sched.c 212.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
69
#include <linux/tick.h>
70
#include <linux/bootmem.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
L
Linus Torvalds 已提交
73

74
#include <asm/tlb.h>
75
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
76

77 78
#include "sched_cpupri.h"

L
Linus Torvalds 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
98
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
99
 */
100
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
101

I
Ingo Molnar 已提交
102 103 104
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
105 106 107
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
108
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
109 110 111
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
112

113 114 115 116 117
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

139 140
static inline int rt_policy(int policy)
{
141
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
142 143 144 145 146 147 148 149 150
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
151
/*
I
Ingo Molnar 已提交
152
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
153
 */
I
Ingo Molnar 已提交
154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 157
	struct list_head xqueue[MAX_RT_PRIO]; /* exclusive queue */
	struct list_head squeue[MAX_RT_PRIO];  /* shared queue */
I
Ingo Molnar 已提交
158 159
};

160
struct rt_bandwidth {
I
Ingo Molnar 已提交
161 162 163 164 165
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
199 200
	spin_lock_init(&rt_b->rt_runtime_lock);

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
	rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

	if (rt_b->rt_runtime == RUNTIME_INF)
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
		hrtimer_start(&rt_b->rt_period_timer,
			      rt_b->rt_period_timer.expires,
			      HRTIMER_MODE_ABS);
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

238 239 240 241 242 243
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

244
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
245

246 247
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
248 249
struct cfs_rq;

P
Peter Zijlstra 已提交
250 251
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
252
/* task group related information */
253
struct task_group {
254
#ifdef CONFIG_CGROUP_SCHED
255 256
	struct cgroup_subsys_state css;
#endif
257 258

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
259 260 261 262 263
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
264 265 266 267 268 269
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

270
	struct rt_bandwidth rt_bandwidth;
271
#endif
272

273
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
274
	struct list_head list;
P
Peter Zijlstra 已提交
275 276 277 278

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
279 280
};

D
Dhaval Giani 已提交
281
#ifdef CONFIG_USER_SCHED
282 283 284 285 286 287 288 289

/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

290
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
291 292 293 294
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
295 296 297 298 299 300
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
#endif
301 302
#else
#define root_task_group init_task_group
D
Dhaval Giani 已提交
303
#endif
P
Peter Zijlstra 已提交
304

305
/* task_group_lock serializes add/remove of task groups and also changes to
306 307
 * a task group's cpu shares.
 */
308
static DEFINE_SPINLOCK(task_group_lock);
309

310 311 312 313 314 315 316
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

317 318 319 320 321
/*
 * A weight of 0, 1 or ULONG_MAX can cause arithmetics problems.
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
322
#define MIN_SHARES	2
323
#define MAX_SHARES	(ULONG_MAX - 1)
324

325 326 327
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
328
/* Default task group.
I
Ingo Molnar 已提交
329
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
330
 */
331
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
332 333

/* return group to which a task belongs */
334
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
335
{
336
	struct task_group *tg;
337

338
#ifdef CONFIG_USER_SCHED
339
	tg = p->user->tg;
340
#elif defined(CONFIG_CGROUP_SCHED)
341 342
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
343
#else
I
Ingo Molnar 已提交
344
	tg = &init_task_group;
345
#endif
346
	return tg;
S
Srivatsa Vaddagiri 已提交
347 348 349
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
350
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
351
{
352
#ifdef CONFIG_FAIR_GROUP_SCHED
353 354
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
355
#endif
P
Peter Zijlstra 已提交
356

357
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
358 359
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
360
#endif
S
Srivatsa Vaddagiri 已提交
361 362 363 364
}

#else

P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
366

367
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
368

I
Ingo Molnar 已提交
369 370 371 372 373 374
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
375
	u64 min_vruntime;
I
Ingo Molnar 已提交
376 377 378

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
379 380 381 382 383 384

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
385 386
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
387
	struct sched_entity *curr, *next;
P
Peter Zijlstra 已提交
388 389 390

	unsigned long nr_spread_over;

391
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
392 393
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
394 395
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
396 397 398 399 400 401
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
402 403
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
404 405
#endif
};
L
Linus Torvalds 已提交
406

I
Ingo Molnar 已提交
407 408 409
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
410
	unsigned long rt_nr_running;
411
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
412 413
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
414
#ifdef CONFIG_SMP
415
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
416
	int overloaded;
P
Peter Zijlstra 已提交
417
#endif
P
Peter Zijlstra 已提交
418
	int rt_throttled;
P
Peter Zijlstra 已提交
419
	u64 rt_time;
P
Peter Zijlstra 已提交
420
	u64 rt_runtime;
I
Ingo Molnar 已提交
421
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
422
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
423

424
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
425 426
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
427 428 429 430 431
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
432 433
};

G
Gregory Haskins 已提交
434 435 436 437
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
438 439
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
440 441 442 443 444 445 446 447
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
448

I
Ingo Molnar 已提交
449
	/*
450 451 452 453
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
454
	atomic_t rto_count;
455 456 457
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
458 459
};

460 461 462 463
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
464 465 466 467
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
468 469 470 471 472 473 474
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
475
struct rq {
476 477
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
478 479 480 481 482 483

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
484 485
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
486
	unsigned char idle_at_tick;
487
#ifdef CONFIG_NO_HZ
488
	unsigned long last_tick_seen;
489 490
	unsigned char in_nohz_recently;
#endif
491 492
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
493 494 495 496
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
497 498
	struct rt_rq rt;

I
Ingo Molnar 已提交
499
#ifdef CONFIG_FAIR_GROUP_SCHED
500 501
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
502 503
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
504
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
505 506 507 508 509 510 511 512 513 514
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

515
	struct task_struct *curr, *idle;
516
	unsigned long next_balance;
L
Linus Torvalds 已提交
517
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
518

519
	u64 clock;
I
Ingo Molnar 已提交
520

L
Linus Torvalds 已提交
521 522 523
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
524
	struct root_domain *rd;
L
Linus Torvalds 已提交
525 526 527 528 529
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
530 531
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
532

533
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
534 535 536
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
537 538 539 540 541 542
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
543 544 545 546 547
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
548 549 550 551
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
552 553

	/* schedule() stats */
554 555 556
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
557 558

	/* try_to_wake_up() stats */
559 560
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
561 562

	/* BKL stats */
563
	unsigned int bkl_count;
L
Linus Torvalds 已提交
564
#endif
565
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
566 567
};

568
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
569

I
Ingo Molnar 已提交
570 571 572 573 574
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

575 576 577 578 579 580 581 582 583
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
584 585
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
586
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
587 588 589 590
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
591 592
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
593 594 595 596 597 598

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

599 600 601 602 603
static inline void update_rq_clock(struct rq *rq)
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
616 617 618 619

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
620
enum {
P
Peter Zijlstra 已提交
621
#include "sched_features.h"
I
Ingo Molnar 已提交
622 623
};

P
Peter Zijlstra 已提交
624 625 626 627 628
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
629
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
630 631 632 633 634 635 636 637 638
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

639
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
640 641 642 643 644 645
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

646
static int sched_feat_open(struct inode *inode, struct file *filp)
P
Peter Zijlstra 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
{
	filp->private_data = inode->i_private;
	return 0;
}

static ssize_t
sched_feat_read(struct file *filp, char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char *buf;
	int r = 0;
	int len = 0;
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
		len += strlen(sched_feat_names[i]);
		len += 4;
	}

	buf = kmalloc(len + 2, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	for (i = 0; sched_feat_names[i]; i++) {
		if (sysctl_sched_features & (1UL << i))
			r += sprintf(buf + r, "%s ", sched_feat_names[i]);
		else
I
Ingo Molnar 已提交
674
			r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
	}

	r += sprintf(buf + r, "\n");
	WARN_ON(r >= len + 2);

	r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);

	kfree(buf);

	return r;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
704
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

static struct file_operations sched_feat_fops = {
	.open	= sched_feat_open,
	.read	= sched_feat_read,
	.write	= sched_feat_write,
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
747

748 749 750 751 752 753
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
754
/*
P
Peter Zijlstra 已提交
755
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
756 757
 * default: 1s
 */
P
Peter Zijlstra 已提交
758
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
759

760 761
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
762 763 764 765 766
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
767

768 769 770 771 772 773 774 775 776 777 778 779
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
	if (sysctl_sched_rt_period < 0)
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
780

781
unsigned long long time_sync_thresh = 100000;
782 783 784 785

static DEFINE_PER_CPU(unsigned long long, time_offset);
static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);

786
/*
787 788 789 790
 * Global lock which we take every now and then to synchronize
 * the CPUs time. This method is not warp-safe, but it's good
 * enough to synchronize slowly diverging time sources and thus
 * it's good enough for tracing:
791
 */
792 793 794
static DEFINE_SPINLOCK(time_sync_lock);
static unsigned long long prev_global_time;

I
Ingo Molnar 已提交
795
static unsigned long long __sync_cpu_clock(unsigned long long time, int cpu)
796
{
I
Ingo Molnar 已提交
797 798 799 800 801 802
	/*
	 * We want this inlined, to not get tracer function calls
	 * in this critical section:
	 */
	spin_acquire(&time_sync_lock.dep_map, 0, 0, _THIS_IP_);
	__raw_spin_lock(&time_sync_lock.raw_lock);
803 804 805 806 807 808 809 810

	if (time < prev_global_time) {
		per_cpu(time_offset, cpu) += prev_global_time - time;
		time = prev_global_time;
	} else {
		prev_global_time = time;
	}

I
Ingo Molnar 已提交
811 812
	__raw_spin_unlock(&time_sync_lock.raw_lock);
	spin_release(&time_sync_lock.dep_map, 1, _THIS_IP_);
813 814 815 816 817

	return time;
}

static unsigned long long __cpu_clock(int cpu)
818 819 820
{
	unsigned long long now;

821 822 823 824
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
825 826 827
	if (unlikely(!scheduler_running))
		return 0;

828
	now = sched_clock_cpu(cpu);
829 830 831

	return now;
}
832 833 834 835 836 837 838 839

/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long prev_cpu_time, time, delta_time;
I
Ingo Molnar 已提交
840
	unsigned long flags;
841

I
Ingo Molnar 已提交
842
	local_irq_save(flags);
843 844 845 846
	prev_cpu_time = per_cpu(prev_cpu_time, cpu);
	time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
	delta_time = time-prev_cpu_time;

I
Ingo Molnar 已提交
847
	if (unlikely(delta_time > time_sync_thresh)) {
848
		time = __sync_cpu_clock(time, cpu);
I
Ingo Molnar 已提交
849 850 851
		per_cpu(prev_cpu_time, cpu) = time;
	}
	local_irq_restore(flags);
852 853 854

	return time;
}
P
Paul E. McKenney 已提交
855
EXPORT_SYMBOL_GPL(cpu_clock);
856

L
Linus Torvalds 已提交
857
#ifndef prepare_arch_switch
858 859 860 861 862 863
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

864 865 866 867 868
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

869
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
870
static inline int task_running(struct rq *rq, struct task_struct *p)
871
{
872
	return task_current(rq, p);
873 874
}

875
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
876 877 878
{
}

879
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
880
{
881 882 883 884
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
885 886 887 888 889 890 891
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

892 893 894 895
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
896
static inline int task_running(struct rq *rq, struct task_struct *p)
897 898 899 900
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
901
	return task_current(rq, p);
902 903 904
#endif
}

905
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

922
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
923 924 925 926 927 928 929 930 931 932 933 934
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
935
#endif
936 937
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
938

939 940 941 942
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
943
static inline struct rq *__task_rq_lock(struct task_struct *p)
944 945
	__acquires(rq->lock)
{
946 947 948 949 950
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
951 952 953 954
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
955 956
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
957
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
958 959
 * explicitly disabling preemption.
 */
960
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
961 962
	__acquires(rq->lock)
{
963
	struct rq *rq;
L
Linus Torvalds 已提交
964

965 966 967 968 969 970
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
971 972 973 974
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
975
static void __task_rq_unlock(struct rq *rq)
976 977 978 979 980
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

981
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
982 983 984 985 986 987
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
988
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
989
 */
A
Alexey Dobriyan 已提交
990
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
991 992
	__acquires(rq->lock)
{
993
	struct rq *rq;
L
Linus Torvalds 已提交
994 995 996 997 998 999 1000 1001

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
1037
	HRTICK_BLOCK,		/* stop hrtick operations */
P
Peter Zijlstra 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1049 1050
	if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
		return 0;
P
Peter Zijlstra 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1126
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1127 1128 1129 1130 1131 1132
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1133
#ifdef CONFIG_SMP
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
static void hotplug_hrtick_disable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	rq->hrtick_flags = 0;
	__set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);

	hrtick_clear(rq);
}

static void hotplug_hrtick_enable(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
	spin_unlock_irqrestore(&rq->lock, flags);
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
		hotplug_hrtick_disable(cpu);
		return NOTIFY_OK;

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
		hotplug_hrtick_enable(cpu);
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

static void init_hrtick(void)
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1189
#endif /* CONFIG_SMP */
1190 1191

static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
1228 1229 1230 1231

static inline void init_hrtick(void)
{
}
P
Peter Zijlstra 已提交
1232 1233
#endif

I
Ingo Molnar 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1247
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1248 1249 1250 1251 1252
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1253
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1254 1255
		return;

P
Peter Zijlstra 已提交
1256
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
	set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
#endif

I
Ingo Molnar 已提交
1321
#else
P
Peter Zijlstra 已提交
1322
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1323 1324
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1325
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1326 1327 1328
}
#endif

1329 1330 1331 1332 1333 1334 1335 1336
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1337 1338 1339
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1340
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1341

1342
static unsigned long
1343 1344 1345 1346 1347
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1348 1349
	if (!lw->inv_weight)
		lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)/(lw->weight+1);
1350 1351 1352 1353 1354

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1355
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1356
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1357 1358
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1359
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1360

1361
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1362 1363
}

1364 1365 1366 1367 1368 1369
static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1370
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1371 1372
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1373
	lw->inv_weight = 0;
1374 1375
}

1376
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1377 1378
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1379
	lw->inv_weight = 0;
1380 1381
}

1382 1383 1384 1385
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1386
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1387 1388 1389 1390
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1402 1403 1404
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1405 1406
 */
static const int prio_to_weight[40] = {
1407 1408 1409 1410 1411 1412 1413 1414
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1415 1416
};

1417 1418 1419 1420 1421 1422 1423
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1424
static const u32 prio_to_wmult[40] = {
1425 1426 1427 1428 1429 1430 1431 1432
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1433
};
1434

I
Ingo Molnar 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1460

1461 1462 1463 1464 1465 1466
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1477 1478 1479 1480 1481
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1482 1483 1484 1485 1486 1487 1488 1489
#else /* CONFIG_SMP */

#ifdef CONFIG_FAIR_GROUP_SCHED
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
}
#endif

1490 1491
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1492 1493
#include "sched_stats.h"
#include "sched_idletask.c"
1494 1495
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1496 1497 1498 1499 1500 1501
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1513 1514
{
	rq->nr_running++;
1515
	inc_load(rq, p);
1516 1517
}

1518
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1519 1520
{
	rq->nr_running--;
1521
	dec_load(rq, p);
1522 1523
}

1524 1525 1526
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1527 1528 1529 1530
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1531

I
Ingo Molnar 已提交
1532 1533 1534 1535 1536 1537 1538 1539
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1540

I
Ingo Molnar 已提交
1541 1542
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1543 1544
}

1545
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1546
{
I
Ingo Molnar 已提交
1547
	sched_info_queued(p);
1548
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1549
	p->se.on_rq = 1;
1550 1551
}

1552
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1553
{
1554
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1555
	p->se.on_rq = 0;
1556 1557
}

1558
/*
I
Ingo Molnar 已提交
1559
 * __normal_prio - return the priority that is based on the static prio
1560 1561 1562
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1563
	return p->static_prio;
1564 1565
}

1566 1567 1568 1569 1570 1571 1572
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1573
static inline int normal_prio(struct task_struct *p)
1574 1575 1576
{
	int prio;

1577
	if (task_has_rt_policy(p))
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1591
static int effective_prio(struct task_struct *p)
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1604
/*
I
Ingo Molnar 已提交
1605
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1606
 */
I
Ingo Molnar 已提交
1607
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1608
{
1609
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1610
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1611

1612
	enqueue_task(rq, p, wakeup);
1613
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1614 1615 1616 1617 1618
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1619
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1620
{
1621
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1622 1623
		rq->nr_uninterruptible++;

1624
	dequeue_task(rq, p, sleep);
1625
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1632
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1633 1634 1635 1636
{
	return cpu_curr(task_cpu(p)) == p;
}

1637
/* Used instead of source_load when we know the type == 0 */
1638
static unsigned long weighted_cpuload(const int cpu)
1639
{
1640
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1641 1642 1643 1644
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1645
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1646
#ifdef CONFIG_SMP
1647 1648 1649 1650 1651 1652
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1653 1654
	task_thread_info(p)->cpu = cpu;
#endif
1655 1656
}

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1669
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1670

1671 1672 1673
/*
 * Is this task likely cache-hot:
 */
1674
static int
1675 1676 1677 1678
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1679 1680 1681
	/*
	 * Buddy candidates are cache hot:
	 */
I
Ingo Molnar 已提交
1682
	if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1683 1684
		return 1;

1685 1686 1687
	if (p->sched_class != &fair_sched_class)
		return 0;

1688 1689 1690 1691 1692
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1693 1694 1695 1696 1697 1698
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1699
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1700
{
I
Ingo Molnar 已提交
1701 1702
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1703 1704
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1705
	u64 clock_offset;
I
Ingo Molnar 已提交
1706 1707

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1708 1709 1710 1711

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1712 1713 1714 1715
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1716 1717 1718 1719 1720
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1721
#endif
1722 1723
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1724 1725

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1726 1727
}

1728
struct migration_req {
L
Linus Torvalds 已提交
1729 1730
	struct list_head list;

1731
	struct task_struct *task;
L
Linus Torvalds 已提交
1732 1733 1734
	int dest_cpu;

	struct completion done;
1735
};
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1741
static int
1742
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1743
{
1744
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1745 1746 1747 1748 1749

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1750
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756 1757 1758
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1759

L
Linus Torvalds 已提交
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1772
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1773 1774
{
	unsigned long flags;
I
Ingo Molnar 已提交
1775
	int running, on_rq;
1776
	struct rq *rq;
L
Linus Torvalds 已提交
1777

1778 1779 1780 1781 1782 1783 1784 1785
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1821

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1835

1836 1837 1838 1839 1840 1841 1842
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1858
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1870 1871
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1872 1873 1874 1875
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1876
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1877
{
1878
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1879
	unsigned long total = weighted_cpuload(cpu);
1880

1881
	if (type == 0)
I
Ingo Molnar 已提交
1882
		return total;
1883

I
Ingo Molnar 已提交
1884
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1885 1886 1887
}

/*
1888 1889
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1890
 */
A
Alexey Dobriyan 已提交
1891
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1892
{
1893
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1894
	unsigned long total = weighted_cpuload(cpu);
1895

N
Nick Piggin 已提交
1896
	if (type == 0)
I
Ingo Molnar 已提交
1897
		return total;
1898

I
Ingo Molnar 已提交
1899
	return max(rq->cpu_load[type-1], total);
1900 1901 1902 1903 1904
}

/*
 * Return the average load per task on the cpu's run queue
 */
1905
static unsigned long cpu_avg_load_per_task(int cpu)
1906
{
1907
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1908
	unsigned long total = weighted_cpuload(cpu);
1909 1910
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1911
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1912 1913
}

N
Nick Piggin 已提交
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1931 1932
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1933
			continue;
1934

N
Nick Piggin 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1951 1952
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1953 1954 1955 1956 1957 1958 1959 1960

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1961
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1962 1963 1964 1965 1966 1967 1968

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1969
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1970
 */
I
Ingo Molnar 已提交
1971
static int
1972 1973
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
		cpumask_t *tmp)
N
Nick Piggin 已提交
1974 1975 1976 1977 1978
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1979
	/* Traverse only the allowed CPUs */
1980
	cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1981

1982
	for_each_cpu_mask(i, *tmp) {
1983
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2009

2010
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2011 2012 2013
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2014 2015
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2016 2017
		if (tmp->flags & flag)
			sd = tmp;
2018
	}
N
Nick Piggin 已提交
2019 2020

	while (sd) {
2021
		cpumask_t span, tmpmask;
N
Nick Piggin 已提交
2022
		struct sched_group *group;
2023 2024 2025 2026 2027 2028
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2029 2030 2031

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
2032 2033 2034 2035
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2036

2037
		new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2038 2039 2040 2041 2042
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2043

2044
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2076
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2077
{
2078
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2079 2080
	unsigned long flags;
	long old_state;
2081
	struct rq *rq;
L
Linus Torvalds 已提交
2082

2083 2084 2085
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

2086
	smp_wmb();
L
Linus Torvalds 已提交
2087 2088 2089 2090 2091
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2092
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2093 2094 2095
		goto out_running;

	cpu = task_cpu(p);
2096
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2103 2104 2105
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2112
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
2134 2135
out_activate:
#endif /* CONFIG_SMP */
2136 2137 2138 2139 2140 2141 2142 2143 2144
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2145
	update_rq_clock(rq);
I
Ingo Molnar 已提交
2146
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2147 2148 2149
	success = 1;

out_running:
I
Ingo Molnar 已提交
2150 2151
	check_preempt_curr(rq, p);

L
Linus Torvalds 已提交
2152
	p->state = TASK_RUNNING;
2153 2154 2155 2156
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2157 2158 2159 2160 2161 2162
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2163
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2164
{
2165
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2166 2167 2168
}
EXPORT_SYMBOL(wake_up_process);

2169
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2177 2178 2179 2180 2181 2182 2183
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2184
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
2185 2186
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
I
Ingo Molnar 已提交
2187 2188 2189

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2190 2191 2192 2193 2194 2195
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2196
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2197
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2198
#endif
N
Nick Piggin 已提交
2199

P
Peter Zijlstra 已提交
2200
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2201
	p->se.on_rq = 0;
2202
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2203

2204 2205 2206 2207
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2229
	set_task_cpu(p, cpu);
2230 2231 2232 2233 2234

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2235 2236
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2237

2238
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2239
	if (likely(sched_info_on()))
2240
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2241
#endif
2242
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2243 2244
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2245
#ifdef CONFIG_PREEMPT
2246
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2247
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2248
#endif
N
Nick Piggin 已提交
2249
	put_cpu();
L
Linus Torvalds 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2259
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2260 2261
{
	unsigned long flags;
I
Ingo Molnar 已提交
2262
	struct rq *rq;
L
Linus Torvalds 已提交
2263 2264

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2265
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2266
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2267 2268 2269

	p->prio = effective_prio(p);

2270
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2271
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2272 2273
	} else {
		/*
I
Ingo Molnar 已提交
2274 2275
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2276
		 */
2277
		p->sched_class->task_new(rq, p);
2278
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
2279
	}
I
Ingo Molnar 已提交
2280
	check_preempt_curr(rq, p);
2281 2282 2283 2284
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2285
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2286 2287
}

2288 2289 2290
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2291 2292
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2293 2294 2295 2296 2297 2298 2299 2300 2301
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2302
 * @notifier: notifier struct to unregister
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2346 2347 2348
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2349
 * @prev: the current task that is being switched out
2350 2351 2352 2353 2354 2355 2356 2357 2358
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2359 2360 2361
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2362
{
2363
	fire_sched_out_preempt_notifiers(prev, next);
2364 2365 2366 2367
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2368 2369
/**
 * finish_task_switch - clean up after a task-switch
2370
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2371 2372
 * @prev: the thread we just switched away from.
 *
2373 2374 2375 2376
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2377 2378
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2379
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2380 2381 2382
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2383
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2384 2385 2386
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2387
	long prev_state;
L
Linus Torvalds 已提交
2388 2389 2390 2391 2392

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2393
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2394 2395
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2396
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2402
	prev_state = prev->state;
2403 2404
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2405 2406 2407 2408
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2409

2410
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2411 2412
	if (mm)
		mmdrop(mm);
2413
	if (unlikely(prev_state == TASK_DEAD)) {
2414 2415 2416
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2417
		 */
2418
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2419
		put_task_struct(prev);
2420
	}
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2427
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2428 2429
	__releases(rq->lock)
{
2430 2431
	struct rq *rq = this_rq();

2432 2433 2434 2435 2436
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2437
	if (current->set_child_tid)
2438
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2439 2440 2441 2442 2443 2444
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2445
static inline void
2446
context_switch(struct rq *rq, struct task_struct *prev,
2447
	       struct task_struct *next)
L
Linus Torvalds 已提交
2448
{
I
Ingo Molnar 已提交
2449
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2450

2451
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2452 2453
	mm = next->mm;
	oldmm = prev->active_mm;
2454 2455 2456 2457 2458 2459 2460
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2461
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466 2467
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2468
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2469 2470 2471
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2472 2473 2474 2475 2476 2477 2478
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2479
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2480
#endif
L
Linus Torvalds 已提交
2481 2482 2483 2484

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2485 2486 2487 2488 2489 2490 2491
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2515
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2530 2531
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2532

2533
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2543
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2544 2545 2546 2547 2548
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2564
/*
I
Ingo Molnar 已提交
2565 2566
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2567
 */
I
Ingo Molnar 已提交
2568
static void update_cpu_load(struct rq *this_rq)
2569
{
2570
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2583 2584 2585 2586 2587 2588 2589
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2590 2591
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2592 2593
}

I
Ingo Molnar 已提交
2594 2595
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2596 2597 2598 2599 2600 2601
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2602
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2603 2604 2605
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2606
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2607 2608 2609 2610
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2611
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2619 2620
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2621 2622 2623 2624 2625 2626 2627 2628
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2629
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2643
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2644 2645 2646 2647
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2648 2649
	int ret = 0;

2650 2651 2652 2653 2654
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2655
	if (unlikely(!spin_trylock(&busiest->lock))) {
2656
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2657 2658 2659
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2660
			ret = 1;
L
Linus Torvalds 已提交
2661 2662 2663
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2664
	return ret;
L
Linus Torvalds 已提交
2665 2666 2667 2668 2669
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2670
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2671 2672
 * the cpu_allowed mask is restored.
 */
2673
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2674
{
2675
	struct migration_req req;
L
Linus Torvalds 已提交
2676
	unsigned long flags;
2677
	struct rq *rq;
L
Linus Torvalds 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2688

L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2694

L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2702 2703
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2704 2705 2706 2707
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2708
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2709
	put_cpu();
N
Nick Piggin 已提交
2710 2711
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716 2717
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2718 2719
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2720
{
2721
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2722
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2723
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2724 2725 2726 2727
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2728
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2729 2730 2731 2732 2733
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2734
static
2735
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2736
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2737
		     int *all_pinned)
L
Linus Torvalds 已提交
2738 2739 2740 2741 2742 2743 2744
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2745 2746
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2747
		return 0;
2748
	}
2749 2750
	*all_pinned = 0;

2751 2752
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2753
		return 0;
2754
	}
L
Linus Torvalds 已提交
2755

2756 2757 2758 2759 2760 2761
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2762 2763
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2764
#ifdef CONFIG_SCHEDSTATS
2765
		if (task_hot(p, rq->clock, sd)) {
2766
			schedstat_inc(sd, lb_hot_gained[idle]);
2767 2768
			schedstat_inc(p, se.nr_forced_migrations);
		}
2769 2770 2771 2772
#endif
		return 1;
	}

2773 2774
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2775
		return 0;
2776
	}
L
Linus Torvalds 已提交
2777 2778 2779
	return 1;
}

2780 2781 2782 2783 2784
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2785
{
2786
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2787 2788
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2789

2790
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2791 2792
		goto out;

2793 2794
	pinned = 1;

L
Linus Torvalds 已提交
2795
	/*
I
Ingo Molnar 已提交
2796
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2797
	 */
I
Ingo Molnar 已提交
2798 2799
	p = iterator->start(iterator->arg);
next:
2800
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2801
		goto out;
2802
	/*
2803
	 * To help distribute high priority tasks across CPUs we don't
2804 2805 2806
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2807 2808
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2809
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2810 2811 2812
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2813 2814
	}

I
Ingo Molnar 已提交
2815
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2816
	pulled++;
I
Ingo Molnar 已提交
2817
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2818

2819
	/*
2820
	 * We only want to steal up to the prescribed amount of weighted load.
2821
	 */
2822
	if (rem_load_move > 0) {
2823 2824
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2825 2826
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2827 2828 2829
	}
out:
	/*
2830
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2831 2832 2833 2834
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2835 2836 2837

	if (all_pinned)
		*all_pinned = pinned;
2838 2839

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2840 2841
}

I
Ingo Molnar 已提交
2842
/*
P
Peter Williams 已提交
2843 2844 2845
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2846 2847 2848 2849
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2850
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2851 2852 2853
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2854
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2855
	unsigned long total_load_moved = 0;
2856
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2857 2858

	do {
P
Peter Williams 已提交
2859 2860
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2861
				max_load_move - total_load_moved,
2862
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2863
		class = class->next;
P
Peter Williams 已提交
2864
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2865

P
Peter Williams 已提交
2866 2867 2868
	return total_load_moved > 0;
}

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2905
	const struct sched_class *class;
P
Peter Williams 已提交
2906 2907

	for (class = sched_class_highest; class; class = class->next)
2908
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2909 2910 2911
			return 1;

	return 0;
I
Ingo Molnar 已提交
2912 2913
}

L
Linus Torvalds 已提交
2914 2915
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2916 2917
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2918 2919 2920
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2921
		   unsigned long *imbalance, enum cpu_idle_type idle,
2922
		   int *sd_idle, const cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2923 2924 2925
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2926
	unsigned long max_pull;
2927 2928
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2929
	int load_idx, group_imb = 0;
2930 2931 2932 2933 2934 2935
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2936 2937

	max_load = this_load = total_load = total_pwr = 0;
2938 2939
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2940
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2941
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2942
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2943 2944 2945
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2946 2947

	do {
2948
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2949 2950
		int local_group;
		int i;
2951
		int __group_imb = 0;
2952
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2953
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2954 2955 2956

		local_group = cpu_isset(this_cpu, group->cpumask);

2957 2958 2959
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2960
		/* Tally up the load of all CPUs in the group */
2961
		sum_weighted_load = sum_nr_running = avg_load = 0;
2962 2963
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2964 2965

		for_each_cpu_mask(i, group->cpumask) {
2966 2967 2968 2969 2970 2971
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2972

2973
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2974 2975
				*sd_idle = 0;

L
Linus Torvalds 已提交
2976
			/* Bias balancing toward cpus of our domain */
2977 2978 2979 2980 2981 2982
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2983
				load = target_load(i, load_idx);
2984
			} else {
N
Nick Piggin 已提交
2985
				load = source_load(i, load_idx);
2986 2987 2988 2989 2990
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2991 2992

			avg_load += load;
2993
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2994
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2995 2996
		}

2997 2998 2999
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
3000 3001
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
3002
		 */
3003 3004
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
3005 3006 3007 3008
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
3009
		total_load += avg_load;
3010
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3011 3012

		/* Adjust by relative CPU power of the group */
3013 3014
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3015

3016 3017 3018
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

3019
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3020

L
Linus Torvalds 已提交
3021 3022 3023
		if (local_group) {
			this_load = avg_load;
			this = group;
3024 3025 3026
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
3027
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
3028 3029
			max_load = avg_load;
			busiest = group;
3030 3031
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
3032
			group_imb = __group_imb;
L
Linus Torvalds 已提交
3033
		}
3034 3035 3036 3037 3038 3039

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
3040 3041 3042
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
3043 3044 3045 3046 3047 3048 3049 3050 3051

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
3052
		/*
3053 3054
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
3055 3056
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
3057
		    || !sum_nr_running)
I
Ingo Molnar 已提交
3058
			goto group_next;
3059

I
Ingo Molnar 已提交
3060
		/*
3061
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
3062 3063 3064 3065 3066
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
3067 3068
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
3069 3070
			group_min = group;
			min_nr_running = sum_nr_running;
3071 3072
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
3073
		}
3074

I
Ingo Molnar 已提交
3075
		/*
3076
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
3088
		}
3089 3090
group_next:
#endif
L
Linus Torvalds 已提交
3091 3092 3093
		group = group->next;
	} while (group != sd->groups);

3094
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
3095 3096 3097 3098 3099 3100 3101 3102
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

3103
	busiest_load_per_task /= busiest_nr_running;
3104 3105 3106
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
3107 3108 3109 3110 3111 3112 3113 3114
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3115
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3116 3117
	 * appear as very large values with unsigned longs.
	 */
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
3130 3131

	/* Don't want to pull so many tasks that a group would go idle */
3132
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3133

L
Linus Torvalds 已提交
3134
	/* How much load to actually move to equalise the imbalance */
3135 3136
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
3137 3138
			/ SCHED_LOAD_SCALE;

3139 3140 3141 3142 3143 3144
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3145
	if (*imbalance < busiest_load_per_task) {
3146
		unsigned long tmp, pwr_now, pwr_move;
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
3158

I
Ingo Molnar 已提交
3159 3160
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
3161
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

3171 3172 3173 3174
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
3175 3176 3177
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
3178 3179
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
3180
		if (max_load > tmp)
3181
			pwr_move += busiest->__cpu_power *
3182
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
3183 3184

		/* Amount of load we'd add */
3185
		if (max_load * busiest->__cpu_power <
3186
				busiest_load_per_task * SCHED_LOAD_SCALE)
3187 3188
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
3189
		else
3190 3191 3192 3193
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
3194 3195 3196
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
3197 3198
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
3199 3200 3201 3202 3203
	}

	return busiest;

out_balanced:
3204
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
3205
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3206
		goto ret;
L
Linus Torvalds 已提交
3207

3208 3209 3210 3211 3212
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
3213
ret:
L
Linus Torvalds 已提交
3214 3215 3216 3217 3218 3219 3220
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3221
static struct rq *
I
Ingo Molnar 已提交
3222
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3223
		   unsigned long imbalance, const cpumask_t *cpus)
L
Linus Torvalds 已提交
3224
{
3225
	struct rq *busiest = NULL, *rq;
3226
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3227 3228 3229
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
3230
		unsigned long wl;
3231 3232 3233 3234

		if (!cpu_isset(i, *cpus))
			continue;

3235
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3236
		wl = weighted_cpuload(i);
3237

I
Ingo Molnar 已提交
3238
		if (rq->nr_running == 1 && wl > imbalance)
3239
			continue;
L
Linus Torvalds 已提交
3240

I
Ingo Molnar 已提交
3241 3242
		if (wl > max_load) {
			max_load = wl;
3243
			busiest = rq;
L
Linus Torvalds 已提交
3244 3245 3246 3247 3248 3249
		}
	}

	return busiest;
}

3250 3251 3252 3253 3254 3255
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
3256 3257 3258 3259
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3260
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3261
			struct sched_domain *sd, enum cpu_idle_type idle,
3262
			int *balance, cpumask_t *cpus)
L
Linus Torvalds 已提交
3263
{
P
Peter Williams 已提交
3264
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3265 3266
	struct sched_group *group;
	unsigned long imbalance;
3267
	struct rq *busiest;
3268
	unsigned long flags;
N
Nick Piggin 已提交
3269

3270 3271
	cpus_setall(*cpus);

3272 3273 3274
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3275
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3276
	 * portraying it as CPU_NOT_IDLE.
3277
	 */
I
Ingo Molnar 已提交
3278
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3279
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3280
		sd_idle = 1;
L
Linus Torvalds 已提交
3281

3282
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3283

3284 3285
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3286
				   cpus, balance);
3287

3288
	if (*balance == 0)
3289 3290
		goto out_balanced;

L
Linus Torvalds 已提交
3291 3292 3293 3294 3295
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3296
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
3297 3298 3299 3300 3301
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3302
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3303 3304 3305

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3306
	ld_moved = 0;
L
Linus Torvalds 已提交
3307 3308 3309 3310
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3311
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3312 3313
		 * correctly treated as an imbalance.
		 */
3314
		local_irq_save(flags);
N
Nick Piggin 已提交
3315
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3316
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3317
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3318
		double_rq_unlock(this_rq, busiest);
3319
		local_irq_restore(flags);
3320

3321 3322 3323
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3324
		if (ld_moved && this_cpu != smp_processor_id())
3325 3326
			resched_cpu(this_cpu);

3327
		/* All tasks on this runqueue were pinned by CPU affinity */
3328
		if (unlikely(all_pinned)) {
3329 3330
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3331
				goto redo;
3332
			goto out_balanced;
3333
		}
L
Linus Torvalds 已提交
3334
	}
3335

P
Peter Williams 已提交
3336
	if (!ld_moved) {
L
Linus Torvalds 已提交
3337 3338 3339 3340 3341
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3342
			spin_lock_irqsave(&busiest->lock, flags);
3343 3344 3345 3346 3347

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3348
				spin_unlock_irqrestore(&busiest->lock, flags);
3349 3350 3351 3352
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3353 3354 3355
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3356
				active_balance = 1;
L
Linus Torvalds 已提交
3357
			}
3358
			spin_unlock_irqrestore(&busiest->lock, flags);
3359
			if (active_balance)
L
Linus Torvalds 已提交
3360 3361 3362 3363 3364 3365
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3366
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3367
		}
3368
	} else
L
Linus Torvalds 已提交
3369 3370
		sd->nr_balance_failed = 0;

3371
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3372 3373
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3374 3375 3376 3377 3378 3379 3380 3381 3382
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3383 3384
	}

P
Peter Williams 已提交
3385
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3386
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3387 3388
		return -1;
	return ld_moved;
L
Linus Torvalds 已提交
3389 3390 3391 3392

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3393
	sd->nr_balance_failed = 0;
3394 3395

out_one_pinned:
L
Linus Torvalds 已提交
3396
	/* tune up the balancing interval */
3397 3398
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3399 3400
		sd->balance_interval *= 2;

3401
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3402
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3403 3404
		return -1;
	return 0;
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3411
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3412 3413
 * this_rq is locked.
 */
3414
static int
3415 3416
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
			cpumask_t *cpus)
L
Linus Torvalds 已提交
3417 3418
{
	struct sched_group *group;
3419
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3420
	unsigned long imbalance;
P
Peter Williams 已提交
3421
	int ld_moved = 0;
N
Nick Piggin 已提交
3422
	int sd_idle = 0;
3423
	int all_pinned = 0;
3424 3425

	cpus_setall(*cpus);
N
Nick Piggin 已提交
3426

3427 3428 3429 3430
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3431
	 * portraying it as CPU_NOT_IDLE.
3432 3433 3434
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3435
		sd_idle = 1;
L
Linus Torvalds 已提交
3436

3437
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3438
redo:
I
Ingo Molnar 已提交
3439
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3440
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
3441
	if (!group) {
I
Ingo Molnar 已提交
3442
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3443
		goto out_balanced;
L
Linus Torvalds 已提交
3444 3445
	}

3446
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
3447
	if (!busiest) {
I
Ingo Molnar 已提交
3448
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3449
		goto out_balanced;
L
Linus Torvalds 已提交
3450 3451
	}

N
Nick Piggin 已提交
3452 3453
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3454
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3455

P
Peter Williams 已提交
3456
	ld_moved = 0;
3457 3458 3459
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3460 3461
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3462
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3463 3464
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3465
		spin_unlock(&busiest->lock);
3466

3467
		if (unlikely(all_pinned)) {
3468 3469
			cpu_clear(cpu_of(busiest), *cpus);
			if (!cpus_empty(*cpus))
3470 3471
				goto redo;
		}
3472 3473
	}

P
Peter Williams 已提交
3474
	if (!ld_moved) {
I
Ingo Molnar 已提交
3475
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3476 3477
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3478 3479
			return -1;
	} else
3480
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3481

P
Peter Williams 已提交
3482
	return ld_moved;
3483 3484

out_balanced:
I
Ingo Molnar 已提交
3485
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3486
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3487
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3488
		return -1;
3489
	sd->nr_balance_failed = 0;
3490

3491
	return 0;
L
Linus Torvalds 已提交
3492 3493 3494 3495 3496 3497
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3498
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3499 3500
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3501 3502
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
3503
	cpumask_t tmpmask;
L
Linus Torvalds 已提交
3504 3505

	for_each_domain(this_cpu, sd) {
3506 3507 3508 3509 3510 3511
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3512
			/* If we've pulled tasks over stop searching: */
3513 3514
			pulled_task = load_balance_newidle(this_cpu, this_rq,
							   sd, &tmpmask);
3515 3516 3517 3518 3519 3520

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3521
	}
I
Ingo Molnar 已提交
3522
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3523 3524 3525 3526 3527
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3528
	}
L
Linus Torvalds 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3539
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3540
{
3541
	int target_cpu = busiest_rq->push_cpu;
3542 3543
	struct sched_domain *sd;
	struct rq *target_rq;
3544

3545
	/* Is there any task to move? */
3546 3547 3548 3549
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3550 3551

	/*
3552
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3553
	 * we need to fix it. Originally reported by
3554
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3555
	 */
3556
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3557

3558 3559
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3560 3561
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3562 3563

	/* Search for an sd spanning us and the target CPU. */
3564
	for_each_domain(target_cpu, sd) {
3565
		if ((sd->flags & SD_LOAD_BALANCE) &&
3566
		    cpu_isset(busiest_cpu, sd->span))
3567
				break;
3568
	}
3569

3570
	if (likely(sd)) {
3571
		schedstat_inc(sd, alb_count);
3572

P
Peter Williams 已提交
3573 3574
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3575 3576 3577 3578
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3579
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3580 3581
}

3582 3583 3584
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3585
	cpumask_t cpu_mask;
3586 3587 3588 3589 3590
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3591
/*
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3602
 *
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3659 3660 3661 3662 3663
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3664
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3665
{
3666 3667
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3668 3669
	unsigned long interval;
	struct sched_domain *sd;
3670
	/* Earliest time when we have to do rebalance again */
3671
	unsigned long next_balance = jiffies + 60*HZ;
3672
	int update_next_balance = 0;
3673
	int need_serialize;
3674
	cpumask_t tmp;
L
Linus Torvalds 已提交
3675

3676
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3677 3678 3679 3680
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3681
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3688 3689 3690
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

3691
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
3692

3693
		if (need_serialize) {
3694 3695 3696 3697
			if (!spin_trylock(&balancing))
				goto out;
		}

3698
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3699
			if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3700 3701
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3702 3703 3704
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3705
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3706
			}
3707
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3708
		}
3709
		if (need_serialize)
3710 3711
			spin_unlock(&balancing);
out:
3712
		if (time_after(next_balance, sd->last_balance + interval)) {
3713
			next_balance = sd->last_balance + interval;
3714 3715
			update_next_balance = 1;
		}
3716 3717 3718 3719 3720 3721 3722 3723

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3724
	}
3725 3726 3727 3728 3729 3730 3731 3732

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3733 3734 3735 3736 3737 3738 3739 3740 3741
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3742 3743 3744 3745
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3746

I
Ingo Molnar 已提交
3747
	rebalance_domains(this_cpu, idle);
3748 3749 3750 3751 3752 3753 3754

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3755 3756
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3757 3758 3759 3760
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3761
		cpu_clear(this_cpu, cpus);
3762 3763 3764 3765 3766 3767 3768 3769 3770
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3771
			rebalance_domains(balance_cpu, CPU_IDLE);
3772 3773

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3774 3775
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3788
static inline void trigger_load_balance(struct rq *rq, int cpu)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

3815
			if (ilb < nr_cpu_ids)
3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3840
}
I
Ingo Molnar 已提交
3841 3842 3843

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3844 3845 3846
/*
 * on UP we do not need to balance between CPUs:
 */
3847
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3848 3849
{
}
I
Ingo Molnar 已提交
3850

L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856 3857
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3858 3859
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3860
 */
3861
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3862 3863
{
	unsigned long flags;
3864 3865
	u64 ns, delta_exec;
	struct rq *rq;
3866

3867 3868
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3869
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3870 3871
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3872 3873 3874 3875
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3876

L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3900 3901 3902 3903 3904
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3905
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3939
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3940 3941
	cputime64_t tmp;

3942 3943 3944 3945
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
		account_guest_time(p, cputime);
		return;
	}
3946

L
Linus Torvalds 已提交
3947 3948 3949 3950 3951 3952 3953 3954
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3956
		cpustat->system = cputime64_add(cpustat->system, tmp);
3957
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3958 3959 3960 3961 3962 3963 3964
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3976 3977 3978 3979 3980 3981 3982 3983 3984
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3985
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3986 3987 3988 3989 3990 3991 3992

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3993
	} else
L
Linus Torvalds 已提交
3994 3995 3996
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
4008
	struct task_struct *curr = rq->curr;
4009 4010

	sched_clock_tick();
I
Ingo Molnar 已提交
4011 4012

	spin_lock(&rq->lock);
4013
	update_rq_clock(rq);
4014
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
4015
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
4016
	spin_unlock(&rq->lock);
4017

4018
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
4019 4020
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
4021
#endif
L
Linus Torvalds 已提交
4022 4023 4024 4025
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

4026
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
4027 4028 4029 4030
{
	/*
	 * Underflow?
	 */
4031 4032
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
4033 4034 4035 4036
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
4037 4038
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
4039 4040 4041
}
EXPORT_SYMBOL(add_preempt_count);

4042
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
4043 4044 4045 4046
{
	/*
	 * Underflow?
	 */
4047 4048
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
4049 4050 4051
	/*
	 * Is the spinlock portion underflowing?
	 */
4052 4053 4054 4055
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
4063
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
4064
 */
I
Ingo Molnar 已提交
4065
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
4066
{
4067 4068 4069 4070 4071
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
4072 4073 4074
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
4075 4076 4077 4078 4079

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
4080
}
L
Linus Torvalds 已提交
4081

I
Ingo Molnar 已提交
4082 4083 4084 4085 4086
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
4087
	/*
I
Ingo Molnar 已提交
4088
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
4089 4090 4091
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
4092
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
4093 4094
		__schedule_bug(prev);

L
Linus Torvalds 已提交
4095 4096
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

4097
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
4098 4099
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
4100 4101
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
4102 4103
	}
#endif
I
Ingo Molnar 已提交
4104 4105 4106 4107 4108 4109
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
4110
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
4111
{
4112
	const struct sched_class *class;
I
Ingo Molnar 已提交
4113
	struct task_struct *p;
L
Linus Torvalds 已提交
4114 4115

	/*
I
Ingo Molnar 已提交
4116 4117
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
4118
	 */
I
Ingo Molnar 已提交
4119
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
4120
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
4121 4122
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
4123 4124
	}

I
Ingo Molnar 已提交
4125 4126
	class = sched_class_highest;
	for ( ; ; ) {
4127
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
4128 4129 4130 4131 4132 4133 4134 4135 4136
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
4137

I
Ingo Molnar 已提交
4138 4139 4140 4141 4142 4143
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
4144
	unsigned long *switch_count;
I
Ingo Molnar 已提交
4145
	struct rq *rq;
M
Mike Galbraith 已提交
4146
	int cpu, hrtick = sched_feat(HRTICK);
I
Ingo Molnar 已提交
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
4160

M
Mike Galbraith 已提交
4161 4162
	if (hrtick)
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
4163

4164 4165 4166 4167
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
4168
	update_rq_clock(rq);
4169 4170
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
4171 4172 4173

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4174
				signal_pending(prev))) {
L
Linus Torvalds 已提交
4175
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4176
		} else {
4177
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
4178
		}
I
Ingo Molnar 已提交
4179
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
4180 4181
	}

4182 4183 4184 4185
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
4186

I
Ingo Molnar 已提交
4187
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
4188 4189
		idle_balance(cpu, rq);

4190
	prev->sched_class->put_prev_task(rq, prev);
4191
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
4192 4193

	if (likely(prev != next)) {
4194 4195
		sched_info_switch(prev, next);

L
Linus Torvalds 已提交
4196 4197 4198 4199
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
4200
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
4201 4202 4203 4204 4205 4206
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4207 4208 4209
	} else
		spin_unlock_irq(&rq->lock);

M
Mike Galbraith 已提交
4210 4211
	if (hrtick)
		hrtick_set(rq);
P
Peter Zijlstra 已提交
4212 4213

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
4214
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
4215

L
Linus Torvalds 已提交
4216 4217 4218 4219 4220 4221 4222 4223
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
4224
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
4225
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
4226 4227 4228 4229 4230
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
4231

L
Linus Torvalds 已提交
4232 4233
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
4234
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
4235
	 */
N
Nick Piggin 已提交
4236
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
4237 4238
		return;

4239 4240 4241 4242
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4243

4244 4245 4246 4247 4248 4249
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4250 4251 4252 4253
}
EXPORT_SYMBOL(preempt_schedule);

/*
4254
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4255 4256 4257 4258 4259 4260 4261
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
4262

4263
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4264 4265
	BUG_ON(ti->preempt_count || !irqs_disabled());

4266 4267 4268 4269 4270 4271
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4272

4273 4274 4275 4276 4277 4278
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4279 4280 4281 4282
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4283 4284
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4285
{
4286
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4287 4288 4289 4290
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4291 4292
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4293 4294 4295
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4296
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4297 4298 4299 4300 4301
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4302
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4303

4304
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4305 4306
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4307
		if (curr->func(curr, mode, sync, key) &&
4308
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4309 4310 4311 4312 4313 4314 4315 4316 4317
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4318
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4319
 */
4320
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4321
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4334
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4335 4336 4337 4338 4339
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4340
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4352
void
I
Ingo Molnar 已提交
4353
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4370
void complete(struct completion *x)
L
Linus Torvalds 已提交
4371 4372 4373 4374 4375
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4376
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4377 4378 4379 4380
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4381
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4387
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4388 4389 4390 4391
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4392 4393
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4401 4402 4403 4404
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4405 4406 4407 4408
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4414
				return timeout;
L
Linus Torvalds 已提交
4415 4416 4417 4418 4419 4420 4421 4422
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4423 4424
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4425 4426 4427 4428
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4429
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4430
	spin_unlock_irq(&x->wait.lock);
4431 4432
	return timeout;
}
L
Linus Torvalds 已提交
4433

4434
void __sched wait_for_completion(struct completion *x)
4435 4436
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4437
}
4438
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4439

4440
unsigned long __sched
4441
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4442
{
4443
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4444
}
4445
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4446

4447
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4448
{
4449 4450 4451 4452
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4453
}
4454
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4455

4456
unsigned long __sched
4457 4458
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4459
{
4460
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4461
}
4462
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4463

M
Matthew Wilcox 已提交
4464 4465 4466 4467 4468 4469 4470 4471 4472
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4473 4474
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4475
{
I
Ingo Molnar 已提交
4476 4477 4478 4479
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4480

4481
	__set_current_state(state);
L
Linus Torvalds 已提交
4482

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4497 4498 4499
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4500
long __sched
I
Ingo Molnar 已提交
4501
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4502
{
4503
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4504 4505 4506
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4507
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4508
{
4509
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4510 4511 4512
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4513
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4514
{
4515
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4516 4517 4518
}
EXPORT_SYMBOL(sleep_on_timeout);

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4531
void rt_mutex_setprio(struct task_struct *p, int prio)
4532 4533
{
	unsigned long flags;
4534
	int oldprio, on_rq, running;
4535
	struct rq *rq;
4536
	const struct sched_class *prev_class = p->sched_class;
4537 4538 4539 4540

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4541
	update_rq_clock(rq);
4542

4543
	oldprio = p->prio;
I
Ingo Molnar 已提交
4544
	on_rq = p->se.on_rq;
4545
	running = task_current(rq, p);
4546
	if (on_rq)
4547
		dequeue_task(rq, p, 0);
4548 4549
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4550 4551 4552 4553 4554 4555

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4556 4557
	p->prio = prio;

4558 4559
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4560
	if (on_rq) {
4561
		enqueue_task(rq, p, 0);
4562 4563

		check_class_changed(rq, p, prev_class, oldprio, running);
4564 4565 4566 4567 4568 4569
	}
	task_rq_unlock(rq, &flags);
}

#endif

4570
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4571
{
I
Ingo Molnar 已提交
4572
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4573
	unsigned long flags;
4574
	struct rq *rq;
L
Linus Torvalds 已提交
4575 4576 4577 4578 4579 4580 4581 4582

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4583
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4584 4585 4586 4587
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4588
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4589
	 */
4590
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4591 4592 4593
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4594
	on_rq = p->se.on_rq;
4595
	if (on_rq) {
4596
		dequeue_task(rq, p, 0);
4597 4598
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4599 4600

	p->static_prio = NICE_TO_PRIO(nice);
4601
	set_load_weight(p);
4602 4603 4604
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4605

I
Ingo Molnar 已提交
4606
	if (on_rq) {
4607
		enqueue_task(rq, p, 0);
4608
		inc_load(rq, p);
L
Linus Torvalds 已提交
4609
		/*
4610 4611
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4612
		 */
4613
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618 4619 4620
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4621 4622 4623 4624 4625
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4626
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4627
{
4628 4629
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4630

M
Matt Mackall 已提交
4631 4632 4633 4634
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4646
	long nice, retval;
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4653 4654
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4664 4665 4666
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4685
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4686 4687 4688 4689 4690 4691 4692 4693
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4694
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4695 4696 4697
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4698
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4713
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4714 4715 4716 4717 4718 4719 4720 4721
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4722
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4723
{
4724
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4725 4726 4727
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4728 4729
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4730
{
I
Ingo Molnar 已提交
4731
	BUG_ON(p->se.on_rq);
4732

L
Linus Torvalds 已提交
4733
	p->policy = policy;
I
Ingo Molnar 已提交
4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4746
	p->rt_priority = prio;
4747 4748 4749
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4750
	set_load_weight(p);
L
Linus Torvalds 已提交
4751 4752 4753
}

/**
4754
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4755 4756 4757
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4758
 *
4759
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4760
 */
I
Ingo Molnar 已提交
4761 4762
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4763
{
4764
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4765
	unsigned long flags;
4766
	const struct sched_class *prev_class = p->sched_class;
4767
	struct rq *rq;
L
Linus Torvalds 已提交
4768

4769 4770
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4771 4772 4773 4774 4775
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4776 4777
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4778
		return -EINVAL;
L
Linus Torvalds 已提交
4779 4780
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4781 4782
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4783 4784
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4785
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4786
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4787
		return -EINVAL;
4788
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4789 4790
		return -EINVAL;

4791 4792 4793 4794
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4795
		if (rt_policy(policy)) {
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4812 4813 4814 4815 4816 4817
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4818

4819 4820 4821 4822 4823
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4824

4825 4826 4827 4828 4829
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
4830
	if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4831 4832 4833
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4834 4835 4836
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4837 4838 4839 4840 4841
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4842 4843 4844 4845
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4846
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4847 4848 4849
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4850 4851
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4852 4853
		goto recheck;
	}
I
Ingo Molnar 已提交
4854
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4855
	on_rq = p->se.on_rq;
4856
	running = task_current(rq, p);
4857
	if (on_rq)
4858
		deactivate_task(rq, p, 0);
4859 4860
	if (running)
		p->sched_class->put_prev_task(rq, p);
4861

L
Linus Torvalds 已提交
4862
	oldprio = p->prio;
I
Ingo Molnar 已提交
4863
	__setscheduler(rq, p, policy, param->sched_priority);
4864

4865 4866
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4867 4868
	if (on_rq) {
		activate_task(rq, p, 0);
4869 4870

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4871
	}
4872 4873 4874
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4875 4876
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4877 4878 4879 4880
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4881 4882
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4883 4884 4885
{
	struct sched_param lparam;
	struct task_struct *p;
4886
	int retval;
L
Linus Torvalds 已提交
4887 4888 4889 4890 4891

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4892 4893 4894

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4895
	p = find_process_by_pid(pid);
4896 4897 4898
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4899

L
Linus Torvalds 已提交
4900 4901 4902 4903 4904 4905 4906 4907 4908
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4909 4910
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4911
{
4912 4913 4914 4915
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4935
	struct task_struct *p;
4936
	int retval;
L
Linus Torvalds 已提交
4937 4938

	if (pid < 0)
4939
		return -EINVAL;
L
Linus Torvalds 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4961
	struct task_struct *p;
4962
	int retval;
L
Linus Torvalds 已提交
4963 4964

	if (!param || pid < 0)
4965
		return -EINVAL;
L
Linus Torvalds 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4992
long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
L
Linus Torvalds 已提交
4993 4994
{
	cpumask_t cpus_allowed;
4995
	cpumask_t new_mask = *in_mask;
4996 4997
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4998

4999
	get_online_cpus();
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
5005
		put_online_cpus();
L
Linus Torvalds 已提交
5006 5007 5008 5009 5010
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
5011
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

5022 5023 5024 5025
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

5026
	cpuset_cpus_allowed(p, &cpus_allowed);
L
Linus Torvalds 已提交
5027
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
5028
 again:
5029
	retval = set_cpus_allowed_ptr(p, &new_mask);
L
Linus Torvalds 已提交
5030

P
Paul Menage 已提交
5031
	if (!retval) {
5032
		cpuset_cpus_allowed(p, &cpus_allowed);
P
Paul Menage 已提交
5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
5043 5044
out_unlock:
	put_task_struct(p);
5045
	put_online_cpus();
L
Linus Torvalds 已提交
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

5076
	return sched_setaffinity(pid, &new_mask);
L
Linus Torvalds 已提交
5077 5078 5079 5080 5081 5082 5083 5084 5085
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

5086
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
5087 5088 5089
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
5090
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5091 5092
EXPORT_SYMBOL(cpu_online_map);

5093
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5094
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
5095 5096 5097 5098
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
5099
	struct task_struct *p;
L
Linus Torvalds 已提交
5100 5101
	int retval;

5102
	get_online_cpus();
L
Linus Torvalds 已提交
5103 5104 5105 5106 5107 5108 5109
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

5110 5111 5112 5113
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5114
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
5115 5116 5117

out_unlock:
	read_unlock(&tasklist_lock);
5118
	put_online_cpus();
L
Linus Torvalds 已提交
5119

5120
	return retval;
L
Linus Torvalds 已提交
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
5151 5152
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
5153 5154 5155
 */
asmlinkage long sys_sched_yield(void)
{
5156
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
5157

5158
	schedstat_inc(rq, yld_count);
5159
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
5160 5161 5162 5163 5164 5165

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
5166
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
5167 5168 5169 5170 5171 5172 5173 5174
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
5175
static void __cond_resched(void)
L
Linus Torvalds 已提交
5176
{
5177 5178 5179
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
5180 5181 5182 5183 5184
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

5192
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
5193
{
5194 5195
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
5196 5197 5198 5199 5200
		__cond_resched();
		return 1;
	}
	return 0;
}
5201
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
5202 5203 5204 5205 5206

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
5207
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
5208 5209 5210
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
5211
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
5212
{
N
Nick Piggin 已提交
5213
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
5214 5215
	int ret = 0;

N
Nick Piggin 已提交
5216
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
5217
		spin_unlock(lock);
N
Nick Piggin 已提交
5218 5219 5220 5221
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
5222
		ret = 1;
L
Linus Torvalds 已提交
5223 5224
		spin_lock(lock);
	}
J
Jan Kara 已提交
5225
	return ret;
L
Linus Torvalds 已提交
5226 5227 5228 5229 5230 5231 5232
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

5233
	if (need_resched() && system_state == SYSTEM_RUNNING) {
5234
		local_bh_enable();
L
Linus Torvalds 已提交
5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5246
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5257
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5258 5259 5260 5261 5262 5263 5264
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5265
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5266

5267
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5268 5269 5270
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5271
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5277
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5278 5279
	long ret;

5280
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5281 5282 5283
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5284
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5305
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5306
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5330
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5331
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5348
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5349
	unsigned int time_slice;
5350
	int retval;
L
Linus Torvalds 已提交
5351 5352 5353
	struct timespec t;

	if (pid < 0)
5354
		return -EINVAL;
L
Linus Torvalds 已提交
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5366 5367 5368 5369 5370 5371
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5372
		time_slice = DEF_TIMESLICE;
5373
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5374 5375 5376 5377 5378
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5379 5380
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5381 5382
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5383
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5384
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5385 5386
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5387

L
Linus Torvalds 已提交
5388 5389 5390 5391 5392
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5393
static const char stat_nam[] = "RSDTtZX";
5394

5395
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5396 5397
{
	unsigned long free = 0;
5398
	unsigned state;
L
Linus Torvalds 已提交
5399 5400

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5401
	printk(KERN_INFO "%-13.13s %c", p->comm,
5402
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5403
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5404
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5405
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5406
	else
I
Ingo Molnar 已提交
5407
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5408 5409
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5410
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5411
	else
I
Ingo Molnar 已提交
5412
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5413 5414 5415
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5416
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5417 5418
		while (!*n)
			n++;
5419
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5420 5421
	}
#endif
5422
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5423
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5424

5425
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5426 5427
}

I
Ingo Molnar 已提交
5428
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5429
{
5430
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5431

5432 5433 5434
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5435
#else
5436 5437
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5438 5439 5440 5441 5442 5443 5444 5445
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5446
		if (!state_filter || (p->state & state_filter))
5447
			sched_show_task(p);
L
Linus Torvalds 已提交
5448 5449
	} while_each_thread(g, p);

5450 5451
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5452 5453 5454
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5455
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5456 5457 5458 5459 5460
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5461 5462
}

I
Ingo Molnar 已提交
5463 5464
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5465
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5466 5467
}

5468 5469 5470 5471 5472 5473 5474 5475
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5476
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5477
{
5478
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5479 5480
	unsigned long flags;

I
Ingo Molnar 已提交
5481 5482 5483
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5484
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5485
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5486
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5487 5488 5489

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5490 5491 5492
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5493 5494 5495
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
5496 5497 5498
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
5499
	task_thread_info(idle)->preempt_count = 0;
5500
#endif
I
Ingo Molnar 已提交
5501 5502 5503 5504
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5541 5542 5543 5544
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5545
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5564
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5565 5566
 * call is not atomic; no spinlocks may be held.
 */
5567
int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
L
Linus Torvalds 已提交
5568
{
5569
	struct migration_req req;
L
Linus Torvalds 已提交
5570
	unsigned long flags;
5571
	struct rq *rq;
5572
	int ret = 0;
L
Linus Torvalds 已提交
5573 5574

	rq = task_rq_lock(p, &flags);
5575
	if (!cpus_intersects(*new_mask, cpu_online_map)) {
L
Linus Torvalds 已提交
5576 5577 5578 5579
		ret = -EINVAL;
		goto out;
	}

5580
	if (p->sched_class->set_cpus_allowed)
5581
		p->sched_class->set_cpus_allowed(p, new_mask);
5582
	else {
5583 5584
		p->cpus_allowed = *new_mask;
		p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5585 5586
	}

L
Linus Torvalds 已提交
5587
	/* Can the task run on the task's current CPU? If so, we're done */
5588
	if (cpu_isset(task_cpu(p), *new_mask))
L
Linus Torvalds 已提交
5589 5590
		goto out;

5591
	if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
L
Linus Torvalds 已提交
5592 5593 5594 5595 5596 5597 5598 5599 5600
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5601

L
Linus Torvalds 已提交
5602 5603
	return ret;
}
5604
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
5605 5606

/*
I
Ingo Molnar 已提交
5607
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5608 5609 5610 5611 5612 5613
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5614 5615
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5616
 */
5617
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5618
{
5619
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5620
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5621 5622

	if (unlikely(cpu_is_offline(dest_cpu)))
5623
		return ret;
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5636
	on_rq = p->se.on_rq;
5637
	if (on_rq)
5638
		deactivate_task(rq_src, p, 0);
5639

L
Linus Torvalds 已提交
5640
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5641 5642 5643
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5644
	}
5645
	ret = 1;
L
Linus Torvalds 已提交
5646 5647
out:
	double_rq_unlock(rq_src, rq_dest);
5648
	return ret;
L
Linus Torvalds 已提交
5649 5650 5651 5652 5653 5654 5655
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5656
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5657 5658
{
	int cpu = (long)data;
5659
	struct rq *rq;
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664 5665

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5666
		struct migration_req *req;
L
Linus Torvalds 已提交
5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5689
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5690 5691
		list_del_init(head->next);

N
Nick Piggin 已提交
5692 5693 5694
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5724
/*
5725
 * Figure out where task on dead CPU should go, use force if necessary.
5726 5727
 * NOTE: interrupts should be disabled by the caller
 */
5728
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5729
{
5730
	unsigned long flags;
L
Linus Torvalds 已提交
5731
	cpumask_t mask;
5732 5733
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5734

5735 5736 5737 5738 5739 5740 5741
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
5742
		if (dest_cpu >= nr_cpu_ids)
5743 5744 5745
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
5746
		if (dest_cpu >= nr_cpu_ids) {
5747 5748 5749
			cpumask_t cpus_allowed;

			cpuset_cpus_allowed_locked(p, &cpus_allowed);
5750 5751 5752 5753
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5754
			 * cpuset_cpus_allowed() will not block. It must be
5755 5756
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5757
			rq = task_rq_lock(p, &flags);
5758
			p->cpus_allowed = cpus_allowed;
5759 5760
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5761

5762 5763 5764 5765 5766
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5767
			if (p->mm && printk_ratelimit()) {
5768 5769
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5770 5771
					task_pid_nr(p), p->comm, dead_cpu);
			}
5772
		}
5773
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5774 5775 5776 5777 5778 5779 5780 5781 5782
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5783
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5784
{
5785
	struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
L
Linus Torvalds 已提交
5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5799
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5800

5801
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5802

5803 5804
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5805 5806
			continue;

5807 5808 5809
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5810

5811
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5812 5813
}

I
Ingo Molnar 已提交
5814 5815
/*
 * Schedules idle task to be the next runnable task on current CPU.
5816 5817
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5818 5819 5820
 */
void sched_idle_next(void)
{
5821
	int this_cpu = smp_processor_id();
5822
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5823 5824 5825 5826
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5827
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5828

5829 5830 5831
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5832 5833 5834
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5835
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5836

5837 5838
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5839 5840 5841 5842

	spin_unlock_irqrestore(&rq->lock, flags);
}

5843 5844
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5858
/* called under rq->lock with disabled interrupts */
5859
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5860
{
5861
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5862 5863

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5864
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5865 5866

	/* Cannot have done final schedule yet: would have vanished. */
5867
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5868

5869
	get_task_struct(p);
L
Linus Torvalds 已提交
5870 5871 5872

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5873
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5874 5875
	 * fine.
	 */
5876
	spin_unlock_irq(&rq->lock);
5877
	move_task_off_dead_cpu(dead_cpu, p);
5878
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5879

5880
	put_task_struct(p);
L
Linus Torvalds 已提交
5881 5882 5883 5884 5885
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5886
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5887
	struct task_struct *next;
5888

I
Ingo Molnar 已提交
5889 5890 5891
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5892
		update_rq_clock(rq);
5893
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5894 5895 5896
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5897

L
Linus Torvalds 已提交
5898 5899 5900 5901
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5902 5903 5904
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5905 5906
	{
		.procname	= "sched_domain",
5907
		.mode		= 0555,
5908
	},
I
Ingo Molnar 已提交
5909
	{0, },
5910 5911 5912
};

static struct ctl_table sd_ctl_root[] = {
5913
	{
5914
		.ctl_name	= CTL_KERN,
5915
		.procname	= "kernel",
5916
		.mode		= 0555,
5917 5918
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5919
	{0, },
5920 5921 5922 5923 5924
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5925
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5926 5927 5928 5929

	return entry;
}

5930 5931
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5932
	struct ctl_table *entry;
5933

5934 5935 5936
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5937
	 * will always be set. In the lowest directory the names are
5938 5939 5940
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5941 5942
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5943 5944 5945
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5946 5947 5948 5949 5950

	kfree(*tablep);
	*tablep = NULL;
}

5951
static void
5952
set_table_entry(struct ctl_table *entry,
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5966
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5967

5968 5969 5970
	if (table == NULL)
		return NULL;

5971
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5972
		sizeof(long), 0644, proc_doulongvec_minmax);
5973
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5974
		sizeof(long), 0644, proc_doulongvec_minmax);
5975
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5976
		sizeof(int), 0644, proc_dointvec_minmax);
5977
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5978
		sizeof(int), 0644, proc_dointvec_minmax);
5979
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5980
		sizeof(int), 0644, proc_dointvec_minmax);
5981
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5982
		sizeof(int), 0644, proc_dointvec_minmax);
5983
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5984
		sizeof(int), 0644, proc_dointvec_minmax);
5985
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5986
		sizeof(int), 0644, proc_dointvec_minmax);
5987
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5988
		sizeof(int), 0644, proc_dointvec_minmax);
5989
	set_table_entry(&table[9], "cache_nice_tries",
5990 5991
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5992
	set_table_entry(&table[10], "flags", &sd->flags,
5993
		sizeof(int), 0644, proc_dointvec_minmax);
5994
	/* &table[11] is terminator */
5995 5996 5997 5998

	return table;
}

5999
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6000 6001 6002 6003 6004 6005 6006 6007 6008
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
6009 6010
	if (table == NULL)
		return NULL;
6011 6012 6013 6014 6015

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6016
		entry->mode = 0555;
6017 6018 6019 6020 6021 6022 6023 6024
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
6025
static void register_sched_domain_sysctl(void)
6026 6027 6028 6029 6030
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

6031 6032 6033
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

6034 6035 6036
	if (entry == NULL)
		return;

6037
	for_each_online_cpu(i) {
6038 6039
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
6040
		entry->mode = 0555;
6041
		entry->child = sd_alloc_ctl_cpu_table(i);
6042
		entry++;
6043
	}
6044 6045

	WARN_ON(sd_sysctl_header);
6046 6047
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
6048

6049
/* may be called multiple times per register */
6050 6051
static void unregister_sched_domain_sysctl(void)
{
6052 6053
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
6054
	sd_sysctl_header = NULL;
6055 6056
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
6057
}
6058
#else
6059 6060 6061 6062
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
6063 6064 6065 6066
{
}
#endif

L
Linus Torvalds 已提交
6067 6068 6069 6070
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
6071 6072
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
6073 6074
{
	struct task_struct *p;
6075
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
6076
	unsigned long flags;
6077
	struct rq *rq;
L
Linus Torvalds 已提交
6078 6079

	switch (action) {
6080

L
Linus Torvalds 已提交
6081
	case CPU_UP_PREPARE:
6082
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
6083
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
6084 6085 6086 6087 6088
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6089
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
6090 6091 6092
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
6093

L
Linus Torvalds 已提交
6094
	case CPU_ONLINE:
6095
	case CPU_ONLINE_FROZEN:
6096
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
6097
		wake_up_process(cpu_rq(cpu)->migration_thread);
6098 6099 6100 6101 6102 6103 6104 6105 6106

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
6107
		break;
6108

L
Linus Torvalds 已提交
6109 6110
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
6111
	case CPU_UP_CANCELED_FROZEN:
6112 6113
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
6114
		/* Unbind it from offline cpu so it can run. Fall thru. */
6115 6116
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
6117 6118 6119
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
6120

L
Linus Torvalds 已提交
6121
	case CPU_DEAD:
6122
	case CPU_DEAD_FROZEN:
6123
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
6124 6125 6126 6127 6128
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
6129
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
6130
		update_rq_clock(rq);
6131
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
6132
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
6133 6134
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
6135
		migrate_dead_tasks(cpu);
6136
		spin_unlock_irq(&rq->lock);
6137
		cpuset_unlock();
L
Linus Torvalds 已提交
6138 6139 6140
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
6141 6142 6143 6144 6145
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
6146 6147
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
6148 6149
			struct migration_req *req;

L
Linus Torvalds 已提交
6150
			req = list_entry(rq->migration_queue.next,
6151
					 struct migration_req, list);
L
Linus Torvalds 已提交
6152 6153 6154 6155 6156
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
6157

6158 6159
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
6160 6161 6162 6163 6164 6165 6166 6167 6168
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
6169 6170 6171 6172 6173 6174 6175 6176
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
6177
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
6178 6179 6180 6181
	.notifier_call = migration_call,
	.priority = 10
};

6182
void __init migration_init(void)
L
Linus Torvalds 已提交
6183 6184
{
	void *cpu = (void *)(long)smp_processor_id();
6185
	int err;
6186 6187

	/* Start one for the boot CPU: */
6188 6189
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
6190 6191 6192 6193 6194 6195
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
6196

6197
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
6198

6199 6200
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
				  cpumask_t *groupmask)
L
Linus Torvalds 已提交
6201
{
I
Ingo Molnar 已提交
6202
	struct sched_group *group = sd->groups;
6203
	char str[256];
L
Linus Torvalds 已提交
6204

6205
	cpulist_scnprintf(str, sizeof(str), sd->span);
6206
	cpus_clear(*groupmask);
I
Ingo Molnar 已提交
6207 6208 6209 6210 6211 6212 6213 6214 6215

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
6216 6217
	}

I
Ingo Molnar 已提交
6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
6228

I
Ingo Molnar 已提交
6229
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
6230
	do {
I
Ingo Molnar 已提交
6231 6232 6233
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
6234 6235 6236
			break;
		}

I
Ingo Molnar 已提交
6237 6238 6239 6240 6241 6242
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6243

I
Ingo Molnar 已提交
6244 6245 6246 6247 6248
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6249

6250
		if (cpus_intersects(*groupmask, group->cpumask)) {
I
Ingo Molnar 已提交
6251 6252 6253 6254
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6255

6256
		cpus_or(*groupmask, *groupmask, group->cpumask);
L
Linus Torvalds 已提交
6257

6258
		cpulist_scnprintf(str, sizeof(str), group->cpumask);
I
Ingo Molnar 已提交
6259
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6260

I
Ingo Molnar 已提交
6261 6262 6263
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6264

6265
	if (!cpus_equal(sd->span, *groupmask))
I
Ingo Molnar 已提交
6266
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6267

6268
	if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
I
Ingo Molnar 已提交
6269 6270 6271 6272
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6273

I
Ingo Molnar 已提交
6274 6275
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
6276
	cpumask_t *groupmask;
I
Ingo Molnar 已提交
6277
	int level = 0;
L
Linus Torvalds 已提交
6278

I
Ingo Molnar 已提交
6279 6280 6281 6282
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6283

I
Ingo Molnar 已提交
6284 6285
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

6286 6287 6288 6289 6290 6291
	groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!groupmask) {
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
6292
	for (;;) {
6293
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
6294
			break;
L
Linus Torvalds 已提交
6295 6296
		level++;
		sd = sd->parent;
6297
		if (!sd)
I
Ingo Molnar 已提交
6298 6299
			break;
	}
6300
	kfree(groupmask);
L
Linus Torvalds 已提交
6301 6302
}
#else
6303
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6304 6305
#endif

6306
static int sd_degenerate(struct sched_domain *sd)
6307 6308 6309 6310 6311 6312 6313 6314
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6315 6316 6317
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6331 6332
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6351 6352 6353
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6354 6355 6356 6357 6358 6359 6360
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6371
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6372 6373
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6374
		}
G
Gregory Haskins 已提交
6375

6376 6377 6378
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6379 6380 6381 6382 6383 6384 6385
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6386
	cpu_set(rq->cpu, rd->span);
6387 6388
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6389

I
Ingo Molnar 已提交
6390
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6391 6392
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6393
	}
G
Gregory Haskins 已提交
6394 6395 6396 6397

	spin_unlock_irqrestore(&rq->lock, flags);
}

6398
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6399 6400 6401
{
	memset(rd, 0, sizeof(*rd));

6402 6403
	cpus_clear(rd->span);
	cpus_clear(rd->online);
6404 6405

	cpupri_init(&rd->cpupri);
G
Gregory Haskins 已提交
6406 6407 6408 6409
}

static void init_defrootdomain(void)
{
6410
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6411 6412 6413
	atomic_set(&def_root_domain.refcount, 1);
}

6414
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6415 6416 6417 6418 6419 6420 6421
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6422
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6423 6424 6425 6426

	return rd;
}

L
Linus Torvalds 已提交
6427
/*
I
Ingo Molnar 已提交
6428
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6429 6430
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6431 6432
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6433
{
6434
	struct rq *rq = cpu_rq(cpu);
6435 6436 6437 6438 6439 6440 6441
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6442
		if (sd_parent_degenerate(tmp, parent)) {
6443
			tmp->parent = parent->parent;
6444 6445 6446
			if (parent->parent)
				parent->parent->child = tmp;
		}
6447 6448
	}

6449
	if (sd && sd_degenerate(sd)) {
6450
		sd = sd->parent;
6451 6452 6453
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6454 6455 6456

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6457
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6458
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6459 6460 6461
}

/* cpus with isolated domains */
6462
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6477
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6478 6479

/*
6480 6481 6482 6483
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6484 6485 6486 6487 6488
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6489
static void
6490
init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6491
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6492 6493 6494
					struct sched_group **sg,
					cpumask_t *tmpmask),
			cpumask_t *covered, cpumask_t *tmpmask)
L
Linus Torvalds 已提交
6495 6496 6497 6498
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

6499 6500 6501
	cpus_clear(*covered);

	for_each_cpu_mask(i, *span) {
6502
		struct sched_group *sg;
6503
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
6504 6505
		int j;

6506
		if (cpu_isset(i, *covered))
L
Linus Torvalds 已提交
6507 6508
			continue;

6509
		cpus_clear(sg->cpumask);
6510
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6511

6512 6513
		for_each_cpu_mask(j, *span) {
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
6514 6515
				continue;

6516
			cpu_set(j, *covered);
L
Linus Torvalds 已提交
6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6528
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6529

6530
#ifdef CONFIG_NUMA
6531

6532 6533 6534 6535 6536
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6537
 * Find the next node to include in a given scheduling domain. Simply
6538 6539 6540 6541
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
6542
static int find_next_best_node(int node, nodemask_t *used_nodes)
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
6556
		if (node_isset(n, *used_nodes))
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

6568
	node_set(best_node, *used_nodes);
6569 6570 6571 6572 6573 6574
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
6575
 * @span: resulting cpumask
6576
 *
I
Ingo Molnar 已提交
6577
 * Given a node, construct a good cpumask for its sched_domain to span. It
6578 6579 6580
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
6581
static void sched_domain_node_span(int node, cpumask_t *span)
6582
{
6583 6584
	nodemask_t used_nodes;
	node_to_cpumask_ptr(nodemask, node);
6585
	int i;
6586

6587
	cpus_clear(*span);
6588
	nodes_clear(used_nodes);
6589

6590
	cpus_or(*span, *span, *nodemask);
6591
	node_set(node, used_nodes);
6592 6593

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6594
		int next_node = find_next_best_node(node, &used_nodes);
6595

6596
		node_to_cpumask_ptr_next(nodemask, next_node);
6597
		cpus_or(*span, *span, *nodemask);
6598 6599 6600 6601
	}
}
#endif

6602
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6603

6604
/*
6605
 * SMT sched-domains:
6606
 */
L
Linus Torvalds 已提交
6607 6608
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6609
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6610

I
Ingo Molnar 已提交
6611
static int
6612 6613
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		 cpumask_t *unused)
L
Linus Torvalds 已提交
6614
{
6615 6616
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6617 6618 6619 6620
	return cpu;
}
#endif

6621 6622 6623
/*
 * multi-core sched-domains:
 */
6624 6625
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6626
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6627 6628 6629
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6630
static int
6631 6632
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
6633
{
6634
	int group;
6635 6636 6637 6638

	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6639 6640 6641
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6642 6643
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6644
static int
6645 6646
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *unused)
6647
{
6648 6649
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6650 6651 6652 6653
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6654
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6655
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6656

I
Ingo Molnar 已提交
6657
static int
6658 6659
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
		  cpumask_t *mask)
L
Linus Torvalds 已提交
6660
{
6661
	int group;
6662
#ifdef CONFIG_SCHED_MC
6663 6664 6665
	*mask = cpu_coregroup_map(cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
6666
#elif defined(CONFIG_SCHED_SMT)
6667 6668 6669
	*mask = per_cpu(cpu_sibling_map, cpu);
	cpus_and(*mask, *mask, *cpu_map);
	group = first_cpu(*mask);
L
Linus Torvalds 已提交
6670
#else
6671
	group = cpu;
L
Linus Torvalds 已提交
6672
#endif
6673 6674 6675
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6676 6677 6678 6679
}

#ifdef CONFIG_NUMA
/*
6680 6681 6682
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6683
 */
6684
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6685
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
6686

6687
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6688
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6689

6690
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6691
				 struct sched_group **sg, cpumask_t *nodemask)
6692
{
6693 6694
	int group;

6695 6696 6697
	*nodemask = node_to_cpumask(cpu_to_node(cpu));
	cpus_and(*nodemask, *nodemask, *cpu_map);
	group = first_cpu(*nodemask);
6698 6699 6700 6701

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6702
}
6703

6704 6705 6706 6707 6708 6709 6710
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6711 6712 6713
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6714

6715 6716 6717 6718 6719 6720 6721 6722
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6723

6724 6725 6726 6727
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6728
}
L
Linus Torvalds 已提交
6729 6730
#endif

6731
#ifdef CONFIG_NUMA
6732
/* Free memory allocated for various sched_group structures */
6733
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6734
{
6735
	int cpu, i;
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

6747 6748 6749
			*nodemask = node_to_cpumask(i);
			cpus_and(*nodemask, *nodemask, *cpu_map);
			if (cpus_empty(*nodemask))
6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6766
#else
6767
static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6768 6769 6770
{
}
#endif
6771

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6798 6799
	sd->groups->__cpu_power = 0;

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6810
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6811 6812 6813 6814 6815 6816 6817 6818
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6819
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6820 6821 6822 6823
		group = group->next;
	} while (group != child->groups);
}

6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

#define	SD_INIT(sd, type)	sd_init_##type(sd)
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
6835
	sd->level = SD_LV_##type;				\
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

/*
 * To minimize stack usage kmalloc room for cpumasks and share the
 * space as the usage in build_sched_domains() dictates.  Used only
 * if the amount of space is significant.
 */
struct allmasks {
	cpumask_t tmpmask;			/* make this one first */
	union {
		cpumask_t nodemask;
		cpumask_t this_sibling_map;
		cpumask_t this_core_map;
	};
	cpumask_t send_covered;

#ifdef CONFIG_NUMA
	cpumask_t domainspan;
	cpumask_t covered;
	cpumask_t notcovered;
#endif
};

#if	NR_CPUS > 128
#define	SCHED_CPUMASK_ALLOC		1
#define	SCHED_CPUMASK_FREE(v)		kfree(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v
#else
#define	SCHED_CPUMASK_ALLOC		0
#define	SCHED_CPUMASK_FREE(v)
#define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v
#endif

#define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \
			((unsigned long)(a) + offsetof(struct allmasks, v))

6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
	default_relax_domain_level = simple_strtoul(str, NULL, 0);
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
6914
/*
6915 6916
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6917
 */
6918 6919
static int __build_sched_domains(const cpumask_t *cpu_map,
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
6920 6921
{
	int i;
G
Gregory Haskins 已提交
6922
	struct root_domain *rd;
6923 6924
	SCHED_CPUMASK_DECLARE(allmasks);
	cpumask_t *tmpmask;
6925 6926
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6927
	int sd_allnodes = 0;
6928 6929 6930 6931

	/*
	 * Allocate the per-node list of sched groups
	 */
6932
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6933
				    GFP_KERNEL);
6934 6935
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6936
		return -ENOMEM;
6937 6938
	}
#endif
L
Linus Torvalds 已提交
6939

6940
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6941 6942
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
6943 6944 6945
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
G
Gregory Haskins 已提交
6946 6947 6948
		return -ENOMEM;
	}

6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967
#if SCHED_CPUMASK_ALLOC
	/* get space for all scratch cpumask variables */
	allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
	if (!allmasks) {
		printk(KERN_WARNING "Cannot alloc cpumask array\n");
		kfree(rd);
#ifdef CONFIG_NUMA
		kfree(sched_group_nodes);
#endif
		return -ENOMEM;
	}
#endif
	tmpmask = (cpumask_t *)allmasks;


#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif

L
Linus Torvalds 已提交
6968
	/*
6969
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6970
	 */
6971
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6972
		struct sched_domain *sd = NULL, *p;
6973
		SCHED_CPUMASK_VAR(nodemask, allmasks);
L
Linus Torvalds 已提交
6974

6975 6976
		*nodemask = node_to_cpumask(cpu_to_node(i));
		cpus_and(*nodemask, *nodemask, *cpu_map);
L
Linus Torvalds 已提交
6977 6978

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6979
		if (cpus_weight(*cpu_map) >
6980
				SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6981
			sd = &per_cpu(allnodes_domains, i);
6982
			SD_INIT(sd, ALLNODES);
6983
			set_domain_attribute(sd, attr);
6984
			sd->span = *cpu_map;
6985
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6986
			p = sd;
6987
			sd_allnodes = 1;
6988 6989 6990
		} else
			p = NULL;

L
Linus Torvalds 已提交
6991
		sd = &per_cpu(node_domains, i);
6992
		SD_INIT(sd, NODE);
6993
		set_domain_attribute(sd, attr);
6994
		sched_domain_node_span(cpu_to_node(i), &sd->span);
6995
		sd->parent = p;
6996 6997
		if (p)
			p->child = sd;
6998
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6999 7000 7001 7002
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
7003
		SD_INIT(sd, CPU);
7004
		set_domain_attribute(sd, attr);
7005
		sd->span = *nodemask;
L
Linus Torvalds 已提交
7006
		sd->parent = p;
7007 7008
		if (p)
			p->child = sd;
7009
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7010

7011 7012 7013
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
7014
		SD_INIT(sd, MC);
7015
		set_domain_attribute(sd, attr);
7016 7017 7018
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
7019
		p->child = sd;
7020
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7021 7022
#endif

L
Linus Torvalds 已提交
7023 7024 7025
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
7026
		SD_INIT(sd, SIBLING);
7027
		set_domain_attribute(sd, attr);
7028
		sd->span = per_cpu(cpu_sibling_map, i);
7029
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
7030
		sd->parent = p;
7031
		p->child = sd;
7032
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
7033 7034 7035 7036 7037
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
7038
	for_each_cpu_mask(i, *cpu_map) {
7039 7040 7041 7042 7043 7044
		SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_sibling_map = per_cpu(cpu_sibling_map, i);
		cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
		if (i != first_cpu(*this_sibling_map))
L
Linus Torvalds 已提交
7045 7046
			continue;

I
Ingo Molnar 已提交
7047
		init_sched_build_groups(this_sibling_map, cpu_map,
7048 7049
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7050 7051 7052
	}
#endif

7053 7054 7055
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
7056 7057 7058 7059 7060 7061
		SCHED_CPUMASK_VAR(this_core_map, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		*this_core_map = cpu_coregroup_map(i);
		cpus_and(*this_core_map, *this_core_map, *cpu_map);
		if (i != first_cpu(*this_core_map))
7062
			continue;
7063

I
Ingo Molnar 已提交
7064
		init_sched_build_groups(this_core_map, cpu_map,
7065 7066
					&cpu_to_core_group,
					send_covered, tmpmask);
7067 7068 7069
	}
#endif

L
Linus Torvalds 已提交
7070 7071
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
7072 7073
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(send_covered, allmasks);
L
Linus Torvalds 已提交
7074

7075 7076 7077
		*nodemask = node_to_cpumask(i);
		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask))
L
Linus Torvalds 已提交
7078 7079
			continue;

7080 7081 7082
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
7083 7084 7085 7086
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
7087 7088 7089 7090 7091 7092 7093
	if (sd_allnodes) {
		SCHED_CPUMASK_VAR(send_covered, allmasks);

		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
7094 7095 7096 7097

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
7098 7099 7100
		SCHED_CPUMASK_VAR(nodemask, allmasks);
		SCHED_CPUMASK_VAR(domainspan, allmasks);
		SCHED_CPUMASK_VAR(covered, allmasks);
7101 7102
		int j;

7103 7104 7105 7106 7107
		*nodemask = node_to_cpumask(i);
		cpus_clear(*covered);

		cpus_and(*nodemask, *nodemask, *cpu_map);
		if (cpus_empty(*nodemask)) {
7108
			sched_group_nodes[i] = NULL;
7109
			continue;
7110
		}
7111

7112
		sched_domain_node_span(i, domainspan);
7113
		cpus_and(*domainspan, *domainspan, *cpu_map);
7114

7115
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7116 7117 7118 7119 7120
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
7121
		sched_group_nodes[i] = sg;
7122
		for_each_cpu_mask(j, *nodemask) {
7123
			struct sched_domain *sd;
I
Ingo Molnar 已提交
7124

7125 7126 7127
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
7128
		sg->__cpu_power = 0;
7129
		sg->cpumask = *nodemask;
7130
		sg->next = sg;
7131
		cpus_or(*covered, *covered, *nodemask);
7132 7133 7134
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
7135
			SCHED_CPUMASK_VAR(notcovered, allmasks);
7136
			int n = (i + j) % MAX_NUMNODES;
7137
			node_to_cpumask_ptr(pnodemask, n);
7138

7139 7140 7141 7142
			cpus_complement(*notcovered, *covered);
			cpus_and(*tmpmask, *notcovered, *cpu_map);
			cpus_and(*tmpmask, *tmpmask, *domainspan);
			if (cpus_empty(*tmpmask))
7143 7144
				break;

7145 7146
			cpus_and(*tmpmask, *tmpmask, *pnodemask);
			if (cpus_empty(*tmpmask))
7147 7148
				continue;

7149 7150
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
7151 7152 7153
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
7154
				goto error;
7155
			}
7156
			sg->__cpu_power = 0;
7157
			sg->cpumask = *tmpmask;
7158
			sg->next = prev->next;
7159
			cpus_or(*covered, *covered, *tmpmask);
7160 7161 7162 7163
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
7164 7165 7166
#endif

	/* Calculate CPU power for physical packages and nodes */
7167
#ifdef CONFIG_SCHED_SMT
7168
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7169 7170
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

7171
		init_sched_groups_power(i, sd);
7172
	}
L
Linus Torvalds 已提交
7173
#endif
7174
#ifdef CONFIG_SCHED_MC
7175
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7176 7177
		struct sched_domain *sd = &per_cpu(core_domains, i);

7178
		init_sched_groups_power(i, sd);
7179 7180
	}
#endif
7181

7182
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
7183 7184
		struct sched_domain *sd = &per_cpu(phys_domains, i);

7185
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
7186 7187
	}

7188
#ifdef CONFIG_NUMA
7189 7190
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
7191

7192 7193
	if (sd_allnodes) {
		struct sched_group *sg;
7194

7195 7196
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
								tmpmask);
7197 7198
		init_numa_sched_groups_power(sg);
	}
7199 7200
#endif

L
Linus Torvalds 已提交
7201
	/* Attach the domains */
7202
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
7203 7204 7205
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
7206 7207
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
7208 7209 7210
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
7211
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
7212
	}
7213

7214
	SCHED_CPUMASK_FREE((void *)allmasks);
7215 7216
	return 0;

7217
#ifdef CONFIG_NUMA
7218
error:
7219 7220
	free_sched_groups(cpu_map, tmpmask);
	SCHED_CPUMASK_FREE((void *)allmasks);
7221
	return -ENOMEM;
7222
#endif
L
Linus Torvalds 已提交
7223
}
P
Paul Jackson 已提交
7224

7225 7226 7227 7228 7229
static int build_sched_domains(const cpumask_t *cpu_map)
{
	return __build_sched_domains(cpu_map, NULL);
}

P
Paul Jackson 已提交
7230 7231
static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
7232 7233
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
7234 7235 7236 7237 7238 7239 7240 7241

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

7242 7243 7244 7245
void __attribute__((weak)) arch_update_cpu_topology(void)
{
}

7246
/*
I
Ingo Molnar 已提交
7247
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
7248 7249
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
7250
 */
7251
static int arch_init_sched_domains(const cpumask_t *cpu_map)
7252
{
7253 7254
	int err;

7255
	arch_update_cpu_topology();
P
Paul Jackson 已提交
7256 7257 7258 7259 7260
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7261
	dattr_cur = NULL;
7262
	err = build_sched_domains(doms_cur);
7263
	register_sched_domain_sysctl();
7264 7265

	return err;
7266 7267
}

7268 7269
static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
				       cpumask_t *tmpmask)
L
Linus Torvalds 已提交
7270
{
7271
	free_sched_groups(cpu_map, tmpmask);
7272
}
L
Linus Torvalds 已提交
7273

7274 7275 7276 7277
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
7278
static void detach_destroy_domains(const cpumask_t *cpu_map)
7279
{
7280
	cpumask_t tmpmask;
7281 7282
	int i;

7283 7284
	unregister_sched_domain_sysctl();

7285
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
7286
		cpu_attach_domain(NULL, &def_root_domain, i);
7287
	synchronize_sched();
7288
	arch_destroy_sched_domains(cpu_map, &tmpmask);
7289 7290
}

7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
7307 7308
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
7309
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
7310 7311 7312 7313
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
7314 7315 7316
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
7317 7318 7319
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
7320 7321
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
7322 7323 7324 7325 7326 7327
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
7328 7329
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
7330 7331 7332
{
	int i, j;

7333
	mutex_lock(&sched_domains_mutex);
7334

7335 7336 7337
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
7338 7339 7340 7341
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7342
		dattr_new = NULL;
P
Paul Jackson 已提交
7343 7344 7345 7346 7347
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
7348 7349
			if (cpus_equal(doms_cur[i], doms_new[j])
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
7361 7362
			if (cpus_equal(doms_new[i], doms_cur[j])
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
7363 7364 7365
				goto match2;
		}
		/* no match - add a new doms_new */
7366 7367
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
7368 7369 7370 7371 7372 7373 7374
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
7375
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
7376
	doms_cur = doms_new;
7377
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
7378
	ndoms_cur = ndoms_new;
7379 7380

	register_sched_domain_sysctl();
7381

7382
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
7383 7384
}

7385
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7386
int arch_reinit_sched_domains(void)
7387 7388 7389
{
	int err;

7390
	get_online_cpus();
7391
	mutex_lock(&sched_domains_mutex);
7392 7393
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
7394
	mutex_unlock(&sched_domains_mutex);
7395
	put_online_cpus();
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
7422 7423
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
7424 7425 7426
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
7427 7428
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
7429 7430 7431 7432 7433 7434 7435
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7436 7437
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7438 7439 7440
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7461 7462
#endif

L
Linus Torvalds 已提交
7463
/*
I
Ingo Molnar 已提交
7464
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7465
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7466
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7467 7468 7469 7470 7471 7472 7473
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7474
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7475
	case CPU_DOWN_PREPARE:
7476
	case CPU_DOWN_PREPARE_FROZEN:
7477
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7478 7479 7480
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7481
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7482
	case CPU_DOWN_FAILED:
7483
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7484
	case CPU_ONLINE:
7485
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7486
	case CPU_DEAD:
7487
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7488 7489 7490 7491 7492 7493 7494 7495 7496
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7497
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7498 7499 7500 7501 7502 7503

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7504 7505
	cpumask_t non_isolated_cpus;

7506 7507 7508 7509 7510
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
7511
	get_online_cpus();
7512
	mutex_lock(&sched_domains_mutex);
7513
	arch_init_sched_domains(&cpu_online_map);
7514
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7515 7516
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7517
	mutex_unlock(&sched_domains_mutex);
7518
	put_online_cpus();
L
Linus Torvalds 已提交
7519 7520
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7521
	init_hrtick();
7522 7523

	/* Move init over to a non-isolated CPU */
7524
	if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7525
		BUG();
I
Ingo Molnar 已提交
7526
	sched_init_granularity();
L
Linus Torvalds 已提交
7527 7528 7529 7530
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7531
	sched_init_granularity();
L
Linus Torvalds 已提交
7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7542
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7543 7544
{
	cfs_rq->tasks_timeline = RB_ROOT;
7545
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
7546 7547 7548
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7549
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7550 7551
}

P
Peter Zijlstra 已提交
7552 7553 7554 7555 7556 7557 7558
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
7559 7560
		INIT_LIST_HEAD(array->xqueue + i);
		INIT_LIST_HEAD(array->squeue + i);
P
Peter Zijlstra 已提交
7561 7562 7563 7564 7565
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7566
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7567 7568
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7569 7570 7571 7572 7573 7574 7575
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7576 7577
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7578

7579
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7580
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7581 7582
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7583 7584
}

P
Peter Zijlstra 已提交
7585
#ifdef CONFIG_FAIR_GROUP_SCHED
7586 7587 7588
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
7589
{
7590
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
7591 7592 7593 7594 7595 7596 7597
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
7598 7599 7600 7601
	/* se could be NULL for init_task_group */
	if (!se)
		return;

7602 7603 7604 7605 7606
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
7607 7608
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
7609
	se->load.inv_weight = 0;
7610
	se->parent = parent;
P
Peter Zijlstra 已提交
7611
}
7612
#endif
P
Peter Zijlstra 已提交
7613

7614
#ifdef CONFIG_RT_GROUP_SCHED
7615 7616 7617
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
7618
{
7619 7620
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
7621 7622 7623 7624
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
7625
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7626 7627 7628 7629
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
7630 7631 7632
	if (!rt_se)
		return;

7633 7634 7635 7636 7637
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
7638 7639
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
7640
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
7641 7642 7643 7644
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7645 7646
void __init sched_init(void)
{
I
Ingo Molnar 已提交
7647
	int i, j;
7648 7649 7650 7651 7652 7653 7654
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7655 7656 7657
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
7658 7659 7660 7661 7662 7663
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
7664
		ptr = (unsigned long)alloc_bootmem(alloc_size);
7665 7666 7667 7668 7669 7670 7671

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
7672 7673 7674 7675 7676 7677 7678 7679

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7680 7681 7682 7683 7684 7685
#endif
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
7686 7687 7688 7689 7690 7691 7692 7693 7694
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
#endif
7695 7696
#endif
	}
I
Ingo Molnar 已提交
7697

G
Gregory Haskins 已提交
7698 7699 7700 7701
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7702 7703 7704 7705 7706 7707
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
7708 7709 7710 7711
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
#endif
7712 7713
#endif

7714
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7715
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
7716 7717 7718 7719 7720 7721 7722
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
#endif
P
Peter Zijlstra 已提交
7723 7724
#endif

7725
	for_each_possible_cpu(i) {
7726
		struct rq *rq;
L
Linus Torvalds 已提交
7727 7728 7729

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7730
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7731
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7732
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7733
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7734
#ifdef CONFIG_FAIR_GROUP_SCHED
7735
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7736
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
		 * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
7757
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7758
#elif defined CONFIG_USER_SCHED
7759 7760
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
7772
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
7773
				&per_cpu(init_cfs_rq, i),
7774 7775
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
7776

7777
#endif
D
Dhaval Giani 已提交
7778 7779 7780
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7781
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7782
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
7783
#ifdef CONFIG_CGROUP_SCHED
7784
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
7785
#elif defined CONFIG_USER_SCHED
7786
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7787
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
7788
				&per_cpu(init_rt_rq, i),
7789 7790
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
7791
#endif
I
Ingo Molnar 已提交
7792
#endif
L
Linus Torvalds 已提交
7793

I
Ingo Molnar 已提交
7794 7795
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7796
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7797
		rq->sd = NULL;
G
Gregory Haskins 已提交
7798
		rq->rd = NULL;
L
Linus Torvalds 已提交
7799
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7800
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7801
		rq->push_cpu = 0;
7802
		rq->cpu = i;
L
Linus Torvalds 已提交
7803 7804
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7805
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7806
#endif
P
Peter Zijlstra 已提交
7807
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7808 7809 7810
		atomic_set(&rq->nr_iowait, 0);
	}

7811
	set_load_weight(&init_task);
7812

7813 7814 7815 7816
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7817 7818 7819 7820
#ifdef CONFIG_SMP
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7821 7822 7823 7824
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7838 7839 7840 7841
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7842 7843

	scheduler_running = 1;
L
Linus Torvalds 已提交
7844 7845 7846 7847 7848
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7849
#ifdef in_atomic
L
Linus Torvalds 已提交
7850 7851 7852 7853 7854 7855 7856
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7857
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7858 7859 7860
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7861
		debug_show_held_locks(current);
7862 7863
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7864 7865 7866 7867 7868 7869 7870 7871
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7872 7873 7874
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
7875

7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7887 7888
void normalize_rt_tasks(void)
{
7889
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7890
	unsigned long flags;
7891
	struct rq *rq;
L
Linus Torvalds 已提交
7892

7893
	read_lock_irqsave(&tasklist_lock, flags);
7894
	do_each_thread(g, p) {
7895 7896 7897 7898 7899 7900
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7901 7902
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7903 7904 7905
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7906
#endif
I
Ingo Molnar 已提交
7907 7908 7909 7910 7911 7912 7913 7914

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7915
			continue;
I
Ingo Molnar 已提交
7916
		}
L
Linus Torvalds 已提交
7917

7918
		spin_lock(&p->pi_lock);
7919
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7920

7921
		normalize_task(rq, p);
7922

7923
		__task_rq_unlock(rq);
7924
		spin_unlock(&p->pi_lock);
7925 7926
	} while_each_thread(g, p);

7927
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7928 7929 7930
}

#endif /* CONFIG_MAGIC_SYSRQ */
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7949
struct task_struct *curr_task(int cpu)
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7960 7961
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7962 7963 7964 7965 7966 7967 7968
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7969
void set_curr_task(int cpu, struct task_struct *p)
7970 7971 7972 7973 7974
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7975

7976 7977
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7992 7993
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
7994 7995
{
	struct cfs_rq *cfs_rq;
7996
	struct sched_entity *se, *parent_se;
7997
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7998 7999
	int i;

8000
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8001 8002
	if (!tg->cfs_rq)
		goto err;
8003
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
8004 8005
	if (!tg->se)
		goto err;
8006 8007

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
8008 8009

	for_each_possible_cpu(i) {
8010
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
8011

P
Peter Zijlstra 已提交
8012 8013
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8014 8015 8016
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
8017 8018
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
8019 8020 8021
		if (!se)
			goto err;

8022 8023
		parent_se = parent ? parent->se[i] : NULL;
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

8047 8048
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
8060 8061 8062
#endif

#ifdef CONFIG_RT_GROUP_SCHED
8063 8064 8065 8066
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

8067 8068
	destroy_rt_bandwidth(&tg->rt_bandwidth);

8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

8080 8081
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8082 8083
{
	struct rt_rq *rt_rq;
8084
	struct sched_rt_entity *rt_se, *parent_se;
8085 8086 8087
	struct rq *rq;
	int i;

8088
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8089 8090
	if (!tg->rt_rq)
		goto err;
8091
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8092 8093 8094
	if (!tg->rt_se)
		goto err;

8095 8096
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8097 8098 8099 8100

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
8101 8102 8103 8104
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
8105

P
Peter Zijlstra 已提交
8106 8107 8108 8109
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
8110

8111 8112
		parent_se = parent ? parent->rt_se[i] : NULL;
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
S
Srivatsa Vaddagiri 已提交
8113 8114
	}

8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

8136 8137
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

8151
#ifdef CONFIG_GROUP_SCHED
8152 8153 8154 8155 8156 8157 8158 8159
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
8160
struct task_group *sched_create_group(struct task_group *parent)
8161 8162 8163 8164 8165 8166 8167 8168 8169
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

8170
	if (!alloc_fair_sched_group(tg, parent))
8171 8172
		goto err;

8173
	if (!alloc_rt_sched_group(tg, parent))
8174 8175
		goto err;

8176
	spin_lock_irqsave(&task_group_lock, flags);
8177
	for_each_possible_cpu(i) {
8178 8179
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
8180
	}
P
Peter Zijlstra 已提交
8181
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
8182 8183 8184 8185 8186 8187

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	list_add_rcu(&tg->siblings, &parent->children);
	INIT_LIST_HEAD(&tg->children);
8188
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
8189

8190
	return tg;
S
Srivatsa Vaddagiri 已提交
8191 8192

err:
P
Peter Zijlstra 已提交
8193
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
8194 8195 8196
	return ERR_PTR(-ENOMEM);
}

8197
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
8198
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
8199 8200
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
8201
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
8202 8203
}

8204
/* Destroy runqueue etc associated with a task group */
8205
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
8206
{
8207
	unsigned long flags;
8208
	int i;
S
Srivatsa Vaddagiri 已提交
8209

8210
	spin_lock_irqsave(&task_group_lock, flags);
8211
	for_each_possible_cpu(i) {
8212 8213
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
8214
	}
P
Peter Zijlstra 已提交
8215
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
8216
	list_del_rcu(&tg->siblings);
8217
	spin_unlock_irqrestore(&task_group_lock, flags);
8218 8219

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
8220
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
8221 8222
}

8223
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
8224 8225 8226
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
8227 8228
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
8229 8230 8231 8232 8233 8234 8235 8236 8237
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

8238
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8239 8240
	on_rq = tsk->se.on_rq;

8241
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8242
		dequeue_task(rq, tsk, 0);
8243 8244
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
8245

P
Peter Zijlstra 已提交
8246
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
8247

P
Peter Zijlstra 已提交
8248 8249 8250 8251 8252
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

8253 8254 8255
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
8256
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
8257 8258 8259

	task_rq_unlock(rq, &flags);
}
8260
#endif
S
Srivatsa Vaddagiri 已提交
8261

8262
#ifdef CONFIG_FAIR_GROUP_SCHED
8263
static void set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8264 8265
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
8266
	struct rq *rq = cfs_rq->rq;
S
Srivatsa Vaddagiri 已提交
8267 8268
	int on_rq;

8269 8270
	spin_lock_irq(&rq->lock);

S
Srivatsa Vaddagiri 已提交
8271
	on_rq = se->on_rq;
8272
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8273 8274 8275
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
8276
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
8277

8278
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
8279
		enqueue_entity(cfs_rq, se, 0);
8280

8281
	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
8282 8283
}

8284 8285
static DEFINE_MUTEX(shares_mutex);

8286
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
8287 8288
{
	int i;
8289
	unsigned long flags;
8290

8291 8292 8293 8294 8295 8296
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

8297 8298
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
8299 8300
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
8301

8302
	mutex_lock(&shares_mutex);
8303
	if (tg->shares == shares)
8304
		goto done;
S
Srivatsa Vaddagiri 已提交
8305

8306
	spin_lock_irqsave(&task_group_lock, flags);
8307 8308
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8309
	list_del_rcu(&tg->siblings);
8310
	spin_unlock_irqrestore(&task_group_lock, flags);
8311 8312 8313 8314 8315 8316 8317 8318

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
8319
	tg->shares = shares;
8320
	for_each_possible_cpu(i)
8321
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
8322

8323 8324 8325 8326
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
8327
	spin_lock_irqsave(&task_group_lock, flags);
8328 8329
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
8330
	list_add_rcu(&tg->siblings, &tg->parent->children);
8331
	spin_unlock_irqrestore(&task_group_lock, flags);
8332
done:
8333
	mutex_unlock(&shares_mutex);
8334
	return 0;
S
Srivatsa Vaddagiri 已提交
8335 8336
}

8337 8338 8339 8340
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
8341
#endif
8342

8343
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8344
/*
P
Peter Zijlstra 已提交
8345
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
8346
 */
P
Peter Zijlstra 已提交
8347 8348 8349 8350 8351 8352 8353
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

R
Roman Zippel 已提交
8354
	return div64_u64(runtime << 16, period);
P
Peter Zijlstra 已提交
8355 8356
}

8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388
#ifdef CONFIG_CGROUP_SCHED
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
{
	struct task_group *tgi, *parent = tg->parent;
	unsigned long total = 0;

	if (!parent) {
		if (global_rt_period() < period)
			return 0;

		return to_ratio(period, runtime) <
			to_ratio(global_rt_period(), global_rt_runtime());
	}

	if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
		return 0;

	rcu_read_lock();
	list_for_each_entry_rcu(tgi, &parent->children, siblings) {
		if (tgi == tg)
			continue;

		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
	}
	rcu_read_unlock();

	return total + to_ratio(period, runtime) <
		to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
				parent->rt_bandwidth.rt_runtime);
}
#elif defined CONFIG_USER_SCHED
P
Peter Zijlstra 已提交
8389
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
8390 8391 8392
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
8393
	unsigned long global_ratio =
8394
		to_ratio(global_rt_period(), global_rt_runtime());
P
Peter Zijlstra 已提交
8395 8396

	rcu_read_lock();
P
Peter Zijlstra 已提交
8397 8398 8399
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
8400

8401 8402
		total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
				tgi->rt_bandwidth.rt_runtime);
P
Peter Zijlstra 已提交
8403 8404
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
8405

P
Peter Zijlstra 已提交
8406
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
8407
}
8408
#endif
P
Peter Zijlstra 已提交
8409

8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

8421 8422
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
8423
{
P
Peter Zijlstra 已提交
8424
	int i, err = 0;
P
Peter Zijlstra 已提交
8425 8426

	mutex_lock(&rt_constraints_mutex);
8427
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
8428
	if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8429 8430 8431
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8432 8433 8434 8435
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
P
Peter Zijlstra 已提交
8436 8437

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8438 8439
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
8440 8441 8442 8443 8444 8445 8446 8447 8448

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
8449
 unlock:
8450
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
8451 8452 8453
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
8454 8455
}

8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
8468 8469 8470 8471
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

8472
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
8473 8474
		return -1;

8475
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
8476 8477 8478
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(NULL, 1, 0))
		ret = -EINVAL;
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
#else
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525
	unsigned long flags;
	int i;

	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

8526 8527
	return 0;
}
8528
#endif
8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
8559

8560
#ifdef CONFIG_CGROUP_SCHED
8561 8562

/* return corresponding task_group object of a cgroup */
8563
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8564
{
8565 8566
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8567 8568 8569
}

static struct cgroup_subsys_state *
8570
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8571
{
8572
	struct task_group *tg, *parent;
8573

8574
	if (!cgrp->parent) {
8575
		/* This is early initialization for the top cgroup */
8576
		init_task_group.css.cgroup = cgrp;
8577 8578 8579
		return &init_task_group.css;
	}

8580 8581
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
8582 8583 8584 8585
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8586
	tg->css.cgroup = cgrp;
8587 8588 8589 8590

	return &tg->css;
}

I
Ingo Molnar 已提交
8591 8592
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8593
{
8594
	struct task_group *tg = cgroup_tg(cgrp);
8595 8596 8597 8598

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8599 8600 8601
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8602
{
8603 8604
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
8605
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8606 8607
		return -EINVAL;
#else
8608 8609 8610
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8611
#endif
8612 8613 8614 8615 8616

	return 0;
}

static void
8617
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8618 8619 8620 8621 8622
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8623
#ifdef CONFIG_FAIR_GROUP_SCHED
8624
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8625
				u64 shareval)
8626
{
8627
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8628 8629
}

8630
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8631
{
8632
	struct task_group *tg = cgroup_tg(cgrp);
8633 8634 8635

	return (u64) tg->shares;
}
8636
#endif
8637

8638
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
8639
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8640
				s64 val)
P
Peter Zijlstra 已提交
8641
{
8642
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
8643 8644
}

8645
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
8646
{
8647
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
8648
}
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
8660
#endif
P
Peter Zijlstra 已提交
8661

8662
static struct cftype cpu_files[] = {
8663
#ifdef CONFIG_FAIR_GROUP_SCHED
8664 8665
	{
		.name = "shares",
8666 8667
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8668
	},
8669 8670
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8671
	{
P
Peter Zijlstra 已提交
8672
		.name = "rt_runtime_us",
8673 8674
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8675
	},
8676 8677
	{
		.name = "rt_period_us",
8678 8679
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8680
	},
8681
#endif
8682 8683 8684 8685
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8686
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8687 8688 8689
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8690 8691 8692 8693 8694 8695 8696
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8697 8698 8699
	.early_init	= 1,
};

8700
#endif	/* CONFIG_CGROUP_SCHED */
8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
8721
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8722
{
8723
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
8736
	struct cgroup_subsys *ss, struct cgroup *cgrp)
8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8753
static void
8754
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8755
{
8756
	struct cpuacct *ca = cgroup_ca(cgrp);
8757 8758 8759 8760 8761 8762

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
8763
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8764
{
8765
	struct cpuacct *ca = cgroup_ca(cgrp);
8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		spin_lock_irq(&cpu_rq(i)->lock);
		*cpuusage = 0;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
out:
	return err;
}

8807 8808 8809
static struct cftype files[] = {
	{
		.name = "usage",
8810 8811
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
8812 8813 8814
	},
};

8815
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8816
{
8817
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */