sched.c 180.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
L
Linus Torvalds 已提交
25 26 27 28 29 30
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
31
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
32 33 34 35
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
36
#include <linux/capability.h>
L
Linus Torvalds 已提交
37 38
#include <linux/completion.h>
#include <linux/kernel_stat.h>
39
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
40 41 42
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
43
#include <linux/freezer.h>
44
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
45 46
#include <linux/blkdev.h>
#include <linux/delay.h>
47
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
48 49 50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
57
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
58 59
#include <linux/syscalls.h>
#include <linux/times.h>
60
#include <linux/tsacct_kern.h>
61
#include <linux/kprobes.h>
62
#include <linux/delayacct.h>
63
#include <linux/reciprocal_div.h>
64
#include <linux/unistd.h>
J
Jens Axboe 已提交
65
#include <linux/pagemap.h>
L
Linus Torvalds 已提交
66

67
#include <asm/tlb.h>
68
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
69

70 71 72 73 74 75 76
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
77
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 79
}

L
Linus Torvalds 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
 * Some helpers for converting nanosecond timing to jiffy resolution
 */
101 102
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
#define JIFFIES_TO_NS(TIME)	((TIME) * (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
103

I
Ingo Molnar 已提交
104 105 106
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
107 108 109
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
110
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
111 112 113
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

136 137 138 139 140 141 142 143 144 145 146 147
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
148
/*
I
Ingo Molnar 已提交
149
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
150
 */
I
Ingo Molnar 已提交
151 152 153 154 155
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

S
Srivatsa Vaddagiri 已提交
156 157
#ifdef CONFIG_FAIR_GROUP_SCHED

158 159
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
160 161 162
struct cfs_rq;

/* task group related information */
163
struct task_group {
164 165 166
#ifdef CONFIG_FAIR_CGROUP_SCHED
	struct cgroup_subsys_state css;
#endif
S
Srivatsa Vaddagiri 已提交
167 168 169 170 171
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
172 173
	/* spinlock to serialize modification to shares */
	spinlock_t lock;
174
	struct rcu_head rcu;
S
Srivatsa Vaddagiri 已提交
175 176 177 178 179 180 181
};

/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

182 183
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
S
Srivatsa Vaddagiri 已提交
184 185

/* Default task group.
I
Ingo Molnar 已提交
186
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
187
 */
188
struct task_group init_task_group = {
I
Ingo Molnar 已提交
189 190 191
	.se     = init_sched_entity_p,
	.cfs_rq = init_cfs_rq_p,
};
192

193
#ifdef CONFIG_FAIR_USER_SCHED
I
Ingo Molnar 已提交
194
# define INIT_TASK_GRP_LOAD	2*NICE_0_LOAD
195
#else
I
Ingo Molnar 已提交
196
# define INIT_TASK_GRP_LOAD	NICE_0_LOAD
197 198
#endif

199
static int init_task_group_load = INIT_TASK_GRP_LOAD;
S
Srivatsa Vaddagiri 已提交
200 201

/* return group to which a task belongs */
202
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
203
{
204
	struct task_group *tg;
205

206 207
#ifdef CONFIG_FAIR_USER_SCHED
	tg = p->user->tg;
208 209 210
#elif defined(CONFIG_FAIR_CGROUP_SCHED)
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
211
#else
I
Ingo Molnar 已提交
212
	tg = &init_task_group;
213
#endif
214
	return tg;
S
Srivatsa Vaddagiri 已提交
215 216 217
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
219
{
220 221
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
S
Srivatsa Vaddagiri 已提交
222 223 224 225
}

#else

226
static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
S
Srivatsa Vaddagiri 已提交
227 228 229

#endif	/* CONFIG_FAIR_GROUP_SCHED */

I
Ingo Molnar 已提交
230 231 232 233 234 235
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
236
	u64 min_vruntime;
I
Ingo Molnar 已提交
237 238 239 240 241 242 243 244

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
245 246 247

	unsigned long nr_spread_over;

248
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
249 250
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
251 252
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
253 254 255 256 257 258
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
259 260
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
261 262
#endif
};
L
Linus Torvalds 已提交
263

I
Ingo Molnar 已提交
264 265 266 267 268 269 270
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
	int rt_load_balance_idx;
	struct list_head *rt_load_balance_head, *rt_load_balance_curr;
};

L
Linus Torvalds 已提交
271 272 273 274 275 276 277
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
278
struct rq {
279 280
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
281 282 283 284 285 286

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
287 288
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289
	unsigned char idle_at_tick;
290 291 292
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
293 294
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
295 296 297 298 299
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
#ifdef CONFIG_FAIR_GROUP_SCHED
300 301
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
L
Linus Torvalds 已提交
302
#endif
I
Ingo Molnar 已提交
303
	struct rt_rq rt;
L
Linus Torvalds 已提交
304 305 306 307 308 309 310 311 312

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

313
	struct task_struct *curr, *idle;
314
	unsigned long next_balance;
L
Linus Torvalds 已提交
315
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
316 317 318 319 320

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

	unsigned int clock_warps, clock_overflows;
321 322
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
323
	u64 tick_timestamp;
I
Ingo Molnar 已提交
324

L
Linus Torvalds 已提交
325 326 327 328 329 330 331 332
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
333 334
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
335

336
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
337 338 339 340 341 342 343 344
	struct list_head migration_queue;
#endif

#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
345 346 347 348
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
349 350

	/* schedule() stats */
351 352 353
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
354 355

	/* try_to_wake_up() stats */
356 357
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
358 359

	/* BKL stats */
360
	unsigned int bkl_count;
L
Linus Torvalds 已提交
361
#endif
362
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
363 364
};

365
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366
static DEFINE_MUTEX(sched_hotcpu_mutex);
L
Linus Torvalds 已提交
367

I
Ingo Molnar 已提交
368 369 370 371 372
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

373 374 375 376 377 378 379 380 381
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
382
/*
I
Ingo Molnar 已提交
383 384
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
385
 */
I
Ingo Molnar 已提交
386
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
387 388 389 390 391 392
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
393 394 395
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
396 397 398 399 400 401 402 403 404 405
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
406 407 408 409 410
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
411 412 413 414 415 416 417 418 419 420
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
421
}
I
Ingo Molnar 已提交
422

I
Ingo Molnar 已提交
423 424 425 426
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
427 428
}

N
Nick Piggin 已提交
429 430
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
432 433 434 435
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
436 437
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
438 439 440 441 442 443

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
457
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
458 459
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
460 461
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
I
Ingo Molnar 已提交
462 463 464
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
465
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
466
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
467 468
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
I
Ingo Molnar 已提交
469
		SCHED_FEAT_APPROX_AVG		* 0;
I
Ingo Molnar 已提交
470 471 472

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

473 474 475 476 477 478
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

479 480 481 482 483 484 485 486
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
487
	struct rq *rq;
488

489
	local_irq_save(flags);
I
Ingo Molnar 已提交
490 491 492
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
	now = rq->clock;
493
	local_irq_restore(flags);
494 495 496

	return now;
}
P
Paul E. McKenney 已提交
497
EXPORT_SYMBOL_GPL(cpu_clock);
498

L
Linus Torvalds 已提交
499
#ifndef prepare_arch_switch
500 501 502 503 504 505 506
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

#ifndef __ARCH_WANT_UNLOCKED_CTXSW
507
static inline int task_running(struct rq *rq, struct task_struct *p)
508 509 510 511
{
	return rq->curr == p;
}

512
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
513 514 515
{
}

516
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
517
{
518 519 520 521
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
522 523 524 525 526 527 528
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

529 530 531 532
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
533
static inline int task_running(struct rq *rq, struct task_struct *p)
534 535 536 537 538 539 540 541
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
	return rq->curr == p;
#endif
}

542
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

559
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
560 561 562 563 564 565 566 567 568 569 570 571
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
572
#endif
573 574
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
575

576 577 578 579
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
580
static inline struct rq *__task_rq_lock(struct task_struct *p)
581 582
	__acquires(rq->lock)
{
583 584 585 586 587
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
588 589 590 591
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
592 593
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
594
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
595 596
 * explicitly disabling preemption.
 */
597
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
598 599
	__acquires(rq->lock)
{
600
	struct rq *rq;
L
Linus Torvalds 已提交
601

602 603 604 605 606 607
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
608 609 610 611
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
612
static void __task_rq_unlock(struct rq *rq)
613 614 615 616 617
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

618
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
619 620 621 622 623 624
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
625
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
626
 */
A
Alexey Dobriyan 已提交
627
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
628 629
	__acquires(rq->lock)
{
630
	struct rq *rq;
L
Linus Torvalds 已提交
631 632 633 634 635 636 637 638

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

639
/*
640
 * We are going deep-idle (irqs are disabled):
641
 */
642
void sched_clock_idle_sleep_event(void)
643
{
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
660

661 662 663 664 665 666 667 668 669 670 671
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
672
}
673
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
674

I
Ingo Molnar 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

static void resched_task(struct task_struct *p)
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

	if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
		return;

	set_tsk_thread_flag(p, TIF_NEED_RESCHED);

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
static inline void resched_task(struct task_struct *p)
{
	assert_spin_locked(&task_rq(p)->lock);
	set_tsk_need_resched(p);
}
#endif

727 728 729 730 731 732 733 734
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
735 736 737
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
738
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
739

740
static unsigned long
741 742 743 744 745 746
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
747
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
748 749 750 751 752

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
753
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
754
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
755 756
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
757
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
758

759
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
760 761 762 763 764 765 766 767
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

768
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
769 770 771 772
{
	lw->weight += inc;
}

773
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
774 775 776 777
{
	lw->weight -= dec;
}

778 779 780 781
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
782
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
783 784 785 786
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
787 788 789 790 791 792 793 794 795 796 797
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
798 799 800
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
801 802
 */
static const int prio_to_weight[40] = {
803 804 805 806 807 808 809 810
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
811 812
};

813 814 815 816 817 818 819
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
820
static const u32 prio_to_wmult[40] = {
821 822 823 824 825 826 827 828
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
829
};
830

I
Ingo Molnar 已提交
831 832 833 834 835 836 837 838 839 840 841 842 843
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

844 845 846 847 848 849 850 851 852 853 854 855
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
856

857 858 859 860 861 862
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

I
Ingo Molnar 已提交
863 864
#include "sched_stats.h"
#include "sched_idletask.c"
865 866
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
867 868 869 870 871 872
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

873 874 875 876
/*
 * Update delta_exec, delta_fair fields for rq.
 *
 * delta_fair clock advances at a rate inversely proportional to
877
 * total load (rq->load.weight) on the runqueue, while
878 879 880 881 882 883 884
 * delta_exec advances at the same rate as wall-clock (provided
 * cpu is not idle).
 *
 * delta_exec / delta_fair is a measure of the (smoothened) load on this
 * runqueue over any given interval. This (smoothened) load is used
 * during load balance.
 *
885
 * This function is called /before/ updating rq->load
886 887
 * and when switching tasks.
 */
888
static inline void inc_load(struct rq *rq, const struct task_struct *p)
889
{
890
	update_load_add(&rq->load, p->se.load.weight);
891 892
}

893
static inline void dec_load(struct rq *rq, const struct task_struct *p)
894
{
895
	update_load_sub(&rq->load, p->se.load.weight);
896 897
}

898
static void inc_nr_running(struct task_struct *p, struct rq *rq)
899 900
{
	rq->nr_running++;
901
	inc_load(rq, p);
902 903
}

904
static void dec_nr_running(struct task_struct *p, struct rq *rq)
905 906
{
	rq->nr_running--;
907
	dec_load(rq, p);
908 909
}

910 911 912
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
913 914 915 916
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
917

I
Ingo Molnar 已提交
918 919 920 921 922 923 924 925
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
926

I
Ingo Molnar 已提交
927 928
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
929 930
}

931
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
932
{
I
Ingo Molnar 已提交
933
	sched_info_queued(p);
934
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
935
	p->se.on_rq = 1;
936 937
}

938
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
939
{
940
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
941
	p->se.on_rq = 0;
942 943
}

944
/*
I
Ingo Molnar 已提交
945
 * __normal_prio - return the priority that is based on the static prio
946 947 948
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
949
	return p->static_prio;
950 951
}

952 953 954 955 956 957 958
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
959
static inline int normal_prio(struct task_struct *p)
960 961 962
{
	int prio;

963
	if (task_has_rt_policy(p))
964 965 966 967 968 969 970 971 972 973 974 975 976
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
977
static int effective_prio(struct task_struct *p)
978 979 980 981 982 983 984 985 986 987 988 989
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
990
/*
I
Ingo Molnar 已提交
991
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
992
 */
I
Ingo Molnar 已提交
993
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
994
{
995
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
996
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
997

998
	enqueue_task(rq, p, wakeup);
999
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1000 1001 1002 1003 1004
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1005
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1006
{
1007
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1008 1009
		rq->nr_uninterruptible++;

1010
	dequeue_task(rq, p, sleep);
1011
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1012 1013 1014 1015 1016 1017
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1018
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1019 1020 1021 1022
{
	return cpu_curr(task_cpu(p)) == p;
}

1023 1024 1025
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1026
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1027 1028 1029 1030
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
1031
	set_task_cfs_rq(p, cpu);
I
Ingo Molnar 已提交
1032
#ifdef CONFIG_SMP
1033 1034 1035 1036 1037 1038
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1039 1040
	task_thread_info(p)->cpu = cpu;
#endif
1041 1042
}

L
Linus Torvalds 已提交
1043
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
/*
 * Is this task likely cache-hot:
 */
static inline int
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1056 1057 1058 1059 1060
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1061 1062 1063 1064 1065 1066
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1067
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1068
{
I
Ingo Molnar 已提交
1069 1070
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1071 1072
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1073
	u64 clock_offset;
I
Ingo Molnar 已提交
1074 1075

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1076 1077 1078 1079

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1080 1081 1082 1083
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1084 1085 1086 1087 1088
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1089
#endif
1090 1091
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1092 1093

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1094 1095
}

1096
struct migration_req {
L
Linus Torvalds 已提交
1097 1098
	struct list_head list;

1099
	struct task_struct *task;
L
Linus Torvalds 已提交
1100 1101 1102
	int dest_cpu;

	struct completion done;
1103
};
L
Linus Torvalds 已提交
1104 1105 1106 1107 1108

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1109
static int
1110
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1111
{
1112
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1113 1114 1115 1116 1117

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1118
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1119 1120 1121 1122 1123 1124 1125 1126
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1127

L
Linus Torvalds 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1140
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1141 1142
{
	unsigned long flags;
I
Ingo Molnar 已提交
1143
	int running, on_rq;
1144
	struct rq *rq;
L
Linus Torvalds 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1168

1169 1170 1171 1172 1173 1174 1175 1176 1177
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1189

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1203

1204 1205 1206 1207 1208 1209 1210
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1226
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1238 1239
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1240 1241 1242 1243
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1244
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1245
{
1246
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1247
	unsigned long total = weighted_cpuload(cpu);
1248

1249
	if (type == 0)
I
Ingo Molnar 已提交
1250
		return total;
1251

I
Ingo Molnar 已提交
1252
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1253 1254 1255
}

/*
1256 1257
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1258
 */
A
Alexey Dobriyan 已提交
1259
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1260
{
1261
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1262
	unsigned long total = weighted_cpuload(cpu);
1263

N
Nick Piggin 已提交
1264
	if (type == 0)
I
Ingo Molnar 已提交
1265
		return total;
1266

I
Ingo Molnar 已提交
1267
	return max(rq->cpu_load[type-1], total);
1268 1269 1270 1271 1272 1273 1274
}

/*
 * Return the average load per task on the cpu's run queue
 */
static inline unsigned long cpu_avg_load_per_task(int cpu)
{
1275
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1276
	unsigned long total = weighted_cpuload(cpu);
1277 1278
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1279
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1280 1281
}

N
Nick Piggin 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1299 1300
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1301
			continue;
1302

N
Nick Piggin 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1319 1320
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1321 1322 1323 1324 1325 1326 1327 1328

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1329
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1330 1331 1332 1333 1334 1335 1336

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1337
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1338
 */
I
Ingo Molnar 已提交
1339 1340
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1341
{
1342
	cpumask_t tmp;
N
Nick Piggin 已提交
1343 1344 1345 1346
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1347 1348 1349 1350
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1351
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1377

1378
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1379 1380 1381
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1382 1383
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1384 1385
		if (tmp->flags & flag)
			sd = tmp;
1386
	}
N
Nick Piggin 已提交
1387 1388 1389 1390

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1391 1392 1393 1394 1395 1396
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1397 1398 1399

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1400 1401 1402 1403
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1404

1405
		new_cpu = find_idlest_cpu(group, t, cpu);
1406 1407 1408 1409 1410
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1411

1412
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1439
static int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444
{
	cpumask_t tmp;
	struct sched_domain *sd;
	int i;

1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
	if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
L
Linus Torvalds 已提交
1455 1456 1457 1458
		return cpu;

	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_IDLE) {
N
Nick Piggin 已提交
1459
			cpus_and(tmp, sd->span, p->cpus_allowed);
L
Linus Torvalds 已提交
1460
			for_each_cpu_mask(i, tmp) {
1461 1462 1463 1464 1465
				if (idle_cpu(i)) {
					if (i != task_cpu(p)) {
						schedstat_inc(p,
							se.nr_wakeups_idle);
					}
L
Linus Torvalds 已提交
1466
					return i;
1467
				}
L
Linus Torvalds 已提交
1468
			}
I
Ingo Molnar 已提交
1469
		} else {
N
Nick Piggin 已提交
1470
			break;
I
Ingo Molnar 已提交
1471
		}
L
Linus Torvalds 已提交
1472 1473 1474 1475
	}
	return cpu;
}
#else
1476
static inline int wake_idle(int cpu, struct task_struct *p)
L
Linus Torvalds 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
{
	return cpu;
}
#endif

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1496
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1497
{
1498
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1499 1500
	unsigned long flags;
	long old_state;
1501
	struct rq *rq;
L
Linus Torvalds 已提交
1502
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
1503
	struct sched_domain *sd, *this_sd = NULL;
1504
	unsigned long load, this_load;
L
Linus Torvalds 已提交
1505 1506 1507 1508 1509 1510 1511 1512
	int new_cpu;
#endif

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1513
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1514 1515 1516
		goto out_running;

	cpu = task_cpu(p);
1517
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522 1523
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

N
Nick Piggin 已提交
1524 1525
	new_cpu = cpu;

1526
	schedstat_inc(rq, ttwu_count);
L
Linus Torvalds 已提交
1527 1528
	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
N
Nick Piggin 已提交
1529 1530 1531 1532 1533 1534 1535 1536
		goto out_set_cpu;
	}

	for_each_domain(this_cpu, sd) {
		if (cpu_isset(cpu, sd->span)) {
			schedstat_inc(sd, ttwu_wake_remote);
			this_sd = sd;
			break;
L
Linus Torvalds 已提交
1537 1538 1539
		}
	}

N
Nick Piggin 已提交
1540
	if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
L
Linus Torvalds 已提交
1541 1542 1543
		goto out_set_cpu;

	/*
N
Nick Piggin 已提交
1544
	 * Check for affine wakeup and passive balancing possibilities.
L
Linus Torvalds 已提交
1545
	 */
N
Nick Piggin 已提交
1546 1547 1548
	if (this_sd) {
		int idx = this_sd->wake_idx;
		unsigned int imbalance;
L
Linus Torvalds 已提交
1549

1550 1551
		imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

N
Nick Piggin 已提交
1552 1553
		load = source_load(cpu, idx);
		this_load = target_load(this_cpu, idx);
L
Linus Torvalds 已提交
1554

N
Nick Piggin 已提交
1555 1556
		new_cpu = this_cpu; /* Wake to this CPU if we can */

1557 1558
		if (this_sd->flags & SD_WAKE_AFFINE) {
			unsigned long tl = this_load;
1559 1560
			unsigned long tl_per_task;

I
Ingo Molnar 已提交
1561 1562 1563 1564 1565 1566
			/*
			 * Attract cache-cold tasks on sync wakeups:
			 */
			if (sync && !task_hot(p, rq->clock, this_sd))
				goto out_set_cpu;

1567
			schedstat_inc(p, se.nr_wakeups_affine_attempts);
1568
			tl_per_task = cpu_avg_load_per_task(this_cpu);
1569

L
Linus Torvalds 已提交
1570
			/*
1571 1572 1573
			 * If sync wakeup then subtract the (maximum possible)
			 * effect of the currently running task from the load
			 * of the current CPU:
L
Linus Torvalds 已提交
1574
			 */
1575
			if (sync)
I
Ingo Molnar 已提交
1576
				tl -= current->se.load.weight;
1577 1578

			if ((tl <= load &&
1579
				tl + target_load(cpu, idx) <= tl_per_task) ||
I
Ingo Molnar 已提交
1580
			       100*(tl + p->se.load.weight) <= imbalance*load) {
1581 1582 1583 1584 1585 1586
				/*
				 * This domain has SD_WAKE_AFFINE and
				 * p is cache cold in this domain, and
				 * there is no bad imbalance.
				 */
				schedstat_inc(this_sd, ttwu_move_affine);
1587
				schedstat_inc(p, se.nr_wakeups_affine);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
				goto out_set_cpu;
			}
		}

		/*
		 * Start passive balancing when half the imbalance_pct
		 * limit is reached.
		 */
		if (this_sd->flags & SD_WAKE_BALANCE) {
			if (imbalance*this_load <= 100*load) {
				schedstat_inc(this_sd, ttwu_move_balance);
1599
				schedstat_inc(p, se.nr_wakeups_passive);
1600 1601
				goto out_set_cpu;
			}
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		}
	}

	new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
out_set_cpu:
	new_cpu = wake_idle(new_cpu, p);
	if (new_cpu != cpu) {
		set_task_cpu(p, new_cpu);
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1616
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1617 1618 1619 1620 1621 1622 1623 1624
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

out_activate:
#endif /* CONFIG_SMP */
1625 1626 1627 1628 1629 1630 1631 1632 1633
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1634
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1635
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1636
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	success = 1;

out_running:
	p->state = TASK_RUNNING;
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1647
int fastcall wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1648
{
1649
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1650 1651 1652
}
EXPORT_SYMBOL(wake_up_process);

1653
int fastcall wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658 1659 1660
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1661 1662 1663 1664 1665 1666 1667
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1668
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1669 1670 1671

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1672 1673 1674 1675 1676 1677
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1678
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1679
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1680
#endif
N
Nick Piggin 已提交
1681

I
Ingo Molnar 已提交
1682 1683
	INIT_LIST_HEAD(&p->run_list);
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1684

1685 1686 1687 1688
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1710
	set_task_cpu(p, cpu);
1711 1712 1713 1714 1715

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1716 1717
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1718

1719
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1720
	if (likely(sched_info_on()))
1721
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1722
#endif
1723
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1724 1725
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1726
#ifdef CONFIG_PREEMPT
1727
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1728
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1729
#endif
N
Nick Piggin 已提交
1730
	put_cpu();
L
Linus Torvalds 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1740
void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1741 1742
{
	unsigned long flags;
I
Ingo Molnar 已提交
1743
	struct rq *rq;
L
Linus Torvalds 已提交
1744 1745

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1746
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1747
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1748 1749 1750

	p->prio = effective_prio(p);

1751
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1752
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1753 1754
	} else {
		/*
I
Ingo Molnar 已提交
1755 1756
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1757
		 */
1758
		p->sched_class->task_new(rq, p);
1759
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1760
	}
I
Ingo Molnar 已提交
1761 1762
	check_preempt_curr(rq, p);
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1763 1764
}

1765 1766 1767
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1768 1769
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1770 1771 1772 1773 1774 1775 1776 1777 1778
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
1779
 * @notifier: notifier struct to unregister
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

1823 1824 1825
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
1826
 * @prev: the current task that is being switched out
1827 1828 1829 1830 1831 1832 1833 1834 1835
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
1836 1837 1838
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
1839
{
1840
	fire_sched_out_preempt_notifiers(prev, next);
1841 1842 1843 1844
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
1845 1846
/**
 * finish_task_switch - clean up after a task-switch
1847
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
1848 1849
 * @prev: the thread we just switched away from.
 *
1850 1851 1852 1853
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
1854 1855
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
1856
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
1857 1858 1859
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
1860
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
1861 1862 1863
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
1864
	long prev_state;
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
1870
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
1871 1872
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
1873
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
1874 1875 1876 1877 1878
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
1879
	prev_state = prev->state;
1880 1881
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
1882
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
1883 1884
	if (mm)
		mmdrop(mm);
1885
	if (unlikely(prev_state == TASK_DEAD)) {
1886 1887 1888
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
1889
		 */
1890
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
1891
		put_task_struct(prev);
1892
	}
L
Linus Torvalds 已提交
1893 1894 1895 1896 1897 1898
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
1899
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
1900 1901
	__releases(rq->lock)
{
1902 1903
	struct rq *rq = this_rq();

1904 1905 1906 1907 1908
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
1909
	if (current->set_child_tid)
1910
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
1911 1912 1913 1914 1915 1916
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
1917
static inline void
1918
context_switch(struct rq *rq, struct task_struct *prev,
1919
	       struct task_struct *next)
L
Linus Torvalds 已提交
1920
{
I
Ingo Molnar 已提交
1921
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
1922

1923
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
1924 1925
	mm = next->mm;
	oldmm = prev->active_mm;
1926 1927 1928 1929 1930 1931 1932
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
1933
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
1940
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
1941 1942 1943
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
1944 1945 1946 1947 1948 1949 1950
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1951
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1952
#endif
L
Linus Torvalds 已提交
1953 1954 1955 1956

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
1957 1958 1959 1960 1961 1962 1963
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

1987
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2002 2003
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2004

2005
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2015
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2016 2017 2018 2019 2020
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2036
/*
I
Ingo Molnar 已提交
2037 2038
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2039
 */
I
Ingo Molnar 已提交
2040
static void update_cpu_load(struct rq *this_rq)
2041
{
2042
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2055 2056 2057 2058 2059 2060 2061
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2062 2063
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2064 2065
}

I
Ingo Molnar 已提交
2066 2067
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2068 2069 2070 2071 2072 2073
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2074
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2075 2076 2077
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2078
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2079 2080 2081 2082
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2083
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2091 2092
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2101
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
2115
static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2116 2117 2118 2119
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
2120 2121 2122 2123 2124
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2125
	if (unlikely(!spin_trylock(&busiest->lock))) {
2126
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
		} else
			spin_lock(&busiest->lock);
	}
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2138
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2139 2140
 * the cpu_allowed mask is restored.
 */
2141
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2142
{
2143
	struct migration_req req;
L
Linus Torvalds 已提交
2144
	unsigned long flags;
2145
	struct rq *rq;
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2156

L
Linus Torvalds 已提交
2157 2158 2159 2160 2161
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2162

L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168 2169
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2170 2171
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2172 2173 2174 2175
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2176
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2177
	put_cpu();
N
Nick Piggin 已提交
2178 2179
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2180 2181 2182 2183 2184 2185
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2186 2187
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2188
{
2189
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2190
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2191
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2192 2193 2194 2195
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2196
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2202
static
2203
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2204
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2205
		     int *all_pinned)
L
Linus Torvalds 已提交
2206 2207 2208 2209 2210 2211 2212
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2213 2214
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2215
		return 0;
2216
	}
2217 2218
	*all_pinned = 0;

2219 2220
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2221
		return 0;
2222
	}
L
Linus Torvalds 已提交
2223

2224 2225 2226 2227 2228 2229
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2230 2231
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2232
#ifdef CONFIG_SCHEDSTATS
2233
		if (task_hot(p, rq->clock, sd)) {
2234
			schedstat_inc(sd, lb_hot_gained[idle]);
2235 2236
			schedstat_inc(p, se.nr_forced_migrations);
		}
2237 2238 2239 2240
#endif
		return 1;
	}

2241 2242
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2243
		return 0;
2244
	}
L
Linus Torvalds 已提交
2245 2246 2247
	return 1;
}

2248 2249 2250 2251 2252
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2253
{
2254
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2255 2256
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2257

2258
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2259 2260
		goto out;

2261 2262
	pinned = 1;

L
Linus Torvalds 已提交
2263
	/*
I
Ingo Molnar 已提交
2264
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2265
	 */
I
Ingo Molnar 已提交
2266 2267
	p = iterator->start(iterator->arg);
next:
2268
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2269
		goto out;
2270
	/*
2271
	 * To help distribute high priority tasks across CPUs we don't
2272 2273 2274
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2275 2276
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2277
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2278 2279 2280
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2281 2282
	}

I
Ingo Molnar 已提交
2283
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2284
	pulled++;
I
Ingo Molnar 已提交
2285
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2286

2287
	/*
2288
	 * We only want to steal up to the prescribed amount of weighted load.
2289
	 */
2290
	if (rem_load_move > 0) {
2291 2292
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2293 2294
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2295 2296 2297
	}
out:
	/*
2298
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2299 2300 2301 2302
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2303 2304 2305

	if (all_pinned)
		*all_pinned = pinned;
2306 2307

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2308 2309
}

I
Ingo Molnar 已提交
2310
/*
P
Peter Williams 已提交
2311 2312 2313
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2314 2315 2316 2317
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2318
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2319 2320 2321
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2322
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2323
	unsigned long total_load_moved = 0;
2324
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2325 2326

	do {
P
Peter Williams 已提交
2327 2328
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2329
				max_load_move - total_load_moved,
2330
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2331
		class = class->next;
P
Peter Williams 已提交
2332
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2333

P
Peter Williams 已提交
2334 2335 2336
	return total_load_moved > 0;
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2373
	const struct sched_class *class;
P
Peter Williams 已提交
2374 2375

	for (class = sched_class_highest; class; class = class->next)
2376
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2377 2378 2379
			return 1;

	return 0;
I
Ingo Molnar 已提交
2380 2381
}

L
Linus Torvalds 已提交
2382 2383
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2384 2385
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2386 2387 2388
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2389 2390
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2391 2392 2393
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2394
	unsigned long max_pull;
2395 2396
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2397
	int load_idx, group_imb = 0;
2398 2399 2400 2401 2402 2403
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2404 2405

	max_load = this_load = total_load = total_pwr = 0;
2406 2407
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2408
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2409
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2410
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2411 2412 2413
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2414 2415

	do {
2416
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2417 2418
		int local_group;
		int i;
2419
		int __group_imb = 0;
2420
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2421
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2422 2423 2424

		local_group = cpu_isset(this_cpu, group->cpumask);

2425 2426 2427
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2428
		/* Tally up the load of all CPUs in the group */
2429
		sum_weighted_load = sum_nr_running = avg_load = 0;
2430 2431
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2432 2433

		for_each_cpu_mask(i, group->cpumask) {
2434 2435 2436 2437 2438 2439
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2440

2441
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2442 2443
				*sd_idle = 0;

L
Linus Torvalds 已提交
2444
			/* Bias balancing toward cpus of our domain */
2445 2446 2447 2448 2449 2450
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2451
				load = target_load(i, load_idx);
2452
			} else {
N
Nick Piggin 已提交
2453
				load = source_load(i, load_idx);
2454 2455 2456 2457 2458
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2459 2460

			avg_load += load;
2461
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2462
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2463 2464
		}

2465 2466 2467
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2468 2469
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2470
		 */
2471 2472
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2473 2474 2475 2476
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2477
		total_load += avg_load;
2478
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2479 2480

		/* Adjust by relative CPU power of the group */
2481 2482
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2483

2484 2485 2486
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2487
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2488

L
Linus Torvalds 已提交
2489 2490 2491
		if (local_group) {
			this_load = avg_load;
			this = group;
2492 2493 2494
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2495
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2496 2497
			max_load = avg_load;
			busiest = group;
2498 2499
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2500
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2501
		}
2502 2503 2504 2505 2506 2507

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2508 2509 2510
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2511 2512 2513 2514 2515 2516 2517 2518 2519

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2520
		/*
2521 2522
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2523 2524
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2525
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2526
			goto group_next;
2527

I
Ingo Molnar 已提交
2528
		/*
2529
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2530 2531 2532 2533 2534
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2535 2536
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2537 2538
			group_min = group;
			min_nr_running = sum_nr_running;
2539 2540
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2541
		}
2542

I
Ingo Molnar 已提交
2543
		/*
2544
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2556
		}
2557 2558
group_next:
#endif
L
Linus Torvalds 已提交
2559 2560 2561
		group = group->next;
	} while (group != sd->groups);

2562
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2563 2564 2565 2566 2567 2568 2569 2570
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2571
	busiest_load_per_task /= busiest_nr_running;
2572 2573 2574
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581 2582
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2583
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2584 2585
	 * appear as very large values with unsigned longs.
	 */
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2598 2599

	/* Don't want to pull so many tasks that a group would go idle */
2600
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2601

L
Linus Torvalds 已提交
2602
	/* How much load to actually move to equalise the imbalance */
2603 2604
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2605 2606
			/ SCHED_LOAD_SCALE;

2607 2608 2609 2610 2611 2612
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2613
	if (*imbalance < busiest_load_per_task) {
2614
		unsigned long tmp, pwr_now, pwr_move;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2626

I
Ingo Molnar 已提交
2627 2628
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2629
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2639 2640 2641 2642
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2643 2644 2645
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2646 2647
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2648
		if (max_load > tmp)
2649
			pwr_move += busiest->__cpu_power *
2650
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2651 2652

		/* Amount of load we'd add */
2653
		if (max_load * busiest->__cpu_power <
2654
				busiest_load_per_task * SCHED_LOAD_SCALE)
2655 2656
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2657
		else
2658 2659 2660 2661
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2662 2663 2664
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2665 2666
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2667 2668 2669 2670 2671
	}

	return busiest;

out_balanced:
2672
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2673
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2674
		goto ret;
L
Linus Torvalds 已提交
2675

2676 2677 2678 2679 2680
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2681
ret:
L
Linus Torvalds 已提交
2682 2683 2684 2685 2686 2687 2688
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2689
static struct rq *
I
Ingo Molnar 已提交
2690
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2691
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2692
{
2693
	struct rq *busiest = NULL, *rq;
2694
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2695 2696 2697
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2698
		unsigned long wl;
2699 2700 2701 2702

		if (!cpu_isset(i, *cpus))
			continue;

2703
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2704
		wl = weighted_cpuload(i);
2705

I
Ingo Molnar 已提交
2706
		if (rq->nr_running == 1 && wl > imbalance)
2707
			continue;
L
Linus Torvalds 已提交
2708

I
Ingo Molnar 已提交
2709 2710
		if (wl > max_load) {
			max_load = wl;
2711
			busiest = rq;
L
Linus Torvalds 已提交
2712 2713 2714 2715 2716 2717
		}
	}

	return busiest;
}

2718 2719 2720 2721 2722 2723
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2724 2725 2726 2727
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2728
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2729
			struct sched_domain *sd, enum cpu_idle_type idle,
2730
			int *balance)
L
Linus Torvalds 已提交
2731
{
P
Peter Williams 已提交
2732
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2733 2734
	struct sched_group *group;
	unsigned long imbalance;
2735
	struct rq *busiest;
2736
	cpumask_t cpus = CPU_MASK_ALL;
2737
	unsigned long flags;
N
Nick Piggin 已提交
2738

2739 2740 2741
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2742
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2743
	 * portraying it as CPU_NOT_IDLE.
2744
	 */
I
Ingo Molnar 已提交
2745
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2746
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2747
		sd_idle = 1;
L
Linus Torvalds 已提交
2748

2749
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2750

2751 2752
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2753 2754
				   &cpus, balance);

2755
	if (*balance == 0)
2756 2757
		goto out_balanced;

L
Linus Torvalds 已提交
2758 2759 2760 2761 2762
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

2763
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
2764 2765 2766 2767 2768
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
2769
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
2770 2771 2772

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
2773
	ld_moved = 0;
L
Linus Torvalds 已提交
2774 2775 2776 2777
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
2778
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
2779 2780
		 * correctly treated as an imbalance.
		 */
2781
		local_irq_save(flags);
N
Nick Piggin 已提交
2782
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
2783
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2784
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
2785
		double_rq_unlock(this_rq, busiest);
2786
		local_irq_restore(flags);
2787

2788 2789 2790
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
2791
		if (ld_moved && this_cpu != smp_processor_id())
2792 2793
			resched_cpu(this_cpu);

2794
		/* All tasks on this runqueue were pinned by CPU affinity */
2795 2796 2797 2798
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
2799
			goto out_balanced;
2800
		}
L
Linus Torvalds 已提交
2801
	}
2802

P
Peter Williams 已提交
2803
	if (!ld_moved) {
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

2809
			spin_lock_irqsave(&busiest->lock, flags);
2810 2811 2812 2813 2814

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2815
				spin_unlock_irqrestore(&busiest->lock, flags);
2816 2817 2818 2819
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
2820 2821 2822
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
2823
				active_balance = 1;
L
Linus Torvalds 已提交
2824
			}
2825
			spin_unlock_irqrestore(&busiest->lock, flags);
2826
			if (active_balance)
L
Linus Torvalds 已提交
2827 2828 2829 2830 2831 2832
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
2833
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
2834
		}
2835
	} else
L
Linus Torvalds 已提交
2836 2837
		sd->nr_balance_failed = 0;

2838
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
2839 2840
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
2841 2842 2843 2844 2845 2846 2847 2848 2849
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
2850 2851
	}

P
Peter Williams 已提交
2852
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2853
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2854
		return -1;
P
Peter Williams 已提交
2855
	return ld_moved;
L
Linus Torvalds 已提交
2856 2857 2858 2859

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

2860
	sd->nr_balance_failed = 0;
2861 2862

out_one_pinned:
L
Linus Torvalds 已提交
2863
	/* tune up the balancing interval */
2864 2865
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
2866 2867
		sd->balance_interval *= 2;

2868
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2869
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2870
		return -1;
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876 2877
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
2878
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
2879 2880
 * this_rq is locked.
 */
2881
static int
2882
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
2883 2884
{
	struct sched_group *group;
2885
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
2886
	unsigned long imbalance;
P
Peter Williams 已提交
2887
	int ld_moved = 0;
N
Nick Piggin 已提交
2888
	int sd_idle = 0;
2889
	int all_pinned = 0;
2890
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
2891

2892 2893 2894 2895
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
2896
	 * portraying it as CPU_NOT_IDLE.
2897 2898 2899
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2900
		sd_idle = 1;
L
Linus Torvalds 已提交
2901

2902
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2903
redo:
I
Ingo Molnar 已提交
2904
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2905
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
2906
	if (!group) {
I
Ingo Molnar 已提交
2907
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2908
		goto out_balanced;
L
Linus Torvalds 已提交
2909 2910
	}

I
Ingo Molnar 已提交
2911
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2912
				&cpus);
N
Nick Piggin 已提交
2913
	if (!busiest) {
I
Ingo Molnar 已提交
2914
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2915
		goto out_balanced;
L
Linus Torvalds 已提交
2916 2917
	}

N
Nick Piggin 已提交
2918 2919
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
2920
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2921

P
Peter Williams 已提交
2922
	ld_moved = 0;
2923 2924 2925
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
2926 2927
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
2928
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
2929 2930
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
2931
		spin_unlock(&busiest->lock);
2932

2933
		if (unlikely(all_pinned)) {
2934 2935 2936 2937
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
2938 2939
	}

P
Peter Williams 已提交
2940
	if (!ld_moved) {
I
Ingo Molnar 已提交
2941
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2942 2943
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2944 2945
			return -1;
	} else
2946
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
2947

P
Peter Williams 已提交
2948
	return ld_moved;
2949 2950

out_balanced:
I
Ingo Molnar 已提交
2951
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2952
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2953
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2954
		return -1;
2955
	sd->nr_balance_failed = 0;
2956

2957
	return 0;
L
Linus Torvalds 已提交
2958 2959 2960 2961 2962 2963
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
2964
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
2965 2966
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
2967 2968
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
2969 2970

	for_each_domain(this_cpu, sd) {
2971 2972 2973 2974 2975 2976
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
2977
			/* If we've pulled tasks over stop searching: */
2978
			pulled_task = load_balance_newidle(this_cpu,
2979 2980 2981 2982 2983 2984 2985
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
2986
	}
I
Ingo Molnar 已提交
2987
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2988 2989 2990 2991 2992
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
2993
	}
L
Linus Torvalds 已提交
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3004
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3005
{
3006
	int target_cpu = busiest_rq->push_cpu;
3007 3008
	struct sched_domain *sd;
	struct rq *target_rq;
3009

3010
	/* Is there any task to move? */
3011 3012 3013 3014
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3015 3016

	/*
3017
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3018
	 * we need to fix it. Originally reported by
3019
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3020
	 */
3021
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3022

3023 3024
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3025 3026
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3027 3028

	/* Search for an sd spanning us and the target CPU. */
3029
	for_each_domain(target_cpu, sd) {
3030
		if ((sd->flags & SD_LOAD_BALANCE) &&
3031
		    cpu_isset(busiest_cpu, sd->span))
3032
				break;
3033
	}
3034

3035
	if (likely(sd)) {
3036
		schedstat_inc(sd, alb_count);
3037

P
Peter Williams 已提交
3038 3039
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3040 3041 3042 3043
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3044
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3045 3046
}

3047 3048 3049
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3050
	cpumask_t cpu_mask;
3051 3052 3053 3054 3055
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3056
/*
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3067
 *
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3124 3125 3126 3127 3128
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3129
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3130
{
3131 3132
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3133 3134
	unsigned long interval;
	struct sched_domain *sd;
3135
	/* Earliest time when we have to do rebalance again */
3136
	unsigned long next_balance = jiffies + 60*HZ;
3137
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3138

3139
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3140 3141 3142 3143
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3144
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3145 3146 3147 3148 3149 3150
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3151 3152 3153
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3154

3155 3156 3157 3158 3159
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3160
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3161
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3162 3163
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3164 3165 3166
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3167
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3168
			}
3169
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3170
		}
3171 3172 3173
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3174
		if (time_after(next_balance, sd->last_balance + interval)) {
3175
			next_balance = sd->last_balance + interval;
3176 3177
			update_next_balance = 1;
		}
3178 3179 3180 3181 3182 3183 3184 3185

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3186
	}
3187 3188 3189 3190 3191 3192 3193 3194

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3195 3196 3197 3198 3199 3200 3201 3202 3203
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3204 3205 3206 3207
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3208

I
Ingo Molnar 已提交
3209
	rebalance_domains(this_cpu, idle);
3210 3211 3212 3213 3214 3215 3216

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3217 3218
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3219 3220 3221 3222
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3223
		cpu_clear(this_cpu, cpus);
3224 3225 3226 3227 3228 3229 3230 3231 3232
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3233
			rebalance_domains(balance_cpu, CPU_IDLE);
3234 3235

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3236 3237
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3250
static inline void trigger_load_balance(struct rq *rq, int cpu)
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3302
}
I
Ingo Molnar 已提交
3303 3304 3305

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3306 3307 3308
/*
 * on UP we do not need to balance between CPUs:
 */
3309
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3310 3311
{
}
I
Ingo Molnar 已提交
3312

L
Linus Torvalds 已提交
3313 3314 3315 3316 3317 3318 3319
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3320 3321
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3322
 */
3323
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3324 3325
{
	unsigned long flags;
3326 3327
	u64 ns, delta_exec;
	struct rq *rq;
3328

3329 3330 3331
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
	if (rq->curr == p) {
I
Ingo Molnar 已提交
3332 3333
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3334 3335 3336 3337
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3338

L
Linus Torvalds 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3362 3363 3364 3365 3366
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3367
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3401
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3402 3403
	cputime64_t tmp;

3404 3405
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3406

L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412 3413 3414
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3415
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3416
		cpustat->system = cputime64_add(cpustat->system, tmp);
3417
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3418 3419 3420 3421 3422 3423 3424
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3445
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3446 3447 3448 3449 3450 3451 3452

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3453
	} else
L
Linus Torvalds 已提交
3454 3455 3456
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3468
	struct task_struct *curr = rq->curr;
3469
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3470 3471

	spin_lock(&rq->lock);
3472
	__update_rq_clock(rq);
3473 3474 3475 3476 3477 3478
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
	if (unlikely(rq->clock < next_tick))
		rq->clock = next_tick;
	rq->tick_timestamp = rq->clock;
3479
	update_cpu_load(rq);
I
Ingo Molnar 已提交
3480 3481 3482
	if (curr != rq->idle) /* FIXME: needed? */
		curr->sched_class->task_tick(rq, curr);
	spin_unlock(&rq->lock);
3483

3484
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3485 3486
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3487
#endif
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

void fastcall add_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3497 3498
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3499 3500 3501 3502
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3503 3504
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510 3511 3512
}
EXPORT_SYMBOL(add_preempt_count);

void fastcall sub_preempt_count(int val)
{
	/*
	 * Underflow?
	 */
3513 3514
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3515 3516 3517
	/*
	 * Is the spinlock portion underflowing?
	 */
3518 3519 3520 3521
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3522 3523 3524 3525 3526 3527 3528
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3529
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3530
 */
I
Ingo Molnar 已提交
3531
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3532
{
3533 3534 3535 3536 3537
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3538 3539 3540
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3541 3542 3543 3544 3545

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3546
}
L
Linus Torvalds 已提交
3547

I
Ingo Molnar 已提交
3548 3549 3550 3551 3552
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3553
	/*
I
Ingo Molnar 已提交
3554
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3555 3556 3557
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3558 3559 3560
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3561 3562
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3563
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3564 3565
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3566 3567
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3568 3569
	}
#endif
I
Ingo Molnar 已提交
3570 3571 3572 3573 3574 3575
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3576
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3577
{
3578
	const struct sched_class *class;
I
Ingo Molnar 已提交
3579
	struct task_struct *p;
L
Linus Torvalds 已提交
3580 3581

	/*
I
Ingo Molnar 已提交
3582 3583
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3584
	 */
I
Ingo Molnar 已提交
3585
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3586
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3587 3588
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3589 3590
	}

I
Ingo Molnar 已提交
3591 3592
	class = sched_class_highest;
	for ( ; ; ) {
3593
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3594 3595 3596 3597 3598 3599 3600 3601 3602
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3603

I
Ingo Molnar 已提交
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3626

3627 3628 3629 3630
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3631
	__update_rq_clock(rq);
3632 3633
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3634 3635 3636

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3637
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3638
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3639
		} else {
3640
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3641
		}
I
Ingo Molnar 已提交
3642
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3643 3644
	}

I
Ingo Molnar 已提交
3645
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3646 3647
		idle_balance(cpu, rq);

3648
	prev->sched_class->put_prev_task(rq, prev);
3649
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3650 3651

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3652

L
Linus Torvalds 已提交
3653 3654 3655 3656 3657
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3658
		context_switch(rq, prev, next); /* unlocks the rq */
L
Linus Torvalds 已提交
3659 3660 3661
	} else
		spin_unlock_irq(&rq->lock);

I
Ingo Molnar 已提交
3662 3663 3664
	if (unlikely(reacquire_kernel_lock(current) < 0)) {
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3665
		goto need_resched_nonpreemptible;
I
Ingo Molnar 已提交
3666
	}
L
Linus Torvalds 已提交
3667 3668 3669 3670 3671 3672 3673 3674
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3675
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3676
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3688
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3689
	 */
N
Nick Piggin 已提交
3690
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3691 3692
		return;

3693 3694 3695 3696 3697 3698 3699 3700
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3701
#ifdef CONFIG_PREEMPT_BKL
3702 3703
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3704
#endif
3705
		schedule();
L
Linus Torvalds 已提交
3706
#ifdef CONFIG_PREEMPT_BKL
3707
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3708
#endif
3709
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3710

3711 3712 3713 3714 3715 3716
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3717 3718 3719 3720
}
EXPORT_SYMBOL(preempt_schedule);

/*
3721
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
	struct task_struct *task = current;
	int saved_lock_depth;
#endif
3733
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3734 3735
	BUG_ON(ti->preempt_count || !irqs_disabled());

3736 3737 3738 3739 3740 3741 3742 3743
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
L
Linus Torvalds 已提交
3744
#ifdef CONFIG_PREEMPT_BKL
3745 3746
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
L
Linus Torvalds 已提交
3747
#endif
3748 3749 3750
		local_irq_enable();
		schedule();
		local_irq_disable();
L
Linus Torvalds 已提交
3751
#ifdef CONFIG_PREEMPT_BKL
3752
		task->lock_depth = saved_lock_depth;
L
Linus Torvalds 已提交
3753
#endif
3754
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3755

3756 3757 3758 3759 3760 3761
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3762 3763 3764 3765
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
3766 3767
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
3768
{
3769
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
3770 3771 3772 3773
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
3774 3775
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
3776 3777 3778
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
3779
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
3780 3781 3782 3783 3784
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
3785
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
3786

3787
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3788 3789
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
3790
		if (curr->func(curr, mode, sync, key) &&
3791
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
3792 3793 3794 3795 3796 3797 3798 3799 3800
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3801
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
3802 3803
 */
void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
3804
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
3823
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
I
Ingo Molnar 已提交
3835 3836
void fastcall
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

3853
void complete(struct completion *x)
L
Linus Torvalds 已提交
3854 3855 3856 3857 3858
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
3859
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
3860 3861 3862 3863
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

3864
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
3865 3866 3867 3868 3869
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
3870
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
3871 3872 3873 3874
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

3875 3876
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
3884 3885 3886 3887 3888 3889
			if (state == TASK_INTERRUPTIBLE &&
			    signal_pending(current)) {
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
3890 3891 3892 3893 3894
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
3895
				return timeout;
L
Linus Torvalds 已提交
3896 3897 3898 3899 3900 3901 3902 3903
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

3904 3905
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
3906 3907 3908 3909
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
3910
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
3911
	spin_unlock_irq(&x->wait.lock);
3912 3913
	return timeout;
}
L
Linus Torvalds 已提交
3914

3915
void __sched wait_for_completion(struct completion *x)
3916 3917
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3918
}
3919
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
3920

3921
unsigned long __sched
3922
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
3923
{
3924
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
3925
}
3926
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
3927

3928
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
3929
{
3930 3931 3932 3933
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
3934
}
3935
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
3936

3937
unsigned long __sched
3938 3939
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
3940
{
3941
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
3942
}
3943
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
3944

3945 3946
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
3947
{
I
Ingo Molnar 已提交
3948 3949 3950 3951
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
3952

3953
	__set_current_state(state);
L
Linus Torvalds 已提交
3954

3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3969 3970 3971
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
3972
long __sched
I
Ingo Molnar 已提交
3973
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3974
{
3975
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3976 3977 3978
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
3979
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
3980
{
3981
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
3982 3983 3984
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
3985
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
3986
{
3987
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
3988 3989 3990
}
EXPORT_SYMBOL(sleep_on_timeout);

3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4003
void rt_mutex_setprio(struct task_struct *p, int prio)
4004 4005
{
	unsigned long flags;
4006
	int oldprio, on_rq, running;
4007
	struct rq *rq;
4008 4009 4010 4011

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4012
	update_rq_clock(rq);
4013

4014
	oldprio = p->prio;
I
Ingo Molnar 已提交
4015
	on_rq = p->se.on_rq;
4016 4017
	running = task_running(rq, p);
	if (on_rq) {
4018
		dequeue_task(rq, p, 0);
4019 4020 4021
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4022 4023 4024 4025 4026 4027

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4028 4029
	p->prio = prio;

I
Ingo Molnar 已提交
4030
	if (on_rq) {
4031 4032
		if (running)
			p->sched_class->set_curr_task(rq);
4033
		enqueue_task(rq, p, 0);
4034 4035
		/*
		 * Reschedule if we are currently running on this runqueue and
4036 4037
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
4038
		 */
4039
		if (running) {
4040 4041
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4042 4043 4044
		} else {
			check_preempt_curr(rq, p);
		}
4045 4046 4047 4048 4049 4050
	}
	task_rq_unlock(rq, &flags);
}

#endif

4051
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4052
{
I
Ingo Molnar 已提交
4053
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4054
	unsigned long flags;
4055
	struct rq *rq;
L
Linus Torvalds 已提交
4056 4057 4058 4059 4060 4061 4062 4063

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4064
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4065 4066 4067 4068
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4069
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4070
	 */
4071
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4072 4073 4074
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4075 4076
	on_rq = p->se.on_rq;
	if (on_rq) {
4077
		dequeue_task(rq, p, 0);
4078
		dec_load(rq, p);
4079
	}
L
Linus Torvalds 已提交
4080 4081

	p->static_prio = NICE_TO_PRIO(nice);
4082
	set_load_weight(p);
4083 4084 4085
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4086

I
Ingo Molnar 已提交
4087
	if (on_rq) {
4088
		enqueue_task(rq, p, 0);
4089
		inc_load(rq, p);
L
Linus Torvalds 已提交
4090
		/*
4091 4092
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4093
		 */
4094
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4095 4096 4097 4098 4099 4100 4101
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4102 4103 4104 4105 4106
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4107
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4108
{
4109 4110
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4111

M
Matt Mackall 已提交
4112 4113 4114 4115
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4127
	long nice, retval;
L
Linus Torvalds 已提交
4128 4129 4130 4131 4132 4133

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4134 4135
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4145 4146 4147
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4166
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4167 4168 4169 4170 4171 4172 4173 4174
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4175
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4194
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4195 4196 4197 4198 4199 4200 4201 4202
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4203
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4204
{
4205
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4206 4207 4208
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4209 4210
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4211
{
I
Ingo Molnar 已提交
4212
	BUG_ON(p->se.on_rq);
4213

L
Linus Torvalds 已提交
4214
	p->policy = policy;
I
Ingo Molnar 已提交
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4227
	p->rt_priority = prio;
4228 4229 4230
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4231
	set_load_weight(p);
L
Linus Torvalds 已提交
4232 4233 4234
}

/**
4235
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4236 4237 4238
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4239
 *
4240
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4241
 */
I
Ingo Molnar 已提交
4242 4243
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4244
{
4245
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4246
	unsigned long flags;
4247
	struct rq *rq;
L
Linus Torvalds 已提交
4248

4249 4250
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4251 4252 4253 4254 4255
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4256 4257
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4258
		return -EINVAL;
L
Linus Torvalds 已提交
4259 4260
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4261 4262
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4263 4264
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4265
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4266
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4267
		return -EINVAL;
4268
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4269 4270
		return -EINVAL;

4271 4272 4273 4274
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4275
		if (rt_policy(policy)) {
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4292 4293 4294 4295 4296 4297
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4298

4299 4300 4301 4302 4303
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4304 4305 4306 4307

	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4308 4309 4310 4311 4312
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4313 4314 4315 4316
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4317
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4318 4319 4320
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4321 4322
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4323 4324
		goto recheck;
	}
I
Ingo Molnar 已提交
4325
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4326
	on_rq = p->se.on_rq;
4327 4328
	running = task_running(rq, p);
	if (on_rq) {
4329
		deactivate_task(rq, p, 0);
4330 4331 4332
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4333

L
Linus Torvalds 已提交
4334
	oldprio = p->prio;
I
Ingo Molnar 已提交
4335
	__setscheduler(rq, p, policy, param->sched_priority);
4336

I
Ingo Molnar 已提交
4337
	if (on_rq) {
4338 4339
		if (running)
			p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4340
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
4341 4342
		/*
		 * Reschedule if we are currently running on this runqueue and
4343 4344
		 * our priority decreased, or if we are not currently running on
		 * this runqueue and our priority is higher than the current's
L
Linus Torvalds 已提交
4345
		 */
4346
		if (running) {
4347 4348
			if (p->prio > oldprio)
				resched_task(rq->curr);
I
Ingo Molnar 已提交
4349 4350 4351
		} else {
			check_preempt_curr(rq, p);
		}
L
Linus Torvalds 已提交
4352
	}
4353 4354 4355
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4356 4357
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4358 4359 4360 4361
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4362 4363
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4364 4365 4366
{
	struct sched_param lparam;
	struct task_struct *p;
4367
	int retval;
L
Linus Torvalds 已提交
4368 4369 4370 4371 4372

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4373 4374 4375

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4376
	p = find_process_by_pid(pid);
4377 4378 4379
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4380

L
Linus Torvalds 已提交
4381 4382 4383 4384 4385 4386 4387 4388 4389
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4390 4391
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4392
{
4393 4394 4395 4396
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4416
	struct task_struct *p;
4417
	int retval;
L
Linus Torvalds 已提交
4418 4419

	if (pid < 0)
4420
		return -EINVAL;
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4442
	struct task_struct *p;
4443
	int retval;
L
Linus Torvalds 已提交
4444 4445

	if (!param || pid < 0)
4446
		return -EINVAL;
L
Linus Torvalds 已提交
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4476 4477
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4478

4479
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4480 4481 4482 4483 4484
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4485
		mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4486 4487 4488 4489 4490
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4491
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4502 4503 4504 4505
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4506 4507
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4508
 again:
L
Linus Torvalds 已提交
4509 4510
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4523 4524
out_unlock:
	put_task_struct(p);
4525
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4566
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4567 4568 4569
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4570
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4571 4572
EXPORT_SYMBOL(cpu_online_map);

4573
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4574
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4575 4576 4577 4578
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4579
	struct task_struct *p;
L
Linus Torvalds 已提交
4580 4581
	int retval;

4582
	mutex_lock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4583 4584 4585 4586 4587 4588 4589
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4590 4591 4592 4593
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4594
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4595 4596 4597

out_unlock:
	read_unlock(&tasklist_lock);
4598
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
4599

4600
	return retval;
L
Linus Torvalds 已提交
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4631 4632
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4633 4634 4635
 */
asmlinkage long sys_sched_yield(void)
{
4636
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4637

4638
	schedstat_inc(rq, yld_count);
4639
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4640 4641 4642 4643 4644 4645

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4646
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4647 4648 4649 4650 4651 4652 4653 4654
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4655
static void __cond_resched(void)
L
Linus Torvalds 已提交
4656
{
4657 4658 4659
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4660 4661 4662 4663 4664
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670 4671 4672 4673
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

int __sched cond_resched(void)
{
4674 4675
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
		__cond_resched();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched);

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4687
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4688 4689 4690
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4691
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4692
{
J
Jan Kara 已提交
4693 4694
	int ret = 0;

L
Linus Torvalds 已提交
4695 4696 4697
	if (need_lockbreak(lock)) {
		spin_unlock(lock);
		cpu_relax();
J
Jan Kara 已提交
4698
		ret = 1;
L
Linus Torvalds 已提交
4699 4700
		spin_lock(lock);
	}
4701
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4702
		spin_release(&lock->dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4703 4704 4705
		_raw_spin_unlock(lock);
		preempt_enable_no_resched();
		__cond_resched();
J
Jan Kara 已提交
4706
		ret = 1;
L
Linus Torvalds 已提交
4707 4708
		spin_lock(lock);
	}
J
Jan Kara 已提交
4709
	return ret;
L
Linus Torvalds 已提交
4710 4711 4712 4713 4714 4715 4716
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4717
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4718
		local_bh_enable();
L
Linus Torvalds 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4730
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4741
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4742 4743 4744 4745 4746 4747 4748
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4749
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4750

4751
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4752 4753 4754
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4755
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4756 4757 4758 4759 4760
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4761
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4762 4763
	long ret;

4764
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4765 4766 4767
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
4768
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
4789
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4790
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
4814
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4815
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
4832
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4833
	unsigned int time_slice;
4834
	int retval;
L
Linus Torvalds 已提交
4835 4836 4837
	struct timespec t;

	if (pid < 0)
4838
		return -EINVAL;
L
Linus Torvalds 已提交
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4850 4851 4852 4853 4854 4855
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
4856
		time_slice = DEF_TIMESLICE;
4857
	} else {
D
Dmitry Adamushko 已提交
4858 4859 4860 4861 4862
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
4863 4864
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
4865 4866
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
4867
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
4868
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4869 4870
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4871

L
Linus Torvalds 已提交
4872 4873 4874 4875 4876
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

4877
static const char stat_nam[] = "RSDTtZX";
4878 4879

static void show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4880 4881
{
	unsigned long free = 0;
4882
	unsigned state;
L
Linus Torvalds 已提交
4883 4884

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
4885
	printk(KERN_INFO "%-13.13s %c", p->comm,
4886
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4887
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4888
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4889
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4890
	else
I
Ingo Molnar 已提交
4891
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4892 4893
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
4894
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4895
	else
I
Ingo Molnar 已提交
4896
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4897 4898 4899
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
4900
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
4901 4902
		while (!*n)
			n++;
4903
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
4904 4905
	}
#endif
4906 4907
	printk(KERN_CONT "%5lu %5d %6d\n", free,
		task_pid_nr(p), task_pid_nr(p->parent));
L
Linus Torvalds 已提交
4908 4909 4910 4911 4912

	if (state != TASK_RUNNING)
		show_stack(p, NULL);
}

I
Ingo Molnar 已提交
4913
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4914
{
4915
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4916

4917 4918 4919
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4920
#else
4921 4922
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928 4929 4930
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4931
		if (!state_filter || (p->state & state_filter))
I
Ingo Molnar 已提交
4932
			show_task(p);
L
Linus Torvalds 已提交
4933 4934
	} while_each_thread(g, p);

4935 4936
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4937 4938 4939
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
4940
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
4941 4942 4943 4944 4945
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
4946 4947
}

I
Ingo Molnar 已提交
4948 4949
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
4950
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4951 4952
}

4953 4954 4955 4956 4957 4958 4959 4960
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4961
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4962
{
4963
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4964 4965
	unsigned long flags;

I
Ingo Molnar 已提交
4966 4967 4968
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

4969
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
4970
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
4971
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
4972 4973 4974

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
4975 4976 4977
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
4978 4979 4980 4981
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
A
Al Viro 已提交
4982
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
L
Linus Torvalds 已提交
4983
#else
A
Al Viro 已提交
4984
	task_thread_info(idle)->preempt_count = 0;
L
Linus Torvalds 已提交
4985
#endif
I
Ingo Molnar 已提交
4986 4987 4988 4989
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5027 5028 5029 5030
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5031
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5050
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5051 5052
 * call is not atomic; no spinlocks may be held.
 */
5053
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5054
{
5055
	struct migration_req req;
L
Linus Torvalds 已提交
5056
	unsigned long flags;
5057
	struct rq *rq;
5058
	int ret = 0;
L
Linus Torvalds 已提交
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

	p->cpus_allowed = new_mask;
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5081

L
Linus Torvalds 已提交
5082 5083 5084 5085 5086
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5087
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5088 5089 5090 5091 5092 5093
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5094 5095
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5096
 */
5097
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5098
{
5099
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5100
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5101 5102

	if (unlikely(cpu_is_offline(dest_cpu)))
5103
		return ret;
L
Linus Torvalds 已提交
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5116
	on_rq = p->se.on_rq;
5117
	if (on_rq)
5118
		deactivate_task(rq_src, p, 0);
5119

L
Linus Torvalds 已提交
5120
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5121 5122 5123
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5124
	}
5125
	ret = 1;
L
Linus Torvalds 已提交
5126 5127
out:
	double_rq_unlock(rq_src, rq_dest);
5128
	return ret;
L
Linus Torvalds 已提交
5129 5130 5131 5132 5133 5134 5135
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5136
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5137 5138
{
	int cpu = (long)data;
5139
	struct rq *rq;
L
Linus Torvalds 已提交
5140 5141 5142 5143 5144 5145

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5146
		struct migration_req *req;
L
Linus Torvalds 已提交
5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5169
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5170 5171
		list_del_init(head->next);

N
Nick Piggin 已提交
5172 5173 5174
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5204
/*
5205
 * Figure out where task on dead CPU should go, use force if necessary.
5206 5207
 * NOTE: interrupts should be disabled by the caller
 */
5208
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5209
{
5210
	unsigned long flags;
L
Linus Torvalds 已提交
5211
	cpumask_t mask;
5212 5213
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5214

5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5227 5228 5229 5230 5231
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5232
			 * cpuset_cpus_allowed() will not block. It must be
5233 5234
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5235
			rq = task_rq_lock(p, &flags);
5236
			p->cpus_allowed = cpus_allowed;
5237 5238
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5239

5240 5241 5242 5243 5244
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5245
			if (p->mm && printk_ratelimit()) {
5246 5247
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5248 5249
					task_pid_nr(p), p->comm, dead_cpu);
			}
5250
		}
5251
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5252 5253 5254 5255 5256 5257 5258 5259 5260
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5261
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5262
{
5263
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5277
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5278

5279
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5280

5281 5282
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5283 5284
			continue;

5285 5286 5287
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5288

5289
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5290 5291
}

I
Ingo Molnar 已提交
5292 5293
/*
 * Schedules idle task to be the next runnable task on current CPU.
5294 5295
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5296 5297 5298
 */
void sched_idle_next(void)
{
5299
	int this_cpu = smp_processor_id();
5300
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5301 5302 5303 5304
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5305
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5306

5307 5308 5309
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5310 5311 5312
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5313
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5314

5315 5316
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5317 5318 5319 5320

	spin_unlock_irqrestore(&rq->lock, flags);
}

5321 5322
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5336
/* called under rq->lock with disabled interrupts */
5337
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5338
{
5339
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5340 5341

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5342
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5343 5344

	/* Cannot have done final schedule yet: would have vanished. */
5345
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5346

5347
	get_task_struct(p);
L
Linus Torvalds 已提交
5348 5349 5350

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5351
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5352 5353
	 * fine.
	 */
5354
	spin_unlock_irq(&rq->lock);
5355
	move_task_off_dead_cpu(dead_cpu, p);
5356
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5357

5358
	put_task_struct(p);
L
Linus Torvalds 已提交
5359 5360 5361 5362 5363
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5364
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5365
	struct task_struct *next;
5366

I
Ingo Molnar 已提交
5367 5368 5369
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5370
		update_rq_clock(rq);
5371
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5372 5373 5374
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5375

L
Linus Torvalds 已提交
5376 5377 5378 5379
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5380 5381 5382
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5383 5384
	{
		.procname	= "sched_domain",
5385
		.mode		= 0555,
5386
	},
I
Ingo Molnar 已提交
5387
	{0, },
5388 5389 5390
};

static struct ctl_table sd_ctl_root[] = {
5391
	{
5392
		.ctl_name	= CTL_KERN,
5393
		.procname	= "kernel",
5394
		.mode		= 0555,
5395 5396
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5397
	{0, },
5398 5399 5400 5401 5402
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5403
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5404 5405 5406 5407

	return entry;
}

5408 5409
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5410
	struct ctl_table *entry;
5411

5412 5413 5414
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5415
	 * will always be set. In the lowest directory the names are
5416 5417 5418
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5419 5420
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5421 5422 5423
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5424 5425 5426 5427 5428

	kfree(*tablep);
	*tablep = NULL;
}

5429
static void
5430
set_table_entry(struct ctl_table *entry,
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5444
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5445

5446 5447 5448
	if (table == NULL)
		return NULL;

5449
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5450
		sizeof(long), 0644, proc_doulongvec_minmax);
5451
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5452
		sizeof(long), 0644, proc_doulongvec_minmax);
5453
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5454
		sizeof(int), 0644, proc_dointvec_minmax);
5455
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5456
		sizeof(int), 0644, proc_dointvec_minmax);
5457
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5458
		sizeof(int), 0644, proc_dointvec_minmax);
5459
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5460
		sizeof(int), 0644, proc_dointvec_minmax);
5461
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5462
		sizeof(int), 0644, proc_dointvec_minmax);
5463
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5464
		sizeof(int), 0644, proc_dointvec_minmax);
5465
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5466
		sizeof(int), 0644, proc_dointvec_minmax);
5467
	set_table_entry(&table[9], "cache_nice_tries",
5468 5469
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5470
	set_table_entry(&table[10], "flags", &sd->flags,
5471
		sizeof(int), 0644, proc_dointvec_minmax);
5472
	/* &table[11] is terminator */
5473 5474 5475 5476

	return table;
}

5477
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5478 5479 5480 5481 5482 5483 5484 5485 5486
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5487 5488
	if (table == NULL)
		return NULL;
5489 5490 5491 5492 5493

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5494
		entry->mode = 0555;
5495 5496 5497 5498 5499 5500 5501 5502
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5503
static void register_sched_domain_sysctl(void)
5504 5505 5506 5507 5508
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5509 5510 5511
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5512 5513 5514
	if (entry == NULL)
		return;

5515
	for_each_online_cpu(i) {
5516 5517
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5518
		entry->mode = 0555;
5519
		entry->child = sd_alloc_ctl_cpu_table(i);
5520
		entry++;
5521
	}
5522 5523

	WARN_ON(sd_sysctl_header);
5524 5525
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5526

5527
/* may be called multiple times per register */
5528 5529
static void unregister_sched_domain_sysctl(void)
{
5530 5531
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5532
	sd_sysctl_header = NULL;
5533 5534
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5535
}
5536
#else
5537 5538 5539 5540
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5541 5542 5543 5544
{
}
#endif

L
Linus Torvalds 已提交
5545 5546 5547 5548
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5549 5550
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5551 5552
{
	struct task_struct *p;
5553
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5554
	unsigned long flags;
5555
	struct rq *rq;
L
Linus Torvalds 已提交
5556 5557

	switch (action) {
5558 5559 5560 5561
	case CPU_LOCK_ACQUIRE:
		mutex_lock(&sched_hotcpu_mutex);
		break;

L
Linus Torvalds 已提交
5562
	case CPU_UP_PREPARE:
5563
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5564
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5565 5566 5567 5568 5569
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5570
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5571 5572 5573
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5574

L
Linus Torvalds 已提交
5575
	case CPU_ONLINE:
5576
	case CPU_ONLINE_FROZEN:
5577
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5578 5579
		wake_up_process(cpu_rq(cpu)->migration_thread);
		break;
5580

L
Linus Torvalds 已提交
5581 5582
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5583
	case CPU_UP_CANCELED_FROZEN:
5584 5585
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5586
		/* Unbind it from offline cpu so it can run. Fall thru. */
5587 5588
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5589 5590 5591
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5592

L
Linus Torvalds 已提交
5593
	case CPU_DEAD:
5594
	case CPU_DEAD_FROZEN:
5595
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5596 5597 5598 5599 5600
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5601
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5602
		update_rq_clock(rq);
5603
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5604
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5605 5606
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5607
		migrate_dead_tasks(cpu);
5608
		spin_unlock_irq(&rq->lock);
5609
		cpuset_unlock();
L
Linus Torvalds 已提交
5610 5611 5612
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5613 5614 5615 5616 5617
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5618 5619
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5620 5621
			struct migration_req *req;

L
Linus Torvalds 已提交
5622
			req = list_entry(rq->migration_queue.next,
5623
					 struct migration_req, list);
L
Linus Torvalds 已提交
5624 5625 5626 5627 5628 5629
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
#endif
5630 5631 5632
	case CPU_LOCK_RELEASE:
		mutex_unlock(&sched_hotcpu_mutex);
		break;
L
Linus Torvalds 已提交
5633 5634 5635 5636 5637 5638 5639
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5640
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5641 5642 5643 5644
	.notifier_call = migration_call,
	.priority = 10
};

5645
void __init migration_init(void)
L
Linus Torvalds 已提交
5646 5647
{
	void *cpu = (void *)(long)smp_processor_id();
5648
	int err;
5649 5650

	/* Start one for the boot CPU: */
5651 5652
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5653 5654 5655 5656 5657 5658
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5659 5660 5661 5662 5663

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5664
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5665 5666

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5667
{
I
Ingo Molnar 已提交
5668 5669 5670
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5671

I
Ingo Molnar 已提交
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5683 5684
	}

I
Ingo Molnar 已提交
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5695

I
Ingo Molnar 已提交
5696
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5697
	do {
I
Ingo Molnar 已提交
5698 5699 5700
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5701 5702 5703
			break;
		}

I
Ingo Molnar 已提交
5704 5705 5706 5707 5708 5709
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5710

I
Ingo Molnar 已提交
5711 5712 5713 5714 5715
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5716

I
Ingo Molnar 已提交
5717 5718 5719 5720 5721
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5722

I
Ingo Molnar 已提交
5723
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5724

I
Ingo Molnar 已提交
5725 5726
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5727

I
Ingo Molnar 已提交
5728 5729 5730
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5731

I
Ingo Molnar 已提交
5732 5733
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5734

I
Ingo Molnar 已提交
5735 5736 5737 5738 5739
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
5740

I
Ingo Molnar 已提交
5741 5742 5743
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5744

I
Ingo Molnar 已提交
5745 5746 5747 5748
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5749

I
Ingo Molnar 已提交
5750 5751 5752 5753 5754
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
5755 5756
		level++;
		sd = sd->parent;
5757
		if (!sd)
I
Ingo Molnar 已提交
5758 5759
			break;
	}
L
Linus Torvalds 已提交
5760 5761
}
#else
5762
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
5763 5764
#endif

5765
static int sd_degenerate(struct sched_domain *sd)
5766 5767 5768 5769 5770 5771 5772 5773
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5774 5775 5776
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

5790 5791
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5810 5811 5812
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
5813 5814 5815 5816 5817 5818 5819
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

L
Linus Torvalds 已提交
5820 5821 5822 5823
/*
 * Attach the domain 'sd' to 'cpu' as its base domain.  Callers must
 * hold the hotplug lock.
 */
5824
static void cpu_attach_domain(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5825
{
5826
	struct rq *rq = cpu_rq(cpu);
5827 5828 5829 5830 5831 5832 5833
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5834
		if (sd_parent_degenerate(tmp, parent)) {
5835
			tmp->parent = parent->parent;
5836 5837 5838
			if (parent->parent)
				parent->parent->child = tmp;
		}
5839 5840
	}

5841
	if (sd && sd_degenerate(sd)) {
5842
		sd = sd->parent;
5843 5844 5845
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5846 5847 5848

	sched_domain_debug(sd, cpu);

N
Nick Piggin 已提交
5849
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
5850 5851 5852
}

/* cpus with isolated domains */
5853
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
5868
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5869 5870

/*
5871 5872 5873 5874
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
5875 5876 5877 5878 5879
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
5880
static void
5881 5882 5883
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
5884 5885 5886 5887 5888 5889
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
5890 5891
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
5892 5893 5894 5895 5896 5897
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
5898
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
5899 5900

		for_each_cpu_mask(j, span) {
5901
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

5916
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
5917

5918
#ifdef CONFIG_NUMA
5919

5920 5921 5922 5923 5924
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
5925
 * Find the next node to include in a given scheduling domain. Simply
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
5965
 * Given a node, construct a good cpumask for its sched_domain to span. It
5966 5967 5968 5969 5970 5971
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5972 5973
	cpumask_t span, nodemask;
	int i;
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
5984

5985 5986 5987 5988 5989 5990 5991 5992
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

5993
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5994

5995
/*
5996
 * SMT sched-domains:
5997
 */
L
Linus Torvalds 已提交
5998 5999
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6000
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6001

I
Ingo Molnar 已提交
6002 6003
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6004
{
6005 6006
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6007 6008 6009 6010
	return cpu;
}
#endif

6011 6012 6013
/*
 * multi-core sched-domains:
 */
6014 6015
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6016
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6017 6018 6019
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6020 6021
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6022
{
6023
	int group;
6024
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6025
	cpus_and(mask, mask, *cpu_map);
6026 6027 6028 6029
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6030 6031
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6032 6033
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6034
{
6035 6036
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6037 6038 6039 6040
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6041
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6042
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6043

I
Ingo Molnar 已提交
6044 6045
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6046
{
6047
	int group;
6048
#ifdef CONFIG_SCHED_MC
6049
	cpumask_t mask = cpu_coregroup_map(cpu);
6050
	cpus_and(mask, mask, *cpu_map);
6051
	group = first_cpu(mask);
6052
#elif defined(CONFIG_SCHED_SMT)
6053
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6054
	cpus_and(mask, mask, *cpu_map);
6055
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6056
#else
6057
	group = cpu;
L
Linus Torvalds 已提交
6058
#endif
6059 6060 6061
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6062 6063 6064 6065
}

#ifdef CONFIG_NUMA
/*
6066 6067 6068
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6069
 */
6070
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6071
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6072

6073
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6074
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6075

6076 6077
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6078
{
6079 6080 6081 6082 6083 6084 6085 6086 6087
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6088
}
6089

6090 6091 6092 6093 6094 6095 6096
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6097 6098 6099
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6100

6101 6102 6103 6104 6105 6106 6107 6108
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6109

6110 6111 6112 6113
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6114
}
L
Linus Torvalds 已提交
6115 6116
#endif

6117
#ifdef CONFIG_NUMA
6118 6119 6120
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6121
	int cpu, i;
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6152 6153 6154 6155 6156
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6157

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6184 6185
	sd->groups->__cpu_power = 0;

6186 6187 6188 6189 6190 6191 6192 6193 6194 6195
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6196
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6197 6198 6199 6200 6201 6202 6203 6204
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6205
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6206 6207 6208 6209
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6210
/*
6211 6212
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6213
 */
6214
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6215 6216
{
	int i;
6217 6218
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6219
	int sd_allnodes = 0;
6220 6221 6222 6223

	/*
	 * Allocate the per-node list of sched groups
	 */
6224
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6225
				    GFP_KERNEL);
6226 6227
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6228
		return -ENOMEM;
6229 6230 6231
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6232 6233

	/*
6234
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6235
	 */
6236
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6237 6238 6239
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6240
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6241 6242

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6243 6244
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6245 6246 6247
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6248
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6249
			p = sd;
6250
			sd_allnodes = 1;
6251 6252 6253
		} else
			p = NULL;

L
Linus Torvalds 已提交
6254 6255
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6256 6257
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6258 6259
		if (p)
			p->child = sd;
6260
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6261 6262 6263 6264 6265 6266 6267
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6268 6269
		if (p)
			p->child = sd;
6270
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6271

6272 6273 6274 6275 6276 6277 6278
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6279
		p->child = sd;
6280
		cpu_to_core_group(i, cpu_map, &sd->groups);
6281 6282
#endif

L
Linus Torvalds 已提交
6283 6284 6285 6286
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6287
		sd->span = per_cpu(cpu_sibling_map, i);
6288
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6289
		sd->parent = p;
6290
		p->child = sd;
6291
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6292 6293 6294 6295 6296
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6297
	for_each_cpu_mask(i, *cpu_map) {
6298
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6299
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6300 6301 6302
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6303 6304
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6305 6306 6307
	}
#endif

6308 6309 6310 6311 6312 6313 6314
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6315 6316
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6317 6318 6319
	}
#endif

L
Linus Torvalds 已提交
6320 6321 6322 6323
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6324
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6325 6326 6327
		if (cpus_empty(nodemask))
			continue;

6328
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6329 6330 6331 6332
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6333
	if (sd_allnodes)
I
Ingo Molnar 已提交
6334 6335
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6336 6337 6338 6339 6340 6341 6342 6343 6344 6345

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6346 6347
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6348
			continue;
6349
		}
6350 6351 6352 6353

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6354
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6355 6356 6357 6358 6359
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6360 6361 6362
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6363

6364 6365 6366
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6367
		sg->__cpu_power = 0;
6368
		sg->cpumask = nodemask;
6369
		sg->next = sg;
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6388 6389
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6390 6391 6392
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6393
				goto error;
6394
			}
6395
			sg->__cpu_power = 0;
6396
			sg->cpumask = tmp;
6397
			sg->next = prev->next;
6398 6399 6400 6401 6402
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6403 6404 6405
#endif

	/* Calculate CPU power for physical packages and nodes */
6406
#ifdef CONFIG_SCHED_SMT
6407
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6408 6409
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6410
		init_sched_groups_power(i, sd);
6411
	}
L
Linus Torvalds 已提交
6412
#endif
6413
#ifdef CONFIG_SCHED_MC
6414
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6415 6416
		struct sched_domain *sd = &per_cpu(core_domains, i);

6417
		init_sched_groups_power(i, sd);
6418 6419
	}
#endif
6420

6421
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6422 6423
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6424
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6425 6426
	}

6427
#ifdef CONFIG_NUMA
6428 6429
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6430

6431 6432
	if (sd_allnodes) {
		struct sched_group *sg;
6433

6434
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6435 6436
		init_numa_sched_groups_power(sg);
	}
6437 6438
#endif

L
Linus Torvalds 已提交
6439
	/* Attach the domains */
6440
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6441 6442 6443
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6444 6445
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6446 6447 6448 6449 6450
#else
		sd = &per_cpu(phys_domains, i);
#endif
		cpu_attach_domain(sd, i);
	}
6451 6452 6453

	return 0;

6454
#ifdef CONFIG_NUMA
6455 6456 6457
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6458
#endif
L
Linus Torvalds 已提交
6459
}
P
Paul Jackson 已提交
6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6471
/*
I
Ingo Molnar 已提交
6472
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6473 6474
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6475
 */
6476
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6477
{
6478 6479
	int err;

P
Paul Jackson 已提交
6480 6481 6482 6483 6484
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6485
	err = build_sched_domains(doms_cur);
6486
	register_sched_domain_sysctl();
6487 6488

	return err;
6489 6490 6491
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6492
{
6493
	free_sched_groups(cpu_map);
6494
}
L
Linus Torvalds 已提交
6495

6496 6497 6498 6499
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6500
static void detach_destroy_domains(const cpumask_t *cpu_map)
6501 6502 6503
{
	int i;

6504 6505
	unregister_sched_domain_sysctl();

6506 6507 6508 6509 6510 6511
	for_each_cpu_mask(i, *cpu_map)
		cpu_attach_domain(NULL, i);
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6512 6513
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6514
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6515 6516 6517 6518
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6519 6520 6521
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6522 6523 6524
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6525 6526
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6537 6538 6539
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6575 6576

	register_sched_domain_sysctl();
P
Paul Jackson 已提交
6577 6578
}

6579
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6580
static int arch_reinit_sched_domains(void)
6581 6582 6583
{
	int err;

6584
	mutex_lock(&sched_hotcpu_mutex);
6585 6586
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6587
	mutex_unlock(&sched_hotcpu_mutex);
6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6614 6615
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6616 6617 6618
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6619 6620
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6621 6622 6623 6624 6625 6626 6627
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6628 6629
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6630 6631 6632
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6653 6654
#endif

L
Linus Torvalds 已提交
6655
/*
I
Ingo Molnar 已提交
6656
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6657
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6658
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6659 6660 6661 6662 6663 6664 6665
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
6666
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
6667
	case CPU_DOWN_PREPARE:
6668
	case CPU_DOWN_PREPARE_FROZEN:
6669
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6670 6671 6672
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
6673
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
6674
	case CPU_DOWN_FAILED:
6675
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
6676
	case CPU_ONLINE:
6677
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
6678
	case CPU_DEAD:
6679
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
6680 6681 6682 6683 6684 6685 6686 6687 6688
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
6689
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
6690 6691 6692 6693 6694 6695

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
6696 6697
	cpumask_t non_isolated_cpus;

6698
	mutex_lock(&sched_hotcpu_mutex);
6699
	arch_init_sched_domains(&cpu_online_map);
6700
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6701 6702
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
6703
	mutex_unlock(&sched_hotcpu_mutex);
L
Linus Torvalds 已提交
6704 6705
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
6706 6707 6708 6709

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
6710
	sched_init_granularity();
L
Linus Torvalds 已提交
6711 6712 6713 6714
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6715
	sched_init_granularity();
L
Linus Torvalds 已提交
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
6726
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
6727 6728 6729 6730 6731
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
6732
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
6733 6734
}

L
Linus Torvalds 已提交
6735 6736
void __init sched_init(void)
{
6737
	int highest_cpu = 0;
I
Ingo Molnar 已提交
6738 6739
	int i, j;

6740
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
6741
		struct rt_prio_array *array;
6742
		struct rq *rq;
L
Linus Torvalds 已提交
6743 6744 6745

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
6746
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
6747
		rq->nr_running = 0;
I
Ingo Molnar 已提交
6748 6749 6750 6751
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
#ifdef CONFIG_FAIR_GROUP_SCHED
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
I
Ingo Molnar 已提交
6752 6753 6754 6755 6756 6757 6758
		{
			struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
			struct sched_entity *se =
					 &per_cpu(init_sched_entity, i);

			init_cfs_rq_p[i] = cfs_rq;
			init_cfs_rq(cfs_rq, rq);
6759
			cfs_rq->tg = &init_task_group;
I
Ingo Molnar 已提交
6760
			list_add(&cfs_rq->leaf_cfs_rq_list,
S
Srivatsa Vaddagiri 已提交
6761 6762
							 &rq->leaf_cfs_rq_list);

I
Ingo Molnar 已提交
6763 6764 6765
			init_sched_entity_p[i] = se;
			se->cfs_rq = &rq->cfs;
			se->my_q = cfs_rq;
6766
			se->load.weight = init_task_group_load;
6767
			se->load.inv_weight =
6768
				 div64_64(1ULL<<32, init_task_group_load);
I
Ingo Molnar 已提交
6769 6770
			se->parent = NULL;
		}
6771
		init_task_group.shares = init_task_group_load;
6772
		spin_lock_init(&init_task_group.lock);
I
Ingo Molnar 已提交
6773
#endif
L
Linus Torvalds 已提交
6774

I
Ingo Molnar 已提交
6775 6776
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
6777
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6778
		rq->sd = NULL;
L
Linus Torvalds 已提交
6779
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6780
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6781
		rq->push_cpu = 0;
6782
		rq->cpu = i;
L
Linus Torvalds 已提交
6783 6784 6785 6786 6787
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
#endif
		atomic_set(&rq->nr_iowait, 0);

I
Ingo Molnar 已提交
6788 6789 6790 6791
		array = &rq->rt.active;
		for (j = 0; j < MAX_RT_PRIO; j++) {
			INIT_LIST_HEAD(array->queue + j);
			__clear_bit(j, array->bitmap);
L
Linus Torvalds 已提交
6792
		}
6793
		highest_cpu = i;
I
Ingo Molnar 已提交
6794 6795
		/* delimiter for bitsearch: */
		__set_bit(MAX_RT_PRIO, array->bitmap);
L
Linus Torvalds 已提交
6796 6797
	}

6798
	set_load_weight(&init_task);
6799

6800 6801 6802 6803
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

6804
#ifdef CONFIG_SMP
6805
	nr_cpu_ids = highest_cpu + 1;
6806 6807 6808
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

6809 6810 6811 6812
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
6826 6827 6828 6829
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
6830 6831 6832 6833 6834
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
6835
#ifdef in_atomic
L
Linus Torvalds 已提交
6836 6837 6838 6839 6840 6841 6842
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
6843
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
6844 6845 6846
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
6847
		debug_show_held_locks(current);
6848 6849
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
6850 6851 6852 6853 6854 6855 6856 6857
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
6872 6873
void normalize_rt_tasks(void)
{
6874
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6875
	unsigned long flags;
6876
	struct rq *rq;
L
Linus Torvalds 已提交
6877 6878

	read_lock_irq(&tasklist_lock);
6879
	do_each_thread(g, p) {
6880 6881 6882 6883 6884 6885
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
6886 6887
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
6888 6889 6890
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
6891
#endif
I
Ingo Molnar 已提交
6892 6893 6894 6895 6896 6897 6898 6899 6900
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
6901
			continue;
I
Ingo Molnar 已提交
6902
		}
L
Linus Torvalds 已提交
6903

6904 6905
		spin_lock_irqsave(&p->pi_lock, flags);
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6906

6907
		normalize_task(rq, p);
6908

6909 6910
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
6911 6912
	} while_each_thread(g, p);

L
Linus Torvalds 已提交
6913 6914 6915 6916
	read_unlock_irq(&tasklist_lock);
}

#endif /* CONFIG_MAGIC_SYSRQ */
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6935
struct task_struct *curr_task(int cpu)
6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
6946 6947
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
6948 6949 6950 6951 6952 6953 6954
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
6955
void set_curr_task(int cpu, struct task_struct *p)
6956 6957 6958 6959 6960
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
6961 6962 6963 6964

#ifdef CONFIG_FAIR_GROUP_SCHED

/* allocate runqueue etc for a new task group */
6965
struct task_group *sched_create_group(void)
S
Srivatsa Vaddagiri 已提交
6966
{
6967
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
6968 6969
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
6970
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
6971 6972 6973 6974 6975 6976
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

6977
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6978 6979
	if (!tg->cfs_rq)
		goto err;
6980
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
6981 6982 6983 6984
	if (!tg->se)
		goto err;

	for_each_possible_cpu(i) {
6985
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011

		cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
							 cpu_to_node(i));
		if (!cfs_rq)
			goto err;

		se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
							cpu_to_node(i));
		if (!se)
			goto err;

		memset(cfs_rq, 0, sizeof(struct cfs_rq));
		memset(se, 0, sizeof(struct sched_entity));

		tg->cfs_rq[i] = cfs_rq;
		init_cfs_rq(cfs_rq, rq);
		cfs_rq->tg = tg;

		tg->se[i] = se;
		se->cfs_rq = &rq->cfs;
		se->my_q = cfs_rq;
		se->load.weight = NICE_0_LOAD;
		se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
		se->parent = NULL;
	}

7012 7013 7014 7015 7016
	for_each_possible_cpu(i) {
		rq = cpu_rq(i);
		cfs_rq = tg->cfs_rq[i];
		list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
	}
S
Srivatsa Vaddagiri 已提交
7017

7018
	tg->shares = NICE_0_LOAD;
7019
	spin_lock_init(&tg->lock);
S
Srivatsa Vaddagiri 已提交
7020

7021
	return tg;
S
Srivatsa Vaddagiri 已提交
7022 7023 7024

err:
	for_each_possible_cpu(i) {
I
Ingo Molnar 已提交
7025
		if (tg->cfs_rq)
S
Srivatsa Vaddagiri 已提交
7026
			kfree(tg->cfs_rq[i]);
I
Ingo Molnar 已提交
7027
		if (tg->se)
S
Srivatsa Vaddagiri 已提交
7028 7029
			kfree(tg->se[i]);
	}
I
Ingo Molnar 已提交
7030 7031 7032
	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
S
Srivatsa Vaddagiri 已提交
7033 7034 7035 7036

	return ERR_PTR(-ENOMEM);
}

7037 7038
/* rcu callback to free various structures associated with a task group */
static void free_sched_group(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7039
{
7040 7041
	struct task_group *tg = container_of(rhp, struct task_group, rcu);
	struct cfs_rq *cfs_rq;
S
Srivatsa Vaddagiri 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058
	struct sched_entity *se;
	int i;

	/* now it should be safe to free those cfs_rqs */
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		kfree(cfs_rq);

		se = tg->se[i];
		kfree(se);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
	kfree(tg);
}

7059
/* Destroy runqueue etc associated with a task group */
7060
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7061
{
7062
	struct cfs_rq *cfs_rq = NULL;
7063
	int i;
S
Srivatsa Vaddagiri 已提交
7064

7065 7066 7067 7068 7069
	for_each_possible_cpu(i) {
		cfs_rq = tg->cfs_rq[i];
		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
	}

7070
	BUG_ON(!cfs_rq);
7071 7072

	/* wait for possible concurrent references to cfs_rqs complete */
7073
	call_rcu(&tg->rcu, free_sched_group);
S
Srivatsa Vaddagiri 已提交
7074 7075
}

7076
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7077 7078 7079
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7080 7081
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7082 7083 7084 7085 7086 7087 7088
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7089
	if (tsk->sched_class != &fair_sched_class) {
7090
		set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7091
		goto done;
7092
	}
S
Srivatsa Vaddagiri 已提交
7093 7094 7095 7096 7097 7098

	update_rq_clock(rq);

	running = task_running(rq, tsk);
	on_rq = tsk->se.on_rq;

7099
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7100
		dequeue_task(rq, tsk, 0);
7101 7102 7103
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7104

7105
	set_task_cfs_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7106

7107 7108 7109
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7110
		enqueue_task(rq, tsk, 0);
7111
	}
S
Srivatsa Vaddagiri 已提交
7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137

done:
	task_rq_unlock(rq, &flags);
}

static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

	spin_lock_irq(&rq->lock);

	on_rq = se->on_rq;
	if (on_rq)
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

	if (on_rq)
		enqueue_entity(cfs_rq, se, 0);

	spin_unlock_irq(&rq->lock);
}

7138
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7139 7140 7141
{
	int i;

7142
	spin_lock(&tg->lock);
7143
	if (tg->shares == shares)
7144
		goto done;
S
Srivatsa Vaddagiri 已提交
7145

7146
	tg->shares = shares;
S
Srivatsa Vaddagiri 已提交
7147
	for_each_possible_cpu(i)
7148
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7149

7150 7151
done:
	spin_unlock(&tg->lock);
7152
	return 0;
S
Srivatsa Vaddagiri 已提交
7153 7154
}

7155 7156 7157 7158 7159
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}

I
Ingo Molnar 已提交
7160
#endif	/* CONFIG_FAIR_GROUP_SCHED */
7161 7162 7163 7164

#ifdef CONFIG_FAIR_CGROUP_SCHED

/* return corresponding task_group object of a cgroup */
7165
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7166
{
7167 7168
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7169 7170 7171
}

static struct cgroup_subsys_state *
7172
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7173 7174 7175
{
	struct task_group *tg;

7176
	if (!cgrp->parent) {
7177
		/* This is early initialization for the top cgroup */
7178
		init_task_group.css.cgroup = cgrp;
7179 7180 7181 7182
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7183
	if (cgrp->parent->parent)
7184 7185 7186 7187 7188 7189 7190
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7191
	tg->css.cgroup = cgrp;
7192 7193 7194 7195

	return &tg->css;
}

I
Ingo Molnar 已提交
7196 7197
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7198
{
7199
	struct task_group *tg = cgroup_tg(cgrp);
7200 7201 7202 7203

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7204 7205 7206
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7207 7208 7209 7210 7211 7212 7213 7214 7215
{
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;

	return 0;
}

static void
7216
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7217 7218 7219 7220 7221
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7222 7223
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7224
{
7225
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7226 7227
}

7228
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7229
{
7230
	struct task_group *tg = cgroup_tg(cgrp);
7231 7232 7233 7234

	return (u64) tg->shares;
}

7235 7236 7237 7238 7239 7240
static struct cftype cpu_files[] = {
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7241 7242 7243 7244
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7245
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7246 7247 7248
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7249 7250 7251 7252 7253 7254 7255
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7256 7257 7258 7259
	.early_init	= 1,
};

#endif	/* CONFIG_FAIR_CGROUP_SCHED */
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
7312 7313
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */