		} else
			tmp = tmp->parent;
7151 7152
	}

7153
	if (sd && sd_degenerate(sd)) {
7154
		sd = sd->parent;
7155 7156 7157
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7158 7159 7160

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7161
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7162
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7163 7164 7165
}

/* cpus with isolated domains */
7166
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7167 7168 7169 7170

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7171
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7172 7173 7174
	return 1;
}

I
Ingo Molnar 已提交
7175
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7176 7177

/*
7178 7179
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7180 7181
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7182 7183 7184 7185 7186
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7187
static void
7188 7189 7190
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7191
					struct sched_group **sg,
7192 7193
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7194 7195 7196 7197
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7198
	cpumask_clear(covered);
7199

7200
	for_each_cpu(i, span) {
7201
		struct sched_group *sg;
7202
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7203 7204
		int j;

7205
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7206 7207
			continue;

7208
		cpumask_clear(sched_group_cpus(sg));
7209
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7210

7211
		for_each_cpu(j, span) {
7212
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7213 7214
				continue;

7215
			cpumask_set_cpu(j, covered);
7216
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7227
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7228

7229
#ifdef CONFIG_NUMA
7230

7231 7232 7233 7234 7235
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7236
 * Find the next node to include in a given scheduling domain. Simply
7237 7238 7239 7240
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7241
static int find_next_best_node(int node, nodemask_t *used_nodes)
7242 7243 7244 7245 7246
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

7247
	for (i = 0; i < nr_node_ids; i++) {
7248
		/* Start at @node */
7249
		n = (node + i) % nr_node_ids;
7250 7251 7252 7253 7254

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
7255
		if (node_isset(n, *used_nodes))
7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

7267
	node_set(best_node, *used_nodes);
7268 7269 7270 7271 7272 7273
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
7274
 * @span: resulting cpumask
7275
 *
I
Ingo Molnar 已提交
7276
 * Given a node, construct a good cpumask for its sched_domain to span. It
7277 7278 7279
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
7280
static void sched_domain_node_span(int node, struct cpumask *span)
7281
{
7282
	nodemask_t used_nodes;
7283
	int i;
7284

7285
	cpumask_clear(span);
7286
	nodes_clear(used_nodes);
7287

7288
	cpumask_or(span, span, cpumask_of_node(node));
7289
	node_set(node, used_nodes);
7290 7291

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7292
		int next_node = find_next_best_node(node, &used_nodes);
7293

7294
		cpumask_or(span, span, cpumask_of_node(next_node));
7295 7296
	}
}
7297
#endif /* CONFIG_NUMA */
7298

7299
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7300

7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
 * for nr_cpu_ids < CONFIG_NR_CPUS.
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

7316
/*
7317
 * SMT sched-domains:
7318
 */
L
Linus Torvalds 已提交
7319
#ifdef CONFIG_SCHED_SMT
7320 7321
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7322

I
Ingo Molnar 已提交
7323
static int
7324 7325
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
7326
{
7327
	if (sg)
7328
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
7329 7330
	return cpu;
}
7331
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
7332

7333 7334 7335
/*
 * multi-core sched-domains:
 */
7336
#ifdef CONFIG_SCHED_MC
7337 7338
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7339
#endif /* CONFIG_SCHED_MC */
7340 7341

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
7342
static int
7343 7344
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
7345
{
7346
	int group;
7347

7348 7349
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
7350
	if (sg)
7351
		*sg = &per_cpu(sched_group_core, group).sg;
7352
	return group;
7353 7354
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
7355
static int
7356 7357
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
7358
{
7359
	if (sg)
7360
		*sg = &per_cpu(sched_group_core, cpu).sg;
7361 7362 7363 7364
	return cpu;
}
#endif

7365 7366
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7367

I
Ingo Molnar 已提交
7368
static int
7369 7370
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
7371
{
7372
	int group;
7373
#ifdef CONFIG_SCHED_MC
7374
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7375
	group = cpumask_first(mask);
7376
#elif defined(CONFIG_SCHED_SMT)
7377 7378
	cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
7379
#else
7380
	group = cpu;
L
Linus Torvalds 已提交
7381
#endif
7382
	if (sg)
7383
		*sg = &per_cpu(sched_group_phys, group).sg;
7384
	return group;
L
Linus Torvalds 已提交
7385 7386 7387 7388
}

#ifdef CONFIG_NUMA
/*
7389 7390 7391
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
7392
 */
7393
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7394
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
7395

7396
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7397
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7398

7399 7400 7401
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
7402
{
7403 7404
	int group;

7405
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7406
	group = cpumask_first(nodemask);
7407 7408

	if (sg)
7409
		*sg = &per_cpu(sched_group_allnodes, group).sg;
7410
	return group;
L
Linus Torvalds 已提交
7411
}
7412

7413 7414 7415 7416 7417 7418 7419
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
7420
	do {
7421
		for_each_cpu(j, sched_group_cpus(sg)) {
7422
			struct sched_domain *sd;
7423

7424
			sd = &per_cpu(phys_domains, j).sd;
7425
			if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7426 7427 7428 7429 7430 7431
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
7432

7433 7434 7435 7436
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
7437
}
7438
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
7439

7440
#ifdef CONFIG_NUMA
7441
/* Free memory allocated for various sched_group structures */
7442 7443
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7444
{
7445
	int cpu, i;
7446

7447
	for_each_cpu(cpu, cpu_map) {
7448 7449 7450 7451 7452 7453
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

7454
		for (i = 0; i < nr_node_ids; i++) {
7455 7456
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

7457
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7458
			if (cpumask_empty(nodemask))
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
7475
#else /* !CONFIG_NUMA */
7476 7477
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
7478 7479
{
}
7480
#endif /* CONFIG_NUMA */
7481

7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

7503
	if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7504 7505 7506 7507
		return;

	child = sd->child;

7508 7509
	sd->groups->__cpu_power = 0;

7510 7511 7512 7513 7514 7515 7516 7517 7518 7519
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7520
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7521 7522 7523 7524 7525 7526 7527 7528
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
7529
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
7530 7531 7532 7533
		group = group->next;
	} while (group != child->groups);
}

7534 7535 7536 7537 7538
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

7539 7540 7541 7542 7543 7544
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

7545
#define	SD_INIT(sd, type)	sd_init_##type(sd)
7546

7547 7548 7549 7550 7551
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
7552
	sd->level = SD_LV_##type;				\
7553
	SD_INIT_NAME(sd, type);					\
7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

7568 7569 7570 7571
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
7572 7573 7574 7575 7576 7577
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
7603
/*
7604 7605
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
7606
 */
7607
static int __build_sched_domains(const struct cpumask *cpu_map,
7608
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
7609
{
7610
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
7611
	struct root_domain *rd;
7612 7613
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
7614
#ifdef CONFIG_NUMA
7615
	cpumask_var_t domainspan, covered, notcovered;
7616
	struct sched_group **sched_group_nodes = NULL;
7617
	int sd_allnodes = 0;
7618

7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
7639 7640 7641
	/*
	 * Allocate the per-node list of sched groups
	 */
7642
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
7643
				    GFP_KERNEL);
7644 7645
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
7646
		goto free_tmpmask;
7647 7648
	}
#endif
L
Linus Torvalds 已提交
7649

7650
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
7651 7652
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
7653
		goto free_sched_groups;
G
Gregory Haskins 已提交
7654 7655
	}

7656
#ifdef CONFIG_NUMA
7657
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7658 7659
#endif

L
Linus Torvalds 已提交
7660
	/*
7661
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
7662
	 */
7663
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7664 7665
		struct sched_domain *sd = NULL, *p;

7666
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
7667 7668

#ifdef CONFIG_NUMA
7669 7670
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
7671
			sd = &per_cpu(allnodes_domains, i).sd;
7672
			SD_INIT(sd, ALLNODES);
7673
			set_domain_attribute(sd, attr);
7674
			cpumask_copy(sched_domain_span(sd), cpu_map);
7675
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7676
			p = sd;
7677
			sd_allnodes = 1;
7678 7679 7680
		} else
			p = NULL;

7681
		sd = &per_cpu(node_domains, i).sd;
7682
		SD_INIT(sd, NODE);
7683
		set_domain_attribute(sd, attr);
7684
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7685
		sd->parent = p;
7686 7687
		if (p)
			p->child = sd;
7688 7689
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
7690 7691 7692
#endif

		p = sd;
7693
		sd = &per_cpu(phys_domains, i).sd;
7694
		SD_INIT(sd, CPU);
7695
		set_domain_attribute(sd, attr);
7696
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
7697
		sd->parent = p;
7698 7699
		if (p)
			p->child = sd;
7700
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7701

7702 7703
#ifdef CONFIG_SCHED_MC
		p = sd;
7704
		sd = &per_cpu(core_domains, i).sd;
7705
		SD_INIT(sd, MC);
7706
		set_domain_attribute(sd, attr);
7707 7708
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
7709
		sd->parent = p;
7710
		p->child = sd;
7711
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7712 7713
#endif

L
Linus Torvalds 已提交
7714 7715
#ifdef CONFIG_SCHED_SMT
		p = sd;
7716
		sd = &per_cpu(cpu_domains, i).sd;
7717
		SD_INIT(sd, SIBLING);
7718
		set_domain_attribute(sd, attr);
7719 7720
		cpumask_and(sched_domain_span(sd),
			    &per_cpu(cpu_sibling_map, i), cpu_map);
L
Linus Torvalds 已提交
7721
		sd->parent = p;
7722
		p->child = sd;
7723
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7724 7725 7726 7727 7728
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7729
	for_each_cpu(i, cpu_map) {
7730 7731 7732
		cpumask_and(this_sibling_map,
			    &per_cpu(cpu_sibling_map, i), cpu_map);
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
7733 7734
			continue;

I
Ingo Molnar 已提交
7735
		init_sched_build_groups(this_sibling_map, cpu_map,
7736 7737
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7738 7739 7740
	}
#endif

7741 7742
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
7743
	for_each_cpu(i, cpu_map) {
7744
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
7745
		if (i != cpumask_first(this_core_map))
7746
			continue;
7747

I
Ingo Molnar 已提交
7748
		init_sched_build_groups(this_core_map, cpu_map,
7749 7750
					&cpu_to_core_group,
					send_covered, tmpmask);
7751 7752 7753
	}
#endif

L
Linus Torvalds 已提交
7754
	/* Set up physical groups */
7755
	for (i = 0; i < nr_node_ids; i++) {
7756
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7757
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
7758 7759
			continue;

7760 7761 7762
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7763 7764 7765 7766
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7767 7768 7769 7770 7771
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7772

7773
	for (i = 0; i < nr_node_ids; i++) {
7774 7775 7776 7777
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

7778
		cpumask_clear(covered);
7779
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7780
		if (cpumask_empty(nodemask)) {
7781
			sched_group_nodes[i] = NULL;
7782
			continue;
7783
		}
7784

7785
		sched_domain_node_span(i, domainspan);
7786
		cpumask_and(domainspan, domainspan, cpu_map);
7787

7788 7789
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
7790 7791 7792 7793 7794
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7795
		sched_group_nodes[i] = sg;
7796
		for_each_cpu(j, nodemask) {
7797
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7798

7799
			sd = &per_cpu(node_domains, j).sd;
7800 7801
			sd->groups = sg;
		}
7802
		sg->__cpu_power = 0;
7803
		cpumask_copy(sched_group_cpus(sg), nodemask);
7804
		sg->next = sg;
7805
		cpumask_or(covered, covered, nodemask);
7806 7807
		prev = sg;

7808 7809
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
7810

7811 7812 7813 7814
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
7815 7816
				break;

7817
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
7818
			if (cpumask_empty(tmpmask))
7819 7820
				continue;

7821 7822
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
7823
					  GFP_KERNEL, i);
7824 7825 7826
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7827
				goto error;
7828
			}
7829
			sg->__cpu_power = 0;
7830
			cpumask_copy(sched_group_cpus(sg), tmpmask);
7831
			sg->next = prev->next;
7832
			cpumask_or(covered, covered, tmpmask);
7833 7834 7835 7836
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7837 7838 7839
#endif

	/* Calculate CPU power for physical packages and nodes */
7840
#ifdef CONFIG_SCHED_SMT
7841
	for_each_cpu(i, cpu_map) {
7842
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
7843

7844
		init_sched_groups_power(i, sd);
7845
	}
L
Linus Torvalds 已提交
7846
#endif
7847
#ifdef CONFIG_SCHED_MC
7848
	for_each_cpu(i, cpu_map) {
7849
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
7850

7851
		init_sched_groups_power(i, sd);
7852 7853
	}
#endif
7854

7855
	for_each_cpu(i, cpu_map) {
7856
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
7857

7858
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7859 7860
	}

7861
#ifdef CONFIG_NUMA
7862
	for (i = 0; i < nr_node_ids; i++)
7863
		init_numa_sched_groups_power(sched_group_nodes[i]);
7864

7865 7866
	if (sd_allnodes) {
		struct sched_group *sg;
7867

7868
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7869
								tmpmask);
7870 7871
		init_numa_sched_groups_power(sg);
	}
7872 7873
#endif

L
Linus Torvalds 已提交
7874
	/* Attach the domains */
7875
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
7876 7877
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
7878
		sd = &per_cpu(cpu_domains, i).sd;
7879
#elif defined(CONFIG_SCHED_MC)
7880
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
7881
#else
7882
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
7883
#endif
G
Gregory Haskins 已提交
7884
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7885
	}
7886

7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
7915

7916
#ifdef CONFIG_NUMA
7917
error:
7918
	free_sched_groups(cpu_map, tmpmask);
7919
	free_rootdomain(rd);
7920
	goto free_tmpmask;
7921
#endif
L
Linus Torvalds 已提交
7922
}
P
Paul Jackson 已提交
7923

7924
static int build_sched_domains(const struct cpumask *cpu_map)
7925 7926 7927 7928
{
	return __build_sched_domains(cpu_map, NULL);
}

7929
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
7930
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7931 7932
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7933 7934 7935

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
7936 7937
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
7938
 */
7939
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
7940

7941 7942 7943 7944 7945 7946
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
7947
{
7948
	return 0;
7949 7950
}

7951
/*
I
Ingo Molnar 已提交
7952
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7953 7954
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7955
 */
7956
static int arch_init_sched_domains(const struct cpumask *cpu_map)
7957
{
7958 7959
	int err;

7960
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7961
	ndoms_cur = 1;
7962
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
7963
	if (!doms_cur)
7964
		doms_cur = fallback_doms;
7965
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
7966
	dattr_cur = NULL;
7967
	err = build_sched_domains(doms_cur);
7968
	register_sched_domain_sysctl();
7969 7970

	return err;
7971 7972
}

7973 7974
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7975
{
7976
	free_sched_groups(cpu_map, tmpmask);
7977
}
L
Linus Torvalds 已提交
7978

7979 7980 7981 7982
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7983
static void detach_destroy_domains(const struct cpumask *cpu_map)
7984
{
7985 7986
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7987 7988
	int i;

7989
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
7990
		cpu_attach_domain(NULL, &def_root_domain, i);
7991
	synchronize_sched();
7992
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7993 7994
}

7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8011 8012
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8013
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8014 8015 8016
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8017
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8018 8019 8020
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8021 8022 8023
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8024 8025
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8026 8027 8028 8029
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8030
 *
8031
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8032 8033
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8034
 *
P
Paul Jackson 已提交
8035 8036
 * Call with hotplug lock held
 */
8037 8038
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8039
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8040
{
8041
	int i, j, n;
8042
	int new_topology;
P
Paul Jackson 已提交
8043

8044
	mutex_lock(&sched_domains_mutex);
8045

8046 8047 8048
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8049 8050 8051
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8052
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8053 8054 8055

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8056
		for (j = 0; j < n && !new_topology; j++) {
8057
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8058
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8059 8060 8061 8062 8063 8064 8065 8066
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8067 8068
	if (doms_new == NULL) {
		ndoms_cur = 0;
8069
		doms_new = fallback_doms;
8070
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8071
		WARN_ON_ONCE(dattr_new);
8072 8073
	}

P
Paul Jackson 已提交
8074 8075
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8076
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8077
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8078
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8079 8080 8081
				goto match2;
		}
		/* no match - add a new doms_new */
8082 8083
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8084 8085 8086 8087 8088
match2:
		;
	}

	/* Remember the new sched domains */
8089
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8090
		kfree(doms_cur);
8091
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8092
	doms_cur = doms_new;
8093
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8094
	ndoms_cur = ndoms_new;
8095 8096

	register_sched_domain_sysctl();
8097

8098
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8099 8100
}

8101
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8102
static void arch_reinit_sched_domains(void)
8103
{
8104
	get_online_cpus();
8105 8106 8107 8108

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8109
	rebuild_sched_domains();
8110
	put_online_cpus();
8111 8112 8113 8114
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8115
	unsigned int level = 0;
8116

8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8128 8129 8130
		return -EINVAL;

	if (smt)
8131
		sched_smt_power_savings = level;
8132
	else
8133
		sched_mc_power_savings = level;
8134

8135
	arch_reinit_sched_domains();
8136

8137
	return count;
8138 8139 8140
}

#ifdef CONFIG_SCHED_MC
8141 8142
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8143 8144 8145
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8146
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8147
					    const char *buf, size_t count)
8148 8149 8150
{
	return sched_power_savings_store(buf, count, 0);
}
8151 8152 8153
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8154 8155 8156
#endif

#ifdef CONFIG_SCHED_SMT
8157 8158
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8159 8160 8161
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8162
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8163
					     const char *buf, size_t count)
8164 8165 8166
{
	return sched_power_savings_store(buf, count, 1);
}
8167 8168
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8169 8170 8171
		   sched_smt_power_savings_store);
#endif

8172
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8188
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8189

8190
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8191
/*
8192 8193
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8194 8195 8196
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8197 8198 8199 8200 8201 8202
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8203
		partition_sched_domains(1, NULL, NULL);
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8214
{
P
Peter Zijlstra 已提交
8215 8216
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8217 8218
	switch (action) {
	case CPU_DOWN_PREPARE:
8219
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8220
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8221 8222 8223
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8224
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8225
	case CPU_ONLINE:
8226
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8227
		enable_runtime(cpu_rq(cpu));
8228 8229
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8230 8231 8232 8233 8234 8235 8236
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8237 8238 8239
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8240

8241 8242 8243 8244 8245
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
8246
	get_online_cpus();
8247
	mutex_lock(&sched_domains_mutex);
8248 8249 8250 8251
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8252
	mutex_unlock(&sched_domains_mutex);
8253
	put_online_cpus();
8254 8255

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8256 8257
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
8258 8259 8260 8261 8262
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

8263
	init_hrtick();
8264 8265

	/* Move init over to a non-isolated CPU */
8266
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8267
		BUG();
I
Ingo Molnar 已提交
8268
	sched_init_granularity();
8269
	free_cpumask_var(non_isolated_cpus);
8270 8271

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8272
	init_sched_rt_class();
L
Linus Torvalds 已提交
8273 8274 8275 8276
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
8277
	sched_init_granularity();
L
Linus Torvalds 已提交
8278 8279 8280 8281 8282 8283 8284 8285 8286 8287
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
8288
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
8289 8290
{
	cfs_rq->tasks_timeline = RB_ROOT;
8291
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
8292 8293 8294
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8295
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
8296 8297
}

P
Peter Zijlstra 已提交
8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

8311
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8312
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
8313
#ifdef CONFIG_SMP
8314
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
8315 8316
#endif
#endif
P
Peter Zijlstra 已提交
8317 8318 8319
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
8320
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
8321 8322 8323 8324
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
8325 8326
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
8327

8328
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8329
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
8330 8331
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
8332 8333
}

P
Peter Zijlstra 已提交
8334
#ifdef CONFIG_FAIR_GROUP_SCHED
8335 8336 8337
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
8338
{
8339
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
8340 8341 8342 8343 8344 8345 8346
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
8347 8348 8349 8350
	/* se could be NULL for init_task_group */
	if (!se)
		return;

8351 8352 8353 8354 8355
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
8356 8357
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
8358
	se->load.inv_weight = 0;
8359
	se->parent = parent;
P
Peter Zijlstra 已提交
8360
}
8361
#endif
P
Peter Zijlstra 已提交
8362

8363
#ifdef CONFIG_RT_GROUP_SCHED
8364 8365 8366
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
8367
{
8368 8369
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
8370 8371 8372 8373
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
8374
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8375 8376 8377 8378
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
8379 8380 8381
	if (!rt_se)
		return;

8382 8383 8384 8385 8386
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
8387
	rt_se->my_q = rt_rq;
8388
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
8389 8390 8391 8392
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
8393 8394
void __init sched_init(void)
{
I
Ingo Molnar 已提交
8395
	int i, j;
8396 8397 8398 8399 8400 8401 8402
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8403 8404 8405
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
8406 8407 8408 8409 8410 8411
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
8412
		ptr = (unsigned long)alloc_bootmem(alloc_size);
8413 8414 8415 8416 8417 8418 8419

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8420 8421 8422 8423 8424 8425 8426

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8427 8428
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
8429 8430 8431 8432 8433
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
8434 8435 8436 8437 8438 8439 8440 8441
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
8442 8443
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8444
	}
I
Ingo Molnar 已提交
8445

G
Gregory Haskins 已提交
8446 8447 8448 8449
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

8450 8451 8452 8453 8454 8455
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
8456 8457 8458
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
8459 8460
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
8461

8462
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
8463
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
8464 8465 8466 8467 8468 8469
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
8470 8471
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
8472

8473
	for_each_possible_cpu(i) {
8474
		struct rq *rq;
L
Linus Torvalds 已提交
8475 8476 8477

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
8478
		rq->nr_running = 0;
I
Ingo Molnar 已提交
8479
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
8480
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
8481
#ifdef CONFIG_FAIR_GROUP_SCHED
8482
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
8483
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
8504
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8505
#elif defined CONFIG_USER_SCHED
8506 8507
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
8519
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
8520
				&per_cpu(init_cfs_rq, i),
8521 8522
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
8523

8524
#endif
D
Dhaval Giani 已提交
8525 8526 8527
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8528
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8529
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
8530
#ifdef CONFIG_CGROUP_SCHED
8531
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
8532
#elif defined CONFIG_USER_SCHED
8533
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8534
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
8535
				&per_cpu(init_rt_rq, i),
8536 8537
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
8538
#endif
I
Ingo Molnar 已提交
8539
#endif
L
Linus Torvalds 已提交
8540

I
Ingo Molnar 已提交
8541 8542
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
8543
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
8544
		rq->sd = NULL;
G
Gregory Haskins 已提交
8545
		rq->rd = NULL;
L
Linus Torvalds 已提交
8546
		rq->active_balance = 0;
I
Ingo Molnar 已提交
8547
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
8548
		rq->push_cpu = 0;
8549
		rq->cpu = i;
8550
		rq->online = 0;
L
Linus Torvalds 已提交
8551 8552
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
8553
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
8554
#endif
P
Peter Zijlstra 已提交
8555
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
8556 8557 8558
		atomic_set(&rq->nr_iowait, 0);
	}

8559
	set_load_weight(&init_task);
8560

8561 8562 8563 8564
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

8565
#ifdef CONFIG_SMP
8566
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8567 8568
#endif

8569 8570 8571 8572
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
8586 8587 8588 8589
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
8590

8591 8592
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
	alloc_bootmem_cpumask_var(&nohz_cpu_mask);
8593
#ifdef CONFIG_SMP
8594 8595 8596
#ifdef CONFIG_NO_HZ
	alloc_bootmem_cpumask_var(&nohz.cpu_mask);
#endif
8597
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
8598
#endif /* SMP */
8599

8600
	scheduler_running = 1;
L
Linus Torvalds 已提交
8601 8602 8603 8604 8605
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
8606
#ifdef in_atomic
L
Linus Torvalds 已提交
8607 8608
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
8628 8629 8630 8631 8632 8633
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
8634 8635 8636
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
8637

8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
8649 8650
void normalize_rt_tasks(void)
{
8651
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
8652
	unsigned long flags;
8653
	struct rq *rq;
L
Linus Torvalds 已提交
8654

8655
	read_lock_irqsave(&tasklist_lock, flags);
8656
	do_each_thread(g, p) {
8657 8658 8659 8660 8661 8662
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
8663 8664
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
8665 8666 8667
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
8668
#endif
I
Ingo Molnar 已提交
8669 8670 8671 8672 8673 8674 8675 8676

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
8677
			continue;
I
Ingo Molnar 已提交
8678
		}
L
Linus Torvalds 已提交
8679

8680
		spin_lock(&p->pi_lock);
8681
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
8682

8683
		normalize_task(rq, p);
8684

8685
		__task_rq_unlock(rq);
8686
		spin_unlock(&p->pi_lock);
8687 8688
	} while_each_thread(g, p);

8689
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
8690 8691 8692
}

#endif /* CONFIG_MAGIC_SYSRQ */
8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8711
struct task_struct *curr_task(int cpu)
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
8722 8723
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
8724 8725 8726 8727 8728 8729 8730
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
8731
void set_curr_task(int cpu, struct task_struct *p)
8732 8733 8734 8735 8736
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
8737

8738 8739
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

8754 8755
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
8756 8757
{
	struct cfs_rq *cfs_rq;
8758
	struct sched_entity *se;
8759
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
8760 8761
	int i;

8762
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8763 8764
	if (!tg->cfs_rq)
		goto err;
8765
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8766 8767
	if (!tg->se)
		goto err;
8768 8769

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8770 8771

	for_each_possible_cpu(i) {
8772
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8773

8774 8775
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8776 8777 8778
		if (!cfs_rq)
			goto err;

8779 8780
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8781 8782 8783
		if (!se)
			goto err;

8784
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
8803
#else /* !CONFG_FAIR_GROUP_SCHED */
8804 8805 8806 8807
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8808 8809
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8821
#endif /* CONFIG_FAIR_GROUP_SCHED */
8822 8823

#ifdef CONFIG_RT_GROUP_SCHED
8824 8825 8826 8827
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8828 8829
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8841 8842
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8843 8844
{
	struct rt_rq *rt_rq;
8845
	struct sched_rt_entity *rt_se;
8846 8847 8848
	struct rq *rq;
	int i;

8849
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8850 8851
	if (!tg->rt_rq)
		goto err;
8852
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8853 8854 8855
	if (!tg->rt_se)
		goto err;

8856 8857
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8858 8859 8860 8861

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

8862 8863
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8864 8865
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8866

8867 8868
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
8869 8870
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8871

8872
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
8873 8874
	}

8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
8891
#else /* !CONFIG_RT_GROUP_SCHED */
8892 8893 8894 8895
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8896 8897
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
8909
#endif /* CONFIG_RT_GROUP_SCHED */
8910

8911
#ifdef CONFIG_GROUP_SCHED
8912 8913 8914 8915 8916 8917 8918 8919
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8920
struct task_group *sched_create_group(struct task_group *parent)
8921 8922 8923 8924 8925 8926 8927 8928 8929
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8930
	if (!alloc_fair_sched_group(tg, parent))
8931 8932
		goto err;

8933
	if (!alloc_rt_sched_group(tg, parent))
8934 8935
		goto err;

8936
	spin_lock_irqsave(&task_group_lock, flags);
8937
	for_each_possible_cpu(i) {
8938 8939
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8940
	}
P
Peter Zijlstra 已提交
8941
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8942 8943 8944 8945 8946

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
8947
	list_add_rcu(&tg->siblings, &parent->children);
8948
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8949

8950
	return tg;
S
Srivatsa Vaddagiri 已提交
8951 8952

err:
P
Peter Zijlstra 已提交
8953
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8954 8955 8956
	return ERR_PTR(-ENOMEM);
}

8957
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8958
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8959 8960
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8961
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8962 8963
}

8964
/* Destroy runqueue etc associated with a task group */
8965
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8966
{
8967
	unsigned long flags;
8968
	int i;
S
Srivatsa Vaddagiri 已提交
8969

8970
	spin_lock_irqsave(&task_group_lock, flags);
8971
	for_each_possible_cpu(i) {
8972 8973
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8974
	}
P
Peter Zijlstra 已提交
8975
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8976
	list_del_rcu(&tg->siblings);
8977
	spin_unlock_irqrestore(&task_group_lock, flags);
8978 8979

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8980
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8981 8982
}

8983
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8984 8985 8986
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8987 8988
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8989 8990 8991 8992 8993 8994 8995 8996 8997
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8998
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8999 9000
	on_rq = tsk->se.on_rq;

9001
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9002
		dequeue_task(rq, tsk, 0);
9003 9004
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9005

P
Peter Zijlstra 已提交
9006
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9007

P
Peter Zijlstra 已提交
9008 9009 9010 9011 9012
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9013 9014 9015
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9016
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9017 9018 9019

	task_rq_unlock(rq, &flags);
}
9020
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9021

9022
#ifdef CONFIG_FAIR_GROUP_SCHED
9023
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9024 9025 9026 9027 9028
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9029
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9030 9031 9032
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9033
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9034

9035
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9036
		enqueue_entity(cfs_rq, se, 0);
9037
}
9038

9039 9040 9041 9042 9043 9044 9045 9046 9047
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9048 9049
}

9050 9051
static DEFINE_MUTEX(shares_mutex);

9052
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9053 9054
{
	int i;
9055
	unsigned long flags;
9056

9057 9058 9059 9060 9061 9062
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9063 9064
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9065 9066
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9067

9068
	mutex_lock(&shares_mutex);
9069
	if (tg->shares == shares)
9070
		goto done;
S
Srivatsa Vaddagiri 已提交
9071

9072
	spin_lock_irqsave(&task_group_lock, flags);
9073 9074
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9075
	list_del_rcu(&tg->siblings);
9076
	spin_unlock_irqrestore(&task_group_lock, flags);
9077 9078 9079 9080 9081 9082 9083 9084

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9085
	tg->shares = shares;
9086 9087 9088 9089 9090
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9091
		set_se_shares(tg->se[i], shares);
9092
	}
S
Srivatsa Vaddagiri 已提交
9093

9094 9095 9096 9097
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9098
	spin_lock_irqsave(&task_group_lock, flags);
9099 9100
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9101
	list_add_rcu(&tg->siblings, &tg->parent->children);
9102
	spin_unlock_irqrestore(&task_group_lock, flags);
9103
done:
9104
	mutex_unlock(&shares_mutex);
9105
	return 0;
S
Srivatsa Vaddagiri 已提交
9106 9107
}

9108 9109 9110 9111
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9112
#endif
9113

9114
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9115
/*
P
Peter Zijlstra 已提交
9116
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9117
 */
P
Peter Zijlstra 已提交
9118 9119 9120 9121 9122
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9123
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9124

P
Peter Zijlstra 已提交
9125
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9126 9127
}

P
Peter Zijlstra 已提交
9128 9129
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9130
{
P
Peter Zijlstra 已提交
9131
	struct task_struct *g, *p;
9132

P
Peter Zijlstra 已提交
9133 9134 9135 9136
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9137

P
Peter Zijlstra 已提交
9138 9139
	return 0;
}
9140

P
Peter Zijlstra 已提交
9141 9142 9143 9144 9145
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9146

P
Peter Zijlstra 已提交
9147 9148 9149 9150 9151 9152
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9153

P
Peter Zijlstra 已提交
9154 9155
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9156

P
Peter Zijlstra 已提交
9157 9158 9159
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9160 9161
	}

9162 9163 9164 9165 9166 9167 9168
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9169 9170 9171 9172 9173
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9174

9175 9176 9177
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9178 9179
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9180

P
Peter Zijlstra 已提交
9181
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9182

9183 9184 9185 9186 9187
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9188

9189 9190 9191
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9192 9193 9194
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9195

P
Peter Zijlstra 已提交
9196 9197 9198 9199
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9200

P
Peter Zijlstra 已提交
9201
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9202
	}
P
Peter Zijlstra 已提交
9203

P
Peter Zijlstra 已提交
9204 9205 9206 9207
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9208 9209
}

P
Peter Zijlstra 已提交
9210
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9211
{
P
Peter Zijlstra 已提交
9212 9213 9214 9215 9216 9217 9218
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9219 9220
}

9221 9222
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9223
{
P
Peter Zijlstra 已提交
9224
	int i, err = 0;
P
Peter Zijlstra 已提交
9225 9226

	mutex_lock(&rt_constraints_mutex);
9227
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
9228 9229
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
9230
		goto unlock;
P
Peter Zijlstra 已提交
9231 9232

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9233 9234
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
9235 9236 9237 9238 9239 9240 9241 9242 9243

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
9244
 unlock:
9245
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
9246 9247 9248
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
9249 9250
}

9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
9263 9264 9265 9266
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

9267
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9268 9269
		return -1;

9270
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9271 9272 9273
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
9274 9275 9276 9277 9278 9279 9280 9281

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

9282 9283 9284
	if (rt_period == 0)
		return -EINVAL;

9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
9299
	u64 runtime, period;
9300 9301
	int ret = 0;

9302 9303 9304
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

9305 9306 9307 9308 9309 9310 9311 9312
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
9313

9314
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
9315
	read_lock(&tasklist_lock);
9316
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
9317
	read_unlock(&tasklist_lock);
9318 9319 9320 9321
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
9322
#else /* !CONFIG_RT_GROUP_SCHED */
9323 9324
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
9325 9326 9327
	unsigned long flags;
	int i;

9328 9329 9330
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

P
Peter Zijlstra 已提交
9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

9341 9342
	return 0;
}
9343
#endif /* CONFIG_RT_GROUP_SCHED */
9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
9374

9375
#ifdef CONFIG_CGROUP_SCHED
9376 9377

/* return corresponding task_group object of a cgroup */
9378
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9379
{
9380 9381
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
9382 9383 9384
}

static struct cgroup_subsys_state *
9385
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9386
{
9387
	struct task_group *tg, *parent;
9388

9389
	if (!cgrp->parent) {
9390 9391 9392 9393
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

9394 9395
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
9396 9397 9398 9399 9400 9401
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
9402 9403
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9404
{
9405
	struct task_group *tg = cgroup_tg(cgrp);
9406 9407 9408 9409

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
9410 9411 9412
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
9413
{
9414 9415
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
9416
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9417 9418
		return -EINVAL;
#else
9419 9420 9421
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
9422
#endif
9423 9424 9425 9426 9427

	return 0;
}

static void
9428
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9429 9430 9431 9432 9433
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

9434
#ifdef CONFIG_FAIR_GROUP_SCHED
9435
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9436
				u64 shareval)
9437
{
9438
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9439 9440
}

9441
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9442
{
9443
	struct task_group *tg = cgroup_tg(cgrp);
9444 9445 9446

	return (u64) tg->shares;
}
9447
#endif /* CONFIG_FAIR_GROUP_SCHED */
9448

9449
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
9450
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9451
				s64 val)
P
Peter Zijlstra 已提交
9452
{
9453
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
9454 9455
}

9456
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
9457
{
9458
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
9459
}
9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
9471
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
9472

9473
static struct cftype cpu_files[] = {
9474
#ifdef CONFIG_FAIR_GROUP_SCHED
9475 9476
	{
		.name = "shares",
9477 9478
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
9479
	},
9480 9481
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9482
	{
P
Peter Zijlstra 已提交
9483
		.name = "rt_runtime_us",
9484 9485
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
9486
	},
9487 9488
	{
		.name = "rt_period_us",
9489 9490
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
9491
	},
9492
#endif
9493 9494 9495 9496
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
9497
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9498 9499 9500
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
9501 9502 9503 9504 9505 9506 9507
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
9508 9509 9510
	.early_init	= 1,
};

9511
#endif	/* CONFIG_CGROUP_SCHED */
9512 9513 9514 9515 9516 9517 9518 9519 9520 9521

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

9522
/* track cpu usage of a group of tasks and its child groups */
9523 9524 9525 9526
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
9527
	struct cpuacct *parent;
9528 9529 9530 9531 9532
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
9533
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9534
{
9535
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
9548
	struct cgroup_subsys *ss, struct cgroup *cgrp)
9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

9561 9562 9563
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

9564 9565 9566 9567
	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
9568
static void
9569
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9570
{
9571
	struct cpuacct *ca = cgroup_ca(cgrp);
9572 9573 9574 9575 9576

	free_percpu(ca->cpuusage);
	kfree(ca);
}

9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
	u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

9612
/* return total cpu usage (in nanoseconds) of a group */
9613
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9614
{
9615
	struct cpuacct *ca = cgroup_ca(cgrp);
9616 9617 9618
	u64 totalcpuusage = 0;
	int i;

9619 9620
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
9621 9622 9623 9624

	return totalcpuusage;
}

9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

9637 9638
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
9639 9640 9641 9642 9643

out:
	return err;
}

9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

9659 9660 9661
static struct cftype files[] = {
	{
		.name = "usage",
9662 9663
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
9664
	},
9665 9666 9667 9668 9669
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},

9670 9671
};

9672
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9673
{
9674
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9675 9676 9677 9678 9679 9680 9681 9682 9683 9684
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
9685
	int cpu;
9686 9687 9688 9689

	if (!cpuacct_subsys.active)
		return;

9690
	cpu = task_cpu(tsk);
9691 9692
	ca = task_ca(tsk);

9693 9694
	for (; ca; ca = ca->parent) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706
		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */