sched.c 258.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
496
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
497
	int overloaded;
498
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
499
#endif
P
Peter Zijlstra 已提交
500
	int rt_throttled;
P
Peter Zijlstra 已提交
501
	u64 rt_time;
P
Peter Zijlstra 已提交
502
	u64 rt_runtime;
I
Ingo Molnar 已提交
503
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
504
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
505

506
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
507 508
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
509 510 511 512 513
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
514 515
};

G
Gregory Haskins 已提交
516 517 518 519
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
520 521
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
522 523 524 525 526 527
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
528 529
	cpumask_var_t span;
	cpumask_var_t online;
530

I
Ingo Molnar 已提交
531
	/*
532 533 534
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
535
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
536
	atomic_t rto_count;
537 538 539
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
540 541 542 543 544 545 546 547
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
548 549
};

550 551 552 553
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
554 555 556 557
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
558 559 560 561 562 563 564
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
565
struct rq {
566 567
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
568 569 570 571 572 573

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
574 575
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
576
#ifdef CONFIG_NO_HZ
577
	unsigned long last_tick_seen;
578 579
	unsigned char in_nohz_recently;
#endif
580 581
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
582 583
	unsigned long nr_load_updates;
	u64 nr_switches;
584
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
585 586

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
587 588
	struct rt_rq rt;

I
Ingo Molnar 已提交
589
#ifdef CONFIG_FAIR_GROUP_SCHED
590 591
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
592 593
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
594
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
595 596 597 598 599 600 601 602 603 604
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

605
	struct task_struct *curr, *idle;
606
	unsigned long next_balance;
L
Linus Torvalds 已提交
607
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
608

609
	u64 clock;
I
Ingo Molnar 已提交
610

L
Linus Torvalds 已提交
611 612 613
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
614
	struct root_domain *rd;
L
Linus Torvalds 已提交
615 616
	struct sched_domain *sd;

617
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
618 619 620
	/* For active balancing */
	int active_balance;
	int push_cpu;
621 622
	/* cpu of this runqueue: */
	int cpu;
623
	int online;
L
Linus Torvalds 已提交
624

625
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
626

627
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
628 629 630
	struct list_head migration_queue;
#endif

631 632 633 634
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
635
#ifdef CONFIG_SCHED_HRTICK
636 637 638 639
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
640 641 642
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
643 644 645
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
646 647
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
648 649

	/* sys_sched_yield() stats */
650
	unsigned int yld_count;
L
Linus Torvalds 已提交
651 652

	/* schedule() stats */
653 654 655
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
656 657

	/* try_to_wake_up() stats */
658 659
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
660 661

	/* BKL stats */
662
	unsigned int bkl_count;
L
Linus Torvalds 已提交
663 664 665
#endif
};

666
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
667

668
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
669
{
670
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
671 672
}

673 674 675 676 677 678 679 680 681
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
682 683
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
684
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
685 686 687 688
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
689 690
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
691 692 693 694 695 696

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
697
inline void update_rq_clock(struct rq *rq)
698 699 700 701
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
702 703 704 705 706 707 708 709 710
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
729 730 731
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
732 733 734 735

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
736
enum {
P
Peter Zijlstra 已提交
737
#include "sched_features.h"
I
Ingo Molnar 已提交
738 739
};

P
Peter Zijlstra 已提交
740 741 742 743 744
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
745
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
746 747 748 749 750 751 752 753 754
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

755
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
756 757 758 759 760 761
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
762
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
763 764 765 766
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
767 768 769
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
770
	}
L
Li Zefan 已提交
771
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
772

L
Li Zefan 已提交
773
	return 0;
P
Peter Zijlstra 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
793
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
818 819 820 821 822
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
823
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
824 825 826 827 828
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
829 830 831 832 833 834 835 836 837 838 839 840 841 842
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
843

844 845 846 847 848 849
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
850 851
/*
 * ratelimit for updating the group shares.
852
 * default: 0.25ms
P
Peter Zijlstra 已提交
853
 */
854
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
855

856 857 858 859 860 861 862
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
863
/*
P
Peter Zijlstra 已提交
864
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
865 866
 * default: 1s
 */
P
Peter Zijlstra 已提交
867
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
868

869 870
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
871 872 873 874 875
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
876

877 878 879 880 881 882 883
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
884
	if (sysctl_sched_rt_runtime < 0)
885 886 887 888
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
889

L
Linus Torvalds 已提交
890
#ifndef prepare_arch_switch
891 892 893 894 895 896
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

897 898 899 900 901
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

902
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
903
static inline int task_running(struct rq *rq, struct task_struct *p)
904
{
905
	return task_current(rq, p);
906 907
}

908
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 910 911
{
}

912
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
913
{
914 915 916 917
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
918 919 920 921 922 923 924
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

925 926 927 928
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
929
static inline int task_running(struct rq *rq, struct task_struct *p)
930 931 932 933
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
934
	return task_current(rq, p);
935 936 937
#endif
}

938
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

955
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
956 957 958 959 960 961 962 963 964 965 966 967
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
968
#endif
969 970
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
971

972 973 974 975
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
976
static inline struct rq *__task_rq_lock(struct task_struct *p)
977 978
	__acquires(rq->lock)
{
979 980 981 982 983
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
984 985 986 987
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
988 989
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
990
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
991 992
 * explicitly disabling preemption.
 */
993
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
994 995
	__acquires(rq->lock)
{
996
	struct rq *rq;
L
Linus Torvalds 已提交
997

998 999 1000 1001 1002 1003
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1004 1005 1006 1007
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1008 1009 1010 1011 1012 1013 1014 1015
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1016
static void __task_rq_unlock(struct rq *rq)
1017 1018 1019 1020 1021
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1022
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1023 1024 1025 1026 1027 1028
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1029
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1030
 */
A
Alexey Dobriyan 已提交
1031
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1032 1033
	__acquires(rq->lock)
{
1034
	struct rq *rq;
L
Linus Torvalds 已提交
1035 1036 1037 1038 1039 1040 1041 1042

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1064
	if (!cpu_active(cpu_of(rq)))
1065
		return 0;
P
Peter Zijlstra 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1086
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1087 1088 1089 1090 1091 1092
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1093
#ifdef CONFIG_SMP
1094 1095 1096 1097
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1098
{
1099
	struct rq *rq = arg;
1100

1101 1102 1103 1104
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1105 1106
}

1107 1108 1109 1110 1111 1112
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1113
{
1114 1115
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1116

1117
	hrtimer_set_expires(timer, time);
1118 1119 1120 1121

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1122
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1123 1124
		rq->hrtick_csd_pending = 1;
	}
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1139
		hrtick_clear(cpu_rq(cpu));
1140 1141 1142 1143 1144 1145
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1146
static __init void init_hrtick(void)
1147 1148 1149
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1150 1151 1152 1153 1154 1155 1156 1157
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1158
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1159
			HRTIMER_MODE_REL_PINNED, 0);
1160
}
1161

A
Andrew Morton 已提交
1162
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1163 1164
{
}
1165
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1166

1167
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1168
{
1169 1170
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1171

1172 1173 1174 1175
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1176

1177 1178
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1179
}
A
Andrew Morton 已提交
1180
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1181 1182 1183 1184 1185 1186 1187 1188
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1189 1190 1191
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1192
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1193

I
Ingo Molnar 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1207
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1208 1209 1210 1211 1212
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1213
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1214 1215
		return;

1216
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1272
	set_tsk_need_resched(rq->idle);
1273 1274 1275 1276 1277 1278

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1279
#endif /* CONFIG_NO_HZ */
1280

1281
#else /* !CONFIG_SMP */
1282
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1283 1284
{
	assert_spin_locked(&task_rq(p)->lock);
1285
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1286
}
1287
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1288

1289 1290 1291 1292 1293 1294 1295 1296
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1297 1298 1299
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1300
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1301

1302 1303 1304
/*
 * delta *= weight / lw
 */
1305
static unsigned long
1306 1307 1308 1309 1310
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1311 1312 1313 1314 1315 1316 1317
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1318 1319 1320 1321 1322

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1323
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1324
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1325 1326
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1327
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328

1329
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 1331
}

1332
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 1334
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1335
	lw->inv_weight = 0;
1336 1337
}

1338
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 1340
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1341
	lw->inv_weight = 0;
1342 1343
}

1344 1345 1346 1347
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1348
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 1350 1351 1352
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1353 1354
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1355 1356 1357 1358 1359 1360 1361 1362 1363

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 1365 1366
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1367 1368
 */
static const int prio_to_weight[40] = {
1369 1370 1371 1372 1373 1374 1375 1376
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1377 1378
};

1379 1380 1381 1382 1383 1384 1385
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1386
static const u32 prio_to_wmult[40] = {
1387 1388 1389 1390 1391 1392 1393 1394
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1395
};
1396

I
Ingo Molnar 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1422

1423 1424 1425 1426 1427 1428 1429 1430
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1431 1432
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1433 1434
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1435 1436
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1437 1438
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1439 1440
#endif

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1451
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1452
typedef int (*tg_visitor)(struct task_group *, void *);
1453 1454 1455 1456 1457

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1458
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1459 1460
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1461
	int ret;
1462 1463 1464 1465

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1466 1467 1468
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1469 1470 1471 1472 1473 1474 1475
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1476 1477 1478
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1479 1480 1481 1482 1483

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1484
out_unlock:
1485
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1486 1487

	return ret;
1488 1489
}

P
Peter Zijlstra 已提交
1490 1491 1492
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1493
}
P
Peter Zijlstra 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1504
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1505

1506 1507
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1508 1509
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1510 1511 1512 1513 1514

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1515 1516 1517 1518 1519 1520 1521

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1522 1523
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1524
{
1525 1526 1527
	unsigned long shares;
	unsigned long rq_weight;

1528
	if (!tg->se[cpu])
1529 1530
		return;

1531
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1532

1533 1534 1535 1536 1537 1538
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1539
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1540
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1541

1542 1543 1544 1545
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1546

1547
		spin_lock_irqsave(&rq->lock, flags);
1548
		tg->cfs_rq[cpu]->shares = shares;
1549

1550 1551 1552
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1553
}
1554 1555

/*
1556 1557 1558
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1559
 */
P
Peter Zijlstra 已提交
1560
static int tg_shares_up(struct task_group *tg, void *data)
1561
{
1562
	unsigned long weight, rq_weight = 0;
1563
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1564
	struct sched_domain *sd = data;
1565
	int i;
1566

1567
	for_each_cpu(i, sched_domain_span(sd)) {
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1579
		shares += tg->cfs_rq[i]->shares;
1580 1581
	}

1582 1583 1584 1585 1586
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1587

1588
	for_each_cpu(i, sched_domain_span(sd))
1589
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1590 1591

	return 0;
1592 1593 1594
}

/*
1595 1596 1597
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1598
 */
P
Peter Zijlstra 已提交
1599
static int tg_load_down(struct task_group *tg, void *data)
1600
{
1601
	unsigned long load;
P
Peter Zijlstra 已提交
1602
	long cpu = (long)data;
1603

1604 1605 1606 1607 1608 1609 1610
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1611

1612
	tg->cfs_rq[cpu]->h_load = load;
1613

P
Peter Zijlstra 已提交
1614
	return 0;
1615 1616
}

1617
static void update_shares(struct sched_domain *sd)
1618
{
P
Peter Zijlstra 已提交
1619 1620 1621 1622 1623
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1624
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1625
	}
1626 1627
}

1628 1629 1630 1631 1632 1633 1634
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1635
static void update_h_load(long cpu)
1636
{
P
Peter Zijlstra 已提交
1637
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1638 1639 1640 1641
}

#else

1642
static inline void update_shares(struct sched_domain *sd)
1643 1644 1645
{
}

1646 1647 1648 1649
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1650 1651
#endif

1652 1653
#ifdef CONFIG_PREEMPT

1654
/*
1655 1656 1657 1658 1659 1660
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1661
 */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1716 1717 1718 1719 1720 1721
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1722 1723
#endif

V
Vegard Nossum 已提交
1724
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1725 1726
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1727
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1728 1729 1730
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1731
#endif
1732

1733 1734
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1735 1736
#include "sched_stats.h"
#include "sched_idletask.c"
1737 1738
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1739 1740 1741 1742 1743
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1744 1745
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1746

1747
static void inc_nr_running(struct rq *rq)
1748 1749 1750 1751
{
	rq->nr_running++;
}

1752
static void dec_nr_running(struct rq *rq)
1753 1754 1755 1756
{
	rq->nr_running--;
}

1757 1758 1759
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1760 1761 1762 1763
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1764

I
Ingo Molnar 已提交
1765 1766 1767 1768 1769 1770 1771 1772
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1773

I
Ingo Molnar 已提交
1774 1775
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1776 1777
}

1778 1779 1780 1781 1782 1783
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1784
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1785
{
P
Peter Zijlstra 已提交
1786 1787 1788
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1789
	sched_info_queued(p);
1790
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1791
	p->se.on_rq = 1;
1792 1793
}

1794
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1795
{
P
Peter Zijlstra 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1805 1806
	}

1807
	sched_info_dequeued(p);
1808
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1809
	p->se.on_rq = 0;
1810 1811
}

1812
/*
I
Ingo Molnar 已提交
1813
 * __normal_prio - return the priority that is based on the static prio
1814 1815 1816
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1817
	return p->static_prio;
1818 1819
}

1820 1821 1822 1823 1824 1825 1826
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1827
static inline int normal_prio(struct task_struct *p)
1828 1829 1830
{
	int prio;

1831
	if (task_has_rt_policy(p))
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1845
static int effective_prio(struct task_struct *p)
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1858
/*
I
Ingo Molnar 已提交
1859
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1860
 */
I
Ingo Molnar 已提交
1861
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1862
{
1863
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1864
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1865

1866
	enqueue_task(rq, p, wakeup);
1867
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1868 1869 1870 1871 1872
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1873
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1874
{
1875
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1876 1877
		rq->nr_uninterruptible++;

1878
	dequeue_task(rq, p, sleep);
1879
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1886
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1887 1888 1889 1890
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1891 1892
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1893
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1894
#ifdef CONFIG_SMP
1895 1896 1897 1898 1899 1900
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1901 1902
	task_thread_info(p)->cpu = cpu;
#endif
1903 1904
}

1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1917
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1918

1919 1920 1921 1922 1923 1924
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1925 1926 1927
/*
 * Is this task likely cache-hot:
 */
1928
static int
1929 1930 1931 1932
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1933 1934 1935
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1936 1937 1938
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1939 1940
		return 1;

1941 1942 1943
	if (p->sched_class != &fair_sched_class)
		return 0;

1944 1945 1946 1947 1948
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1949 1950 1951 1952 1953 1954
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1955
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1956
{
I
Ingo Molnar 已提交
1957 1958
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1959 1960
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1961
	u64 clock_offset;
I
Ingo Molnar 已提交
1962 1963

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1964

1965
	trace_sched_migrate_task(p, new_cpu);
1966

I
Ingo Molnar 已提交
1967 1968 1969
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1970 1971 1972 1973
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1974
#endif
1975
	if (old_cpu != new_cpu) {
1976
		p->se.nr_migrations++;
1977
		new_rq->nr_migrations_in++;
1978
#ifdef CONFIG_SCHEDSTATS
1979 1980
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1981
#endif
1982 1983
		perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
				     1, 1, NULL, 0);
1984
	}
1985 1986
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1987 1988

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1989 1990
}

1991
struct migration_req {
L
Linus Torvalds 已提交
1992 1993
	struct list_head list;

1994
	struct task_struct *task;
L
Linus Torvalds 已提交
1995 1996 1997
	int dest_cpu;

	struct completion done;
1998
};
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2004
static int
2005
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2006
{
2007
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2013
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2014 2015 2016 2017 2018 2019 2020 2021
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2022

L
Linus Torvalds 已提交
2023 2024 2025
	return 1;
}

2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2069 2070 2071
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2072 2073 2074 2075 2076 2077 2078
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2079 2080 2081 2082 2083 2084
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2085
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2086 2087
{
	unsigned long flags;
I
Ingo Molnar 已提交
2088
	int running, on_rq;
R
Roland McGrath 已提交
2089
	unsigned long ncsw;
2090
	struct rq *rq;
L
Linus Torvalds 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2100

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2112 2113 2114
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2115
			cpu_relax();
R
Roland McGrath 已提交
2116
		}
2117

2118 2119 2120 2121 2122 2123
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2124
		trace_sched_wait_task(rq, p);
2125 2126
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2127
		ncsw = 0;
2128
		if (!match_state || p->state == match_state)
2129
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2130
		task_rq_unlock(rq, &flags);
2131

R
Roland McGrath 已提交
2132 2133 2134 2135 2136 2137
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2148

2149 2150 2151 2152 2153
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2154
		 * So if it was still runnable (but just not actively
2155 2156 2157 2158 2159 2160 2161
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2162

2163 2164 2165 2166 2167 2168 2169
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2170 2171

	return ncsw;
L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2187
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2188 2189 2190 2191 2192 2193 2194 2195 2196
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2197
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2198 2199

/*
2200 2201
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2202 2203 2204 2205
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2206
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2207
{
2208
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2209
	unsigned long total = weighted_cpuload(cpu);
2210

2211
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2212
		return total;
2213

I
Ingo Molnar 已提交
2214
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2215 2216 2217
}

/*
2218 2219
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2220
 */
A
Alexey Dobriyan 已提交
2221
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2222
{
2223
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2224
	unsigned long total = weighted_cpuload(cpu);
2225

2226
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2227
		return total;
2228

I
Ingo Molnar 已提交
2229
	return max(rq->cpu_load[type-1], total);
2230 2231
}

N
Nick Piggin 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2249
		/* Skip over this group if it has no CPUs allowed */
2250 2251
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2252
			continue;
2253

2254 2255
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2256 2257 2258 2259

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2260
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2271 2272
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2273 2274 2275 2276 2277 2278 2279 2280

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2281
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2282 2283 2284 2285 2286 2287 2288

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2289
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2290
 */
I
Ingo Molnar 已提交
2291
static int
2292
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2293 2294 2295 2296 2297
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2298
	/* Traverse only the allowed CPUs */
2299
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2300
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2326

2327
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2328 2329 2330
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2331 2332
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2333 2334
		if (tmp->flags & flag)
			sd = tmp;
2335
	}
N
Nick Piggin 已提交
2336

2337 2338 2339
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2340 2341
	while (sd) {
		struct sched_group *group;
2342 2343 2344 2345 2346 2347
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2348 2349

		group = find_idlest_group(sd, t, cpu);
2350 2351 2352 2353
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2354

2355
		new_cpu = find_idlest_cpu(group, t, cpu);
2356 2357 2358 2359 2360
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2361

2362
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2363
		cpu = new_cpu;
2364
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2365 2366
		sd = NULL;
		for_each_domain(cpu, tmp) {
2367
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2379

T
Thomas Gleixner 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2415
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2416
{
2417
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2418 2419
	unsigned long flags;
	long old_state;
2420
	struct rq *rq;
L
Linus Torvalds 已提交
2421

2422 2423 2424
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2425
#ifdef CONFIG_SMP
2426
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2427 2428 2429 2430 2431 2432
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2433
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2434 2435 2436 2437 2438 2439 2440
				update_shares(sd);
				break;
			}
		}
	}
#endif

2441
	smp_wmb();
L
Linus Torvalds 已提交
2442
	rq = task_rq_lock(p, &flags);
2443
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2444 2445 2446 2447
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2448
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2449 2450 2451
		goto out_running;

	cpu = task_cpu(p);
2452
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2453 2454 2455 2456 2457 2458
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2459 2460 2461
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2468
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2469 2470 2471 2472 2473 2474
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2475 2476 2477 2478 2479 2480 2481
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2482
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2483 2484 2485 2486 2487
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2488
#endif /* CONFIG_SCHEDSTATS */
2489

L
Linus Torvalds 已提交
2490 2491
out_activate:
#endif /* CONFIG_SMP */
2492 2493 2494 2495 2496 2497 2498 2499 2500
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2501
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2502 2503
	success = 1;

P
Peter Zijlstra 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2520
out_running:
2521
	trace_sched_wakeup(rq, p, success);
2522
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2523

L
Linus Torvalds 已提交
2524
	p->state = TASK_RUNNING;
2525 2526 2527 2528
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2529 2530 2531 2532 2533 2534
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2546
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2547
{
2548
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2549 2550 2551
}
EXPORT_SYMBOL(wake_up_process);

2552
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558 2559
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2560 2561 2562 2563 2564 2565 2566
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2567
	p->se.prev_sum_exec_runtime	= 0;
2568
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2569 2570
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2571 2572
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2573 2574

#ifdef CONFIG_SCHEDSTATS
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2606
#endif
N
Nick Piggin 已提交
2607

P
Peter Zijlstra 已提交
2608
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2609
	p->se.on_rq = 0;
2610
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2611

2612 2613 2614 2615
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2616 2617 2618 2619 2620 2621 2622
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2637
	set_task_cpu(p, cpu);
2638 2639 2640 2641 2642

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2643 2644
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2645

2646
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2647
	if (likely(sched_info_on()))
2648
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2649
#endif
2650
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2651 2652
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2653
#ifdef CONFIG_PREEMPT
2654
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2655
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2656
#endif
2657 2658
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2659
	put_cpu();
L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666 2667 2668
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2669
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2670 2671
{
	unsigned long flags;
I
Ingo Molnar 已提交
2672
	struct rq *rq;
L
Linus Torvalds 已提交
2673 2674

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2675
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2676
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2677 2678 2679

	p->prio = effective_prio(p);

2680
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2681
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2682 2683
	} else {
		/*
I
Ingo Molnar 已提交
2684 2685
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2686
		 */
2687
		p->sched_class->task_new(rq, p);
2688
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2689
	}
2690
	trace_sched_wakeup_new(rq, p, 1);
2691
	check_preempt_curr(rq, p, 0);
2692 2693 2694 2695
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2696
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2697 2698
}

2699 2700 2701
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2702
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2703
 * @notifier: notifier struct to register
2704 2705 2706 2707 2708 2709 2710 2711 2712
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2713
 * @notifier: notifier struct to unregister
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2743
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2755
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2756

2757 2758 2759
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2760
 * @prev: the current task that is being switched out
2761 2762 2763 2764 2765 2766 2767 2768 2769
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2770 2771 2772
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2773
{
2774
	fire_sched_out_preempt_notifiers(prev, next);
2775 2776 2777 2778
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2779 2780
/**
 * finish_task_switch - clean up after a task-switch
2781
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2782 2783
 * @prev: the thread we just switched away from.
 *
2784 2785 2786 2787
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2788 2789
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2790
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2791 2792 2793
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2794
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2795 2796 2797
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2798
	long prev_state;
2799 2800 2801 2802 2803 2804
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2810
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2811 2812
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2813
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2814 2815 2816 2817 2818
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2819
	prev_state = prev->state;
2820
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2821
	perf_counter_task_sched_in(current, cpu_of(rq));
2822
	finish_lock_switch(rq, prev);
2823
#ifdef CONFIG_SMP
2824
	if (post_schedule)
2825 2826
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2827

2828
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2829 2830
	if (mm)
		mmdrop(mm);
2831
	if (unlikely(prev_state == TASK_DEAD)) {
2832 2833 2834
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2835
		 */
2836
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2837
		put_task_struct(prev);
2838
	}
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843 2844
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2845
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2846 2847
	__releases(rq->lock)
{
2848 2849
	struct rq *rq = this_rq();

2850 2851 2852 2853 2854
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2855
	if (current->set_child_tid)
2856
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2863
static inline void
2864
context_switch(struct rq *rq, struct task_struct *prev,
2865
	       struct task_struct *next)
L
Linus Torvalds 已提交
2866
{
I
Ingo Molnar 已提交
2867
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2868

2869
	prepare_task_switch(rq, prev, next);
2870
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2871 2872
	mm = next->mm;
	oldmm = prev->active_mm;
2873 2874 2875 2876 2877
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2878
	arch_start_context_switch(prev);
2879

I
Ingo Molnar 已提交
2880
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885 2886
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2887
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2888 2889 2890
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2891 2892 2893 2894 2895 2896 2897
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2898
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2899
#endif
L
Linus Torvalds 已提交
2900 2901 2902 2903

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2904 2905 2906 2907 2908 2909 2910
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2934
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2949 2950
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2951

2952
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2953 2954 2955 2956 2957 2958 2959 2960 2961
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2962
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2968 2969 2970 2971 2972 2973
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2989 2990
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2991
{
2992 2993 2994 2995
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
3008

3009 3010
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3011

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3034 3035
}

3036 3037 3038 3039 3040 3041 3042 3043 3044
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3045
/*
I
Ingo Molnar 已提交
3046 3047
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3048
 */
I
Ingo Molnar 已提交
3049
static void update_cpu_load(struct rq *this_rq)
3050
{
3051
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3064 3065 3066 3067 3068 3069 3070
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3071 3072
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3073 3074 3075 3076 3077

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3078 3079
}

I
Ingo Molnar 已提交
3080 3081
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3082 3083 3084 3085 3086 3087
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3088
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3089 3090 3091
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3092
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3093 3094 3095 3096
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3097
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3098
			spin_lock(&rq1->lock);
3099
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3100 3101
		} else {
			spin_lock(&rq2->lock);
3102
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3103 3104
		}
	}
3105 3106
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112 3113 3114
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3115
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3129
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3130 3131
 * the cpu_allowed mask is restored.
 */
3132
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3133
{
3134
	struct migration_req req;
L
Linus Torvalds 已提交
3135
	unsigned long flags;
3136
	struct rq *rq;
L
Linus Torvalds 已提交
3137 3138

	rq = task_rq_lock(p, &flags);
3139
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3140
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3141 3142 3143 3144 3145 3146
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3147

L
Linus Torvalds 已提交
3148 3149 3150 3151 3152
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3153

L
Linus Torvalds 已提交
3154 3155 3156 3157 3158 3159 3160
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3161 3162
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3163 3164 3165 3166
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3167
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3168
	put_cpu();
N
Nick Piggin 已提交
3169 3170
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3177 3178
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3179
{
3180
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3181
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3182
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3183 3184 3185 3186
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3187
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3188 3189 3190 3191 3192
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3193
static
3194
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3195
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3196
		     int *all_pinned)
L
Linus Torvalds 已提交
3197
{
3198
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203 3204
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3205
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3206
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3207
		return 0;
3208
	}
3209 3210
	*all_pinned = 0;

3211 3212
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3213
		return 0;
3214
	}
L
Linus Torvalds 已提交
3215

3216 3217 3218 3219 3220 3221
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3222 3223 3224
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3225
#ifdef CONFIG_SCHEDSTATS
3226
		if (tsk_cache_hot) {
3227
			schedstat_inc(sd, lb_hot_gained[idle]);
3228 3229
			schedstat_inc(p, se.nr_forced_migrations);
		}
3230 3231 3232 3233
#endif
		return 1;
	}

3234
	if (tsk_cache_hot) {
3235
		schedstat_inc(p, se.nr_failed_migrations_hot);
3236
		return 0;
3237
	}
L
Linus Torvalds 已提交
3238 3239 3240
	return 1;
}

3241 3242 3243 3244 3245
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3246
{
3247
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3248 3249
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3250

3251
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3252 3253
		goto out;

3254 3255
	pinned = 1;

L
Linus Torvalds 已提交
3256
	/*
I
Ingo Molnar 已提交
3257
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3258
	 */
I
Ingo Molnar 已提交
3259 3260
	p = iterator->start(iterator->arg);
next:
3261
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3262
		goto out;
3263 3264

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3265 3266 3267
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3268 3269
	}

I
Ingo Molnar 已提交
3270
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3271
	pulled++;
I
Ingo Molnar 已提交
3272
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3273

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3284
	/*
3285
	 * We only want to steal up to the prescribed amount of weighted load.
3286
	 */
3287
	if (rem_load_move > 0) {
3288 3289
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3290 3291
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3292 3293 3294
	}
out:
	/*
3295
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3296 3297 3298 3299
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3300 3301 3302

	if (all_pinned)
		*all_pinned = pinned;
3303 3304

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3305 3306
}

I
Ingo Molnar 已提交
3307
/*
P
Peter Williams 已提交
3308 3309 3310
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3311 3312 3313 3314
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3315
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3316 3317 3318
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3319
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3320
	unsigned long total_load_moved = 0;
3321
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3322 3323

	do {
P
Peter Williams 已提交
3324 3325
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3326
				max_load_move - total_load_moved,
3327
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3328
		class = class->next;
3329

3330 3331 3332 3333 3334 3335
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3336 3337
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3338
#endif
P
Peter Williams 已提交
3339
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3340

P
Peter Williams 已提交
3341 3342 3343
	return total_load_moved > 0;
}

3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3380
	const struct sched_class *class;
P
Peter Williams 已提交
3381 3382

	for (class = sched_class_highest; class; class = class->next)
3383
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3384 3385 3386
			return 1;

	return 0;
I
Ingo Molnar 已提交
3387
}
3388
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3389
/*
3390 3391
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3392
 */
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3411
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3412 3413 3414 3415 3416 3417
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3418
#endif
3419
};
L
Linus Torvalds 已提交
3420

3421
/*
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3454
		load_idx = sd->busy_idx;
3455 3456 3457
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3458
		load_idx = sd->newidle_idx;
3459 3460
		break;
	default:
N
Nick Piggin 已提交
3461
		load_idx = sd->idle_idx;
3462 3463
		break;
	}
L
Linus Torvalds 已提交
3464

3465 3466
	return load_idx;
}
L
Linus Torvalds 已提交
3467 3468


3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3493

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3507

3508 3509
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3510

3511 3512 3513 3514 3515 3516 3517
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3518

3519 3520 3521 3522 3523 3524 3525 3526
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3541

3542 3543 3544 3545 3546 3547 3548
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3549

3550 3551 3552 3553 3554 3555 3556
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3557

3558
/**
3559
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3560 3561 3562 3563 3564
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3565 3566 3567 3568 3569
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3570 3571 3572 3573 3574 3575 3576 3577
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3578

3579 3580 3581
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3582

3583 3584
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3585

3586 3587 3588 3589 3590 3591
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3592

3593 3594 3595 3596 3597 3598 3599
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3600

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3645

3646 3647
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3648

3649 3650
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3651

3652
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3653
		if (local_group) {
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3666
		}
3667

3668 3669 3670
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3671

3672 3673
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3674

3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3686

3687 3688 3689
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3690

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3720
 */
3721 3722 3723 3724
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3725
{
3726
	struct sched_group *group = sd->groups;
3727
	struct sg_lb_stats sgs;
3728 3729
	int load_idx;

3730
	init_sd_power_savings_stats(sd, sds, idle);
3731
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3732 3733 3734 3735

	do {
		int local_group;

3736 3737
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3738
		memset(&sgs, 0, sizeof(sgs));
3739 3740
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3741

3742 3743
		if (local_group && balance && !(*balance))
			return;
3744

3745 3746
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3747 3748

		if (local_group) {
3749 3750 3751 3752 3753
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3754 3755
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3756 3757 3758 3759 3760
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3761
		}
3762

3763
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3764 3765 3766
		group = group->next;
	} while (group != sd->groups);

3767
}
L
Linus Torvalds 已提交
3768

3769 3770
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3771 3772
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3791

3792 3793 3794 3795 3796
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3797

L
Linus Torvalds 已提交
3798
	/*
3799 3800 3801
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3802
	 */
3803

3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3845 3846 3847 3848 3849
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3850
	if (sds->max_load < sds->avg_load) {
3851
		*imbalance = 0;
3852
		return fix_small_imbalance(sds, this_cpu, imbalance);
3853
	}
3854 3855

	/* Don't want to pull so many tasks that a group would go idle */
3856 3857
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3858

L
Linus Torvalds 已提交
3859
	/* How much load to actually move to equalise the imbalance */
3860 3861
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3862 3863
			/ SCHED_LOAD_SCALE;

3864 3865 3866 3867 3868 3869
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3870 3871
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3872

3873
}
3874
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3875

3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3900 3901 3902 3903 3904 3905 3906
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3907

3908
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3909

3910 3911 3912 3913 3914 3915 3916
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3927 3928
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3929

3930 3931
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3932

3933
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3934 3935
		goto out_balanced;

3936
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3937

3938 3939 3940 3941
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3942 3943
		goto out_balanced;

3944 3945 3946 3947
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3948

L
Linus Torvalds 已提交
3949 3950 3951 3952 3953 3954 3955 3956
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3957
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3958 3959
	 * appear as very large values with unsigned longs.
	 */
3960
	if (sds.max_load <= sds.busiest_load_per_task)
3961 3962
		goto out_balanced;

3963 3964
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3965
	return sds.busiest;
L
Linus Torvalds 已提交
3966 3967

out_balanced:
3968 3969 3970 3971 3972 3973
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3974
ret:
L
Linus Torvalds 已提交
3975 3976 3977 3978 3979 3980 3981
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3982
static struct rq *
I
Ingo Molnar 已提交
3983
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3984
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3985
{
3986
	struct rq *busiest = NULL, *rq;
3987
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3988 3989
	int i;

3990
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3991
		unsigned long wl;
3992

3993
		if (!cpumask_test_cpu(i, cpus))
3994 3995
			continue;

3996
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3997
		wl = weighted_cpuload(i);
3998

I
Ingo Molnar 已提交
3999
		if (rq->nr_running == 1 && wl > imbalance)
4000
			continue;
L
Linus Torvalds 已提交
4001

I
Ingo Molnar 已提交
4002 4003
		if (wl > max_load) {
			max_load = wl;
4004
			busiest = rq;
L
Linus Torvalds 已提交
4005 4006 4007 4008 4009 4010
		}
	}

	return busiest;
}

4011 4012 4013 4014 4015 4016
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4017 4018 4019
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4020 4021 4022 4023
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4024
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4025
			struct sched_domain *sd, enum cpu_idle_type idle,
4026
			int *balance)
L
Linus Torvalds 已提交
4027
{
P
Peter Williams 已提交
4028
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4029 4030
	struct sched_group *group;
	unsigned long imbalance;
4031
	struct rq *busiest;
4032
	unsigned long flags;
4033
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4034

4035
	cpumask_setall(cpus);
4036

4037 4038 4039
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4040
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4041
	 * portraying it as CPU_NOT_IDLE.
4042
	 */
I
Ingo Molnar 已提交
4043
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4044
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4045
		sd_idle = 1;
L
Linus Torvalds 已提交
4046

4047
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4048

4049
redo:
4050
	update_shares(sd);
4051
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4052
				   cpus, balance);
4053

4054
	if (*balance == 0)
4055 4056
		goto out_balanced;

L
Linus Torvalds 已提交
4057 4058 4059 4060 4061
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4062
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4068
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4069 4070 4071

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4072
	ld_moved = 0;
L
Linus Torvalds 已提交
4073 4074 4075 4076
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4077
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4078 4079
		 * correctly treated as an imbalance.
		 */
4080
		local_irq_save(flags);
N
Nick Piggin 已提交
4081
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4082
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4083
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4084
		double_rq_unlock(this_rq, busiest);
4085
		local_irq_restore(flags);
4086

4087 4088 4089
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4090
		if (ld_moved && this_cpu != smp_processor_id())
4091 4092
			resched_cpu(this_cpu);

4093
		/* All tasks on this runqueue were pinned by CPU affinity */
4094
		if (unlikely(all_pinned)) {
4095 4096
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4097
				goto redo;
4098
			goto out_balanced;
4099
		}
L
Linus Torvalds 已提交
4100
	}
4101

P
Peter Williams 已提交
4102
	if (!ld_moved) {
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4108
			spin_lock_irqsave(&busiest->lock, flags);
4109 4110 4111 4112

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4113 4114
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4115
				spin_unlock_irqrestore(&busiest->lock, flags);
4116 4117 4118 4119
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4120 4121 4122
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4123
				active_balance = 1;
L
Linus Torvalds 已提交
4124
			}
4125
			spin_unlock_irqrestore(&busiest->lock, flags);
4126
			if (active_balance)
L
Linus Torvalds 已提交
4127 4128 4129 4130 4131 4132
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4133
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4134
		}
4135
	} else
L
Linus Torvalds 已提交
4136 4137
		sd->nr_balance_failed = 0;

4138
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4139 4140
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4141 4142 4143 4144 4145 4146 4147 4148 4149
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4150 4151
	}

P
Peter Williams 已提交
4152
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4153
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4154 4155 4156
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4157 4158 4159 4160

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4161
	sd->nr_balance_failed = 0;
4162 4163

out_one_pinned:
L
Linus Torvalds 已提交
4164
	/* tune up the balancing interval */
4165 4166
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4167 4168
		sd->balance_interval *= 2;

4169
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4170
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4171 4172 4173 4174
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4175 4176
	if (ld_moved)
		update_shares(sd);
4177
	return ld_moved;
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4184
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4185 4186
 * this_rq is locked.
 */
4187
static int
4188
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4189 4190
{
	struct sched_group *group;
4191
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4192
	unsigned long imbalance;
P
Peter Williams 已提交
4193
	int ld_moved = 0;
N
Nick Piggin 已提交
4194
	int sd_idle = 0;
4195
	int all_pinned = 0;
4196
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4197

4198
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4199

4200 4201 4202 4203
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4204
	 * portraying it as CPU_NOT_IDLE.
4205 4206 4207
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4208
		sd_idle = 1;
L
Linus Torvalds 已提交
4209

4210
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4211
redo:
4212
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4213
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4214
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4215
	if (!group) {
I
Ingo Molnar 已提交
4216
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4217
		goto out_balanced;
L
Linus Torvalds 已提交
4218 4219
	}

4220
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4221
	if (!busiest) {
I
Ingo Molnar 已提交
4222
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4223
		goto out_balanced;
L
Linus Torvalds 已提交
4224 4225
	}

N
Nick Piggin 已提交
4226 4227
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4228
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4229

P
Peter Williams 已提交
4230
	ld_moved = 0;
4231 4232 4233
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4234 4235
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4236
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4237 4238
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4239
		double_unlock_balance(this_rq, busiest);
4240

4241
		if (unlikely(all_pinned)) {
4242 4243
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4244 4245
				goto redo;
		}
4246 4247
	}

P
Peter Williams 已提交
4248
	if (!ld_moved) {
4249
		int active_balance = 0;
4250

I
Ingo Molnar 已提交
4251
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4252 4253
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4254
			return -1;
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4291
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4304 4305 4306 4307
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4308 4309
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4310
		spin_lock(&this_rq->lock);
4311

N
Nick Piggin 已提交
4312
	} else
4313
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4314

4315
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4316
	return ld_moved;
4317 4318

out_balanced:
I
Ingo Molnar 已提交
4319
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4320
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4321
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4322
		return -1;
4323
	sd->nr_balance_failed = 0;
4324

4325
	return 0;
L
Linus Torvalds 已提交
4326 4327 4328 4329 4330 4331
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4332
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4333 4334
{
	struct sched_domain *sd;
4335
	int pulled_task = 0;
I
Ingo Molnar 已提交
4336
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4337 4338

	for_each_domain(this_cpu, sd) {
4339 4340 4341 4342 4343 4344
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4345
			/* If we've pulled tasks over stop searching: */
4346
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4347
							   sd);
4348 4349 4350 4351 4352 4353

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4354
	}
I
Ingo Molnar 已提交
4355
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4356 4357 4358 4359 4360
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4361
	}
L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4372
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4373
{
4374
	int target_cpu = busiest_rq->push_cpu;
4375 4376
	struct sched_domain *sd;
	struct rq *target_rq;
4377

4378
	/* Is there any task to move? */
4379 4380 4381 4382
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4383 4384

	/*
4385
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4386
	 * we need to fix it. Originally reported by
4387
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4388
	 */
4389
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4390

4391 4392
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4393 4394
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4395 4396

	/* Search for an sd spanning us and the target CPU. */
4397
	for_each_domain(target_cpu, sd) {
4398
		if ((sd->flags & SD_LOAD_BALANCE) &&
4399
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4400
				break;
4401
	}
4402

4403
	if (likely(sd)) {
4404
		schedstat_inc(sd, alb_count);
4405

P
Peter Williams 已提交
4406 4407
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4408 4409 4410 4411
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4412
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4413 4414
}

4415 4416 4417
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4418
	cpumask_var_t cpu_mask;
4419
	cpumask_var_t ilb_grp_nohz_mask;
4420 4421 4422 4423
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4424 4425 4426 4427 4428
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4540
	return cpumask_first(nohz.cpu_mask);
4541 4542 4543
}
#endif

4544
/*
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4555
 *
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4571 4572 4573 4574 4575 4576 4577 4578
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4579 4580
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4581

4582 4583 4584
			return 0;
		}

4585 4586
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4587
		/* time for ilb owner also to sleep */
4588
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4589 4590 4591 4592 4593 4594 4595 4596 4597
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4614
			return 1;
4615
		}
4616
	} else {
4617
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4618 4619
			return 0;

4620
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4633 4634 4635 4636 4637
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4638
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4639
{
4640 4641
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4642 4643
	unsigned long interval;
	struct sched_domain *sd;
4644
	/* Earliest time when we have to do rebalance again */
4645
	unsigned long next_balance = jiffies + 60*HZ;
4646
	int update_next_balance = 0;
4647
	int need_serialize;
L
Linus Torvalds 已提交
4648

4649
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4650 4651 4652 4653
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4654
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4661 4662 4663
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4664
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4665

4666
		if (need_serialize) {
4667 4668 4669 4670
			if (!spin_trylock(&balancing))
				goto out;
		}

4671
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4672
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4673 4674
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4675 4676 4677
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4678
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4679
			}
4680
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4681
		}
4682
		if (need_serialize)
4683 4684
			spin_unlock(&balancing);
out:
4685
		if (time_after(next_balance, sd->last_balance + interval)) {
4686
			next_balance = sd->last_balance + interval;
4687 4688
			update_next_balance = 1;
		}
4689 4690 4691 4692 4693 4694 4695 4696

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4697
	}
4698 4699 4700 4701 4702 4703 4704 4705

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4706 4707 4708 4709 4710 4711 4712 4713 4714
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4715 4716 4717 4718
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4719

I
Ingo Molnar 已提交
4720
	rebalance_domains(this_cpu, idle);
4721 4722 4723 4724 4725 4726 4727

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4728 4729
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4730 4731 4732
		struct rq *rq;
		int balance_cpu;

4733 4734 4735 4736
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4737 4738 4739 4740 4741 4742 4743 4744
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4745
			rebalance_domains(balance_cpu, CPU_IDLE);
4746 4747

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4748 4749
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4750 4751 4752 4753 4754
		}
	}
#endif
}

4755 4756 4757 4758 4759
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4760 4761 4762 4763 4764 4765 4766
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4767
static inline void trigger_load_balance(struct rq *rq, int cpu)
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4779
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4780 4781 4782 4783
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4784
			int ilb = find_new_ilb(cpu);
4785

4786
			if (ilb < nr_cpu_ids)
4787 4788 4789 4790 4791 4792 4793 4794 4795
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4796
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4797 4798 4799 4800 4801 4802 4803 4804 4805
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4806
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4807 4808
		return;
#endif
4809 4810 4811
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4812
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4813
}
I
Ingo Molnar 已提交
4814 4815 4816

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4817 4818 4819
/*
 * on UP we do not need to balance between CPUs:
 */
4820
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4821 4822
{
}
I
Ingo Molnar 已提交
4823

L
Linus Torvalds 已提交
4824 4825 4826 4827 4828 4829 4830
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4831
 * Return any ns on the sched_clock that have not yet been accounted in
4832
 * @p in case that task is currently running.
4833 4834
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4835
 */
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4850
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4851 4852
{
	unsigned long flags;
4853
	struct rq *rq;
4854
	u64 ns = 0;
4855

4856
	rq = task_rq_lock(p, &flags);
4857 4858
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4859

4860 4861
	return ns;
}
4862

4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4880

4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4900
	task_rq_unlock(rq, &flags);
4901

L
Linus Torvalds 已提交
4902 4903 4904 4905 4906 4907 4908
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4909
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4910
 */
4911 4912
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4913 4914 4915 4916
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4917
	/* Add user time to process. */
L
Linus Torvalds 已提交
4918
	p->utime = cputime_add(p->utime, cputime);
4919
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4920
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4921 4922 4923 4924 4925 4926 4927

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4928 4929

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4930 4931
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4932 4933
}

4934 4935 4936 4937
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4938
 * @cputime_scaled: cputime scaled by cpu frequency
4939
 */
4940 4941
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4942 4943 4944 4945 4946 4947
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4948
	/* Add guest time to process. */
4949
	p->utime = cputime_add(p->utime, cputime);
4950
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4951
	account_group_user_time(p, cputime);
4952 4953
	p->gtime = cputime_add(p->gtime, cputime);

4954
	/* Add guest time to cpustat. */
4955 4956 4957 4958
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4959 4960 4961 4962 4963
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4964
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4965 4966
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4967
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4968 4969 4970 4971
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4972
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4973
		account_guest_time(p, cputime, cputime_scaled);
4974 4975
		return;
	}
4976

4977
	/* Add system time to process. */
L
Linus Torvalds 已提交
4978
	p->stime = cputime_add(p->stime, cputime);
4979
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4980
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4981 4982 4983 4984 4985 4986 4987 4988

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4989 4990
		cpustat->system = cputime64_add(cpustat->system, tmp);

4991 4992
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4993 4994 4995 4996
	/* Account for system time used */
	acct_update_integrals(p);
}

4997
/*
L
Linus Torvalds 已提交
4998 4999
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5000
 */
5001
void account_steal_time(cputime_t cputime)
5002
{
5003 5004 5005 5006
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5007 5008
}

L
Linus Torvalds 已提交
5009
/*
5010 5011
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5012
 */
5013
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5014 5015
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5016
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5017
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5018

5019 5020 5021 5022
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5023 5024
}

5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5040
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5064 5065
}

5066 5067
#endif

5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5138
	struct task_struct *curr = rq->curr;
5139 5140

	sched_clock_tick();
I
Ingo Molnar 已提交
5141 5142

	spin_lock(&rq->lock);
5143
	update_rq_clock(rq);
5144
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5145
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5146
	spin_unlock(&rq->lock);
5147

5148 5149
	perf_counter_task_tick(curr, cpu);

5150
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5151 5152
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5153
#endif
L
Linus Torvalds 已提交
5154 5155
}

5156
notrace unsigned long get_parent_ip(unsigned long addr)
5157 5158 5159 5160 5161 5162 5163 5164
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5165

5166 5167 5168
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5169
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5170
{
5171
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5172 5173 5174
	/*
	 * Underflow?
	 */
5175 5176
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5177
#endif
L
Linus Torvalds 已提交
5178
	preempt_count() += val;
5179
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5180 5181 5182
	/*
	 * Spinlock count overflowing soon?
	 */
5183 5184
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5185 5186 5187
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5188 5189 5190
}
EXPORT_SYMBOL(add_preempt_count);

5191
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5192
{
5193
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5194 5195 5196
	/*
	 * Underflow?
	 */
5197
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5198
		return;
L
Linus Torvalds 已提交
5199 5200 5201
	/*
	 * Is the spinlock portion underflowing?
	 */
5202 5203 5204
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5205
#endif
5206

5207 5208
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5209 5210 5211 5212 5213 5214 5215
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5216
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5217
 */
I
Ingo Molnar 已提交
5218
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5219
{
5220 5221 5222 5223 5224
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5225
	debug_show_held_locks(prev);
5226
	print_modules();
I
Ingo Molnar 已提交
5227 5228
	if (irqs_disabled())
		print_irqtrace_events(prev);
5229 5230 5231 5232 5233

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5234
}
L
Linus Torvalds 已提交
5235

I
Ingo Molnar 已提交
5236 5237 5238 5239 5240
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5241
	/*
I
Ingo Molnar 已提交
5242
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5243 5244 5245
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5246
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5247 5248
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5249 5250
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5251
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5252 5253
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5254 5255
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5256 5257
	}
#endif
I
Ingo Molnar 已提交
5258 5259
}

M
Mike Galbraith 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5282 5283 5284 5285
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5286
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5287
{
5288
	const struct sched_class *class;
I
Ingo Molnar 已提交
5289
	struct task_struct *p;
L
Linus Torvalds 已提交
5290 5291

	/*
I
Ingo Molnar 已提交
5292 5293
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5294
	 */
I
Ingo Molnar 已提交
5295
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5296
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5297 5298
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5299 5300
	}

I
Ingo Molnar 已提交
5301 5302
	class = sched_class_highest;
	for ( ; ; ) {
5303
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5304 5305 5306 5307 5308 5309 5310 5311 5312
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5313

I
Ingo Molnar 已提交
5314 5315 5316
/*
 * schedule() is the main scheduler function.
 */
5317
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5318 5319
{
	struct task_struct *prev, *next;
5320
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5321
	struct rq *rq;
5322
	int cpu;
I
Ingo Molnar 已提交
5323

5324 5325
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5336

5337
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5338
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5339

5340
	spin_lock_irq(&rq->lock);
5341
	update_rq_clock(rq);
5342
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5343 5344

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5345
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5346
			prev->state = TASK_RUNNING;
5347
		else
5348
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5349
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5350 5351
	}

5352 5353 5354 5355
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5356

I
Ingo Molnar 已提交
5357
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5358 5359
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5360
	put_prev_task(rq, prev);
5361
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5362 5363

	if (likely(prev != next)) {
5364
		sched_info_switch(prev, next);
5365
		perf_counter_task_sched_out(prev, next, cpu);
5366

L
Linus Torvalds 已提交
5367 5368 5369 5370
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5371
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5372 5373 5374 5375 5376 5377
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5378 5379 5380
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5381
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5382
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5383

L
Linus Torvalds 已提交
5384
	preempt_enable_no_resched();
5385
	if (need_resched())
L
Linus Torvalds 已提交
5386 5387 5388 5389
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5451 5452
#ifdef CONFIG_PREEMPT
/*
5453
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5454
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5455 5456 5457 5458 5459
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5460

L
Linus Torvalds 已提交
5461 5462
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5463
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5464
	 */
N
Nick Piggin 已提交
5465
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5466 5467
		return;

5468 5469 5470 5471
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5472

5473 5474 5475 5476 5477
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5478
	} while (need_resched());
L
Linus Torvalds 已提交
5479 5480 5481 5482
}
EXPORT_SYMBOL(preempt_schedule);

/*
5483
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5484 5485 5486 5487 5488 5489 5490
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5491

5492
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5493 5494
	BUG_ON(ti->preempt_count || !irqs_disabled());

5495 5496 5497 5498 5499 5500
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5501

5502 5503 5504 5505 5506
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5507
	} while (need_resched());
L
Linus Torvalds 已提交
5508 5509 5510 5511
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5512 5513
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5514
{
5515
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5516 5517 5518 5519
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5520 5521
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5522 5523 5524
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5525
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5526 5527
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5528
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5529
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5530
{
5531
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5532

5533
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5534 5535
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5536
		if (curr->func(curr, mode, sync, key) &&
5537
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5538 5539 5540 5541 5542 5543 5544 5545 5546
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5547
 * @key: is directly passed to the wakeup function
5548 5549 5550
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5551
 */
5552
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5553
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5566
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5567 5568 5569 5570
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5571 5572 5573 5574 5575
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5576
/**
5577
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5578 5579 5580
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5581
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5582 5583 5584 5585 5586 5587 5588
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5589 5590 5591
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5592
 */
5593 5594
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5606
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5607 5608
	spin_unlock_irqrestore(&q->lock, flags);
}
5609 5610 5611 5612 5613 5614 5615 5616 5617
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5618 5619
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5620 5621 5622 5623 5624 5625 5626 5627
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5628 5629 5630
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5631
 */
5632
void complete(struct completion *x)
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5638
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5639 5640 5641 5642
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5643 5644 5645 5646 5647
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5648 5649 5650
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5651
 */
5652
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5658
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5659 5660 5661 5662
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5663 5664
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5665 5666 5667 5668 5669 5670 5671
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5672
			if (signal_pending_state(state, current)) {
5673 5674
				timeout = -ERESTARTSYS;
				break;
5675 5676
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5677 5678 5679
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5680
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5681
		__remove_wait_queue(&x->wait, &wait);
5682 5683
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5684 5685
	}
	x->done--;
5686
	return timeout ?: 1;
L
Linus Torvalds 已提交
5687 5688
}

5689 5690
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5691 5692 5693 5694
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5695
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5696
	spin_unlock_irq(&x->wait.lock);
5697 5698
	return timeout;
}
L
Linus Torvalds 已提交
5699

5700 5701 5702 5703 5704 5705 5706 5707 5708 5709
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5710
void __sched wait_for_completion(struct completion *x)
5711 5712
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5713
}
5714
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5715

5716 5717 5718 5719 5720 5721 5722 5723 5724
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5725
unsigned long __sched
5726
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5727
{
5728
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5729
}
5730
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5731

5732 5733 5734 5735 5736 5737 5738
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5739
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5740
{
5741 5742 5743 5744
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5745
}
5746
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5747

5748 5749 5750 5751 5752 5753 5754 5755
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5756
unsigned long __sched
5757 5758
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5759
{
5760
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5761
}
5762
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5763

5764 5765 5766 5767 5768 5769 5770
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5771 5772 5773 5774 5775 5776 5777 5778 5779
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5826 5827
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5828
{
I
Ingo Molnar 已提交
5829 5830 5831 5832
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5833

5834
	__set_current_state(state);
L
Linus Torvalds 已提交
5835

5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5850 5851 5852
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5853
long __sched
I
Ingo Molnar 已提交
5854
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5855
{
5856
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5857 5858 5859
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5860
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5861
{
5862
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5863 5864 5865
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5866
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5867
{
5868
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5869 5870 5871
}
EXPORT_SYMBOL(sleep_on_timeout);

5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5884
void rt_mutex_setprio(struct task_struct *p, int prio)
5885 5886
{
	unsigned long flags;
5887
	int oldprio, on_rq, running;
5888
	struct rq *rq;
5889
	const struct sched_class *prev_class = p->sched_class;
5890 5891 5892 5893

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5894
	update_rq_clock(rq);
5895

5896
	oldprio = p->prio;
I
Ingo Molnar 已提交
5897
	on_rq = p->se.on_rq;
5898
	running = task_current(rq, p);
5899
	if (on_rq)
5900
		dequeue_task(rq, p, 0);
5901 5902
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5903 5904 5905 5906 5907 5908

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5909 5910
	p->prio = prio;

5911 5912
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5913
	if (on_rq) {
5914
		enqueue_task(rq, p, 0);
5915 5916

		check_class_changed(rq, p, prev_class, oldprio, running);
5917 5918 5919 5920 5921 5922
	}
	task_rq_unlock(rq, &flags);
}

#endif

5923
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5924
{
I
Ingo Molnar 已提交
5925
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5926
	unsigned long flags;
5927
	struct rq *rq;
L
Linus Torvalds 已提交
5928 5929 5930 5931 5932 5933 5934 5935

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5936
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5937 5938 5939 5940
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5941
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5942
	 */
5943
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5944 5945 5946
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5947
	on_rq = p->se.on_rq;
5948
	if (on_rq)
5949
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5950 5951

	p->static_prio = NICE_TO_PRIO(nice);
5952
	set_load_weight(p);
5953 5954 5955
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5956

I
Ingo Molnar 已提交
5957
	if (on_rq) {
5958
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5959
		/*
5960 5961
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5962
		 */
5963
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5964 5965 5966 5967 5968 5969 5970
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5971 5972 5973 5974 5975
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5976
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5977
{
5978 5979
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5980

M
Matt Mackall 已提交
5981 5982 5983 5984
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5985 5986 5987 5988 5989 5990 5991 5992 5993
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5994
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5995
{
5996
	long nice, retval;
L
Linus Torvalds 已提交
5997 5998 5999 6000 6001 6002

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6003 6004
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6005 6006 6007
	if (increment > 40)
		increment = 40;

6008
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6009 6010 6011 6012 6013
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6014 6015 6016
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6035
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6036 6037 6038 6039 6040 6041 6042 6043
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6044
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6045 6046 6047
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6048
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6063
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6064 6065 6066 6067 6068 6069 6070 6071
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6072
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6073
{
6074
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6075 6076 6077
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6078 6079
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6080
{
I
Ingo Molnar 已提交
6081
	BUG_ON(p->se.on_rq);
6082

L
Linus Torvalds 已提交
6083
	p->policy = policy;
I
Ingo Molnar 已提交
6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6096
	p->rt_priority = prio;
6097 6098 6099
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6100
	set_load_weight(p);
L
Linus Torvalds 已提交
6101 6102
}

6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6119 6120
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6121
{
6122
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6123
	unsigned long flags;
6124
	const struct sched_class *prev_class = p->sched_class;
6125
	struct rq *rq;
L
Linus Torvalds 已提交
6126

6127 6128
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6129 6130 6131 6132 6133
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
6134 6135
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
6136
		return -EINVAL;
L
Linus Torvalds 已提交
6137 6138
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6139 6140
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6141 6142
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6143
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6144
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6145
		return -EINVAL;
6146
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6147 6148
		return -EINVAL;

6149 6150 6151
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6152
	if (user && !capable(CAP_SYS_NICE)) {
6153
		if (rt_policy(policy)) {
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6170 6171 6172 6173 6174 6175
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6176

6177
		/* can't change other user's priorities */
6178
		if (!check_same_owner(p))
6179 6180
			return -EPERM;
	}
L
Linus Torvalds 已提交
6181

6182
	if (user) {
6183
#ifdef CONFIG_RT_GROUP_SCHED
6184 6185 6186 6187
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6188 6189
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6190
			return -EPERM;
6191 6192
#endif

6193 6194 6195 6196 6197
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6198 6199 6200 6201 6202
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6203 6204 6205 6206
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6207
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6208 6209 6210
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6211 6212
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6213 6214
		goto recheck;
	}
I
Ingo Molnar 已提交
6215
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6216
	on_rq = p->se.on_rq;
6217
	running = task_current(rq, p);
6218
	if (on_rq)
6219
		deactivate_task(rq, p, 0);
6220 6221
	if (running)
		p->sched_class->put_prev_task(rq, p);
6222

L
Linus Torvalds 已提交
6223
	oldprio = p->prio;
I
Ingo Molnar 已提交
6224
	__setscheduler(rq, p, policy, param->sched_priority);
6225

6226 6227
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6228 6229
	if (on_rq) {
		activate_task(rq, p, 0);
6230 6231

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6232
	}
6233 6234 6235
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6236 6237
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6238 6239
	return 0;
}
6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6254 6255
EXPORT_SYMBOL_GPL(sched_setscheduler);

6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6273 6274
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6275 6276 6277
{
	struct sched_param lparam;
	struct task_struct *p;
6278
	int retval;
L
Linus Torvalds 已提交
6279 6280 6281 6282 6283

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6284 6285 6286

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6287
	p = find_process_by_pid(pid);
6288 6289 6290
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6291

L
Linus Torvalds 已提交
6292 6293 6294 6295 6296 6297 6298 6299 6300
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6301 6302
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6303
{
6304 6305 6306 6307
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6308 6309 6310 6311 6312 6313 6314 6315
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6316
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6317 6318 6319 6320 6321 6322 6323 6324
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6325
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6326
{
6327
	struct task_struct *p;
6328
	int retval;
L
Linus Torvalds 已提交
6329 6330

	if (pid < 0)
6331
		return -EINVAL;
L
Linus Torvalds 已提交
6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6350
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6351 6352
{
	struct sched_param lp;
6353
	struct task_struct *p;
6354
	int retval;
L
Linus Torvalds 已提交
6355 6356

	if (!param || pid < 0)
6357
		return -EINVAL;
L
Linus Torvalds 已提交
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6384
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6385
{
6386
	cpumask_var_t cpus_allowed, new_mask;
6387 6388
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6389

6390
	get_online_cpus();
L
Linus Torvalds 已提交
6391 6392 6393 6394 6395
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6396
		put_online_cpus();
L
Linus Torvalds 已提交
6397 6398 6399 6400 6401
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6402
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6403 6404 6405 6406 6407
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6408 6409 6410 6411 6412 6413 6414 6415
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6416
	retval = -EPERM;
6417
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6418 6419
		goto out_unlock;

6420 6421 6422 6423
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6424 6425
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6426
 again:
6427
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6428

P
Paul Menage 已提交
6429
	if (!retval) {
6430 6431
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6432 6433 6434 6435 6436
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6437
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6438 6439 6440
			goto again;
		}
	}
L
Linus Torvalds 已提交
6441
out_unlock:
6442 6443 6444 6445
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6446
	put_task_struct(p);
6447
	put_online_cpus();
L
Linus Torvalds 已提交
6448 6449 6450 6451
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6452
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6453
{
6454 6455 6456 6457 6458
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6468 6469
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6470
{
6471
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6472 6473
	int retval;

6474 6475
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6476

6477 6478 6479 6480 6481
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6482 6483
}

6484
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6485
{
6486
	struct task_struct *p;
L
Linus Torvalds 已提交
6487 6488
	int retval;

6489
	get_online_cpus();
L
Linus Torvalds 已提交
6490 6491 6492 6493 6494 6495 6496
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6497 6498 6499 6500
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6501
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6502 6503 6504

out_unlock:
	read_unlock(&tasklist_lock);
6505
	put_online_cpus();
L
Linus Torvalds 已提交
6506

6507
	return retval;
L
Linus Torvalds 已提交
6508 6509 6510 6511 6512 6513 6514 6515
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6516 6517
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6518 6519
{
	int ret;
6520
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6521

6522
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6523 6524
		return -EINVAL;

6525 6526
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6527

6528 6529 6530 6531 6532 6533 6534 6535
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6536

6537
	return ret;
L
Linus Torvalds 已提交
6538 6539 6540 6541 6542
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6543 6544
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6545
 */
6546
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6547
{
6548
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6549

6550
	schedstat_inc(rq, yld_count);
6551
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6552 6553 6554 6555 6556 6557

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6558
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6559 6560 6561 6562 6563 6564 6565 6566
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6567
static void __cond_resched(void)
L
Linus Torvalds 已提交
6568
{
6569 6570 6571
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6572 6573 6574 6575 6576
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6577 6578 6579 6580 6581 6582 6583
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6584
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6585
{
6586 6587
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6588 6589 6590 6591 6592
		__cond_resched();
		return 1;
	}
	return 0;
}
6593
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6594 6595 6596 6597 6598

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6599
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6600 6601 6602
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6603
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6604
{
N
Nick Piggin 已提交
6605
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6606 6607
	int ret = 0;

N
Nick Piggin 已提交
6608
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6609
		spin_unlock(lock);
N
Nick Piggin 已提交
6610 6611 6612 6613
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6614
		ret = 1;
L
Linus Torvalds 已提交
6615 6616
		spin_lock(lock);
	}
J
Jan Kara 已提交
6617
	return ret;
L
Linus Torvalds 已提交
6618 6619 6620 6621 6622 6623 6624
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6625
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6626
		local_bh_enable();
L
Linus Torvalds 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6638
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6649
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6650 6651 6652 6653 6654 6655 6656
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6657
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6658

6659
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6660 6661 6662
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6663
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6664 6665 6666 6667 6668
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6669
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6670 6671
	long ret;

6672
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6673 6674 6675
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6676
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6687
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6688 6689 6690 6691 6692 6693 6694 6695 6696
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6697
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6698
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6712
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6722
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6723
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6737
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6738
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6739
{
6740
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6741
	unsigned int time_slice;
6742
	int retval;
L
Linus Torvalds 已提交
6743 6744 6745
	struct timespec t;

	if (pid < 0)
6746
		return -EINVAL;
L
Linus Torvalds 已提交
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6758 6759 6760 6761 6762 6763
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6764
		time_slice = DEF_TIMESLICE;
6765
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6766 6767 6768 6769 6770
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6771 6772
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6773 6774
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6775
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6776
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6777 6778
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6779

L
Linus Torvalds 已提交
6780 6781 6782 6783 6784
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6785
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6786

6787
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6788 6789
{
	unsigned long free = 0;
6790
	unsigned state;
L
Linus Torvalds 已提交
6791 6792

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6793
	printk(KERN_INFO "%-13.13s %c", p->comm,
6794
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6795
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6796
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6797
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6798
	else
I
Ingo Molnar 已提交
6799
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6800 6801
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6802
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6803
	else
I
Ingo Molnar 已提交
6804
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6805 6806
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6807
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6808
#endif
6809 6810 6811
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6812

6813
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6814 6815
}

I
Ingo Molnar 已提交
6816
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6817
{
6818
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6819

6820 6821 6822
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6823
#else
6824 6825
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6826 6827 6828 6829 6830 6831 6832 6833
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6834
		if (!state_filter || (p->state & state_filter))
6835
			sched_show_task(p);
L
Linus Torvalds 已提交
6836 6837
	} while_each_thread(g, p);

6838 6839
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6840 6841 6842
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6843
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6844 6845 6846 6847 6848
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6849 6850
}

I
Ingo Molnar 已提交
6851 6852
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6853
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6854 6855
}

6856 6857 6858 6859 6860 6861 6862 6863
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6864
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6865
{
6866
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6867 6868
	unsigned long flags;

6869 6870
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6871 6872 6873
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6874
	idle->prio = idle->normal_prio = MAX_PRIO;
6875
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6876
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6877 6878

	rq->curr = rq->idle = idle;
6879 6880 6881
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6882 6883 6884
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6885 6886 6887
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6888
	task_thread_info(idle)->preempt_count = 0;
6889
#endif
I
Ingo Molnar 已提交
6890 6891 6892 6893
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6894
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6895 6896 6897 6898 6899 6900 6901
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6902
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6903
 */
6904
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6905

I
Ingo Molnar 已提交
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6929 6930

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6931 6932
}

L
Linus Torvalds 已提交
6933 6934 6935 6936
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6937
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6956
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6957 6958
 * call is not atomic; no spinlocks may be held.
 */
6959
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6960
{
6961
	struct migration_req req;
L
Linus Torvalds 已提交
6962
	unsigned long flags;
6963
	struct rq *rq;
6964
	int ret = 0;
L
Linus Torvalds 已提交
6965 6966

	rq = task_rq_lock(p, &flags);
6967
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6968 6969 6970 6971
		ret = -EINVAL;
		goto out;
	}

6972
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6973
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6974 6975 6976 6977
		ret = -EINVAL;
		goto out;
	}

6978
	if (p->sched_class->set_cpus_allowed)
6979
		p->sched_class->set_cpus_allowed(p, new_mask);
6980
	else {
6981 6982
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6983 6984
	}

L
Linus Torvalds 已提交
6985
	/* Can the task run on the task's current CPU? If so, we're done */
6986
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6987 6988
		goto out;

R
Rusty Russell 已提交
6989
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6990 6991 6992 6993 6994 6995 6996 6997 6998
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6999

L
Linus Torvalds 已提交
7000 7001
	return ret;
}
7002
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7003 7004

/*
I
Ingo Molnar 已提交
7005
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7006 7007 7008 7009 7010 7011
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7012 7013
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7014
 */
7015
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7016
{
7017
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7018
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7019

7020
	if (unlikely(!cpu_active(dest_cpu)))
7021
		return ret;
L
Linus Torvalds 已提交
7022 7023 7024 7025 7026 7027 7028

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7029
		goto done;
L
Linus Torvalds 已提交
7030
	/* Affinity changed (again). */
7031
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7032
		goto fail;
L
Linus Torvalds 已提交
7033

I
Ingo Molnar 已提交
7034
	on_rq = p->se.on_rq;
7035
	if (on_rq)
7036
		deactivate_task(rq_src, p, 0);
7037

L
Linus Torvalds 已提交
7038
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7039 7040
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7041
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7042
	}
L
Linus Torvalds 已提交
7043
done:
7044
	ret = 1;
L
Linus Torvalds 已提交
7045
fail:
L
Linus Torvalds 已提交
7046
	double_rq_unlock(rq_src, rq_dest);
7047
	return ret;
L
Linus Torvalds 已提交
7048 7049 7050 7051 7052 7053 7054
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7055
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7056 7057
{
	int cpu = (long)data;
7058
	struct rq *rq;
L
Linus Torvalds 已提交
7059 7060 7061 7062 7063 7064

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7065
		struct migration_req *req;
L
Linus Torvalds 已提交
7066 7067 7068 7069 7070 7071
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7072
			break;
L
Linus Torvalds 已提交
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7088
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7089 7090
		list_del_init(head->next);

N
Nick Piggin 已提交
7091 7092 7093
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7094 7095 7096 7097 7098 7099 7100 7101 7102

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7114
/*
7115
 * Figure out where task on dead CPU should go, use force if necessary.
7116
 */
7117
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7118
{
7119
	int dest_cpu;
7120
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7137

7138 7139 7140 7141 7142 7143 7144 7145 7146
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7147
		}
7148 7149 7150 7151 7152 7153
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7163
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7164
{
R
Rusty Russell 已提交
7165
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7179
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7180

7181
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7182

7183 7184
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7185 7186
			continue;

7187 7188 7189
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7190

7191
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7192 7193
}

I
Ingo Molnar 已提交
7194 7195
/*
 * Schedules idle task to be the next runnable task on current CPU.
7196 7197
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7198 7199 7200
 */
void sched_idle_next(void)
{
7201
	int this_cpu = smp_processor_id();
7202
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7203 7204 7205 7206
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7207
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7208

7209 7210 7211
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7212 7213 7214
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7215
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7216

7217 7218
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7219 7220 7221 7222

	spin_unlock_irqrestore(&rq->lock, flags);
}

7223 7224
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7238
/* called under rq->lock with disabled interrupts */
7239
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7240
{
7241
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7242 7243

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7244
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7245 7246

	/* Cannot have done final schedule yet: would have vanished. */
7247
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7248

7249
	get_task_struct(p);
L
Linus Torvalds 已提交
7250 7251 7252

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7253
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7254 7255
	 * fine.
	 */
7256
	spin_unlock_irq(&rq->lock);
7257
	move_task_off_dead_cpu(dead_cpu, p);
7258
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7259

7260
	put_task_struct(p);
L
Linus Torvalds 已提交
7261 7262 7263 7264 7265
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7266
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7267
	struct task_struct *next;
7268

I
Ingo Molnar 已提交
7269 7270 7271
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7272
		update_rq_clock(rq);
7273
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7274 7275
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7276
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7277
		migrate_dead(dead_cpu, next);
7278

L
Linus Torvalds 已提交
7279 7280
	}
}
7281 7282 7283 7284 7285 7286 7287 7288

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7289 7290
#endif /* CONFIG_HOTPLUG_CPU */

7291 7292 7293
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7294 7295
	{
		.procname	= "sched_domain",
7296
		.mode		= 0555,
7297
	},
I
Ingo Molnar 已提交
7298
	{0, },
7299 7300 7301
};

static struct ctl_table sd_ctl_root[] = {
7302
	{
7303
		.ctl_name	= CTL_KERN,
7304
		.procname	= "kernel",
7305
		.mode		= 0555,
7306 7307
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7308
	{0, },
7309 7310 7311 7312 7313
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7314
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7315 7316 7317 7318

	return entry;
}

7319 7320
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7321
	struct ctl_table *entry;
7322

7323 7324 7325
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7326
	 * will always be set. In the lowest directory the names are
7327 7328 7329
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7330 7331
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7332 7333 7334
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7335 7336 7337 7338 7339

	kfree(*tablep);
	*tablep = NULL;
}

7340
static void
7341
set_table_entry(struct ctl_table *entry,
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7355
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7356

7357 7358 7359
	if (table == NULL)
		return NULL;

7360
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7361
		sizeof(long), 0644, proc_doulongvec_minmax);
7362
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7363
		sizeof(long), 0644, proc_doulongvec_minmax);
7364
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7365
		sizeof(int), 0644, proc_dointvec_minmax);
7366
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7367
		sizeof(int), 0644, proc_dointvec_minmax);
7368
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7369
		sizeof(int), 0644, proc_dointvec_minmax);
7370
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7371
		sizeof(int), 0644, proc_dointvec_minmax);
7372
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7373
		sizeof(int), 0644, proc_dointvec_minmax);
7374
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7375
		sizeof(int), 0644, proc_dointvec_minmax);
7376
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7377
		sizeof(int), 0644, proc_dointvec_minmax);
7378
	set_table_entry(&table[9], "cache_nice_tries",
7379 7380
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7381
	set_table_entry(&table[10], "flags", &sd->flags,
7382
		sizeof(int), 0644, proc_dointvec_minmax);
7383 7384 7385
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7386 7387 7388 7389

	return table;
}

7390
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7391 7392 7393 7394 7395 7396 7397 7398 7399
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7400 7401
	if (table == NULL)
		return NULL;
7402 7403 7404 7405 7406

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7407
		entry->mode = 0555;
7408 7409 7410 7411 7412 7413 7414 7415
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7416
static void register_sched_domain_sysctl(void)
7417 7418 7419 7420 7421
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7422 7423 7424
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7425 7426 7427
	if (entry == NULL)
		return;

7428
	for_each_online_cpu(i) {
7429 7430
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7431
		entry->mode = 0555;
7432
		entry->child = sd_alloc_ctl_cpu_table(i);
7433
		entry++;
7434
	}
7435 7436

	WARN_ON(sd_sysctl_header);
7437 7438
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7439

7440
/* may be called multiple times per register */
7441 7442
static void unregister_sched_domain_sysctl(void)
{
7443 7444
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7445
	sd_sysctl_header = NULL;
7446 7447
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7448
}
7449
#else
7450 7451 7452 7453
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7454 7455 7456 7457
{
}
#endif

7458 7459 7460 7461 7462
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7463
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7483
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7484 7485 7486 7487
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7488 7489 7490 7491
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7492 7493
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7494 7495
{
	struct task_struct *p;
7496
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7497
	unsigned long flags;
7498
	struct rq *rq;
L
Linus Torvalds 已提交
7499 7500

	switch (action) {
7501

L
Linus Torvalds 已提交
7502
	case CPU_UP_PREPARE:
7503
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7504
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7505 7506 7507 7508 7509
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7510
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7511
		task_rq_unlock(rq, &flags);
7512
		get_task_struct(p);
L
Linus Torvalds 已提交
7513 7514
		cpu_rq(cpu)->migration_thread = p;
		break;
7515

L
Linus Torvalds 已提交
7516
	case CPU_ONLINE:
7517
	case CPU_ONLINE_FROZEN:
7518
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7519
		wake_up_process(cpu_rq(cpu)->migration_thread);
7520 7521 7522 7523

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7524 7525
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7526
		if (rq->rd) {
7527
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7528 7529

			set_rq_online(rq);
7530 7531
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7532
		break;
7533

L
Linus Torvalds 已提交
7534 7535
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7536
	case CPU_UP_CANCELED_FROZEN:
7537 7538
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7539
		/* Unbind it from offline cpu so it can run. Fall thru. */
7540
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7541
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7542
		kthread_stop(cpu_rq(cpu)->migration_thread);
7543
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7544 7545
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7546

L
Linus Torvalds 已提交
7547
	case CPU_DEAD:
7548
	case CPU_DEAD_FROZEN:
7549
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7550 7551 7552
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7553
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7554 7555
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7556
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7557
		update_rq_clock(rq);
7558
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7559
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7560 7561
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7562
		migrate_dead_tasks(cpu);
7563
		spin_unlock_irq(&rq->lock);
7564
		cpuset_unlock();
L
Linus Torvalds 已提交
7565 7566
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7567
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7568 7569 7570 7571 7572
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7573 7574
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7575 7576
			struct migration_req *req;

L
Linus Torvalds 已提交
7577
			req = list_entry(rq->migration_queue.next,
7578
					 struct migration_req, list);
L
Linus Torvalds 已提交
7579
			list_del_init(&req->list);
B
Brian King 已提交
7580
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7581
			complete(&req->done);
B
Brian King 已提交
7582
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7583 7584 7585
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7586

7587 7588
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7589 7590 7591 7592
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7593
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7594
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7595 7596 7597
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7598 7599 7600 7601 7602
#endif
	}
	return NOTIFY_OK;
}

7603 7604 7605 7606
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7607
 */
7608
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7609 7610 7611 7612
	.notifier_call = migration_call,
	.priority = 10
};

7613
static int __init migration_init(void)
L
Linus Torvalds 已提交
7614 7615
{
	void *cpu = (void *)(long)smp_processor_id();
7616
	int err;
7617 7618

	/* Start one for the boot CPU: */
7619 7620
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7621 7622
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7623 7624

	return err;
L
Linus Torvalds 已提交
7625
}
7626
early_initcall(migration_init);
L
Linus Torvalds 已提交
7627 7628 7629
#endif

#ifdef CONFIG_SMP
7630

7631
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7632

7633
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7634
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7635
{
I
Ingo Molnar 已提交
7636
	struct sched_group *group = sd->groups;
7637
	char str[256];
L
Linus Torvalds 已提交
7638

R
Rusty Russell 已提交
7639
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7640
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7641 7642 7643 7644 7645 7646 7647 7648 7649

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7650 7651
	}

7652
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7653

7654
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7655 7656 7657
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7658
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7659 7660 7661
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7662

I
Ingo Molnar 已提交
7663
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7664
	do {
I
Ingo Molnar 已提交
7665 7666 7667
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7668 7669 7670
			break;
		}

I
Ingo Molnar 已提交
7671 7672 7673 7674 7675 7676
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7677

7678
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7679 7680 7681 7682
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7683

7684
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7685 7686 7687 7688
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7689

7690
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7691

R
Rusty Russell 已提交
7692
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7693 7694 7695 7696 7697 7698

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7699

I
Ingo Molnar 已提交
7700 7701 7702
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7703

7704
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7705
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7706

7707 7708
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7709 7710 7711 7712
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7713

I
Ingo Molnar 已提交
7714 7715
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7716
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7717
	int level = 0;
L
Linus Torvalds 已提交
7718

I
Ingo Molnar 已提交
7719 7720 7721 7722
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7723

I
Ingo Molnar 已提交
7724 7725
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7726
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7727 7728 7729 7730
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7731
	for (;;) {
7732
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7733
			break;
L
Linus Torvalds 已提交
7734 7735
		level++;
		sd = sd->parent;
7736
		if (!sd)
I
Ingo Molnar 已提交
7737 7738
			break;
	}
7739
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7740
}
7741
#else /* !CONFIG_SCHED_DEBUG */
7742
# define sched_domain_debug(sd, cpu) do { } while (0)
7743
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7744

7745
static int sd_degenerate(struct sched_domain *sd)
7746
{
7747
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7748 7749 7750 7751 7752 7753
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7754 7755 7756
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7770 7771
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7772 7773 7774 7775 7776 7777
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7778
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7790 7791 7792
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7793 7794
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7795 7796 7797 7798 7799 7800 7801
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7802 7803
static void free_rootdomain(struct root_domain *rd)
{
7804 7805
	cpupri_cleanup(&rd->cpupri);

7806 7807 7808 7809 7810 7811
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7812 7813
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7814
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7815 7816 7817 7818 7819
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7820
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7821

7822
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7823
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7824

7825
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7826

I
Ingo Molnar 已提交
7827 7828 7829 7830 7831 7832 7833
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7834 7835 7836 7837 7838
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7839 7840
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7841
		set_rq_online(rq);
G
Gregory Haskins 已提交
7842 7843

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7844 7845 7846

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7847 7848
}

L
Li Zefan 已提交
7849
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7850
{
7851 7852
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7853 7854
	memset(rd, 0, sizeof(*rd));

7855 7856
	if (bootmem)
		gfp = GFP_NOWAIT;
7857

7858
	if (!alloc_cpumask_var(&rd->span, gfp))
7859
		goto out;
7860
	if (!alloc_cpumask_var(&rd->online, gfp))
7861
		goto free_span;
7862
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7863
		goto free_online;
7864

P
Pekka Enberg 已提交
7865
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7866
		goto free_rto_mask;
7867
	return 0;
7868

7869 7870
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7871 7872 7873 7874
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7875
out:
7876
	return -ENOMEM;
G
Gregory Haskins 已提交
7877 7878 7879 7880
}

static void init_defrootdomain(void)
{
7881 7882
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7883 7884 7885
	atomic_set(&def_root_domain.refcount, 1);
}

7886
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7887 7888 7889 7890 7891 7892 7893
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7894 7895 7896 7897
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7898 7899 7900 7901

	return rd;
}

L
Linus Torvalds 已提交
7902
/*
I
Ingo Molnar 已提交
7903
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7904 7905
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7906 7907
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7908
{
7909
	struct rq *rq = cpu_rq(cpu);
7910 7911 7912
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7913
	for (tmp = sd; tmp; ) {
7914 7915 7916
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7917

7918
		if (sd_parent_degenerate(tmp, parent)) {
7919
			tmp->parent = parent->parent;
7920 7921
			if (parent->parent)
				parent->parent->child = tmp;
7922 7923
		} else
			tmp = tmp->parent;
7924 7925
	}

7926
	if (sd && sd_degenerate(sd)) {
7927
		sd = sd->parent;
7928 7929 7930
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7931 7932 7933

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7934
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7935
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7936 7937 7938
}

/* cpus with isolated domains */
7939
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7940 7941 7942 7943

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7944
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7945 7946 7947
	return 1;
}

I
Ingo Molnar 已提交
7948
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7949 7950

/*
7951 7952
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7953 7954
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7955 7956 7957 7958 7959
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7960
static void
7961 7962 7963
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7964
					struct sched_group **sg,
7965 7966
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7967 7968 7969 7970
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7971
	cpumask_clear(covered);
7972

7973
	for_each_cpu(i, span) {
7974
		struct sched_group *sg;
7975
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7976 7977
		int j;

7978
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7979 7980
			continue;

7981
		cpumask_clear(sched_group_cpus(sg));
7982
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7983

7984
		for_each_cpu(j, span) {
7985
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7986 7987
				continue;

7988
			cpumask_set_cpu(j, covered);
7989
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8000
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8001

8002
#ifdef CONFIG_NUMA
8003

8004 8005 8006 8007 8008
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8009
 * Find the next node to include in a given scheduling domain. Simply
8010 8011 8012 8013
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8014
static int find_next_best_node(int node, nodemask_t *used_nodes)
8015 8016 8017 8018 8019
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8020
	for (i = 0; i < nr_node_ids; i++) {
8021
		/* Start at @node */
8022
		n = (node + i) % nr_node_ids;
8023 8024 8025 8026 8027

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8028
		if (node_isset(n, *used_nodes))
8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8040
	node_set(best_node, *used_nodes);
8041 8042 8043 8044 8045 8046
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8047
 * @span: resulting cpumask
8048
 *
I
Ingo Molnar 已提交
8049
 * Given a node, construct a good cpumask for its sched_domain to span. It
8050 8051 8052
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8053
static void sched_domain_node_span(int node, struct cpumask *span)
8054
{
8055
	nodemask_t used_nodes;
8056
	int i;
8057

8058
	cpumask_clear(span);
8059
	nodes_clear(used_nodes);
8060

8061
	cpumask_or(span, span, cpumask_of_node(node));
8062
	node_set(node, used_nodes);
8063 8064

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8065
		int next_node = find_next_best_node(node, &used_nodes);
8066

8067
		cpumask_or(span, span, cpumask_of_node(next_node));
8068 8069
	}
}
8070
#endif /* CONFIG_NUMA */
8071

8072
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8073

8074 8075
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8076 8077 8078
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8090
/*
8091
 * SMT sched-domains:
8092
 */
L
Linus Torvalds 已提交
8093
#ifdef CONFIG_SCHED_SMT
8094 8095
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8096

I
Ingo Molnar 已提交
8097
static int
8098 8099
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8100
{
8101
	if (sg)
8102
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8103 8104
	return cpu;
}
8105
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8106

8107 8108 8109
/*
 * multi-core sched-domains:
 */
8110
#ifdef CONFIG_SCHED_MC
8111 8112
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8113
#endif /* CONFIG_SCHED_MC */
8114 8115

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8116
static int
8117 8118
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8119
{
8120
	int group;
8121

8122
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8123
	group = cpumask_first(mask);
8124
	if (sg)
8125
		*sg = &per_cpu(sched_group_core, group).sg;
8126
	return group;
8127 8128
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8129
static int
8130 8131
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8132
{
8133
	if (sg)
8134
		*sg = &per_cpu(sched_group_core, cpu).sg;
8135 8136 8137 8138
	return cpu;
}
#endif

8139 8140
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8141

I
Ingo Molnar 已提交
8142
static int
8143 8144
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8145
{
8146
	int group;
8147
#ifdef CONFIG_SCHED_MC
8148
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8149
	group = cpumask_first(mask);
8150
#elif defined(CONFIG_SCHED_SMT)
8151
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8152
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8153
#else
8154
	group = cpu;
L
Linus Torvalds 已提交
8155
#endif
8156
	if (sg)
8157
		*sg = &per_cpu(sched_group_phys, group).sg;
8158
	return group;
L
Linus Torvalds 已提交
8159 8160 8161 8162
}

#ifdef CONFIG_NUMA
/*
8163 8164 8165
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8166
 */
8167
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8168
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8169

8170
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8171
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8172

8173 8174 8175
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8176
{
8177 8178
	int group;

8179
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8180
	group = cpumask_first(nodemask);
8181 8182

	if (sg)
8183
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8184
	return group;
L
Linus Torvalds 已提交
8185
}
8186

8187 8188 8189 8190 8191 8192 8193
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8194
	do {
8195
		for_each_cpu(j, sched_group_cpus(sg)) {
8196
			struct sched_domain *sd;
8197

8198
			sd = &per_cpu(phys_domains, j).sd;
8199
			if (j != group_first_cpu(sd->groups)) {
8200 8201 8202 8203 8204 8205
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8206

8207 8208 8209 8210
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8211
}
8212
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8213

8214
#ifdef CONFIG_NUMA
8215
/* Free memory allocated for various sched_group structures */
8216 8217
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8218
{
8219
	int cpu, i;
8220

8221
	for_each_cpu(cpu, cpu_map) {
8222 8223 8224 8225 8226 8227
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8228
		for (i = 0; i < nr_node_ids; i++) {
8229 8230
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8231
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8232
			if (cpumask_empty(nodemask))
8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8249
#else /* !CONFIG_NUMA */
8250 8251
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8252 8253
{
}
8254
#endif /* CONFIG_NUMA */
8255

8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8277
	if (cpu != group_first_cpu(sd->groups))
8278 8279 8280 8281
		return;

	child = sd->child;

8282 8283
	sd->groups->__cpu_power = 0;

8284 8285 8286 8287 8288 8289 8290 8291 8292 8293
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8294
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8295 8296 8297 8298 8299 8300 8301 8302
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8303
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8304 8305 8306 8307
		group = group->next;
	} while (group != child->groups);
}

8308 8309 8310 8311 8312
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8313 8314 8315 8316 8317 8318
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8319
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8320

8321 8322 8323 8324 8325
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8326
	sd->level = SD_LV_##type;				\
8327
	SD_INIT_NAME(sd, type);					\
8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8342 8343 8344 8345
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8346 8347 8348 8349 8350 8351
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8377
/*
8378 8379
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8380
 */
8381
static int __build_sched_domains(const struct cpumask *cpu_map,
8382
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8383
{
8384
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8385
	struct root_domain *rd;
8386 8387
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8388
#ifdef CONFIG_NUMA
8389
	cpumask_var_t domainspan, covered, notcovered;
8390
	struct sched_group **sched_group_nodes = NULL;
8391
	int sd_allnodes = 0;
8392

8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8413 8414 8415
	/*
	 * Allocate the per-node list of sched groups
	 */
8416
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8417
				    GFP_KERNEL);
8418 8419
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8420
		goto free_tmpmask;
8421 8422
	}
#endif
L
Linus Torvalds 已提交
8423

8424
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8425 8426
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8427
		goto free_sched_groups;
G
Gregory Haskins 已提交
8428 8429
	}

8430
#ifdef CONFIG_NUMA
8431
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8432 8433
#endif

L
Linus Torvalds 已提交
8434
	/*
8435
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8436
	 */
8437
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8438 8439
		struct sched_domain *sd = NULL, *p;

8440
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8441 8442

#ifdef CONFIG_NUMA
8443 8444
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8445
			sd = &per_cpu(allnodes_domains, i).sd;
8446
			SD_INIT(sd, ALLNODES);
8447
			set_domain_attribute(sd, attr);
8448
			cpumask_copy(sched_domain_span(sd), cpu_map);
8449
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8450
			p = sd;
8451
			sd_allnodes = 1;
8452 8453 8454
		} else
			p = NULL;

8455
		sd = &per_cpu(node_domains, i).sd;
8456
		SD_INIT(sd, NODE);
8457
		set_domain_attribute(sd, attr);
8458
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8459
		sd->parent = p;
8460 8461
		if (p)
			p->child = sd;
8462 8463
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8464 8465 8466
#endif

		p = sd;
8467
		sd = &per_cpu(phys_domains, i).sd;
8468
		SD_INIT(sd, CPU);
8469
		set_domain_attribute(sd, attr);
8470
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8471
		sd->parent = p;
8472 8473
		if (p)
			p->child = sd;
8474
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8475

8476 8477
#ifdef CONFIG_SCHED_MC
		p = sd;
8478
		sd = &per_cpu(core_domains, i).sd;
8479
		SD_INIT(sd, MC);
8480
		set_domain_attribute(sd, attr);
8481 8482
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8483
		sd->parent = p;
8484
		p->child = sd;
8485
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8486 8487
#endif

L
Linus Torvalds 已提交
8488 8489
#ifdef CONFIG_SCHED_SMT
		p = sd;
8490
		sd = &per_cpu(cpu_domains, i).sd;
8491
		SD_INIT(sd, SIBLING);
8492
		set_domain_attribute(sd, attr);
8493
		cpumask_and(sched_domain_span(sd),
8494
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8495
		sd->parent = p;
8496
		p->child = sd;
8497
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8498 8499 8500 8501 8502
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8503
	for_each_cpu(i, cpu_map) {
8504
		cpumask_and(this_sibling_map,
8505
			    topology_thread_cpumask(i), cpu_map);
8506
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8507 8508
			continue;

I
Ingo Molnar 已提交
8509
		init_sched_build_groups(this_sibling_map, cpu_map,
8510 8511
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8512 8513 8514
	}
#endif

8515 8516
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8517
	for_each_cpu(i, cpu_map) {
8518
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8519
		if (i != cpumask_first(this_core_map))
8520
			continue;
8521

I
Ingo Molnar 已提交
8522
		init_sched_build_groups(this_core_map, cpu_map,
8523 8524
					&cpu_to_core_group,
					send_covered, tmpmask);
8525 8526 8527
	}
#endif

L
Linus Torvalds 已提交
8528
	/* Set up physical groups */
8529
	for (i = 0; i < nr_node_ids; i++) {
8530
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8531
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8532 8533
			continue;

8534 8535 8536
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8537 8538 8539 8540
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8541 8542 8543 8544 8545
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8546

8547
	for (i = 0; i < nr_node_ids; i++) {
8548 8549 8550 8551
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8552
		cpumask_clear(covered);
8553
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8554
		if (cpumask_empty(nodemask)) {
8555
			sched_group_nodes[i] = NULL;
8556
			continue;
8557
		}
8558

8559
		sched_domain_node_span(i, domainspan);
8560
		cpumask_and(domainspan, domainspan, cpu_map);
8561

8562 8563
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8564 8565 8566 8567 8568
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8569
		sched_group_nodes[i] = sg;
8570
		for_each_cpu(j, nodemask) {
8571
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8572

8573
			sd = &per_cpu(node_domains, j).sd;
8574 8575
			sd->groups = sg;
		}
8576
		sg->__cpu_power = 0;
8577
		cpumask_copy(sched_group_cpus(sg), nodemask);
8578
		sg->next = sg;
8579
		cpumask_or(covered, covered, nodemask);
8580 8581
		prev = sg;

8582 8583
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8584

8585 8586 8587 8588
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8589 8590
				break;

8591
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8592
			if (cpumask_empty(tmpmask))
8593 8594
				continue;

8595 8596
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8597
					  GFP_KERNEL, i);
8598 8599 8600
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8601
				goto error;
8602
			}
8603
			sg->__cpu_power = 0;
8604
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8605
			sg->next = prev->next;
8606
			cpumask_or(covered, covered, tmpmask);
8607 8608 8609 8610
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8611 8612 8613
#endif

	/* Calculate CPU power for physical packages and nodes */
8614
#ifdef CONFIG_SCHED_SMT
8615
	for_each_cpu(i, cpu_map) {
8616
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8617

8618
		init_sched_groups_power(i, sd);
8619
	}
L
Linus Torvalds 已提交
8620
#endif
8621
#ifdef CONFIG_SCHED_MC
8622
	for_each_cpu(i, cpu_map) {
8623
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8624

8625
		init_sched_groups_power(i, sd);
8626 8627
	}
#endif
8628

8629
	for_each_cpu(i, cpu_map) {
8630
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8631

8632
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8633 8634
	}

8635
#ifdef CONFIG_NUMA
8636
	for (i = 0; i < nr_node_ids; i++)
8637
		init_numa_sched_groups_power(sched_group_nodes[i]);
8638

8639 8640
	if (sd_allnodes) {
		struct sched_group *sg;
8641

8642
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8643
								tmpmask);
8644 8645
		init_numa_sched_groups_power(sg);
	}
8646 8647
#endif

L
Linus Torvalds 已提交
8648
	/* Attach the domains */
8649
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8650 8651
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8652
		sd = &per_cpu(cpu_domains, i).sd;
8653
#elif defined(CONFIG_SCHED_MC)
8654
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8655
#else
8656
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8657
#endif
G
Gregory Haskins 已提交
8658
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8659
	}
8660

8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8689

8690
#ifdef CONFIG_NUMA
8691
error:
8692
	free_sched_groups(cpu_map, tmpmask);
8693
	free_rootdomain(rd);
8694
	goto free_tmpmask;
8695
#endif
L
Linus Torvalds 已提交
8696
}
P
Paul Jackson 已提交
8697

8698
static int build_sched_domains(const struct cpumask *cpu_map)
8699 8700 8701 8702
{
	return __build_sched_domains(cpu_map, NULL);
}

8703
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8704
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8705 8706
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8707 8708 8709

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8710 8711
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8712
 */
8713
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8714

8715 8716 8717 8718 8719 8720
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8721
{
8722
	return 0;
8723 8724
}

8725
/*
I
Ingo Molnar 已提交
8726
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8727 8728
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8729
 */
8730
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8731
{
8732 8733
	int err;

8734
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8735
	ndoms_cur = 1;
8736
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8737
	if (!doms_cur)
8738
		doms_cur = fallback_doms;
8739
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8740
	dattr_cur = NULL;
8741
	err = build_sched_domains(doms_cur);
8742
	register_sched_domain_sysctl();
8743 8744

	return err;
8745 8746
}

8747 8748
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8749
{
8750
	free_sched_groups(cpu_map, tmpmask);
8751
}
L
Linus Torvalds 已提交
8752

8753 8754 8755 8756
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8757
static void detach_destroy_domains(const struct cpumask *cpu_map)
8758
{
8759 8760
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8761 8762
	int i;

8763
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8764
		cpu_attach_domain(NULL, &def_root_domain, i);
8765
	synchronize_sched();
8766
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8767 8768
}

8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8785 8786
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8787
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8788 8789 8790
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8791
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8792 8793 8794
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8795 8796 8797
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8798 8799
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8800 8801 8802 8803
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8804
 *
8805
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8806 8807
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8808
 *
P
Paul Jackson 已提交
8809 8810
 * Call with hotplug lock held
 */
8811 8812
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8813
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8814
{
8815
	int i, j, n;
8816
	int new_topology;
P
Paul Jackson 已提交
8817

8818
	mutex_lock(&sched_domains_mutex);
8819

8820 8821 8822
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8823 8824 8825
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8826
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8827 8828 8829

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8830
		for (j = 0; j < n && !new_topology; j++) {
8831
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8832
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8833 8834 8835 8836 8837 8838 8839 8840
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8841 8842
	if (doms_new == NULL) {
		ndoms_cur = 0;
8843
		doms_new = fallback_doms;
8844
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8845
		WARN_ON_ONCE(dattr_new);
8846 8847
	}

P
Paul Jackson 已提交
8848 8849
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8850
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8851
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8852
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8853 8854 8855
				goto match2;
		}
		/* no match - add a new doms_new */
8856 8857
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8858 8859 8860 8861 8862
match2:
		;
	}

	/* Remember the new sched domains */
8863
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8864
		kfree(doms_cur);
8865
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8866
	doms_cur = doms_new;
8867
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8868
	ndoms_cur = ndoms_new;
8869 8870

	register_sched_domain_sysctl();
8871

8872
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8873 8874
}

8875
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8876
static void arch_reinit_sched_domains(void)
8877
{
8878
	get_online_cpus();
8879 8880 8881 8882

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8883
	rebuild_sched_domains();
8884
	put_online_cpus();
8885 8886 8887 8888
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8889
	unsigned int level = 0;
8890

8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8902 8903 8904
		return -EINVAL;

	if (smt)
8905
		sched_smt_power_savings = level;
8906
	else
8907
		sched_mc_power_savings = level;
8908

8909
	arch_reinit_sched_domains();
8910

8911
	return count;
8912 8913 8914
}

#ifdef CONFIG_SCHED_MC
8915 8916
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8917 8918 8919
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8920
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8921
					    const char *buf, size_t count)
8922 8923 8924
{
	return sched_power_savings_store(buf, count, 0);
}
8925 8926 8927
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8928 8929 8930
#endif

#ifdef CONFIG_SCHED_SMT
8931 8932
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8933 8934 8935
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8936
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8937
					     const char *buf, size_t count)
8938 8939 8940
{
	return sched_power_savings_store(buf, count, 1);
}
8941 8942
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8943 8944 8945
		   sched_smt_power_savings_store);
#endif

8946
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8962
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8963

8964
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8965
/*
8966 8967
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8968 8969 8970
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8971 8972 8973 8974 8975 8976
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8977
		partition_sched_domains(1, NULL, NULL);
8978 8979 8980 8981 8982 8983 8984 8985 8986 8987
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8988
{
P
Peter Zijlstra 已提交
8989 8990
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8991 8992
	switch (action) {
	case CPU_DOWN_PREPARE:
8993
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8994
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8995 8996 8997
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8998
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8999
	case CPU_ONLINE:
9000
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9001
		enable_runtime(cpu_rq(cpu));
9002 9003
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9004 9005 9006 9007 9008 9009 9010
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9011 9012 9013
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9014

9015 9016 9017 9018 9019
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9020
	get_online_cpus();
9021
	mutex_lock(&sched_domains_mutex);
9022 9023 9024 9025
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9026
	mutex_unlock(&sched_domains_mutex);
9027
	put_online_cpus();
9028 9029

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9030 9031
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9032 9033 9034 9035 9036
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9037
	init_hrtick();
9038 9039

	/* Move init over to a non-isolated CPU */
9040
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9041
		BUG();
I
Ingo Molnar 已提交
9042
	sched_init_granularity();
9043
	free_cpumask_var(non_isolated_cpus);
9044 9045

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9046
	init_sched_rt_class();
L
Linus Torvalds 已提交
9047 9048 9049 9050
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9051
	sched_init_granularity();
L
Linus Torvalds 已提交
9052 9053 9054
}
#endif /* CONFIG_SMP */

9055 9056
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9057 9058 9059 9060 9061 9062 9063
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9064
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9065 9066
{
	cfs_rq->tasks_timeline = RB_ROOT;
9067
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9068 9069 9070
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9071
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9072 9073
}

P
Peter Zijlstra 已提交
9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9087
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9088
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9089
#ifdef CONFIG_SMP
9090
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9091 9092
#endif
#endif
P
Peter Zijlstra 已提交
9093 9094 9095
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9096
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9097 9098 9099 9100
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9101 9102
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9103

9104
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9105
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9106 9107
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9108 9109
}

P
Peter Zijlstra 已提交
9110
#ifdef CONFIG_FAIR_GROUP_SCHED
9111 9112 9113
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9114
{
9115
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9116 9117 9118 9119 9120 9121 9122
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9123 9124 9125 9126
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9127 9128 9129 9130 9131
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9132 9133
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9134
	se->load.inv_weight = 0;
9135
	se->parent = parent;
P
Peter Zijlstra 已提交
9136
}
9137
#endif
P
Peter Zijlstra 已提交
9138

9139
#ifdef CONFIG_RT_GROUP_SCHED
9140 9141 9142
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9143
{
9144 9145
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9146 9147 9148 9149
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9150
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9151 9152 9153 9154
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9155 9156 9157
	if (!rt_se)
		return;

9158 9159 9160 9161 9162
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9163
	rt_se->my_q = rt_rq;
9164
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9165 9166 9167 9168
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9169 9170
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9171
	int i, j;
9172 9173 9174 9175 9176 9177 9178
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9179 9180 9181
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9182 9183
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9184
	alloc_size += num_possible_cpus() * cpumask_size();
9185 9186 9187 9188 9189 9190
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9191
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9192 9193 9194 9195 9196 9197 9198

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9199 9200 9201 9202 9203 9204 9205

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9206 9207
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9208 9209 9210 9211 9212
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9213 9214 9215 9216 9217 9218 9219 9220
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9221 9222
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9223 9224 9225 9226 9227 9228
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9229
	}
I
Ingo Molnar 已提交
9230

G
Gregory Haskins 已提交
9231 9232 9233 9234
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9235 9236 9237 9238 9239 9240
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9241 9242 9243
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9244 9245
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9246

9247
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9248
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9249 9250 9251 9252 9253 9254
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9255 9256
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9257

9258
	for_each_possible_cpu(i) {
9259
		struct rq *rq;
L
Linus Torvalds 已提交
9260 9261 9262

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9263
		rq->nr_running = 0;
9264 9265
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9266
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9267
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9268
#ifdef CONFIG_FAIR_GROUP_SCHED
9269
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9270
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9286
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9287 9288 9289 9290
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9291
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9292
#elif defined CONFIG_USER_SCHED
9293 9294
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9306
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9307
				&per_cpu(init_cfs_rq, i),
9308 9309
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9310

9311
#endif
D
Dhaval Giani 已提交
9312 9313 9314
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9315
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9316
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9317
#ifdef CONFIG_CGROUP_SCHED
9318
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9319
#elif defined CONFIG_USER_SCHED
9320
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9321
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9322
				&per_cpu(init_rt_rq, i),
9323 9324
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9325
#endif
I
Ingo Molnar 已提交
9326
#endif
L
Linus Torvalds 已提交
9327

I
Ingo Molnar 已提交
9328 9329
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9330
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9331
		rq->sd = NULL;
G
Gregory Haskins 已提交
9332
		rq->rd = NULL;
L
Linus Torvalds 已提交
9333
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9334
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9335
		rq->push_cpu = 0;
9336
		rq->cpu = i;
9337
		rq->online = 0;
L
Linus Torvalds 已提交
9338 9339
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9340
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9341
#endif
P
Peter Zijlstra 已提交
9342
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9343 9344 9345
		atomic_set(&rq->nr_iowait, 0);
	}

9346
	set_load_weight(&init_task);
9347

9348 9349 9350 9351
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9352
#ifdef CONFIG_SMP
9353
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9354 9355
#endif

9356 9357 9358 9359
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9373 9374 9375

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9376 9377 9378 9379
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9380

9381
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9382
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9383
#ifdef CONFIG_SMP
9384
#ifdef CONFIG_NO_HZ
9385 9386
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9387
#endif
9388
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9389
#endif /* SMP */
9390

9391 9392
	perf_counter_init();

9393
	scheduler_running = 1;
L
Linus Torvalds 已提交
9394 9395 9396 9397 9398
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9399
#ifdef in_atomic
L
Linus Torvalds 已提交
9400 9401
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9421 9422 9423 9424 9425 9426
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9427 9428 9429
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9430

9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9442 9443
void normalize_rt_tasks(void)
{
9444
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9445
	unsigned long flags;
9446
	struct rq *rq;
L
Linus Torvalds 已提交
9447

9448
	read_lock_irqsave(&tasklist_lock, flags);
9449
	do_each_thread(g, p) {
9450 9451 9452 9453 9454 9455
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9456 9457
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9458 9459 9460
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9461
#endif
I
Ingo Molnar 已提交
9462 9463 9464 9465 9466 9467 9468 9469

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9470
			continue;
I
Ingo Molnar 已提交
9471
		}
L
Linus Torvalds 已提交
9472

9473
		spin_lock(&p->pi_lock);
9474
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9475

9476
		normalize_task(rq, p);
9477

9478
		__task_rq_unlock(rq);
9479
		spin_unlock(&p->pi_lock);
9480 9481
	} while_each_thread(g, p);

9482
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9483 9484 9485
}

#endif /* CONFIG_MAGIC_SYSRQ */
9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9504
struct task_struct *curr_task(int cpu)
9505 9506 9507 9508 9509 9510 9511 9512 9513 9514
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9515 9516
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9517 9518 9519 9520 9521 9522 9523
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9524
void set_curr_task(int cpu, struct task_struct *p)
9525 9526 9527 9528 9529
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9530

9531 9532
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9547 9548
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9549 9550
{
	struct cfs_rq *cfs_rq;
9551
	struct sched_entity *se;
9552
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9553 9554
	int i;

9555
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9556 9557
	if (!tg->cfs_rq)
		goto err;
9558
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9559 9560
	if (!tg->se)
		goto err;
9561 9562

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9563 9564

	for_each_possible_cpu(i) {
9565
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9566

9567 9568
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9569 9570 9571
		if (!cfs_rq)
			goto err;

9572 9573
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9574 9575 9576
		if (!se)
			goto err;

9577
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9596
#else /* !CONFG_FAIR_GROUP_SCHED */
9597 9598 9599 9600
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9601 9602
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9614
#endif /* CONFIG_FAIR_GROUP_SCHED */
9615 9616

#ifdef CONFIG_RT_GROUP_SCHED
9617 9618 9619 9620
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9621 9622
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9634 9635
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9636 9637
{
	struct rt_rq *rt_rq;
9638
	struct sched_rt_entity *rt_se;
9639 9640 9641
	struct rq *rq;
	int i;

9642
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9643 9644
	if (!tg->rt_rq)
		goto err;
9645
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9646 9647 9648
	if (!tg->rt_se)
		goto err;

9649 9650
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9651 9652 9653 9654

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9655 9656
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9657 9658
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9659

9660 9661
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9662 9663
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9664

9665
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9666 9667
	}

9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9684
#else /* !CONFIG_RT_GROUP_SCHED */
9685 9686 9687 9688
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9689 9690
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9702
#endif /* CONFIG_RT_GROUP_SCHED */
9703

9704
#ifdef CONFIG_GROUP_SCHED
9705 9706 9707 9708 9709 9710 9711 9712
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9713
struct task_group *sched_create_group(struct task_group *parent)
9714 9715 9716 9717 9718 9719 9720 9721 9722
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9723
	if (!alloc_fair_sched_group(tg, parent))
9724 9725
		goto err;

9726
	if (!alloc_rt_sched_group(tg, parent))
9727 9728
		goto err;

9729
	spin_lock_irqsave(&task_group_lock, flags);
9730
	for_each_possible_cpu(i) {
9731 9732
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9733
	}
P
Peter Zijlstra 已提交
9734
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9735 9736 9737 9738 9739

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9740
	list_add_rcu(&tg->siblings, &parent->children);
9741
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9742

9743
	return tg;
S
Srivatsa Vaddagiri 已提交
9744 9745

err:
P
Peter Zijlstra 已提交
9746
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9747 9748 9749
	return ERR_PTR(-ENOMEM);
}

9750
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9751
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9752 9753
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9754
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9755 9756
}

9757
/* Destroy runqueue etc associated with a task group */
9758
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9759
{
9760
	unsigned long flags;
9761
	int i;
S
Srivatsa Vaddagiri 已提交
9762

9763
	spin_lock_irqsave(&task_group_lock, flags);
9764
	for_each_possible_cpu(i) {
9765 9766
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9767
	}
P
Peter Zijlstra 已提交
9768
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9769
	list_del_rcu(&tg->siblings);
9770
	spin_unlock_irqrestore(&task_group_lock, flags);
9771 9772

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9773
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9774 9775
}

9776
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9777 9778 9779
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9780 9781
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9782 9783 9784 9785 9786 9787 9788 9789 9790
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9791
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9792 9793
	on_rq = tsk->se.on_rq;

9794
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9795
		dequeue_task(rq, tsk, 0);
9796 9797
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9798

P
Peter Zijlstra 已提交
9799
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9800

P
Peter Zijlstra 已提交
9801 9802 9803 9804 9805
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9806 9807 9808
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9809
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9810 9811 9812

	task_rq_unlock(rq, &flags);
}
9813
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9814

9815
#ifdef CONFIG_FAIR_GROUP_SCHED
9816
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9817 9818 9819 9820 9821
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9822
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9823 9824 9825
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9826
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9827

9828
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9829
		enqueue_entity(cfs_rq, se, 0);
9830
}
9831

9832 9833 9834 9835 9836 9837 9838 9839 9840
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9841 9842
}

9843 9844
static DEFINE_MUTEX(shares_mutex);

9845
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9846 9847
{
	int i;
9848
	unsigned long flags;
9849

9850 9851 9852 9853 9854 9855
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9856 9857
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9858 9859
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9860

9861
	mutex_lock(&shares_mutex);
9862
	if (tg->shares == shares)
9863
		goto done;
S
Srivatsa Vaddagiri 已提交
9864

9865
	spin_lock_irqsave(&task_group_lock, flags);
9866 9867
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9868
	list_del_rcu(&tg->siblings);
9869
	spin_unlock_irqrestore(&task_group_lock, flags);
9870 9871 9872 9873 9874 9875 9876 9877

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9878
	tg->shares = shares;
9879 9880 9881 9882 9883
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9884
		set_se_shares(tg->se[i], shares);
9885
	}
S
Srivatsa Vaddagiri 已提交
9886

9887 9888 9889 9890
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9891
	spin_lock_irqsave(&task_group_lock, flags);
9892 9893
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9894
	list_add_rcu(&tg->siblings, &tg->parent->children);
9895
	spin_unlock_irqrestore(&task_group_lock, flags);
9896
done:
9897
	mutex_unlock(&shares_mutex);
9898
	return 0;
S
Srivatsa Vaddagiri 已提交
9899 9900
}

9901 9902 9903 9904
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9905
#endif
9906

9907
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9908
/*
P
Peter Zijlstra 已提交
9909
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9910
 */
P
Peter Zijlstra 已提交
9911 9912 9913 9914 9915
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9916
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9917

P
Peter Zijlstra 已提交
9918
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9919 9920
}

P
Peter Zijlstra 已提交
9921 9922
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9923
{
P
Peter Zijlstra 已提交
9924
	struct task_struct *g, *p;
9925

P
Peter Zijlstra 已提交
9926 9927 9928 9929
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9930

P
Peter Zijlstra 已提交
9931 9932
	return 0;
}
9933

P
Peter Zijlstra 已提交
9934 9935 9936 9937 9938
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9939

P
Peter Zijlstra 已提交
9940 9941 9942 9943 9944 9945
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9946

P
Peter Zijlstra 已提交
9947 9948
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9949

P
Peter Zijlstra 已提交
9950 9951 9952
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9953 9954
	}

9955 9956 9957 9958 9959 9960 9961
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9962 9963 9964 9965 9966
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9967

9968 9969 9970
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9971 9972
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9973

P
Peter Zijlstra 已提交
9974
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9975

9976 9977 9978 9979 9980
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9981

9982 9983 9984
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9985 9986 9987
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9988

P
Peter Zijlstra 已提交
9989 9990 9991 9992
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9993

P
Peter Zijlstra 已提交
9994
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9995
	}
P
Peter Zijlstra 已提交
9996

P
Peter Zijlstra 已提交
9997 9998 9999 10000
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10001 10002
}

P
Peter Zijlstra 已提交
10003
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10004
{
P
Peter Zijlstra 已提交
10005 10006 10007 10008 10009 10010 10011
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10012 10013
}

10014 10015
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10016
{
P
Peter Zijlstra 已提交
10017
	int i, err = 0;
P
Peter Zijlstra 已提交
10018 10019

	mutex_lock(&rt_constraints_mutex);
10020
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10021 10022
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10023
		goto unlock;
P
Peter Zijlstra 已提交
10024 10025

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10026 10027
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10028 10029 10030 10031 10032 10033 10034 10035 10036

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10037
 unlock:
10038
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10039 10040 10041
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10042 10043
}

10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10056 10057 10058 10059
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10060
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10061 10062
		return -1;

10063
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10064 10065 10066
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10067 10068 10069 10070 10071 10072 10073 10074

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10075 10076 10077
	if (rt_period == 0)
		return -EINVAL;

10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10092
	u64 runtime, period;
10093 10094
	int ret = 0;

10095 10096 10097
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10098 10099 10100 10101 10102 10103 10104 10105
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10106

10107
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10108
	read_lock(&tasklist_lock);
10109
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10110
	read_unlock(&tasklist_lock);
10111 10112 10113 10114
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10125
#else /* !CONFIG_RT_GROUP_SCHED */
10126 10127
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10128 10129 10130
	unsigned long flags;
	int i;

10131 10132 10133
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10134 10135 10136 10137 10138 10139 10140
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10141 10142 10143 10144 10145 10146 10147 10148 10149 10150
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10151 10152
	return 0;
}
10153
#endif /* CONFIG_RT_GROUP_SCHED */
10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10184

10185
#ifdef CONFIG_CGROUP_SCHED
10186 10187

/* return corresponding task_group object of a cgroup */
10188
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10189
{
10190 10191
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10192 10193 10194
}

static struct cgroup_subsys_state *
10195
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10196
{
10197
	struct task_group *tg, *parent;
10198

10199
	if (!cgrp->parent) {
10200 10201 10202 10203
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10204 10205
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10206 10207 10208 10209 10210 10211
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10212 10213
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10214
{
10215
	struct task_group *tg = cgroup_tg(cgrp);
10216 10217 10218 10219

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10220 10221 10222
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10223
{
10224
#ifdef CONFIG_RT_GROUP_SCHED
10225
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10226 10227
		return -EINVAL;
#else
10228 10229 10230
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10231
#endif
10232 10233 10234 10235 10236

	return 0;
}

static void
10237
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10238 10239 10240 10241 10242
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10243
#ifdef CONFIG_FAIR_GROUP_SCHED
10244
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10245
				u64 shareval)
10246
{
10247
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10248 10249
}

10250
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10251
{
10252
	struct task_group *tg = cgroup_tg(cgrp);
10253 10254 10255

	return (u64) tg->shares;
}
10256
#endif /* CONFIG_FAIR_GROUP_SCHED */
10257

10258
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10259
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10260
				s64 val)
P
Peter Zijlstra 已提交
10261
{
10262
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10263 10264
}

10265
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10266
{
10267
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10268
}
10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10280
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10281

10282
static struct cftype cpu_files[] = {
10283
#ifdef CONFIG_FAIR_GROUP_SCHED
10284 10285
	{
		.name = "shares",
10286 10287
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10288
	},
10289 10290
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10291
	{
P
Peter Zijlstra 已提交
10292
		.name = "rt_runtime_us",
10293 10294
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10295
	},
10296 10297
	{
		.name = "rt_period_us",
10298 10299
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10300
	},
10301
#endif
10302 10303 10304 10305
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10306
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10307 10308 10309
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10310 10311 10312 10313 10314 10315 10316
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10317 10318 10319
	.early_init	= 1,
};

10320
#endif	/* CONFIG_CGROUP_SCHED */
10321 10322 10323 10324 10325 10326 10327 10328 10329 10330

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10331
/* track cpu usage of a group of tasks and its child groups */
10332 10333 10334 10335
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10336
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10337
	struct cpuacct *parent;
10338 10339 10340 10341 10342
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10343
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10344
{
10345
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10358
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10359 10360
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10361
	int i;
10362 10363

	if (!ca)
10364
		goto out;
10365 10366

	ca->cpuusage = alloc_percpu(u64);
10367 10368 10369 10370 10371 10372
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10373

10374 10375 10376
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10377
	return &ca->css;
10378 10379 10380 10381 10382 10383 10384 10385 10386

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10387 10388 10389
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10390
static void
10391
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10392
{
10393
	struct cpuacct *ca = cgroup_ca(cgrp);
10394
	int i;
10395

10396 10397
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10398 10399 10400 10401
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10402 10403
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10404
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10423
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10437
/* return total cpu usage (in nanoseconds) of a group */
10438
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10439
{
10440
	struct cpuacct *ca = cgroup_ca(cgrp);
10441 10442 10443
	u64 totalcpuusage = 0;
	int i;

10444 10445
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10446 10447 10448 10449

	return totalcpuusage;
}

10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10462 10463
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10464 10465 10466 10467 10468

out:
	return err;
}

10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10503 10504 10505
static struct cftype files[] = {
	{
		.name = "usage",
10506 10507
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10508
	},
10509 10510 10511 10512
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10513 10514 10515 10516
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10517 10518
};

10519
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10520
{
10521
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10522 10523 10524 10525 10526 10527 10528 10529 10530 10531
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10532
	int cpu;
10533

L
Li Zefan 已提交
10534
	if (unlikely(!cpuacct_subsys.active))
10535 10536
		return;

10537
	cpu = task_cpu(tsk);
10538 10539 10540

	rcu_read_lock();

10541 10542
	ca = task_ca(tsk);

10543
	for (; ca; ca = ca->parent) {
10544
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10545 10546
		*cpuusage += cputime;
	}
10547 10548

	rcu_read_unlock();
10549 10550
}

10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10572 10573 10574 10575 10576 10577 10578 10579
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */