sched.c 258.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_counter.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/reciprocal_div.h>
68
#include <linux/unistd.h>
J
Jens Axboe 已提交
69
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
70
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
71
#include <linux/tick.h>
P
Peter Zijlstra 已提交
72 73
#include <linux/debugfs.h>
#include <linux/ctype.h>
74
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
75

76
#include <asm/tlb.h>
77
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
78

79 80
#include "sched_cpupri.h"

81
#define CREATE_TRACE_POINTS
82
#include <trace/events/sched.h>
83

L
Linus Torvalds 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
103
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
104
 */
105
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
106

I
Ingo Molnar 已提交
107 108 109
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
110 111 112
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
113
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
114 115 116
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
117

118 119 120 121 122
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

123
#ifdef CONFIG_SMP
124 125 126

static void double_rq_lock(struct rq *rq1, struct rq *rq2);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

147 148
static inline int rt_policy(int policy)
{
149
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 151 152 153 154 155 156 157 158
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
159
/*
I
Ingo Molnar 已提交
160
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
161
 */
I
Ingo Molnar 已提交
162 163 164 165 166
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

167
struct rt_bandwidth {
I
Ingo Molnar 已提交
168 169 170 171 172
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
206 207
	spin_lock_init(&rt_b->rt_runtime_lock);

208 209 210 211 212
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

213 214 215
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
216 217 218 219 220 221
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

222
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 224 225 226 227 228 229
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
230 231 232
		unsigned long delta;
		ktime_t soft, hard;

233 234 235 236 237
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238 239 240 241 242

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243
				HRTIMER_MODE_ABS_PINNED, 0);
244 245 246 247 248 249 250 251 252 253 254
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

255 256 257 258 259 260
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

261
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
262

263 264
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
265 266
struct cfs_rq;

P
Peter Zijlstra 已提交
267 268
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
269
/* task group related information */
270
struct task_group {
271
#ifdef CONFIG_CGROUP_SCHED
272 273
	struct cgroup_subsys_state css;
#endif
274

275 276 277 278
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

279
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
280 281 282 283 284
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
285 286 287 288 289 290
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

291
	struct rt_bandwidth rt_bandwidth;
292
#endif
293

294
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
295
	struct list_head list;
P
Peter Zijlstra 已提交
296 297 298 299

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
300 301
};

D
Dhaval Giani 已提交
302
#ifdef CONFIG_USER_SCHED
303

304 305 306 307 308 309
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

310 311 312 313 314 315 316
/*
 * Root task group.
 * 	Every UID task group (including init_task_group aka UID-0) will
 * 	be a child to this group.
 */
struct task_group root_task_group;

317
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
318 319 320 321
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322
#endif /* CONFIG_FAIR_GROUP_SCHED */
323 324 325 326

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
328
#else /* !CONFIG_USER_SCHED */
329
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
330
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
331

332
/* task_group_lock serializes add/remove of task groups and also changes to
333 334
 * a task group's cpu shares.
 */
335
static DEFINE_SPINLOCK(task_group_lock);
336

337 338 339 340 341 342 343
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

344 345 346
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
347
#else /* !CONFIG_USER_SCHED */
348
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
349
#endif /* CONFIG_USER_SCHED */
350

351
/*
352 353 354 355
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
356 357 358
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
359
#define MIN_SHARES	2
360
#define MAX_SHARES	(1UL << 18)
361

362 363 364
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
365
/* Default task group.
I
Ingo Molnar 已提交
366
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
367
 */
368
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
369 370

/* return group to which a task belongs */
371
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
372
{
373
	struct task_group *tg;
374

375
#ifdef CONFIG_USER_SCHED
376 377 378
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
379
#elif defined(CONFIG_CGROUP_SCHED)
380 381
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
382
#else
I
Ingo Molnar 已提交
383
	tg = &init_task_group;
384
#endif
385
	return tg;
S
Srivatsa Vaddagiri 已提交
386 387 388
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
389
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
390
{
391
#ifdef CONFIG_FAIR_GROUP_SCHED
392 393
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
394
#endif
P
Peter Zijlstra 已提交
395

396
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
397 398
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
399
#endif
S
Srivatsa Vaddagiri 已提交
400 401 402 403
}

#else

404 405 406 407 408 409 410
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return 1;
}
#endif

P
Peter Zijlstra 已提交
411
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 413 414 415
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
416

417
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
418

I
Ingo Molnar 已提交
419 420 421 422 423 424
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
425
	u64 min_vruntime;
I
Ingo Molnar 已提交
426 427 428

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
429 430 431 432 433 434

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
435 436
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
437
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
438

P
Peter Zijlstra 已提交
439
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
440

441
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
442 443
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
444 445
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
446 447 448 449 450 451
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
452 453
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
454 455 456

#ifdef CONFIG_SMP
	/*
457
	 * the part of load.weight contributed by tasks
458
	 */
459
	unsigned long task_weight;
460

461 462 463 464 465 466 467
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
468

469 470 471 472
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
473 474 475 476 477

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
478
#endif
I
Ingo Molnar 已提交
479 480
#endif
};
L
Linus Torvalds 已提交
481

I
Ingo Molnar 已提交
482 483 484
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
485
	unsigned long rt_nr_running;
486
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 488
	struct {
		int curr; /* highest queued rt task prio */
489
#ifdef CONFIG_SMP
490
		int next; /* next highest */
491
#endif
492
	} highest_prio;
P
Peter Zijlstra 已提交
493
#endif
P
Peter Zijlstra 已提交
494
#ifdef CONFIG_SMP
495
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
496
	int overloaded;
497
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
498
#endif
P
Peter Zijlstra 已提交
499
	int rt_throttled;
P
Peter Zijlstra 已提交
500
	u64 rt_time;
P
Peter Zijlstra 已提交
501
	u64 rt_runtime;
I
Ingo Molnar 已提交
502
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
503
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
504

505
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
506 507
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
508 509 510 511 512
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
513 514
};

G
Gregory Haskins 已提交
515 516 517 518
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
519 520
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
521 522 523 524 525 526
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
527 528
	cpumask_var_t span;
	cpumask_var_t online;
529

I
Ingo Molnar 已提交
530
	/*
531 532 533
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
534
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
535
	atomic_t rto_count;
536 537 538
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
539 540 541 542 543 544 545 546
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	/*
	 * Preferred wake up cpu nominated by sched_mc balance that will be
	 * used when most cpus are idle in the system indicating overall very
	 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
	 */
	unsigned int sched_mc_preferred_wakeup_cpu;
#endif
G
Gregory Haskins 已提交
547 548
};

549 550 551 552
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
553 554 555 556
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
557 558 559 560 561 562 563
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
564
struct rq {
565 566
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
567 568 569 570 571 572

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
573 574
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575
#ifdef CONFIG_NO_HZ
576
	unsigned long last_tick_seen;
577 578
	unsigned char in_nohz_recently;
#endif
579 580
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
581 582
	unsigned long nr_load_updates;
	u64 nr_switches;
583
	u64 nr_migrations_in;
I
Ingo Molnar 已提交
584 585

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
586 587
	struct rt_rq rt;

I
Ingo Molnar 已提交
588
#ifdef CONFIG_FAIR_GROUP_SCHED
589 590
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
591 592
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
593
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
594 595 596 597 598 599 600 601 602 603
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

604
	struct task_struct *curr, *idle;
605
	unsigned long next_balance;
L
Linus Torvalds 已提交
606
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
607

608
	u64 clock;
I
Ingo Molnar 已提交
609

L
Linus Torvalds 已提交
610 611 612
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
613
	struct root_domain *rd;
L
Linus Torvalds 已提交
614 615
	struct sched_domain *sd;

616
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
617 618 619
	/* For active balancing */
	int active_balance;
	int push_cpu;
620 621
	/* cpu of this runqueue: */
	int cpu;
622
	int online;
L
Linus Torvalds 已提交
623

624
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
625

626
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
627 628 629
	struct list_head migration_queue;
#endif

630 631 632 633
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
634
#ifdef CONFIG_SCHED_HRTICK
635 636 637 638
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
639 640 641
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
642 643 644
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
645 646
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
647 648

	/* sys_sched_yield() stats */
649
	unsigned int yld_count;
L
Linus Torvalds 已提交
650 651

	/* schedule() stats */
652 653 654
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
655 656

	/* try_to_wake_up() stats */
657 658
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
659 660

	/* BKL stats */
661
	unsigned int bkl_count;
L
Linus Torvalds 已提交
662 663 664
#endif
};

665
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
666

667
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
I
Ingo Molnar 已提交
668
{
669
	rq->curr->sched_class->check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
670 671
}

672 673 674 675 676 677 678 679 680
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
681 682
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
683
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
684 685 686 687
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
688 689
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
690 691 692 693 694 695

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

I
Ingo Molnar 已提交
696
inline void update_rq_clock(struct rq *rq)
697 698 699 700
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
701 702 703 704 705 706 707 708 709
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
/**
 * runqueue_is_locked
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
int runqueue_is_locked(void)
{
	int cpu = get_cpu();
	struct rq *rq = cpu_rq(cpu);
	int ret;

	ret = spin_is_locked(&rq->lock);
	put_cpu();
	return ret;
}

I
Ingo Molnar 已提交
728 729 730
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
731 732 733 734

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
735
enum {
P
Peter Zijlstra 已提交
736
#include "sched_features.h"
I
Ingo Molnar 已提交
737 738
};

P
Peter Zijlstra 已提交
739 740 741 742 743
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
744
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
745 746 747 748 749 750 751 752 753
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

754
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
755 756 757 758 759 760
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
761
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
762 763 764 765
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
766 767 768
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
769
	}
L
Li Zefan 已提交
770
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
771

L
Li Zefan 已提交
772
	return 0;
P
Peter Zijlstra 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
792
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

	filp->f_pos += cnt;

	return cnt;
}

L
Li Zefan 已提交
817 818 819 820 821
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

P
Peter Zijlstra 已提交
822
static struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
823 824 825 826 827
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
842

843 844 845 846 847 848
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
849 850
/*
 * ratelimit for updating the group shares.
851
 * default: 0.25ms
P
Peter Zijlstra 已提交
852
 */
853
unsigned int sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
854

855 856 857 858 859 860 861
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

P
Peter Zijlstra 已提交
862
/*
P
Peter Zijlstra 已提交
863
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
864 865
 * default: 1s
 */
P
Peter Zijlstra 已提交
866
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
867

868 869
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
870 871 872 873 874
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
875

876 877 878 879 880 881 882
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
883
	if (sysctl_sched_rt_runtime < 0)
884 885 886 887
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
888

L
Linus Torvalds 已提交
889
#ifndef prepare_arch_switch
890 891 892 893 894 895
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

896 897 898 899 900
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

901
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903
{
904
	return task_current(rq, p);
905 906
}

907
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 909 910
{
}

911
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
912
{
913 914 915 916
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
917 918 919 920 921 922 923
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

924 925 926 927
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
928
static inline int task_running(struct rq *rq, struct task_struct *p)
929 930 931 932
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
933
	return task_current(rq, p);
934 935 936
#endif
}

937
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

954
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
955 956 957 958 959 960 961 962 963 964 965 966
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
967
#endif
968 969
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
970

971 972 973 974
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
975
static inline struct rq *__task_rq_lock(struct task_struct *p)
976 977
	__acquires(rq->lock)
{
978 979 980 981 982
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
983 984 985 986
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
987 988
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
989
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
990 991
 * explicitly disabling preemption.
 */
992
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
993 994
	__acquires(rq->lock)
{
995
	struct rq *rq;
L
Linus Torvalds 已提交
996

997 998 999 1000 1001 1002
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
1003 1004 1005 1006
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

1007 1008 1009 1010 1011 1012 1013 1014
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
1015
static void __task_rq_unlock(struct rq *rq)
1016 1017 1018 1019 1020
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

1021
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
1022 1023 1024 1025 1026 1027
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1028
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1029
 */
A
Alexey Dobriyan 已提交
1030
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1031 1032
	__acquires(rq->lock)
{
1033
	struct rq *rq;
L
Linus Torvalds 已提交
1034 1035 1036 1037 1038 1039 1040 1041

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1063
	if (!cpu_active(cpu_of(rq)))
1064
		return 0;
P
Peter Zijlstra 已提交
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1085
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1086 1087 1088 1089 1090 1091
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1092
#ifdef CONFIG_SMP
1093 1094 1095 1096
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1097
{
1098
	struct rq *rq = arg;
1099

1100 1101 1102 1103
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1104 1105
}

1106 1107 1108 1109 1110 1111
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1112
{
1113 1114
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1115

1116
	hrtimer_set_expires(timer, time);
1117 1118 1119 1120

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1121
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1122 1123
		rq->hrtick_csd_pending = 1;
	}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1138
		hrtick_clear(cpu_rq(cpu));
1139 1140 1141 1142 1143 1144
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1145
static __init void init_hrtick(void)
1146 1147 1148
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1149 1150 1151 1152 1153 1154 1155 1156
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1157
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158
			HRTIMER_MODE_REL_PINNED, 0);
1159
}
1160

A
Andrew Morton 已提交
1161
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1162 1163
{
}
1164
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1165

1166
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1167
{
1168 1169
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1170

1171 1172 1173 1174
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1175

1176 1177
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1178
}
A
Andrew Morton 已提交
1179
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1180 1181 1182 1183 1184 1185 1186 1187
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1188 1189 1190
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1191
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1192

I
Ingo Molnar 已提交
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1206
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1207 1208 1209 1210 1211
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1212
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1213 1214
		return;

1215
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1271
	set_tsk_need_resched(rq->idle);
1272 1273 1274 1275 1276 1277

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1278
#endif /* CONFIG_NO_HZ */
1279

1280
#else /* !CONFIG_SMP */
1281
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1282 1283
{
	assert_spin_locked(&task_rq(p)->lock);
1284
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1285
}
1286
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1287

1288 1289 1290 1291 1292 1293 1294 1295
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1296 1297 1298
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1299
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1300

1301 1302 1303
/*
 * delta *= weight / lw
 */
1304
static unsigned long
1305 1306 1307 1308 1309
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1310 1311 1312 1313 1314 1315 1316
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1317 1318 1319 1320 1321

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1322
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1323
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1324 1325
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1326
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327

1328
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 1330
}

1331
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 1333
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1334
	lw->inv_weight = 0;
1335 1336
}

1337
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 1339
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1340
	lw->inv_weight = 0;
1341 1342
}

1343 1344 1345 1346
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1347
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 1349 1350 1351
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1352 1353
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 1364 1365
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1366 1367
 */
static const int prio_to_weight[40] = {
1368 1369 1370 1371 1372 1373 1374 1375
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1376 1377
};

1378 1379 1380 1381 1382 1383 1384
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1385
static const u32 prio_to_wmult[40] = {
1386 1387 1388 1389 1390 1391 1392 1393
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1394
};
1395

I
Ingo Molnar 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1421

1422 1423 1424 1425 1426 1427 1428 1429
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1430 1431
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1432 1433
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1434 1435
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1436 1437
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1438 1439
#endif

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1450
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1451
typedef int (*tg_visitor)(struct task_group *, void *);
1452 1453 1454 1455 1456

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1457
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1458 1459
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1460
	int ret;
1461 1462 1463 1464

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1465 1466 1467
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1468 1469 1470 1471 1472 1473 1474
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1475 1476 1477
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1478 1479 1480 1481 1482

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1483
out_unlock:
1484
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1485 1486

	return ret;
1487 1488
}

P
Peter Zijlstra 已提交
1489 1490 1491
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1492
}
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#endif

#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1503
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1504

1505 1506
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1507 1508
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1509 1510 1511 1512 1513

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1514 1515 1516 1517 1518 1519 1520

static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
static void
1521 1522
update_group_shares_cpu(struct task_group *tg, int cpu,
			unsigned long sd_shares, unsigned long sd_rq_weight)
1523
{
1524 1525 1526
	unsigned long shares;
	unsigned long rq_weight;

1527
	if (!tg->se[cpu])
1528 1529
		return;

1530
	rq_weight = tg->cfs_rq[cpu]->rq_weight;
1531

1532 1533 1534 1535 1536 1537
	/*
	 *           \Sum shares * rq_weight
	 * shares =  -----------------------
	 *               \Sum rq_weight
	 *
	 */
1538
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1539
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1540

1541 1542 1543 1544
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1545

1546
		spin_lock_irqsave(&rq->lock, flags);
1547
		tg->cfs_rq[cpu]->shares = shares;
1548

1549 1550 1551
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1552
}
1553 1554

/*
1555 1556 1557
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1558
 */
P
Peter Zijlstra 已提交
1559
static int tg_shares_up(struct task_group *tg, void *data)
1560
{
1561
	unsigned long weight, rq_weight = 0;
1562
	unsigned long shares = 0;
P
Peter Zijlstra 已提交
1563
	struct sched_domain *sd = data;
1564
	int i;
1565

1566
	for_each_cpu(i, sched_domain_span(sd)) {
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		weight = tg->cfs_rq[i]->load.weight;
		if (!weight)
			weight = NICE_0_LOAD;

		tg->cfs_rq[i]->rq_weight = weight;
		rq_weight += weight;
1578
		shares += tg->cfs_rq[i]->shares;
1579 1580
	}

1581 1582 1583 1584 1585
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1586

1587
	for_each_cpu(i, sched_domain_span(sd))
1588
		update_group_shares_cpu(tg, i, shares, rq_weight);
P
Peter Zijlstra 已提交
1589 1590

	return 0;
1591 1592 1593
}

/*
1594 1595 1596
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1597
 */
P
Peter Zijlstra 已提交
1598
static int tg_load_down(struct task_group *tg, void *data)
1599
{
1600
	unsigned long load;
P
Peter Zijlstra 已提交
1601
	long cpu = (long)data;
1602

1603 1604 1605 1606 1607 1608 1609
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1610

1611
	tg->cfs_rq[cpu]->h_load = load;
1612

P
Peter Zijlstra 已提交
1613
	return 0;
1614 1615
}

1616
static void update_shares(struct sched_domain *sd)
1617
{
P
Peter Zijlstra 已提交
1618 1619 1620 1621 1622
	u64 now = cpu_clock(raw_smp_processor_id());
	s64 elapsed = now - sd->last_update;

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1623
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1624
	}
1625 1626
}

1627 1628 1629 1630 1631 1632 1633
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1634
static void update_h_load(long cpu)
1635
{
P
Peter Zijlstra 已提交
1636
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1637 1638 1639 1640
}

#else

1641
static inline void update_shares(struct sched_domain *sd)
1642 1643 1644
{
}

1645 1646 1647 1648
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1649 1650
#endif

1651 1652
#ifdef CONFIG_PREEMPT

1653
/*
1654 1655 1656 1657 1658 1659
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1660
 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1715 1716 1717 1718 1719 1720
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1721 1722
#endif

V
Vegard Nossum 已提交
1723
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1724 1725
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1726
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1727 1728 1729
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1730
#endif
1731

1732 1733
static void calc_load_account_active(struct rq *this_rq);

I
Ingo Molnar 已提交
1734 1735
#include "sched_stats.h"
#include "sched_idletask.c"
1736 1737
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1738 1739 1740 1741 1742
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1743 1744
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1745

1746
static void inc_nr_running(struct rq *rq)
1747 1748 1749 1750
{
	rq->nr_running++;
}

1751
static void dec_nr_running(struct rq *rq)
1752 1753 1754 1755
{
	rq->nr_running--;
}

1756 1757 1758
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1759 1760 1761 1762
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1763

I
Ingo Molnar 已提交
1764 1765 1766 1767 1768 1769 1770 1771
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1772

I
Ingo Molnar 已提交
1773 1774
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1775 1776
}

1777 1778 1779 1780 1781 1782
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1783
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1784
{
P
Peter Zijlstra 已提交
1785 1786 1787
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1788
	sched_info_queued(p);
1789
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1790
	p->se.on_rq = 1;
1791 1792
}

1793
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1794
{
P
Peter Zijlstra 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1804 1805
	}

1806
	sched_info_dequeued(p);
1807
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1808
	p->se.on_rq = 0;
1809 1810
}

1811
/*
I
Ingo Molnar 已提交
1812
 * __normal_prio - return the priority that is based on the static prio
1813 1814 1815
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1816
	return p->static_prio;
1817 1818
}

1819 1820 1821 1822 1823 1824 1825
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1826
static inline int normal_prio(struct task_struct *p)
1827 1828 1829
{
	int prio;

1830
	if (task_has_rt_policy(p))
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1844
static int effective_prio(struct task_struct *p)
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1857
/*
I
Ingo Molnar 已提交
1858
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1859
 */
I
Ingo Molnar 已提交
1860
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1861
{
1862
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1863
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1864

1865
	enqueue_task(rq, p, wakeup);
1866
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1872
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1873
{
1874
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1875 1876
		rq->nr_uninterruptible++;

1877
	dequeue_task(rq, p, sleep);
1878
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1885
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1886 1887 1888 1889
{
	return cpu_curr(task_cpu(p)) == p;
}

I
Ingo Molnar 已提交
1890 1891
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1892
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1893
#ifdef CONFIG_SMP
1894 1895 1896 1897 1898 1899
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1900 1901
	task_thread_info(p)->cpu = cpu;
#endif
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1916
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1917

1918 1919 1920 1921 1922 1923
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

1924 1925 1926
/*
 * Is this task likely cache-hot:
 */
1927
static int
1928 1929 1930 1931
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

1932 1933 1934
	/*
	 * Buddy candidates are cache hot:
	 */
P
Peter Zijlstra 已提交
1935 1936 1937
	if (sched_feat(CACHE_HOT_BUDDY) &&
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
1938 1939
		return 1;

1940 1941 1942
	if (p->sched_class != &fair_sched_class)
		return 0;

1943 1944 1945 1946 1947
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1948 1949 1950 1951 1952 1953
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1954
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1955
{
I
Ingo Molnar 已提交
1956 1957
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1958 1959
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1960
	u64 clock_offset;
I
Ingo Molnar 已提交
1961 1962

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1963

1964
	trace_sched_migrate_task(p, new_cpu);
1965

I
Ingo Molnar 已提交
1966 1967 1968
#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1969 1970 1971 1972
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1973
#endif
1974
	if (old_cpu != new_cpu) {
1975
		p->se.nr_migrations++;
1976
		new_rq->nr_migrations_in++;
1977
#ifdef CONFIG_SCHEDSTATS
1978 1979
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
1980
#endif
1981
		perf_counter_task_migration(p, new_cpu);
1982
	}
1983 1984
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1985 1986

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1987 1988
}

1989
struct migration_req {
L
Linus Torvalds 已提交
1990 1991
	struct list_head list;

1992
	struct task_struct *task;
L
Linus Torvalds 已提交
1993 1994 1995
	int dest_cpu;

	struct completion done;
1996
};
L
Linus Torvalds 已提交
1997 1998 1999 2000 2001

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2002
static int
2003
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2004
{
2005
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2006 2007 2008 2009 2010

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2011
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017 2018 2019
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2020

L
Linus Torvalds 已提交
2021 2022 2023
	return 1;
}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2067 2068 2069
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2070 2071 2072 2073 2074 2075 2076
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2077 2078 2079 2080 2081 2082
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2083
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2084 2085
{
	unsigned long flags;
I
Ingo Molnar 已提交
2086
	int running, on_rq;
R
Roland McGrath 已提交
2087
	unsigned long ncsw;
2088
	struct rq *rq;
L
Linus Torvalds 已提交
2089

2090 2091 2092 2093 2094 2095 2096 2097
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2098

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2110 2111 2112
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2113
			cpu_relax();
R
Roland McGrath 已提交
2114
		}
2115

2116 2117 2118 2119 2120 2121
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2122
		trace_sched_wait_task(rq, p);
2123 2124
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2125
		ncsw = 0;
2126
		if (!match_state || p->state == match_state)
2127
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2128
		task_rq_unlock(rq, &flags);
2129

R
Roland McGrath 已提交
2130 2131 2132 2133 2134 2135
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2146

2147 2148 2149 2150 2151
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2152
		 * So if it was still runnable (but just not actively
2153 2154 2155 2156 2157 2158 2159
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2160

2161 2162 2163 2164 2165 2166 2167
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2168 2169

	return ncsw;
L
Linus Torvalds 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2185
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2186 2187 2188 2189 2190 2191 2192 2193 2194
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2195
EXPORT_SYMBOL_GPL(kick_process);
L
Linus Torvalds 已提交
2196 2197

/*
2198 2199
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2200 2201 2202 2203
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
2204
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
2205
{
2206
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2207
	unsigned long total = weighted_cpuload(cpu);
2208

2209
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2210
		return total;
2211

I
Ingo Molnar 已提交
2212
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
2213 2214 2215
}

/*
2216 2217
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
2218
 */
A
Alexey Dobriyan 已提交
2219
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
2220
{
2221
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2222
	unsigned long total = weighted_cpuload(cpu);
2223

2224
	if (type == 0 || !sched_feat(LB_BIAS))
I
Ingo Molnar 已提交
2225
		return total;
2226

I
Ingo Molnar 已提交
2227
	return max(rq->cpu_load[type-1], total);
2228 2229
}

N
Nick Piggin 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

2247
		/* Skip over this group if it has no CPUs allowed */
2248 2249
		if (!cpumask_intersects(sched_group_cpus(group),
					&p->cpus_allowed))
2250
			continue;
2251

2252 2253
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
N
Nick Piggin 已提交
2254 2255 2256 2257

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

2258
		for_each_cpu(i, sched_group_cpus(group)) {
N
Nick Piggin 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
2269 2270
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
2271 2272 2273 2274 2275 2276 2277 2278

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
2279
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
2280 2281 2282 2283 2284 2285 2286

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
2287
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
2288
 */
I
Ingo Molnar 已提交
2289
static int
2290
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
2291 2292 2293 2294 2295
{
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

2296
	/* Traverse only the allowed CPUs */
2297
	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2298
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
2324

2325
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
2326 2327 2328
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
2329 2330
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
2331 2332
		if (tmp->flags & flag)
			sd = tmp;
2333
	}
N
Nick Piggin 已提交
2334

2335 2336 2337
	if (sd)
		update_shares(sd);

N
Nick Piggin 已提交
2338 2339
	while (sd) {
		struct sched_group *group;
2340 2341 2342 2343 2344 2345
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2346 2347

		group = find_idlest_group(sd, t, cpu);
2348 2349 2350 2351
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2352

2353
		new_cpu = find_idlest_cpu(group, t, cpu);
2354 2355 2356 2357 2358
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
2359

2360
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
2361
		cpu = new_cpu;
2362
		weight = cpumask_weight(sched_domain_span(sd));
N
Nick Piggin 已提交
2363 2364
		sd = NULL;
		for_each_domain(cpu, tmp) {
2365
			if (weight <= cpumask_weight(sched_domain_span(tmp)))
N
Nick Piggin 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2377

T
Thomas Gleixner 已提交
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
2413
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
2414
{
2415
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2416 2417
	unsigned long flags;
	long old_state;
2418
	struct rq *rq;
L
Linus Torvalds 已提交
2419

2420 2421 2422
	if (!sched_feat(SYNC_WAKEUPS))
		sync = 0;

P
Peter Zijlstra 已提交
2423
#ifdef CONFIG_SMP
2424
	if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
P
Peter Zijlstra 已提交
2425 2426 2427 2428 2429 2430
		struct sched_domain *sd;

		this_cpu = raw_smp_processor_id();
		cpu = task_cpu(p);

		for_each_domain(this_cpu, sd) {
2431
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
2432 2433 2434 2435 2436 2437 2438
				update_shares(sd);
				break;
			}
		}
	}
#endif

2439
	smp_wmb();
L
Linus Torvalds 已提交
2440
	rq = task_rq_lock(p, &flags);
2441
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2442 2443 2444 2445
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
2446
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2447 2448 2449
		goto out_running;

	cpu = task_cpu(p);
2450
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2451 2452 2453 2454 2455 2456
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

2457 2458 2459
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
2460 2461 2462 2463 2464 2465
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
2466
		if (p->se.on_rq)
L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

2473 2474 2475 2476 2477 2478 2479
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2480
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2481 2482 2483 2484 2485
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2486
#endif /* CONFIG_SCHEDSTATS */
2487

L
Linus Torvalds 已提交
2488 2489
out_activate:
#endif /* CONFIG_SMP */
2490 2491 2492 2493 2494 2495 2496 2497 2498
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2499
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2500 2501
	success = 1;

P
Peter Zijlstra 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2518
out_running:
2519
	trace_sched_wakeup(rq, p, success);
2520
	check_preempt_curr(rq, p, sync);
I
Ingo Molnar 已提交
2521

L
Linus Torvalds 已提交
2522
	p->state = TASK_RUNNING;
2523 2524 2525 2526
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
2527 2528 2529 2530 2531 2532
out:
	task_rq_unlock(rq, &flags);

	return success;
}

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2544
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2545
{
2546
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2547 2548 2549
}
EXPORT_SYMBOL(wake_up_process);

2550
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2558 2559 2560 2561 2562 2563 2564
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2565
	p->se.prev_sum_exec_runtime	= 0;
2566
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2567 2568
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2569 2570
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2571 2572 2573

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
2574 2575 2576 2577 2578 2579
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
2580
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
2581
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
2582
#endif
N
Nick Piggin 已提交
2583

P
Peter Zijlstra 已提交
2584
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2585
	p->se.on_rq = 0;
2586
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2587

2588 2589 2590 2591
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2592 2593 2594 2595 2596 2597 2598
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
2613
	set_task_cpu(p, cpu);
2614 2615 2616 2617 2618

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
2619 2620
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2621

2622
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2623
	if (likely(sched_info_on()))
2624
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2625
#endif
2626
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2627 2628
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2629
#ifdef CONFIG_PREEMPT
2630
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2631
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2632
#endif
2633 2634
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2635
	put_cpu();
L
Linus Torvalds 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2645
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2646 2647
{
	unsigned long flags;
I
Ingo Molnar 已提交
2648
	struct rq *rq;
L
Linus Torvalds 已提交
2649 2650

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2651
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2652
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2653 2654 2655

	p->prio = effective_prio(p);

2656
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2657
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2658 2659
	} else {
		/*
I
Ingo Molnar 已提交
2660 2661
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2662
		 */
2663
		p->sched_class->task_new(rq, p);
2664
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2665
	}
2666
	trace_sched_wakeup_new(rq, p, 1);
2667
	check_preempt_curr(rq, p, 0);
2668 2669 2670 2671
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2672
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2673 2674
}

2675 2676 2677
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2678
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2679
 * @notifier: notifier struct to register
2680 2681 2682 2683 2684 2685 2686 2687 2688
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2689
 * @notifier: notifier struct to unregister
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2719
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2731
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2732

2733 2734 2735
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2736
 * @prev: the current task that is being switched out
2737 2738 2739 2740 2741 2742 2743 2744 2745
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2746 2747 2748
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2749
{
2750
	fire_sched_out_preempt_notifiers(prev, next);
2751 2752 2753 2754
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2755 2756
/**
 * finish_task_switch - clean up after a task-switch
2757
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2758 2759
 * @prev: the thread we just switched away from.
 *
2760 2761 2762 2763
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2764 2765
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2766
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2767 2768 2769
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2770
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2771 2772 2773
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2774
	long prev_state;
2775 2776 2777 2778 2779 2780
#ifdef CONFIG_SMP
	int post_schedule = 0;

	if (current->sched_class->needs_post_schedule)
		post_schedule = current->sched_class->needs_post_schedule(rq);
#endif
L
Linus Torvalds 已提交
2781 2782 2783 2784 2785

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2786
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2787 2788
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2789
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2795
	prev_state = prev->state;
2796
	finish_arch_switch(prev);
T
Thomas Gleixner 已提交
2797
	perf_counter_task_sched_in(current, cpu_of(rq));
2798
	finish_lock_switch(rq, prev);
2799
#ifdef CONFIG_SMP
2800
	if (post_schedule)
2801 2802
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2803

2804
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2805 2806
	if (mm)
		mmdrop(mm);
2807
	if (unlikely(prev_state == TASK_DEAD)) {
2808 2809 2810
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2811
		 */
2812
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2813
		put_task_struct(prev);
2814
	}
L
Linus Torvalds 已提交
2815 2816 2817 2818 2819 2820
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2821
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2822 2823
	__releases(rq->lock)
{
2824 2825
	struct rq *rq = this_rq();

2826 2827 2828 2829 2830
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2831
	if (current->set_child_tid)
2832
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2839
static inline void
2840
context_switch(struct rq *rq, struct task_struct *prev,
2841
	       struct task_struct *next)
L
Linus Torvalds 已提交
2842
{
I
Ingo Molnar 已提交
2843
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2844

2845
	prepare_task_switch(rq, prev, next);
2846
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2847 2848
	mm = next->mm;
	oldmm = prev->active_mm;
2849 2850 2851 2852 2853
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2854
	arch_start_context_switch(prev);
2855

I
Ingo Molnar 已提交
2856
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2863
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2864 2865 2866
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2867 2868 2869 2870 2871 2872 2873
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875
#endif
L
Linus Torvalds 已提交
2876 2877 2878 2879

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2880 2881 2882 2883 2884 2885 2886
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2910
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2925 2926
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2927

2928
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2938
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2944 2945 2946 2947 2948 2949
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2965 2966
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2967
{
2968 2969 2970 2971
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2972

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2984

2985 2986
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3010 3011
}

3012 3013 3014 3015 3016 3017 3018 3019 3020
/*
 * Externally visible per-cpu scheduler statistics:
 * cpu_nr_migrations(cpu) - number of migrations into that cpu
 */
u64 cpu_nr_migrations(int cpu)
{
	return cpu_rq(cpu)->nr_migrations_in;
}

3021
/*
I
Ingo Molnar 已提交
3022 3023
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3024
 */
I
Ingo Molnar 已提交
3025
static void update_cpu_load(struct rq *this_rq)
3026
{
3027
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3040 3041 3042 3043 3044 3045 3046
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3047 3048
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3049 3050 3051 3052 3053

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3054 3055
}

I
Ingo Molnar 已提交
3056 3057
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3058 3059 3060 3061 3062 3063
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3064
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3065 3066 3067
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3068
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3069 3070 3071 3072
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3073
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3074
			spin_lock(&rq1->lock);
3075
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3076 3077
		} else {
			spin_lock(&rq2->lock);
3078
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3079 3080
		}
	}
3081 3082
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3083 3084 3085 3086 3087 3088 3089 3090
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3091
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3105
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3106 3107
 * the cpu_allowed mask is restored.
 */
3108
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3109
{
3110
	struct migration_req req;
L
Linus Torvalds 已提交
3111
	unsigned long flags;
3112
	struct rq *rq;
L
Linus Torvalds 已提交
3113 3114

	rq = task_rq_lock(p, &flags);
3115
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3116
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3123

L
Linus Torvalds 已提交
3124 3125 3126 3127 3128
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3129

L
Linus Torvalds 已提交
3130 3131 3132 3133 3134 3135 3136
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3137 3138
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3139 3140 3141 3142
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
3143
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
3144
	put_cpu();
N
Nick Piggin 已提交
3145 3146
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151 3152
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3153 3154
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3155
{
3156
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3157
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3158
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
3159 3160 3161 3162
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
3163
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3169
static
3170
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3171
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3172
		     int *all_pinned)
L
Linus Torvalds 已提交
3173
{
3174
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3181
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3183
		return 0;
3184
	}
3185 3186
	*all_pinned = 0;

3187 3188
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3189
		return 0;
3190
	}
L
Linus Torvalds 已提交
3191

3192 3193 3194 3195 3196 3197
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3198 3199 3200
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3201
#ifdef CONFIG_SCHEDSTATS
3202
		if (tsk_cache_hot) {
3203
			schedstat_inc(sd, lb_hot_gained[idle]);
3204 3205
			schedstat_inc(p, se.nr_forced_migrations);
		}
3206 3207 3208 3209
#endif
		return 1;
	}

3210
	if (tsk_cache_hot) {
3211
		schedstat_inc(p, se.nr_failed_migrations_hot);
3212
		return 0;
3213
	}
L
Linus Torvalds 已提交
3214 3215 3216
	return 1;
}

3217 3218 3219 3220 3221
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3222
{
3223
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3224 3225
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3226

3227
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3228 3229
		goto out;

3230 3231
	pinned = 1;

L
Linus Torvalds 已提交
3232
	/*
I
Ingo Molnar 已提交
3233
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3234
	 */
I
Ingo Molnar 已提交
3235 3236
	p = iterator->start(iterator->arg);
next:
3237
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3238
		goto out;
3239 3240

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3241 3242 3243
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3244 3245
	}

I
Ingo Molnar 已提交
3246
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3247
	pulled++;
I
Ingo Molnar 已提交
3248
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3260
	/*
3261
	 * We only want to steal up to the prescribed amount of weighted load.
3262
	 */
3263
	if (rem_load_move > 0) {
3264 3265
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3266 3267
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3268 3269 3270
	}
out:
	/*
3271
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3272 3273 3274 3275
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3276 3277 3278

	if (all_pinned)
		*all_pinned = pinned;
3279 3280

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3281 3282
}

I
Ingo Molnar 已提交
3283
/*
P
Peter Williams 已提交
3284 3285 3286
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3287 3288 3289 3290
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3291
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3292 3293 3294
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3295
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3296
	unsigned long total_load_moved = 0;
3297
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3298 3299

	do {
P
Peter Williams 已提交
3300 3301
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3302
				max_load_move - total_load_moved,
3303
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3304
		class = class->next;
3305

3306 3307 3308 3309 3310 3311
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3312 3313
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3314
#endif
P
Peter Williams 已提交
3315
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3316

P
Peter Williams 已提交
3317 3318 3319
	return total_load_moved > 0;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3356
	const struct sched_class *class;
P
Peter Williams 已提交
3357 3358

	for (class = sched_class_highest; class; class = class->next)
3359
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3360 3361 3362
			return 1;

	return 0;
I
Ingo Molnar 已提交
3363
}
3364
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3365
/*
3366 3367
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3368
 */
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3387
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 3389 3390 3391 3392 3393
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3394
#endif
3395
};
L
Linus Torvalds 已提交
3396

3397
/*
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3430
		load_idx = sd->busy_idx;
3431 3432 3433
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3434
		load_idx = sd->newidle_idx;
3435 3436
		break;
	default:
N
Nick Piggin 已提交
3437
		load_idx = sd->idle_idx;
3438 3439
		break;
	}
L
Linus Torvalds 已提交
3440

3441 3442
	return load_idx;
}
L
Linus Torvalds 已提交
3443 3444


3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3483

3484 3485
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3486

3487 3488 3489 3490 3491 3492 3493
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3494

3495 3496 3497 3498 3499 3500 3501 3502
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3503

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3517

3518 3519 3520 3521 3522 3523 3524
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
	if (sgs->sum_nr_running > sgs->group_capacity - 1)
		return;
L
Linus Torvalds 已提交
3525

3526 3527 3528 3529 3530 3531 3532
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3533

3534
/**
3535
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 3537 3538 3539 3540
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3541 3542 3543 3544 3545
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3546 3547 3548 3549 3550 3551 3552 3553
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3554

3555 3556 3557
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3558

3559 3560
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3561

3562 3563 3564 3565 3566 3567
	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
			group_first_cpu(sds->group_leader);
	}

	return 1;
L
Linus Torvalds 已提交
3568

3569 3570 3571 3572 3573 3574 3575
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3576

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */


3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

	if (local_group)
		balance_cpu = group_first_cpu(group);

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3621

3622 3623
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3624

3625 3626
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3627

3628
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3629
		if (local_group) {
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3642
		}
3643

3644 3645 3646
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3647

3648 3649
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3650

3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3662

3663 3664 3665
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = sg_div_cpu_power(group,
			sgs->group_load * SCHED_LOAD_SCALE);
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
	avg_load_per_task = sg_div_cpu_power(group,
			sum_avg_load_per_task * SCHED_LOAD_SCALE);

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

	sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;

}
I
Ingo Molnar 已提交
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3696
 */
3697 3698 3699 3700
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3701
{
3702
	struct sched_group *group = sd->groups;
3703
	struct sg_lb_stats sgs;
3704 3705
	int load_idx;

3706
	init_sd_power_savings_stats(sd, sds, idle);
3707
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3708 3709 3710 3711

	do {
		int local_group;

3712 3713
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3714
		memset(&sgs, 0, sizeof(sgs));
3715 3716
		update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3717

3718 3719
		if (local_group && balance && !(*balance))
			return;
3720

3721 3722
		sds->total_load += sgs.group_load;
		sds->total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
3723 3724

		if (local_group) {
3725 3726 3727 3728 3729
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3730 3731
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3732 3733 3734 3735 3736
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3737
		}
3738

3739
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3740 3741 3742
		group = group->next;
	} while (group != sd->groups);

3743
}
L
Linus Torvalds 已提交
3744

3745 3746
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3747 3748
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3767

3768 3769 3770 3771 3772
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3773

L
Linus Torvalds 已提交
3774
	/*
3775 3776 3777
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3778
	 */
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808
	pwr_now += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
	tmp = sg_div_cpu_power(sds->busiest,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->__cpu_power *
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->__cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		tmp = sg_div_cpu_power(sds->this,
			sds->max_load * sds->busiest->__cpu_power);
	else
		tmp = sg_div_cpu_power(sds->this,
			sds->busiest_load_per_task * SCHED_LOAD_SCALE);
	pwr_move += sds->this->__cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3821 3822 3823 3824 3825
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3826
	if (sds->max_load < sds->avg_load) {
3827
		*imbalance = 0;
3828
		return fix_small_imbalance(sds, this_cpu, imbalance);
3829
	}
3830 3831

	/* Don't want to pull so many tasks that a group would go idle */
3832 3833
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3834

L
Linus Torvalds 已提交
3835
	/* How much load to actually move to equalise the imbalance */
3836 3837
	*imbalance = min(max_pull * sds->busiest->__cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->__cpu_power)
L
Linus Torvalds 已提交
3838 3839
			/ SCHED_LOAD_SCALE;

3840 3841 3842 3843 3844 3845
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3846 3847
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3848

3849
}
3850
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3851

3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3876 3877 3878 3879 3880 3881 3882
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3883

3884
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3885

3886 3887 3888 3889 3890 3891 3892
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
3903 3904
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
3905

3906 3907
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
3908

3909
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
3910 3911
		goto out_balanced;

3912
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
3913

3914 3915 3916 3917
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
3918 3919
		goto out_balanced;

3920 3921 3922 3923
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
3924

L
Linus Torvalds 已提交
3925 3926 3927 3928 3929 3930 3931 3932
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
3933
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
3934 3935
	 * appear as very large values with unsigned longs.
	 */
3936
	if (sds.max_load <= sds.busiest_load_per_task)
3937 3938
		goto out_balanced;

3939 3940
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
3941
	return sds.busiest;
L
Linus Torvalds 已提交
3942 3943

out_balanced:
3944 3945 3946 3947 3948 3949
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
3950
ret:
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956 3957
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
3958
static struct rq *
I
Ingo Molnar 已提交
3959
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3960
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
3961
{
3962
	struct rq *busiest = NULL, *rq;
3963
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
3964 3965
	int i;

3966
	for_each_cpu(i, sched_group_cpus(group)) {
I
Ingo Molnar 已提交
3967
		unsigned long wl;
3968

3969
		if (!cpumask_test_cpu(i, cpus))
3970 3971
			continue;

3972
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
3973
		wl = weighted_cpuload(i);
3974

I
Ingo Molnar 已提交
3975
		if (rq->nr_running == 1 && wl > imbalance)
3976
			continue;
L
Linus Torvalds 已提交
3977

I
Ingo Molnar 已提交
3978 3979
		if (wl > max_load) {
			max_load = wl;
3980
			busiest = rq;
L
Linus Torvalds 已提交
3981 3982 3983 3984 3985 3986
		}
	}

	return busiest;
}

3987 3988 3989 3990 3991 3992
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

3993 3994 3995
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
3996 3997 3998 3999
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4000
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4001
			struct sched_domain *sd, enum cpu_idle_type idle,
4002
			int *balance)
L
Linus Torvalds 已提交
4003
{
P
Peter Williams 已提交
4004
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4005 4006
	struct sched_group *group;
	unsigned long imbalance;
4007
	struct rq *busiest;
4008
	unsigned long flags;
4009
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4010

4011
	cpumask_setall(cpus);
4012

4013 4014 4015
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4016
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4017
	 * portraying it as CPU_NOT_IDLE.
4018
	 */
I
Ingo Molnar 已提交
4019
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4020
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4021
		sd_idle = 1;
L
Linus Torvalds 已提交
4022

4023
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4024

4025
redo:
4026
	update_shares(sd);
4027
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4028
				   cpus, balance);
4029

4030
	if (*balance == 0)
4031 4032
		goto out_balanced;

L
Linus Torvalds 已提交
4033 4034 4035 4036 4037
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4038
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4044
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4045 4046 4047

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4048
	ld_moved = 0;
L
Linus Torvalds 已提交
4049 4050 4051 4052
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4053
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4054 4055
		 * correctly treated as an imbalance.
		 */
4056
		local_irq_save(flags);
N
Nick Piggin 已提交
4057
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4058
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4059
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4060
		double_rq_unlock(this_rq, busiest);
4061
		local_irq_restore(flags);
4062

4063 4064 4065
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4066
		if (ld_moved && this_cpu != smp_processor_id())
4067 4068
			resched_cpu(this_cpu);

4069
		/* All tasks on this runqueue were pinned by CPU affinity */
4070
		if (unlikely(all_pinned)) {
4071 4072
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4073
				goto redo;
4074
			goto out_balanced;
4075
		}
L
Linus Torvalds 已提交
4076
	}
4077

P
Peter Williams 已提交
4078
	if (!ld_moved) {
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4084
			spin_lock_irqsave(&busiest->lock, flags);
4085 4086 4087 4088

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4089 4090
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4091
				spin_unlock_irqrestore(&busiest->lock, flags);
4092 4093 4094 4095
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4096 4097 4098
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4099
				active_balance = 1;
L
Linus Torvalds 已提交
4100
			}
4101
			spin_unlock_irqrestore(&busiest->lock, flags);
4102
			if (active_balance)
L
Linus Torvalds 已提交
4103 4104 4105 4106 4107 4108
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4109
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4110
		}
4111
	} else
L
Linus Torvalds 已提交
4112 4113
		sd->nr_balance_failed = 0;

4114
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4115 4116
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4117 4118 4119 4120 4121 4122 4123 4124 4125
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4126 4127
	}

P
Peter Williams 已提交
4128
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4129
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 4131 4132
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4133 4134 4135 4136

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4137
	sd->nr_balance_failed = 0;
4138 4139

out_one_pinned:
L
Linus Torvalds 已提交
4140
	/* tune up the balancing interval */
4141 4142
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4143 4144
		sd->balance_interval *= 2;

4145
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4146
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4147 4148 4149 4150
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4151 4152
	if (ld_moved)
		update_shares(sd);
4153
	return ld_moved;
L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4160
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4161 4162
 * this_rq is locked.
 */
4163
static int
4164
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4165 4166
{
	struct sched_group *group;
4167
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4168
	unsigned long imbalance;
P
Peter Williams 已提交
4169
	int ld_moved = 0;
N
Nick Piggin 已提交
4170
	int sd_idle = 0;
4171
	int all_pinned = 0;
4172
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4173

4174
	cpumask_setall(cpus);
N
Nick Piggin 已提交
4175

4176 4177 4178 4179
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4180
	 * portraying it as CPU_NOT_IDLE.
4181 4182 4183
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4184
		sd_idle = 1;
L
Linus Torvalds 已提交
4185

4186
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4187
redo:
4188
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4189
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4190
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4191
	if (!group) {
I
Ingo Molnar 已提交
4192
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4193
		goto out_balanced;
L
Linus Torvalds 已提交
4194 4195
	}

4196
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4197
	if (!busiest) {
I
Ingo Molnar 已提交
4198
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4199
		goto out_balanced;
L
Linus Torvalds 已提交
4200 4201
	}

N
Nick Piggin 已提交
4202 4203
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4204
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4205

P
Peter Williams 已提交
4206
	ld_moved = 0;
4207 4208 4209
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4210 4211
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4212
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4213 4214
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4215
		double_unlock_balance(this_rq, busiest);
4216

4217
		if (unlikely(all_pinned)) {
4218 4219
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4220 4221
				goto redo;
		}
4222 4223
	}

P
Peter Williams 已提交
4224
	if (!ld_moved) {
4225
		int active_balance = 0;
4226

I
Ingo Molnar 已提交
4227
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4228 4229
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4230
			return -1;
4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4267
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4280 4281 4282 4283
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4284 4285
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4286
		spin_lock(&this_rq->lock);
4287

N
Nick Piggin 已提交
4288
	} else
4289
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4290

4291
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4292
	return ld_moved;
4293 4294

out_balanced:
I
Ingo Molnar 已提交
4295
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4296
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4297
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4298
		return -1;
4299
	sd->nr_balance_failed = 0;
4300

4301
	return 0;
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4308
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4309 4310
{
	struct sched_domain *sd;
4311
	int pulled_task = 0;
I
Ingo Molnar 已提交
4312
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4313 4314

	for_each_domain(this_cpu, sd) {
4315 4316 4317 4318 4319 4320
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4321
			/* If we've pulled tasks over stop searching: */
4322
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4323
							   sd);
4324 4325 4326 4327 4328 4329

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
4330
	}
I
Ingo Molnar 已提交
4331
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4332 4333 4334 4335 4336
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4337
	}
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4348
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4349
{
4350
	int target_cpu = busiest_rq->push_cpu;
4351 4352
	struct sched_domain *sd;
	struct rq *target_rq;
4353

4354
	/* Is there any task to move? */
4355 4356 4357 4358
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4359 4360

	/*
4361
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4362
	 * we need to fix it. Originally reported by
4363
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4364
	 */
4365
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4366

4367 4368
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4369 4370
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4371 4372

	/* Search for an sd spanning us and the target CPU. */
4373
	for_each_domain(target_cpu, sd) {
4374
		if ((sd->flags & SD_LOAD_BALANCE) &&
4375
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4376
				break;
4377
	}
4378

4379
	if (likely(sd)) {
4380
		schedstat_inc(sd, alb_count);
4381

P
Peter Williams 已提交
4382 4383
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4384 4385 4386 4387
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4388
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4389 4390
}

4391 4392 4393
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4394
	cpumask_var_t cpu_mask;
4395
	cpumask_var_t ilb_grp_nohz_mask;
4396 4397 4398 4399
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4400 4401 4402 4403 4404
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4516
	return cpumask_first(nohz.cpu_mask);
4517 4518 4519
}
#endif

4520
/*
4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4531
 *
4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4547 4548 4549 4550 4551 4552 4553 4554
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4555 4556
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4557

4558 4559 4560
			return 0;
		}

4561 4562
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4563
		/* time for ilb owner also to sleep */
4564
		if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4565 4566 4567 4568 4569 4570 4571 4572 4573
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4590
			return 1;
4591
		}
4592
	} else {
4593
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4594 4595
			return 0;

4596
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4609 4610 4611 4612 4613
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4614
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4615
{
4616 4617
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4618 4619
	unsigned long interval;
	struct sched_domain *sd;
4620
	/* Earliest time when we have to do rebalance again */
4621
	unsigned long next_balance = jiffies + 60*HZ;
4622
	int update_next_balance = 0;
4623
	int need_serialize;
L
Linus Torvalds 已提交
4624

4625
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4626 4627 4628 4629
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4630
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4631 4632 4633 4634 4635 4636
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4637 4638 4639
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4640
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4641

4642
		if (need_serialize) {
4643 4644 4645 4646
			if (!spin_trylock(&balancing))
				goto out;
		}

4647
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4648
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4649 4650
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4651 4652 4653
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4654
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4655
			}
4656
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4657
		}
4658
		if (need_serialize)
4659 4660
			spin_unlock(&balancing);
out:
4661
		if (time_after(next_balance, sd->last_balance + interval)) {
4662
			next_balance = sd->last_balance + interval;
4663 4664
			update_next_balance = 1;
		}
4665 4666 4667 4668 4669 4670 4671 4672

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4673
	}
4674 4675 4676 4677 4678 4679 4680 4681

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4682 4683 4684 4685 4686 4687 4688 4689 4690
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4691 4692 4693 4694
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4695

I
Ingo Molnar 已提交
4696
	rebalance_domains(this_cpu, idle);
4697 4698 4699 4700 4701 4702 4703

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4704 4705
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4706 4707 4708
		struct rq *rq;
		int balance_cpu;

4709 4710 4711 4712
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4713 4714 4715 4716 4717 4718 4719 4720
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4721
			rebalance_domains(balance_cpu, CPU_IDLE);
4722 4723

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4724 4725
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4726 4727 4728 4729 4730
		}
	}
#endif
}

4731 4732 4733 4734 4735
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4736 4737 4738 4739 4740 4741 4742
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4743
static inline void trigger_load_balance(struct rq *rq, int cpu)
4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4755
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4756 4757 4758 4759
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4760
			int ilb = find_new_ilb(cpu);
4761

4762
			if (ilb < nr_cpu_ids)
4763 4764 4765 4766 4767 4768 4769 4770 4771
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4772
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4773 4774 4775 4776 4777 4778 4779 4780 4781
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4782
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4783 4784
		return;
#endif
4785 4786 4787
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4788
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4789
}
I
Ingo Molnar 已提交
4790 4791 4792

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4793 4794 4795
/*
 * on UP we do not need to balance between CPUs:
 */
4796
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4797 4798
{
}
I
Ingo Molnar 已提交
4799

L
Linus Torvalds 已提交
4800 4801 4802 4803 4804 4805 4806
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4807
 * Return any ns on the sched_clock that have not yet been accounted in
4808
 * @p in case that task is currently running.
4809 4810
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4811
 */
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4826
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4827 4828
{
	unsigned long flags;
4829
	struct rq *rq;
4830
	u64 ns = 0;
4831

4832
	rq = task_rq_lock(p, &flags);
4833 4834
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4835

4836 4837
	return ns;
}
4838

4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4856

4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4876
	task_rq_unlock(rq, &flags);
4877

L
Linus Torvalds 已提交
4878 4879 4880 4881 4882 4883 4884
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4885
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4886
 */
4887 4888
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4889 4890 4891 4892
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4893
	/* Add user time to process. */
L
Linus Torvalds 已提交
4894
	p->utime = cputime_add(p->utime, cputime);
4895
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4896
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
4897 4898 4899 4900 4901 4902 4903

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
4904 4905

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4906 4907
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
4908 4909
}

4910 4911 4912 4913
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
4914
 * @cputime_scaled: cputime scaled by cpu frequency
4915
 */
4916 4917
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
4918 4919 4920 4921 4922 4923
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

4924
	/* Add guest time to process. */
4925
	p->utime = cputime_add(p->utime, cputime);
4926
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4927
	account_group_user_time(p, cputime);
4928 4929
	p->gtime = cputime_add(p->gtime, cputime);

4930
	/* Add guest time to cpustat. */
4931 4932 4933 4934
	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

L
Linus Torvalds 已提交
4935 4936 4937 4938 4939
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
4940
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
4941 4942
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
4943
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
4944 4945 4946 4947
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

4948
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4949
		account_guest_time(p, cputime, cputime_scaled);
4950 4951
		return;
	}
4952

4953
	/* Add system time to process. */
L
Linus Torvalds 已提交
4954
	p->stime = cputime_add(p->stime, cputime);
4955
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4956
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
4957 4958 4959 4960 4961 4962 4963 4964

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
4965 4966
		cpustat->system = cputime64_add(cpustat->system, tmp);

4967 4968
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
4969 4970 4971 4972
	/* Account for system time used */
	acct_update_integrals(p);
}

4973
/*
L
Linus Torvalds 已提交
4974 4975
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
4976
 */
4977
void account_steal_time(cputime_t cputime)
4978
{
4979 4980 4981 4982
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4983 4984
}

L
Linus Torvalds 已提交
4985
/*
4986 4987
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
4988
 */
4989
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
4990 4991
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4992
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
4993
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
4994

4995 4996 4997 4998
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
4999 5000
}

5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
	cputime_t one_jiffy = jiffies_to_cputime(1);
	cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
	struct rq *rq = this_rq();

	if (user_tick)
		account_user_time(p, one_jiffy, one_jiffy_scaled);
5016
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039
		account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
				    one_jiffy_scaled);
	else
		account_idle_time(one_jiffy);
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5040 5041
}

5042 5043
#endif

5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
cputime_t task_utime(struct task_struct *p)
{
	return p->utime;
}

cputime_t task_stime(struct task_struct *p)
{
	return p->stime;
}
#else
cputime_t task_utime(struct task_struct *p)
{
	clock_t utime = cputime_to_clock_t(p->utime),
		total = utime + cputime_to_clock_t(p->stime);
	u64 temp;

	/*
	 * Use CFS's precise accounting:
	 */
	temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);

	if (total) {
		temp *= utime;
		do_div(temp, total);
	}
	utime = (clock_t)temp;

	p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
	return p->prev_utime;
}

cputime_t task_stime(struct task_struct *p)
{
	clock_t stime;

	/*
	 * Use CFS's precise accounting. (we subtract utime from
	 * the total, to make sure the total observed by userspace
	 * grows monotonically - apps rely on that):
	 */
	stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
			cputime_to_clock_t(task_utime(p));

	if (stime >= 0)
		p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));

	return p->prev_stime;
}
#endif

inline cputime_t task_gtime(struct task_struct *p)
{
	return p->gtime;
}

5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5114
	struct task_struct *curr = rq->curr;
5115 5116

	sched_clock_tick();
I
Ingo Molnar 已提交
5117 5118

	spin_lock(&rq->lock);
5119
	update_rq_clock(rq);
5120
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5121
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5122
	spin_unlock(&rq->lock);
5123

5124 5125
	perf_counter_task_tick(curr, cpu);

5126
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5127 5128
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5129
#endif
L
Linus Torvalds 已提交
5130 5131
}

5132
notrace unsigned long get_parent_ip(unsigned long addr)
5133 5134 5135 5136 5137 5138 5139 5140
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5141

5142 5143 5144
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5145
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5146
{
5147
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5148 5149 5150
	/*
	 * Underflow?
	 */
5151 5152
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5153
#endif
L
Linus Torvalds 已提交
5154
	preempt_count() += val;
5155
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5156 5157 5158
	/*
	 * Spinlock count overflowing soon?
	 */
5159 5160
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5161 5162 5163
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5164 5165 5166
}
EXPORT_SYMBOL(add_preempt_count);

5167
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5168
{
5169
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5170 5171 5172
	/*
	 * Underflow?
	 */
5173
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5174
		return;
L
Linus Torvalds 已提交
5175 5176 5177
	/*
	 * Is the spinlock portion underflowing?
	 */
5178 5179 5180
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5181
#endif
5182

5183 5184
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5185 5186 5187 5188 5189 5190 5191
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5192
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5193
 */
I
Ingo Molnar 已提交
5194
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5195
{
5196 5197 5198 5199 5200
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5201
	debug_show_held_locks(prev);
5202
	print_modules();
I
Ingo Molnar 已提交
5203 5204
	if (irqs_disabled())
		print_irqtrace_events(prev);
5205 5206 5207 5208 5209

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5210
}
L
Linus Torvalds 已提交
5211

I
Ingo Molnar 已提交
5212 5213 5214 5215 5216
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5217
	/*
I
Ingo Molnar 已提交
5218
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5219 5220 5221
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5222
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5223 5224
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5225 5226
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5227
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5228 5229
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5230 5231
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5232 5233
	}
#endif
I
Ingo Molnar 已提交
5234 5235
}

M
Mike Galbraith 已提交
5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
static void put_prev_task(struct rq *rq, struct task_struct *prev)
{
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;

		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
		update_avg(&prev->se.avg_overlap, runtime);
	}
	prev->sched_class->put_prev_task(rq, prev);
}

I
Ingo Molnar 已提交
5258 5259 5260 5261
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5262
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5263
{
5264
	const struct sched_class *class;
I
Ingo Molnar 已提交
5265
	struct task_struct *p;
L
Linus Torvalds 已提交
5266 5267

	/*
I
Ingo Molnar 已提交
5268 5269
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5270
	 */
I
Ingo Molnar 已提交
5271
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5272
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5273 5274
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5275 5276
	}

I
Ingo Molnar 已提交
5277 5278
	class = sched_class_highest;
	for ( ; ; ) {
5279
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5280 5281 5282 5283 5284 5285 5286 5287 5288
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5289

I
Ingo Molnar 已提交
5290 5291 5292
/*
 * schedule() is the main scheduler function.
 */
5293
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5294 5295
{
	struct task_struct *prev, *next;
5296
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5297
	struct rq *rq;
5298
	int cpu;
I
Ingo Molnar 已提交
5299

5300 5301
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5312

5313
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5314
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5315

5316
	spin_lock_irq(&rq->lock);
5317
	update_rq_clock(rq);
5318
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5319 5320

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5321
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5322
			prev->state = TASK_RUNNING;
5323
		else
5324
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5325
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5326 5327
	}

5328 5329 5330 5331
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
5332

I
Ingo Molnar 已提交
5333
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5334 5335
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5336
	put_prev_task(rq, prev);
5337
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5338 5339

	if (likely(prev != next)) {
5340
		sched_info_switch(prev, next);
5341
		perf_counter_task_sched_out(prev, next, cpu);
5342

L
Linus Torvalds 已提交
5343 5344 5345 5346
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5347
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5348 5349 5350 5351 5352 5353
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5354 5355 5356
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
5357
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5358
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5359

L
Linus Torvalds 已提交
5360
	preempt_enable_no_resched();
5361
	if (need_resched())
L
Linus Torvalds 已提交
5362 5363 5364 5365
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
#ifdef CONFIG_SMP
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5427 5428
#ifdef CONFIG_PREEMPT
/*
5429
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5430
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5431 5432 5433 5434 5435
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5436

L
Linus Torvalds 已提交
5437 5438
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5439
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5440
	 */
N
Nick Piggin 已提交
5441
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5442 5443
		return;

5444 5445 5446 5447
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5448

5449 5450 5451 5452 5453
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5454
	} while (need_resched());
L
Linus Torvalds 已提交
5455 5456 5457 5458
}
EXPORT_SYMBOL(preempt_schedule);

/*
5459
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5460 5461 5462 5463 5464 5465 5466
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5467

5468
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5469 5470
	BUG_ON(ti->preempt_count || !irqs_disabled());

5471 5472 5473 5474 5475 5476
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5477

5478 5479 5480 5481 5482
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5483
	} while (need_resched());
L
Linus Torvalds 已提交
5484 5485 5486 5487
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
5488 5489
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
5490
{
5491
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
5492 5493 5494 5495
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5496 5497
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5498 5499 5500
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5501
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5502 5503
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5504
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5505
			int nr_exclusive, int sync, void *key)
L
Linus Torvalds 已提交
5506
{
5507
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5508

5509
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5510 5511
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
5512
		if (curr->func(curr, mode, sync, key) &&
5513
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5514 5515 5516 5517 5518 5519 5520 5521 5522
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5523
 * @key: is directly passed to the wakeup function
5524 5525 5526
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5527
 */
5528
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5529
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5542
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5543 5544 5545 5546
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5547 5548 5549 5550 5551
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5552
/**
5553
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5554 5555 5556
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5557
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5558 5559 5560 5561 5562 5563 5564
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5565 5566 5567
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5568
 */
5569 5570
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
5582
	__wake_up_common(q, mode, nr_exclusive, sync, key);
L
Linus Torvalds 已提交
5583 5584
	spin_unlock_irqrestore(&q->lock, flags);
}
5585 5586 5587 5588 5589 5590 5591 5592 5593
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5594 5595
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5596 5597 5598 5599 5600 5601 5602 5603
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5604 5605 5606
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5607
 */
5608
void complete(struct completion *x)
L
Linus Torvalds 已提交
5609 5610 5611 5612 5613
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5614
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5615 5616 5617 5618
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5619 5620 5621 5622 5623
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5624 5625 5626
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5627
 */
5628
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5629 5630 5631 5632 5633
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5634
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5635 5636 5637 5638
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5639 5640
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5641 5642 5643 5644 5645 5646 5647
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5648
			if (signal_pending_state(state, current)) {
5649 5650
				timeout = -ERESTARTSYS;
				break;
5651 5652
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5653 5654 5655
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5656
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5657
		__remove_wait_queue(&x->wait, &wait);
5658 5659
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5660 5661
	}
	x->done--;
5662
	return timeout ?: 1;
L
Linus Torvalds 已提交
5663 5664
}

5665 5666
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5667 5668 5669 5670
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5671
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5672
	spin_unlock_irq(&x->wait.lock);
5673 5674
	return timeout;
}
L
Linus Torvalds 已提交
5675

5676 5677 5678 5679 5680 5681 5682 5683 5684 5685
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5686
void __sched wait_for_completion(struct completion *x)
5687 5688
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5689
}
5690
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5691

5692 5693 5694 5695 5696 5697 5698 5699 5700
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5701
unsigned long __sched
5702
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5703
{
5704
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5705
}
5706
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5707

5708 5709 5710 5711 5712 5713 5714
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5715
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5716
{
5717 5718 5719 5720
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5721
}
5722
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5723

5724 5725 5726 5727 5728 5729 5730 5731
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5732
unsigned long __sched
5733 5734
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5735
{
5736
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5737
}
5738
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5739

5740 5741 5742 5743 5744 5745 5746
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5802 5803
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5804
{
I
Ingo Molnar 已提交
5805 5806 5807 5808
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5809

5810
	__set_current_state(state);
L
Linus Torvalds 已提交
5811

5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5826 5827 5828
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5829
long __sched
I
Ingo Molnar 已提交
5830
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5831
{
5832
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5833 5834 5835
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5836
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5837
{
5838
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5839 5840 5841
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5842
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5843
{
5844
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5845 5846 5847
}
EXPORT_SYMBOL(sleep_on_timeout);

5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
5860
void rt_mutex_setprio(struct task_struct *p, int prio)
5861 5862
{
	unsigned long flags;
5863
	int oldprio, on_rq, running;
5864
	struct rq *rq;
5865
	const struct sched_class *prev_class = p->sched_class;
5866 5867 5868 5869

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5870
	update_rq_clock(rq);
5871

5872
	oldprio = p->prio;
I
Ingo Molnar 已提交
5873
	on_rq = p->se.on_rq;
5874
	running = task_current(rq, p);
5875
	if (on_rq)
5876
		dequeue_task(rq, p, 0);
5877 5878
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
5879 5880 5881 5882 5883 5884

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

5885 5886
	p->prio = prio;

5887 5888
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
5889
	if (on_rq) {
5890
		enqueue_task(rq, p, 0);
5891 5892

		check_class_changed(rq, p, prev_class, oldprio, running);
5893 5894 5895 5896 5897 5898
	}
	task_rq_unlock(rq, &flags);
}

#endif

5899
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
5900
{
I
Ingo Molnar 已提交
5901
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
5902
	unsigned long flags;
5903
	struct rq *rq;
L
Linus Torvalds 已提交
5904 5905 5906 5907 5908 5909 5910 5911

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5912
	update_rq_clock(rq);
L
Linus Torvalds 已提交
5913 5914 5915 5916
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
5917
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
5918
	 */
5919
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
5920 5921 5922
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
5923
	on_rq = p->se.on_rq;
5924
	if (on_rq)
5925
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
5926 5927

	p->static_prio = NICE_TO_PRIO(nice);
5928
	set_load_weight(p);
5929 5930 5931
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
5932

I
Ingo Molnar 已提交
5933
	if (on_rq) {
5934
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
5935
		/*
5936 5937
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
5938
		 */
5939
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
5940 5941 5942 5943 5944 5945 5946
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
5947 5948 5949 5950 5951
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
5952
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
5953
{
5954 5955
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
5956

M
Matt Mackall 已提交
5957 5958 5959 5960
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
5961 5962 5963 5964 5965 5966 5967 5968 5969
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
5970
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
5971
{
5972
	long nice, retval;
L
Linus Torvalds 已提交
5973 5974 5975 5976 5977 5978

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
5979 5980
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
5981 5982 5983
	if (increment > 40)
		increment = 40;

5984
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
5985 5986 5987 5988 5989
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
5990 5991 5992
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6011
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6012 6013 6014 6015 6016 6017 6018 6019
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6020
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6021 6022 6023
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6024
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6039
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6040 6041 6042 6043 6044 6045 6046 6047
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6048
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6049
{
6050
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6051 6052 6053
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6054 6055
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6056
{
I
Ingo Molnar 已提交
6057
	BUG_ON(p->se.on_rq);
6058

L
Linus Torvalds 已提交
6059
	p->policy = policy;
I
Ingo Molnar 已提交
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
6072
	p->rt_priority = prio;
6073 6074 6075
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6076
	set_load_weight(p);
L
Linus Torvalds 已提交
6077 6078
}

6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6095 6096
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6097
{
6098
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6099
	unsigned long flags;
6100
	const struct sched_class *prev_class = p->sched_class;
6101
	struct rq *rq;
L
Linus Torvalds 已提交
6102

6103 6104
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6105 6106 6107 6108 6109
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
6110 6111
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
6112
		return -EINVAL;
L
Linus Torvalds 已提交
6113 6114
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6115 6116
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6117 6118
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6119
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6120
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6121
		return -EINVAL;
6122
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6123 6124
		return -EINVAL;

6125 6126 6127
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6128
	if (user && !capable(CAP_SYS_NICE)) {
6129
		if (rt_policy(policy)) {
6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6146 6147 6148 6149 6150 6151
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6152

6153
		/* can't change other user's priorities */
6154
		if (!check_same_owner(p))
6155 6156
			return -EPERM;
	}
L
Linus Torvalds 已提交
6157

6158
	if (user) {
6159
#ifdef CONFIG_RT_GROUP_SCHED
6160 6161 6162 6163
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6164 6165
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6166
			return -EPERM;
6167 6168
#endif

6169 6170 6171 6172 6173
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6174 6175 6176 6177 6178
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6179 6180 6181 6182
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6183
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6184 6185 6186
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6187 6188
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6189 6190
		goto recheck;
	}
I
Ingo Molnar 已提交
6191
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6192
	on_rq = p->se.on_rq;
6193
	running = task_current(rq, p);
6194
	if (on_rq)
6195
		deactivate_task(rq, p, 0);
6196 6197
	if (running)
		p->sched_class->put_prev_task(rq, p);
6198

L
Linus Torvalds 已提交
6199
	oldprio = p->prio;
I
Ingo Molnar 已提交
6200
	__setscheduler(rq, p, policy, param->sched_priority);
6201

6202 6203
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6204 6205
	if (on_rq) {
		activate_task(rq, p, 0);
6206 6207

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6208
	}
6209 6210 6211
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6212 6213
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6214 6215
	return 0;
}
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6230 6231
EXPORT_SYMBOL_GPL(sched_setscheduler);

6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6249 6250
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6251 6252 6253
{
	struct sched_param lparam;
	struct task_struct *p;
6254
	int retval;
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6260 6261 6262

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6263
	p = find_process_by_pid(pid);
6264 6265 6266
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6267

L
Linus Torvalds 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6277 6278
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6279
{
6280 6281 6282 6283
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6284 6285 6286 6287 6288 6289 6290 6291
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6292
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6293 6294 6295 6296 6297 6298 6299 6300
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6301
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6302
{
6303
	struct task_struct *p;
6304
	int retval;
L
Linus Torvalds 已提交
6305 6306

	if (pid < 0)
6307
		return -EINVAL;
L
Linus Torvalds 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6326
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6327 6328
{
	struct sched_param lp;
6329
	struct task_struct *p;
6330
	int retval;
L
Linus Torvalds 已提交
6331 6332

	if (!param || pid < 0)
6333
		return -EINVAL;
L
Linus Torvalds 已提交
6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6360
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6361
{
6362
	cpumask_var_t cpus_allowed, new_mask;
6363 6364
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6365

6366
	get_online_cpus();
L
Linus Torvalds 已提交
6367 6368 6369 6370 6371
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6372
		put_online_cpus();
L
Linus Torvalds 已提交
6373 6374 6375 6376 6377
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6378
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6379 6380 6381 6382 6383
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6384 6385 6386 6387 6388 6389 6390 6391
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6392
	retval = -EPERM;
6393
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6394 6395
		goto out_unlock;

6396 6397 6398 6399
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6400 6401
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6402
 again:
6403
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6404

P
Paul Menage 已提交
6405
	if (!retval) {
6406 6407
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6408 6409 6410 6411 6412
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6413
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6414 6415 6416
			goto again;
		}
	}
L
Linus Torvalds 已提交
6417
out_unlock:
6418 6419 6420 6421
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6422
	put_task_struct(p);
6423
	put_online_cpus();
L
Linus Torvalds 已提交
6424 6425 6426 6427
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6428
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6429
{
6430 6431 6432 6433 6434
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6435 6436 6437 6438 6439 6440 6441 6442 6443
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6444 6445
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6446
{
6447
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6448 6449
	int retval;

6450 6451
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6452

6453 6454 6455 6456 6457
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6458 6459
}

6460
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6461
{
6462
	struct task_struct *p;
L
Linus Torvalds 已提交
6463 6464
	int retval;

6465
	get_online_cpus();
L
Linus Torvalds 已提交
6466 6467 6468 6469 6470 6471 6472
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6473 6474 6475 6476
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6477
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
L
Linus Torvalds 已提交
6478 6479 6480

out_unlock:
	read_unlock(&tasklist_lock);
6481
	put_online_cpus();
L
Linus Torvalds 已提交
6482

6483
	return retval;
L
Linus Torvalds 已提交
6484 6485 6486 6487 6488 6489 6490 6491
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6492 6493
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6494 6495
{
	int ret;
6496
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6497

6498
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6499 6500
		return -EINVAL;

6501 6502
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6503

6504 6505 6506 6507 6508 6509 6510 6511
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6512

6513
	return ret;
L
Linus Torvalds 已提交
6514 6515 6516 6517 6518
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6519 6520
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6521
 */
6522
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6523
{
6524
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6525

6526
	schedstat_inc(rq, yld_count);
6527
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6528 6529 6530 6531 6532 6533

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6534
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6535 6536 6537 6538 6539 6540 6541 6542
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
6543
static void __cond_resched(void)
L
Linus Torvalds 已提交
6544
{
6545 6546 6547
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
6548 6549 6550 6551 6552
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
6553 6554 6555 6556 6557 6558 6559
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

6560
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6561
{
6562 6563
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
6564 6565 6566 6567 6568
		__cond_resched();
		return 1;
	}
	return 0;
}
6569
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6570 6571 6572 6573 6574

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6575
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6576 6577 6578
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
6579
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6580
{
N
Nick Piggin 已提交
6581
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
6582 6583
	int ret = 0;

N
Nick Piggin 已提交
6584
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6585
		spin_unlock(lock);
N
Nick Piggin 已提交
6586 6587 6588 6589
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6590
		ret = 1;
L
Linus Torvalds 已提交
6591 6592
		spin_lock(lock);
	}
J
Jan Kara 已提交
6593
	return ret;
L
Linus Torvalds 已提交
6594 6595 6596 6597 6598 6599 6600
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

6601
	if (need_resched() && system_state == SYSTEM_RUNNING) {
6602
		local_bh_enable();
L
Linus Torvalds 已提交
6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
6614
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6625
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630 6631 6632
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
6633
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6634

6635
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6636 6637 6638
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
6639
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6640 6641 6642 6643 6644
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6645
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
6646 6647
	long ret;

6648
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6649 6650 6651
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
6652
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6653 6654 6655 6656 6657 6658 6659 6660 6661 6662
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6663
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6664 6665 6666 6667 6668 6669 6670 6671 6672
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6673
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6674
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6688
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6689 6690 6691 6692 6693 6694 6695 6696 6697
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6698
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6699
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6713
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6714
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6715
{
6716
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6717
	unsigned int time_slice;
6718
	int retval;
L
Linus Torvalds 已提交
6719 6720 6721
	struct timespec t;

	if (pid < 0)
6722
		return -EINVAL;
L
Linus Torvalds 已提交
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6734 6735 6736 6737 6738 6739
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
6740
		time_slice = DEF_TIMESLICE;
6741
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
6742 6743 6744 6745 6746
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
6747 6748
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
6749 6750
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
6751
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6752
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6753 6754
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6755

L
Linus Torvalds 已提交
6756 6757 6758 6759 6760
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6761
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6762

6763
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6764 6765
{
	unsigned long free = 0;
6766
	unsigned state;
L
Linus Torvalds 已提交
6767 6768

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6769
	printk(KERN_INFO "%-13.13s %c", p->comm,
6770
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6771
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6772
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6773
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6774
	else
I
Ingo Molnar 已提交
6775
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6776 6777
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6778
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6779
	else
I
Ingo Molnar 已提交
6780
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6781 6782
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6783
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6784
#endif
6785 6786 6787
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6788

6789
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6790 6791
}

I
Ingo Molnar 已提交
6792
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6793
{
6794
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6795

6796 6797 6798
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6799
#else
6800 6801
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6802 6803 6804 6805 6806 6807 6808 6809
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6810
		if (!state_filter || (p->state & state_filter))
6811
			sched_show_task(p);
L
Linus Torvalds 已提交
6812 6813
	} while_each_thread(g, p);

6814 6815
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6816 6817 6818
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6819
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6820 6821 6822 6823 6824
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
6825 6826
}

I
Ingo Molnar 已提交
6827 6828
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6829
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6830 6831
}

6832 6833 6834 6835 6836 6837 6838 6839
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6840
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6841
{
6842
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6843 6844
	unsigned long flags;

6845 6846
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6847 6848 6849
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6850
	idle->prio = idle->normal_prio = MAX_PRIO;
6851
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6852
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6853 6854

	rq->curr = rq->idle = idle;
6855 6856 6857
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6858 6859 6860
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6861 6862 6863
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6864
	task_thread_info(idle)->preempt_count = 0;
6865
#endif
I
Ingo Molnar 已提交
6866 6867 6868 6869
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
6870
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
6871 6872 6873 6874 6875 6876 6877
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
6878
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
6879
 */
6880
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
6881

I
Ingo Molnar 已提交
6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
6905 6906

	sysctl_sched_shares_ratelimit *= factor;
I
Ingo Molnar 已提交
6907 6908
}

L
Linus Torvalds 已提交
6909 6910 6911 6912
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
6913
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
6932
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
6933 6934
 * call is not atomic; no spinlocks may be held.
 */
6935
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
6936
{
6937
	struct migration_req req;
L
Linus Torvalds 已提交
6938
	unsigned long flags;
6939
	struct rq *rq;
6940
	int ret = 0;
L
Linus Torvalds 已提交
6941 6942

	rq = task_rq_lock(p, &flags);
6943
	if (!cpumask_intersects(new_mask, cpu_online_mask)) {
L
Linus Torvalds 已提交
6944 6945 6946 6947
		ret = -EINVAL;
		goto out;
	}

6948
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6949
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
6950 6951 6952 6953
		ret = -EINVAL;
		goto out;
	}

6954
	if (p->sched_class->set_cpus_allowed)
6955
		p->sched_class->set_cpus_allowed(p, new_mask);
6956
	else {
6957 6958
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6959 6960
	}

L
Linus Torvalds 已提交
6961
	/* Can the task run on the task's current CPU? If so, we're done */
6962
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
6963 6964
		goto out;

R
Rusty Russell 已提交
6965
	if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
6966 6967 6968 6969 6970 6971 6972 6973 6974
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
6975

L
Linus Torvalds 已提交
6976 6977
	return ret;
}
6978
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
6979 6980

/*
I
Ingo Molnar 已提交
6981
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
6982 6983 6984 6985 6986 6987
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
6988 6989
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
6990
 */
6991
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
6992
{
6993
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
6994
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
6995

6996
	if (unlikely(!cpu_active(dest_cpu)))
6997
		return ret;
L
Linus Torvalds 已提交
6998 6999 7000 7001 7002 7003 7004

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7005
		goto done;
L
Linus Torvalds 已提交
7006
	/* Affinity changed (again). */
7007
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7008
		goto fail;
L
Linus Torvalds 已提交
7009

I
Ingo Molnar 已提交
7010
	on_rq = p->se.on_rq;
7011
	if (on_rq)
7012
		deactivate_task(rq_src, p, 0);
7013

L
Linus Torvalds 已提交
7014
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7015 7016
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7017
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7018
	}
L
Linus Torvalds 已提交
7019
done:
7020
	ret = 1;
L
Linus Torvalds 已提交
7021
fail:
L
Linus Torvalds 已提交
7022
	double_rq_unlock(rq_src, rq_dest);
7023
	return ret;
L
Linus Torvalds 已提交
7024 7025 7026 7027 7028 7029 7030
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7031
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7032 7033
{
	int cpu = (long)data;
7034
	struct rq *rq;
L
Linus Torvalds 已提交
7035 7036 7037 7038 7039 7040

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7041
		struct migration_req *req;
L
Linus Torvalds 已提交
7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7064
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7065 7066
		list_del_init(head->next);

N
Nick Piggin 已提交
7067 7068 7069
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7099
/*
7100
 * Figure out where task on dead CPU should go, use force if necessary.
7101
 */
7102
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7103
{
7104
	int dest_cpu;
7105
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121

again:
	/* Look for allowed, online CPU in same node. */
	for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
		dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7122

7123 7124 7125 7126 7127 7128 7129 7130 7131
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7132
		}
7133 7134 7135 7136 7137 7138
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7139 7140 7141 7142 7143 7144 7145 7146 7147
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7148
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7149
{
R
Rusty Russell 已提交
7150
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7164
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7165

7166
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7167

7168 7169
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7170 7171
			continue;

7172 7173 7174
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7175

7176
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7177 7178
}

I
Ingo Molnar 已提交
7179 7180
/*
 * Schedules idle task to be the next runnable task on current CPU.
7181 7182
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7183 7184 7185
 */
void sched_idle_next(void)
{
7186
	int this_cpu = smp_processor_id();
7187
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7188 7189 7190 7191
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7192
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7193

7194 7195 7196
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7197 7198 7199
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7200
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7201

7202 7203
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7204 7205 7206 7207

	spin_unlock_irqrestore(&rq->lock, flags);
}

7208 7209
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7223
/* called under rq->lock with disabled interrupts */
7224
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7225
{
7226
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7227 7228

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7229
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7230 7231

	/* Cannot have done final schedule yet: would have vanished. */
7232
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7233

7234
	get_task_struct(p);
L
Linus Torvalds 已提交
7235 7236 7237

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7238
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7239 7240
	 * fine.
	 */
7241
	spin_unlock_irq(&rq->lock);
7242
	move_task_off_dead_cpu(dead_cpu, p);
7243
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7244

7245
	put_task_struct(p);
L
Linus Torvalds 已提交
7246 7247 7248 7249 7250
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7251
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7252
	struct task_struct *next;
7253

I
Ingo Molnar 已提交
7254 7255 7256
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7257
		update_rq_clock(rq);
7258
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7259 7260
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7261
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7262
		migrate_dead(dead_cpu, next);
7263

L
Linus Torvalds 已提交
7264 7265
	}
}
7266 7267 7268 7269 7270 7271 7272 7273

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
}
L
Linus Torvalds 已提交
7274 7275
#endif /* CONFIG_HOTPLUG_CPU */

7276 7277 7278
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7279 7280
	{
		.procname	= "sched_domain",
7281
		.mode		= 0555,
7282
	},
I
Ingo Molnar 已提交
7283
	{0, },
7284 7285 7286
};

static struct ctl_table sd_ctl_root[] = {
7287
	{
7288
		.ctl_name	= CTL_KERN,
7289
		.procname	= "kernel",
7290
		.mode		= 0555,
7291 7292
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7293
	{0, },
7294 7295 7296 7297 7298
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7299
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7300 7301 7302 7303

	return entry;
}

7304 7305
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7306
	struct ctl_table *entry;
7307

7308 7309 7310
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7311
	 * will always be set. In the lowest directory the names are
7312 7313 7314
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7315 7316
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7317 7318 7319
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7320 7321 7322 7323 7324

	kfree(*tablep);
	*tablep = NULL;
}

7325
static void
7326
set_table_entry(struct ctl_table *entry,
7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7340
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7341

7342 7343 7344
	if (table == NULL)
		return NULL;

7345
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7346
		sizeof(long), 0644, proc_doulongvec_minmax);
7347
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7348
		sizeof(long), 0644, proc_doulongvec_minmax);
7349
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7350
		sizeof(int), 0644, proc_dointvec_minmax);
7351
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7352
		sizeof(int), 0644, proc_dointvec_minmax);
7353
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7354
		sizeof(int), 0644, proc_dointvec_minmax);
7355
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7356
		sizeof(int), 0644, proc_dointvec_minmax);
7357
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7358
		sizeof(int), 0644, proc_dointvec_minmax);
7359
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7360
		sizeof(int), 0644, proc_dointvec_minmax);
7361
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7362
		sizeof(int), 0644, proc_dointvec_minmax);
7363
	set_table_entry(&table[9], "cache_nice_tries",
7364 7365
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7366
	set_table_entry(&table[10], "flags", &sd->flags,
7367
		sizeof(int), 0644, proc_dointvec_minmax);
7368 7369 7370
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7371 7372 7373 7374

	return table;
}

7375
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7376 7377 7378 7379 7380 7381 7382 7383 7384
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7385 7386
	if (table == NULL)
		return NULL;
7387 7388 7389 7390 7391

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7392
		entry->mode = 0555;
7393 7394 7395 7396 7397 7398 7399 7400
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7401
static void register_sched_domain_sysctl(void)
7402 7403 7404 7405 7406
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7407 7408 7409
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7410 7411 7412
	if (entry == NULL)
		return;

7413
	for_each_online_cpu(i) {
7414 7415
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7416
		entry->mode = 0555;
7417
		entry->child = sd_alloc_ctl_cpu_table(i);
7418
		entry++;
7419
	}
7420 7421

	WARN_ON(sd_sysctl_header);
7422 7423
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7424

7425
/* may be called multiple times per register */
7426 7427
static void unregister_sched_domain_sysctl(void)
{
7428 7429
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7430
	sd_sysctl_header = NULL;
7431 7432
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7433
}
7434
#else
7435 7436 7437 7438
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7439 7440 7441 7442
{
}
#endif

7443 7444 7445 7446 7447
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7448
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7468
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7469 7470 7471 7472
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7473 7474 7475 7476
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7477 7478
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7479 7480
{
	struct task_struct *p;
7481
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7482
	unsigned long flags;
7483
	struct rq *rq;
L
Linus Torvalds 已提交
7484 7485

	switch (action) {
7486

L
Linus Torvalds 已提交
7487
	case CPU_UP_PREPARE:
7488
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7489
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7490 7491 7492 7493 7494
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7495
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7496 7497 7498
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
7499

L
Linus Torvalds 已提交
7500
	case CPU_ONLINE:
7501
	case CPU_ONLINE_FROZEN:
7502
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7503
		wake_up_process(cpu_rq(cpu)->migration_thread);
7504 7505 7506 7507

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
7508 7509
		rq->calc_load_update = calc_load_update;
		rq->calc_load_active = 0;
7510
		if (rq->rd) {
7511
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7512 7513

			set_rq_online(rq);
7514 7515
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7516
		break;
7517

L
Linus Torvalds 已提交
7518 7519
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7520
	case CPU_UP_CANCELED_FROZEN:
7521 7522
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7523
		/* Unbind it from offline cpu so it can run. Fall thru. */
7524
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7525
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7526 7527 7528
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7529

L
Linus Torvalds 已提交
7530
	case CPU_DEAD:
7531
	case CPU_DEAD_FROZEN:
7532
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7533 7534 7535 7536 7537
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7538
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7539
		update_rq_clock(rq);
7540
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
7541
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
7542 7543
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7544
		migrate_dead_tasks(cpu);
7545
		spin_unlock_irq(&rq->lock);
7546
		cpuset_unlock();
L
Linus Torvalds 已提交
7547 7548
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7549
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7550 7551 7552 7553 7554
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7555 7556
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7557 7558
			struct migration_req *req;

L
Linus Torvalds 已提交
7559
			req = list_entry(rq->migration_queue.next,
7560
					 struct migration_req, list);
L
Linus Torvalds 已提交
7561
			list_del_init(&req->list);
B
Brian King 已提交
7562
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7563
			complete(&req->done);
B
Brian King 已提交
7564
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7565 7566 7567
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7568

7569 7570
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7571 7572 7573 7574
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7575
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7576
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7577 7578 7579
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7580 7581 7582 7583 7584
#endif
	}
	return NOTIFY_OK;
}

7585 7586 7587 7588
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
 * the notifier in the perf_counter subsystem, though.
L
Linus Torvalds 已提交
7589
 */
7590
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7591 7592 7593 7594
	.notifier_call = migration_call,
	.priority = 10
};

7595
static int __init migration_init(void)
L
Linus Torvalds 已提交
7596 7597
{
	void *cpu = (void *)(long)smp_processor_id();
7598
	int err;
7599 7600

	/* Start one for the boot CPU: */
7601 7602
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7603 7604
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7605 7606

	return err;
L
Linus Torvalds 已提交
7607
}
7608
early_initcall(migration_init);
L
Linus Torvalds 已提交
7609 7610 7611
#endif

#ifdef CONFIG_SMP
7612

7613
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7614

7615
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7616
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7617
{
I
Ingo Molnar 已提交
7618
	struct sched_group *group = sd->groups;
7619
	char str[256];
L
Linus Torvalds 已提交
7620

R
Rusty Russell 已提交
7621
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7622
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7623 7624 7625 7626 7627 7628 7629 7630 7631

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7632 7633
	}

7634
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7635

7636
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7637 7638 7639
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7640
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7641 7642 7643
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7644

I
Ingo Molnar 已提交
7645
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7646
	do {
I
Ingo Molnar 已提交
7647 7648 7649
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7650 7651 7652
			break;
		}

I
Ingo Molnar 已提交
7653 7654 7655 7656 7657 7658
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7659

7660
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7661 7662 7663 7664
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7665

7666
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7667 7668 7669 7670
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7671

7672
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7673

R
Rusty Russell 已提交
7674
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7675 7676 7677 7678 7679 7680

		printk(KERN_CONT " %s", str);
		if (group->__cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (__cpu_power = %d)",
				group->__cpu_power);
		}
L
Linus Torvalds 已提交
7681

I
Ingo Molnar 已提交
7682 7683 7684
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7685

7686
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7687
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7688

7689 7690
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7691 7692 7693 7694
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7695

I
Ingo Molnar 已提交
7696 7697
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7698
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7699
	int level = 0;
L
Linus Torvalds 已提交
7700

I
Ingo Molnar 已提交
7701 7702 7703 7704
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7705

I
Ingo Molnar 已提交
7706 7707
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7708
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7709 7710 7711 7712
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7713
	for (;;) {
7714
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7715
			break;
L
Linus Torvalds 已提交
7716 7717
		level++;
		sd = sd->parent;
7718
		if (!sd)
I
Ingo Molnar 已提交
7719 7720
			break;
	}
7721
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7722
}
7723
#else /* !CONFIG_SCHED_DEBUG */
7724
# define sched_domain_debug(sd, cpu) do { } while (0)
7725
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7726

7727
static int sd_degenerate(struct sched_domain *sd)
7728
{
7729
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7730 7731 7732 7733 7734 7735
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7736 7737 7738
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

7752 7753
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7754 7755 7756 7757 7758 7759
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7760
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7772 7773 7774
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7775 7776
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7777 7778 7779 7780 7781 7782 7783
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7784 7785
static void free_rootdomain(struct root_domain *rd)
{
7786 7787
	cpupri_cleanup(&rd->cpupri);

7788 7789 7790 7791 7792 7793
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7794 7795
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7796
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7797 7798 7799 7800 7801
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7802
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7803

7804
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7805
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7806

7807
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7808

I
Ingo Molnar 已提交
7809 7810 7811 7812 7813 7814 7815
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7816 7817 7818 7819 7820
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7821 7822
	cpumask_set_cpu(rq->cpu, rd->span);
	if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7823
		set_rq_online(rq);
G
Gregory Haskins 已提交
7824 7825

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7826 7827 7828

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7829 7830
}

L
Li Zefan 已提交
7831
static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7832
{
7833 7834
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7835 7836
	memset(rd, 0, sizeof(*rd));

7837 7838
	if (bootmem)
		gfp = GFP_NOWAIT;
7839

7840
	if (!alloc_cpumask_var(&rd->span, gfp))
7841
		goto out;
7842
	if (!alloc_cpumask_var(&rd->online, gfp))
7843
		goto free_span;
7844
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7845
		goto free_online;
7846

P
Pekka Enberg 已提交
7847
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
7848
		goto free_rto_mask;
7849
	return 0;
7850

7851 7852
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
7853 7854 7855 7856
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
7857
out:
7858
	return -ENOMEM;
G
Gregory Haskins 已提交
7859 7860 7861 7862
}

static void init_defrootdomain(void)
{
7863 7864
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
7865 7866 7867
	atomic_set(&def_root_domain.refcount, 1);
}

7868
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
7869 7870 7871 7872 7873 7874 7875
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

7876 7877 7878 7879
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
7880 7881 7882 7883

	return rd;
}

L
Linus Torvalds 已提交
7884
/*
I
Ingo Molnar 已提交
7885
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
7886 7887
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
7888 7889
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
7890
{
7891
	struct rq *rq = cpu_rq(cpu);
7892 7893 7894
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
7895
	for (tmp = sd; tmp; ) {
7896 7897 7898
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
7899

7900
		if (sd_parent_degenerate(tmp, parent)) {
7901
			tmp->parent = parent->parent;
7902 7903
			if (parent->parent)
				parent->parent->child = tmp;
7904 7905
		} else
			tmp = tmp->parent;
7906 7907
	}

7908
	if (sd && sd_degenerate(sd)) {
7909
		sd = sd->parent;
7910 7911 7912
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
7913 7914 7915

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
7916
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
7917
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
7918 7919 7920
}

/* cpus with isolated domains */
7921
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
7922 7923 7924 7925

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
7926
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
7927 7928 7929
	return 1;
}

I
Ingo Molnar 已提交
7930
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
7931 7932

/*
7933 7934
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
7935 7936
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
7937 7938 7939 7940 7941
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
7942
static void
7943 7944 7945
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7946
					struct sched_group **sg,
7947 7948
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
7949 7950 7951 7952
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

7953
	cpumask_clear(covered);
7954

7955
	for_each_cpu(i, span) {
7956
		struct sched_group *sg;
7957
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
7958 7959
		int j;

7960
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
7961 7962
			continue;

7963
		cpumask_clear(sched_group_cpus(sg));
7964
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
7965

7966
		for_each_cpu(j, span) {
7967
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
7968 7969
				continue;

7970
			cpumask_set_cpu(j, covered);
7971
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
7972 7973 7974 7975 7976 7977 7978 7979 7980 7981
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

7982
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
7983

7984
#ifdef CONFIG_NUMA
7985

7986 7987 7988 7989 7990
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
7991
 * Find the next node to include in a given scheduling domain. Simply
7992 7993 7994 7995
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
7996
static int find_next_best_node(int node, nodemask_t *used_nodes)
7997 7998 7999 8000 8001
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8002
	for (i = 0; i < nr_node_ids; i++) {
8003
		/* Start at @node */
8004
		n = (node + i) % nr_node_ids;
8005 8006 8007 8008 8009

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8010
		if (node_isset(n, *used_nodes))
8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8022
	node_set(best_node, *used_nodes);
8023 8024 8025 8026 8027 8028
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8029
 * @span: resulting cpumask
8030
 *
I
Ingo Molnar 已提交
8031
 * Given a node, construct a good cpumask for its sched_domain to span. It
8032 8033 8034
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8035
static void sched_domain_node_span(int node, struct cpumask *span)
8036
{
8037
	nodemask_t used_nodes;
8038
	int i;
8039

8040
	cpumask_clear(span);
8041
	nodes_clear(used_nodes);
8042

8043
	cpumask_or(span, span, cpumask_of_node(node));
8044
	node_set(node, used_nodes);
8045 8046

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8047
		int next_node = find_next_best_node(node, &used_nodes);
8048

8049
		cpumask_or(span, span, cpumask_of_node(next_node));
8050 8051
	}
}
8052
#endif /* CONFIG_NUMA */
8053

8054
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8055

8056 8057
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8058 8059 8060
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8072
/*
8073
 * SMT sched-domains:
8074
 */
L
Linus Torvalds 已提交
8075
#ifdef CONFIG_SCHED_SMT
8076 8077
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8078

I
Ingo Molnar 已提交
8079
static int
8080 8081
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8082
{
8083
	if (sg)
8084
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8085 8086
	return cpu;
}
8087
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8088

8089 8090 8091
/*
 * multi-core sched-domains:
 */
8092
#ifdef CONFIG_SCHED_MC
8093 8094
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8095
#endif /* CONFIG_SCHED_MC */
8096 8097

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8098
static int
8099 8100
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8101
{
8102
	int group;
8103

8104
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8105
	group = cpumask_first(mask);
8106
	if (sg)
8107
		*sg = &per_cpu(sched_group_core, group).sg;
8108
	return group;
8109 8110
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8111
static int
8112 8113
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8114
{
8115
	if (sg)
8116
		*sg = &per_cpu(sched_group_core, cpu).sg;
8117 8118 8119 8120
	return cpu;
}
#endif

8121 8122
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8123

I
Ingo Molnar 已提交
8124
static int
8125 8126
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8127
{
8128
	int group;
8129
#ifdef CONFIG_SCHED_MC
8130
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8131
	group = cpumask_first(mask);
8132
#elif defined(CONFIG_SCHED_SMT)
8133
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8134
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8135
#else
8136
	group = cpu;
L
Linus Torvalds 已提交
8137
#endif
8138
	if (sg)
8139
		*sg = &per_cpu(sched_group_phys, group).sg;
8140
	return group;
L
Linus Torvalds 已提交
8141 8142 8143 8144
}

#ifdef CONFIG_NUMA
/*
8145 8146 8147
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8148
 */
8149
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8150
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8151

8152
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8153
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8154

8155 8156 8157
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8158
{
8159 8160
	int group;

8161
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8162
	group = cpumask_first(nodemask);
8163 8164

	if (sg)
8165
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8166
	return group;
L
Linus Torvalds 已提交
8167
}
8168

8169 8170 8171 8172 8173 8174 8175
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8176
	do {
8177
		for_each_cpu(j, sched_group_cpus(sg)) {
8178
			struct sched_domain *sd;
8179

8180
			sd = &per_cpu(phys_domains, j).sd;
8181
			if (j != group_first_cpu(sd->groups)) {
8182 8183 8184 8185 8186 8187
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8188

8189 8190 8191 8192
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
8193
}
8194
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8195

8196
#ifdef CONFIG_NUMA
8197
/* Free memory allocated for various sched_group structures */
8198 8199
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8200
{
8201
	int cpu, i;
8202

8203
	for_each_cpu(cpu, cpu_map) {
8204 8205 8206 8207 8208 8209
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8210
		for (i = 0; i < nr_node_ids; i++) {
8211 8212
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8213
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8214
			if (cpumask_empty(nodemask))
8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8231
#else /* !CONFIG_NUMA */
8232 8233
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8234 8235
{
}
8236
#endif /* CONFIG_NUMA */
8237

8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

8259
	if (cpu != group_first_cpu(sd->groups))
8260 8261 8262 8263
		return;

	child = sd->child;

8264 8265
	sd->groups->__cpu_power = 0;

8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
8276
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
8277 8278 8279 8280 8281 8282 8283 8284
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
8285
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
8286 8287 8288 8289
		group = group->next;
	} while (group != child->groups);
}

8290 8291 8292 8293 8294
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8295 8296 8297 8298 8299 8300
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8301
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8302

8303 8304 8305 8306 8307
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8308
	sd->level = SD_LV_##type;				\
8309
	SD_INIT_NAME(sd, type);					\
8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8324 8325 8326 8327
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8328 8329 8330 8331 8332 8333
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
		sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
	} else {
		/* turn on idle balance on this domain */
		sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
	}
}

L
Linus Torvalds 已提交
8359
/*
8360 8361
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
8362
 */
8363
static int __build_sched_domains(const struct cpumask *cpu_map,
8364
				 struct sched_domain_attr *attr)
L
Linus Torvalds 已提交
8365
{
8366
	int i, err = -ENOMEM;
G
Gregory Haskins 已提交
8367
	struct root_domain *rd;
8368 8369
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
		tmpmask;
8370
#ifdef CONFIG_NUMA
8371
	cpumask_var_t domainspan, covered, notcovered;
8372
	struct sched_group **sched_group_nodes = NULL;
8373
	int sd_allnodes = 0;
8374

8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		goto out;
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		goto free_domainspan;
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
		goto free_covered;
#endif

	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;

#ifdef CONFIG_NUMA
8395 8396 8397
	/*
	 * Allocate the per-node list of sched groups
	 */
8398
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
8399
				    GFP_KERNEL);
8400 8401
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8402
		goto free_tmpmask;
8403 8404
	}
#endif
L
Linus Torvalds 已提交
8405

8406
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
8407 8408
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
8409
		goto free_sched_groups;
G
Gregory Haskins 已提交
8410 8411
	}

8412
#ifdef CONFIG_NUMA
8413
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8414 8415
#endif

L
Linus Torvalds 已提交
8416
	/*
8417
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8418
	 */
8419
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8420 8421
		struct sched_domain *sd = NULL, *p;

8422
		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
L
Linus Torvalds 已提交
8423 8424

#ifdef CONFIG_NUMA
8425 8426
		if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8427
			sd = &per_cpu(allnodes_domains, i).sd;
8428
			SD_INIT(sd, ALLNODES);
8429
			set_domain_attribute(sd, attr);
8430
			cpumask_copy(sched_domain_span(sd), cpu_map);
8431
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8432
			p = sd;
8433
			sd_allnodes = 1;
8434 8435 8436
		} else
			p = NULL;

8437
		sd = &per_cpu(node_domains, i).sd;
8438
		SD_INIT(sd, NODE);
8439
		set_domain_attribute(sd, attr);
8440
		sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8441
		sd->parent = p;
8442 8443
		if (p)
			p->child = sd;
8444 8445
		cpumask_and(sched_domain_span(sd),
			    sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8446 8447 8448
#endif

		p = sd;
8449
		sd = &per_cpu(phys_domains, i).sd;
8450
		SD_INIT(sd, CPU);
8451
		set_domain_attribute(sd, attr);
8452
		cpumask_copy(sched_domain_span(sd), nodemask);
L
Linus Torvalds 已提交
8453
		sd->parent = p;
8454 8455
		if (p)
			p->child = sd;
8456
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8457

8458 8459
#ifdef CONFIG_SCHED_MC
		p = sd;
8460
		sd = &per_cpu(core_domains, i).sd;
8461
		SD_INIT(sd, MC);
8462
		set_domain_attribute(sd, attr);
8463 8464
		cpumask_and(sched_domain_span(sd), cpu_map,
						   cpu_coregroup_mask(i));
8465
		sd->parent = p;
8466
		p->child = sd;
8467
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8468 8469
#endif

L
Linus Torvalds 已提交
8470 8471
#ifdef CONFIG_SCHED_SMT
		p = sd;
8472
		sd = &per_cpu(cpu_domains, i).sd;
8473
		SD_INIT(sd, SIBLING);
8474
		set_domain_attribute(sd, attr);
8475
		cpumask_and(sched_domain_span(sd),
8476
			    topology_thread_cpumask(i), cpu_map);
L
Linus Torvalds 已提交
8477
		sd->parent = p;
8478
		p->child = sd;
8479
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
L
Linus Torvalds 已提交
8480 8481 8482 8483 8484
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
8485
	for_each_cpu(i, cpu_map) {
8486
		cpumask_and(this_sibling_map,
8487
			    topology_thread_cpumask(i), cpu_map);
8488
		if (i != cpumask_first(this_sibling_map))
L
Linus Torvalds 已提交
8489 8490
			continue;

I
Ingo Molnar 已提交
8491
		init_sched_build_groups(this_sibling_map, cpu_map,
8492 8493
					&cpu_to_cpu_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8494 8495 8496
	}
#endif

8497 8498
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
8499
	for_each_cpu(i, cpu_map) {
8500
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8501
		if (i != cpumask_first(this_core_map))
8502
			continue;
8503

I
Ingo Molnar 已提交
8504
		init_sched_build_groups(this_core_map, cpu_map,
8505 8506
					&cpu_to_core_group,
					send_covered, tmpmask);
8507 8508 8509
	}
#endif

L
Linus Torvalds 已提交
8510
	/* Set up physical groups */
8511
	for (i = 0; i < nr_node_ids; i++) {
8512
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8513
		if (cpumask_empty(nodemask))
L
Linus Torvalds 已提交
8514 8515
			continue;

8516 8517 8518
		init_sched_build_groups(nodemask, cpu_map,
					&cpu_to_phys_group,
					send_covered, tmpmask);
L
Linus Torvalds 已提交
8519 8520 8521 8522
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
8523 8524 8525 8526 8527
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map,
					&cpu_to_allnodes_group,
					send_covered, tmpmask);
	}
8528

8529
	for (i = 0; i < nr_node_ids; i++) {
8530 8531 8532 8533
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

8534
		cpumask_clear(covered);
8535
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8536
		if (cpumask_empty(nodemask)) {
8537
			sched_group_nodes[i] = NULL;
8538
			continue;
8539
		}
8540

8541
		sched_domain_node_span(i, domainspan);
8542
		cpumask_and(domainspan, domainspan, cpu_map);
8543

8544 8545
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, i);
8546 8547 8548 8549 8550
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
8551
		sched_group_nodes[i] = sg;
8552
		for_each_cpu(j, nodemask) {
8553
			struct sched_domain *sd;
I
Ingo Molnar 已提交
8554

8555
			sd = &per_cpu(node_domains, j).sd;
8556 8557
			sd->groups = sg;
		}
8558
		sg->__cpu_power = 0;
8559
		cpumask_copy(sched_group_cpus(sg), nodemask);
8560
		sg->next = sg;
8561
		cpumask_or(covered, covered, nodemask);
8562 8563
		prev = sg;

8564 8565
		for (j = 0; j < nr_node_ids; j++) {
			int n = (i + j) % nr_node_ids;
8566

8567 8568 8569 8570
			cpumask_complement(notcovered, covered);
			cpumask_and(tmpmask, notcovered, cpu_map);
			cpumask_and(tmpmask, tmpmask, domainspan);
			if (cpumask_empty(tmpmask))
8571 8572
				break;

8573
			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8574
			if (cpumask_empty(tmpmask))
8575 8576
				continue;

8577 8578
			sg = kmalloc_node(sizeof(struct sched_group) +
					  cpumask_size(),
8579
					  GFP_KERNEL, i);
8580 8581 8582
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
8583
				goto error;
8584
			}
8585
			sg->__cpu_power = 0;
8586
			cpumask_copy(sched_group_cpus(sg), tmpmask);
8587
			sg->next = prev->next;
8588
			cpumask_or(covered, covered, tmpmask);
8589 8590 8591 8592
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
8593 8594 8595
#endif

	/* Calculate CPU power for physical packages and nodes */
8596
#ifdef CONFIG_SCHED_SMT
8597
	for_each_cpu(i, cpu_map) {
8598
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
I
Ingo Molnar 已提交
8599

8600
		init_sched_groups_power(i, sd);
8601
	}
L
Linus Torvalds 已提交
8602
#endif
8603
#ifdef CONFIG_SCHED_MC
8604
	for_each_cpu(i, cpu_map) {
8605
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
I
Ingo Molnar 已提交
8606

8607
		init_sched_groups_power(i, sd);
8608 8609
	}
#endif
8610

8611
	for_each_cpu(i, cpu_map) {
8612
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
I
Ingo Molnar 已提交
8613

8614
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8615 8616
	}

8617
#ifdef CONFIG_NUMA
8618
	for (i = 0; i < nr_node_ids; i++)
8619
		init_numa_sched_groups_power(sched_group_nodes[i]);
8620

8621 8622
	if (sd_allnodes) {
		struct sched_group *sg;
8623

8624
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8625
								tmpmask);
8626 8627
		init_numa_sched_groups_power(sg);
	}
8628 8629
#endif

L
Linus Torvalds 已提交
8630
	/* Attach the domains */
8631
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8632 8633
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
8634
		sd = &per_cpu(cpu_domains, i).sd;
8635
#elif defined(CONFIG_SCHED_MC)
8636
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8637
#else
8638
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8639
#endif
G
Gregory Haskins 已提交
8640
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
8641
	}
8642

8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
	err = 0;

free_tmpmask:
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;
8671

8672
#ifdef CONFIG_NUMA
8673
error:
8674
	free_sched_groups(cpu_map, tmpmask);
8675
	free_rootdomain(rd);
8676
	goto free_tmpmask;
8677
#endif
L
Linus Torvalds 已提交
8678
}
P
Paul Jackson 已提交
8679

8680
static int build_sched_domains(const struct cpumask *cpu_map)
8681 8682 8683 8684
{
	return __build_sched_domains(cpu_map, NULL);
}

8685
static struct cpumask *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8686
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8687 8688
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8689 8690 8691

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8692 8693
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8694
 */
8695
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8696

8697 8698 8699 8700 8701 8702
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8703
{
8704
	return 0;
8705 8706
}

8707
/*
I
Ingo Molnar 已提交
8708
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8709 8710
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8711
 */
8712
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8713
{
8714 8715
	int err;

8716
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8717
	ndoms_cur = 1;
8718
	doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
P
Paul Jackson 已提交
8719
	if (!doms_cur)
8720
		doms_cur = fallback_doms;
8721
	cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8722
	dattr_cur = NULL;
8723
	err = build_sched_domains(doms_cur);
8724
	register_sched_domain_sysctl();
8725 8726

	return err;
8727 8728
}

8729 8730
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8731
{
8732
	free_sched_groups(cpu_map, tmpmask);
8733
}
L
Linus Torvalds 已提交
8734

8735 8736 8737 8738
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
8739
static void detach_destroy_domains(const struct cpumask *cpu_map)
8740
{
8741 8742
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8743 8744
	int i;

8745
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
8746
		cpu_attach_domain(NULL, &def_root_domain, i);
8747
	synchronize_sched();
8748
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8749 8750
}

8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
8767 8768
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
8769
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
8770 8771 8772
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
8773
 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
I
Ingo Molnar 已提交
8774 8775 8776
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
8777 8778 8779
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
8780 8781
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
8782 8783 8784 8785
 * failed the kmalloc call, then it can pass in doms_new == NULL &&
 * ndoms_new == 1, and partition_sched_domains() will fallback to
 * the single partition 'fallback_doms', it also forces the domains
 * to be rebuilt.
P
Paul Jackson 已提交
8786
 *
8787
 * If doms_new == NULL it will be replaced with cpu_online_mask.
8788 8789
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
8790
 *
P
Paul Jackson 已提交
8791 8792
 * Call with hotplug lock held
 */
8793 8794
/* FIXME: Change to struct cpumask *doms_new[] */
void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8795
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
8796
{
8797
	int i, j, n;
8798
	int new_topology;
P
Paul Jackson 已提交
8799

8800
	mutex_lock(&sched_domains_mutex);
8801

8802 8803 8804
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

8805 8806 8807
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

8808
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
8809 8810 8811

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
8812
		for (j = 0; j < n && !new_topology; j++) {
8813
			if (cpumask_equal(&doms_cur[i], &doms_new[j])
8814
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
8815 8816 8817 8818 8819 8820 8821 8822
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

8823 8824
	if (doms_new == NULL) {
		ndoms_cur = 0;
8825
		doms_new = fallback_doms;
8826
		cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8827
		WARN_ON_ONCE(dattr_new);
8828 8829
	}

P
Paul Jackson 已提交
8830 8831
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
8832
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
8833
			if (cpumask_equal(&doms_new[i], &doms_cur[j])
8834
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
8835 8836 8837
				goto match2;
		}
		/* no match - add a new doms_new */
8838 8839
		__build_sched_domains(doms_new + i,
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
8840 8841 8842 8843 8844
match2:
		;
	}

	/* Remember the new sched domains */
8845
	if (doms_cur != fallback_doms)
P
Paul Jackson 已提交
8846
		kfree(doms_cur);
8847
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
8848
	doms_cur = doms_new;
8849
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
8850
	ndoms_cur = ndoms_new;
8851 8852

	register_sched_domain_sysctl();
8853

8854
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
8855 8856
}

8857
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8858
static void arch_reinit_sched_domains(void)
8859
{
8860
	get_online_cpus();
8861 8862 8863 8864

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

8865
	rebuild_sched_domains();
8866
	put_online_cpus();
8867 8868 8869 8870
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
8871
	unsigned int level = 0;
8872

8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8884 8885 8886
		return -EINVAL;

	if (smt)
8887
		sched_smt_power_savings = level;
8888
	else
8889
		sched_mc_power_savings = level;
8890

8891
	arch_reinit_sched_domains();
8892

8893
	return count;
8894 8895 8896
}

#ifdef CONFIG_SCHED_MC
8897 8898
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
8899 8900 8901
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
8902
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8903
					    const char *buf, size_t count)
8904 8905 8906
{
	return sched_power_savings_store(buf, count, 0);
}
8907 8908 8909
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
8910 8911 8912
#endif

#ifdef CONFIG_SCHED_SMT
8913 8914
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
8915 8916 8917
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
8918
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8919
					     const char *buf, size_t count)
8920 8921 8922
{
	return sched_power_savings_store(buf, count, 1);
}
8923 8924
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
8925 8926 8927
		   sched_smt_power_savings_store);
#endif

8928
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
8944
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8945

8946
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
8947
/*
8948 8949
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
8950 8951 8952
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
8953 8954 8955 8956 8957 8958
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
8959
		partition_sched_domains(1, NULL, NULL);
8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
8970
{
P
Peter Zijlstra 已提交
8971 8972
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
8973 8974
	switch (action) {
	case CPU_DOWN_PREPARE:
8975
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
8976
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
8977 8978 8979
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
8980
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
8981
	case CPU_ONLINE:
8982
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
8983
		enable_runtime(cpu_rq(cpu));
8984 8985
		return NOTIFY_OK;

L
Linus Torvalds 已提交
8986 8987 8988 8989 8990 8991 8992
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
8993 8994 8995
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8996

8997 8998 8999 9000 9001
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9002
	get_online_cpus();
9003
	mutex_lock(&sched_domains_mutex);
9004 9005 9006 9007
	arch_init_sched_domains(cpu_online_mask);
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9008
	mutex_unlock(&sched_domains_mutex);
9009
	put_online_cpus();
9010 9011

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9012 9013
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9014 9015 9016 9017 9018
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9019
	init_hrtick();
9020 9021

	/* Move init over to a non-isolated CPU */
9022
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9023
		BUG();
I
Ingo Molnar 已提交
9024
	sched_init_granularity();
9025
	free_cpumask_var(non_isolated_cpus);
9026 9027

	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9028
	init_sched_rt_class();
L
Linus Torvalds 已提交
9029 9030 9031 9032
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9033
	sched_init_granularity();
L
Linus Torvalds 已提交
9034 9035 9036
}
#endif /* CONFIG_SMP */

9037 9038
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9039 9040 9041 9042 9043 9044 9045
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9046
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9047 9048
{
	cfs_rq->tasks_timeline = RB_ROOT;
9049
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9050 9051 9052
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9053
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9054 9055
}

P
Peter Zijlstra 已提交
9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9069
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9070
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9071
#ifdef CONFIG_SMP
9072
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9073 9074
#endif
#endif
P
Peter Zijlstra 已提交
9075 9076 9077
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9078
	plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9079 9080 9081 9082
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9083 9084
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9085

9086
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9087
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9088 9089
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9090 9091
}

P
Peter Zijlstra 已提交
9092
#ifdef CONFIG_FAIR_GROUP_SCHED
9093 9094 9095
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9096
{
9097
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9098 9099 9100 9101 9102 9103 9104
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9105 9106 9107 9108
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9109 9110 9111 9112 9113
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9114 9115
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9116
	se->load.inv_weight = 0;
9117
	se->parent = parent;
P
Peter Zijlstra 已提交
9118
}
9119
#endif
P
Peter Zijlstra 已提交
9120

9121
#ifdef CONFIG_RT_GROUP_SCHED
9122 9123 9124
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9125
{
9126 9127
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9128 9129 9130 9131
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9132
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9133 9134 9135 9136
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9137 9138 9139
	if (!rt_se)
		return;

9140 9141 9142 9143 9144
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9145
	rt_se->my_q = rt_rq;
9146
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9147 9148 9149 9150
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9151 9152
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9153
	int i, j;
9154 9155 9156 9157 9158 9159 9160
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9161 9162 9163
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9164 9165
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9166
	alloc_size += num_possible_cpus() * cpumask_size();
9167 9168 9169 9170 9171 9172
#endif
	/*
	 * As sched_init() is called before page_alloc is setup,
	 * we use alloc_bootmem().
	 */
	if (alloc_size) {
9173
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9174 9175 9176 9177 9178 9179 9180

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9181 9182 9183 9184 9185 9186 9187

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9188 9189
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9190 9191 9192 9193 9194
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9195 9196 9197 9198 9199 9200 9201 9202
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9203 9204
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9205 9206 9207 9208 9209 9210
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9211
	}
I
Ingo Molnar 已提交
9212

G
Gregory Haskins 已提交
9213 9214 9215 9216
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9217 9218 9219 9220 9221 9222
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9223 9224 9225
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9226 9227
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9228

9229
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9230
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9231 9232 9233 9234 9235 9236
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9237 9238
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9239

9240
	for_each_possible_cpu(i) {
9241
		struct rq *rq;
L
Linus Torvalds 已提交
9242 9243 9244

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9245
		rq->nr_running = 0;
9246 9247
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9248
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9249
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9250
#ifdef CONFIG_FAIR_GROUP_SCHED
9251
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9252
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9268
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9269 9270 9271 9272
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9273
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9274
#elif defined CONFIG_USER_SCHED
9275 9276
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
		 * (init_cfs_rq) and having one entity represent this group of
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9288
		init_tg_cfs_entry(&init_task_group,
P
Peter Zijlstra 已提交
9289
				&per_cpu(init_cfs_rq, i),
9290 9291
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9292

9293
#endif
D
Dhaval Giani 已提交
9294 9295 9296
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9297
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9298
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9299
#ifdef CONFIG_CGROUP_SCHED
9300
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9301
#elif defined CONFIG_USER_SCHED
9302
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9303
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9304
				&per_cpu(init_rt_rq, i),
9305 9306
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9307
#endif
I
Ingo Molnar 已提交
9308
#endif
L
Linus Torvalds 已提交
9309

I
Ingo Molnar 已提交
9310 9311
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9312
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9313
		rq->sd = NULL;
G
Gregory Haskins 已提交
9314
		rq->rd = NULL;
L
Linus Torvalds 已提交
9315
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9316
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9317
		rq->push_cpu = 0;
9318
		rq->cpu = i;
9319
		rq->online = 0;
L
Linus Torvalds 已提交
9320 9321
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
9322
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9323
#endif
P
Peter Zijlstra 已提交
9324
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9325 9326 9327
		atomic_set(&rq->nr_iowait, 0);
	}

9328
	set_load_weight(&init_task);
9329

9330 9331 9332 9333
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9334
#ifdef CONFIG_SMP
9335
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9336 9337
#endif

9338 9339 9340 9341
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9355 9356 9357

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9358 9359 9360 9361
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9362

9363
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9364
	alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9365
#ifdef CONFIG_SMP
9366
#ifdef CONFIG_NO_HZ
9367 9368
	alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9369
#endif
9370
	alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9371
#endif /* SMP */
9372

9373 9374
	perf_counter_init();

9375
	scheduler_running = 1;
L
Linus Torvalds 已提交
9376 9377 9378 9379 9380
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
9381
#ifdef in_atomic
L
Linus Torvalds 已提交
9382 9383
	static unsigned long prev_jiffy;	/* ratelimiting */

I
Ingo Molnar 已提交
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402
	if ((!in_atomic() && !irqs_disabled()) ||
		    system_state != SYSTEM_RUNNING || oops_in_progress)
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9403 9404 9405 9406 9407 9408
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9409 9410 9411
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9412

9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9424 9425
void normalize_rt_tasks(void)
{
9426
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9427
	unsigned long flags;
9428
	struct rq *rq;
L
Linus Torvalds 已提交
9429

9430
	read_lock_irqsave(&tasklist_lock, flags);
9431
	do_each_thread(g, p) {
9432 9433 9434 9435 9436 9437
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9438 9439
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9440 9441 9442
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9443
#endif
I
Ingo Molnar 已提交
9444 9445 9446 9447 9448 9449 9450 9451

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9452
			continue;
I
Ingo Molnar 已提交
9453
		}
L
Linus Torvalds 已提交
9454

9455
		spin_lock(&p->pi_lock);
9456
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9457

9458
		normalize_task(rq, p);
9459

9460
		__task_rq_unlock(rq);
9461
		spin_unlock(&p->pi_lock);
9462 9463
	} while_each_thread(g, p);

9464
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9465 9466 9467
}

#endif /* CONFIG_MAGIC_SYSRQ */
9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9486
struct task_struct *curr_task(int cpu)
9487 9488 9489 9490 9491 9492 9493 9494 9495 9496
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9497 9498
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9499 9500 9501 9502 9503 9504 9505
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9506
void set_curr_task(int cpu, struct task_struct *p)
9507 9508 9509 9510 9511
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9512

9513 9514
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9529 9530
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9531 9532
{
	struct cfs_rq *cfs_rq;
9533
	struct sched_entity *se;
9534
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9535 9536
	int i;

9537
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9538 9539
	if (!tg->cfs_rq)
		goto err;
9540
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9541 9542
	if (!tg->se)
		goto err;
9543 9544

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9545 9546

	for_each_possible_cpu(i) {
9547
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9548

9549 9550
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9551 9552 9553
		if (!cfs_rq)
			goto err;

9554 9555
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9556 9557 9558
		if (!se)
			goto err;

9559
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9578
#else /* !CONFG_FAIR_GROUP_SCHED */
9579 9580 9581 9582
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9583 9584
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9596
#endif /* CONFIG_FAIR_GROUP_SCHED */
9597 9598

#ifdef CONFIG_RT_GROUP_SCHED
9599 9600 9601 9602
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9603 9604
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9616 9617
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9618 9619
{
	struct rt_rq *rt_rq;
9620
	struct sched_rt_entity *rt_se;
9621 9622 9623
	struct rq *rq;
	int i;

9624
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9625 9626
	if (!tg->rt_rq)
		goto err;
9627
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9628 9629 9630
	if (!tg->rt_se)
		goto err;

9631 9632
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9633 9634 9635 9636

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9637 9638
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9639 9640
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9641

9642 9643
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9644 9645
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9646

9647
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9648 9649
	}

9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9666
#else /* !CONFIG_RT_GROUP_SCHED */
9667 9668 9669 9670
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9671 9672
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9684
#endif /* CONFIG_RT_GROUP_SCHED */
9685

9686
#ifdef CONFIG_GROUP_SCHED
9687 9688 9689 9690 9691 9692 9693 9694
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9695
struct task_group *sched_create_group(struct task_group *parent)
9696 9697 9698 9699 9700 9701 9702 9703 9704
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9705
	if (!alloc_fair_sched_group(tg, parent))
9706 9707
		goto err;

9708
	if (!alloc_rt_sched_group(tg, parent))
9709 9710
		goto err;

9711
	spin_lock_irqsave(&task_group_lock, flags);
9712
	for_each_possible_cpu(i) {
9713 9714
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9715
	}
P
Peter Zijlstra 已提交
9716
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9717 9718 9719 9720 9721

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
9722
	list_add_rcu(&tg->siblings, &parent->children);
9723
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
9724

9725
	return tg;
S
Srivatsa Vaddagiri 已提交
9726 9727

err:
P
Peter Zijlstra 已提交
9728
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
9729 9730 9731
	return ERR_PTR(-ENOMEM);
}

9732
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
9733
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
9734 9735
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
9736
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
9737 9738
}

9739
/* Destroy runqueue etc associated with a task group */
9740
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
9741
{
9742
	unsigned long flags;
9743
	int i;
S
Srivatsa Vaddagiri 已提交
9744

9745
	spin_lock_irqsave(&task_group_lock, flags);
9746
	for_each_possible_cpu(i) {
9747 9748
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
9749
	}
P
Peter Zijlstra 已提交
9750
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
9751
	list_del_rcu(&tg->siblings);
9752
	spin_unlock_irqrestore(&task_group_lock, flags);
9753 9754

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
9755
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
9756 9757
}

9758
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
9759 9760 9761
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
9762 9763
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
9764 9765 9766 9767 9768 9769 9770 9771 9772
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

9773
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9774 9775
	on_rq = tsk->se.on_rq;

9776
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9777
		dequeue_task(rq, tsk, 0);
9778 9779
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
9780

P
Peter Zijlstra 已提交
9781
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
9782

P
Peter Zijlstra 已提交
9783 9784 9785 9786 9787
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

9788 9789 9790
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
9791
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
9792 9793 9794

	task_rq_unlock(rq, &flags);
}
9795
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
9796

9797
#ifdef CONFIG_FAIR_GROUP_SCHED
9798
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9799 9800 9801 9802 9803
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
9804
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9805 9806 9807
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
9808
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
9809

9810
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
9811
		enqueue_entity(cfs_rq, se, 0);
9812
}
9813

9814 9815 9816 9817 9818 9819 9820 9821 9822
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
9823 9824
}

9825 9826
static DEFINE_MUTEX(shares_mutex);

9827
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
9828 9829
{
	int i;
9830
	unsigned long flags;
9831

9832 9833 9834 9835 9836 9837
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

9838 9839
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
9840 9841
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
9842

9843
	mutex_lock(&shares_mutex);
9844
	if (tg->shares == shares)
9845
		goto done;
S
Srivatsa Vaddagiri 已提交
9846

9847
	spin_lock_irqsave(&task_group_lock, flags);
9848 9849
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9850
	list_del_rcu(&tg->siblings);
9851
	spin_unlock_irqrestore(&task_group_lock, flags);
9852 9853 9854 9855 9856 9857 9858 9859

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
9860
	tg->shares = shares;
9861 9862 9863 9864 9865
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
9866
		set_se_shares(tg->se[i], shares);
9867
	}
S
Srivatsa Vaddagiri 已提交
9868

9869 9870 9871 9872
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
9873
	spin_lock_irqsave(&task_group_lock, flags);
9874 9875
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
9876
	list_add_rcu(&tg->siblings, &tg->parent->children);
9877
	spin_unlock_irqrestore(&task_group_lock, flags);
9878
done:
9879
	mutex_unlock(&shares_mutex);
9880
	return 0;
S
Srivatsa Vaddagiri 已提交
9881 9882
}

9883 9884 9885 9886
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
9887
#endif
9888

9889
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9890
/*
P
Peter Zijlstra 已提交
9891
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
9892
 */
P
Peter Zijlstra 已提交
9893 9894 9895 9896 9897
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
9898
		return 1ULL << 20;
P
Peter Zijlstra 已提交
9899

P
Peter Zijlstra 已提交
9900
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
9901 9902
}

P
Peter Zijlstra 已提交
9903 9904
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
9905
{
P
Peter Zijlstra 已提交
9906
	struct task_struct *g, *p;
9907

P
Peter Zijlstra 已提交
9908 9909 9910 9911
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
9912

P
Peter Zijlstra 已提交
9913 9914
	return 0;
}
9915

P
Peter Zijlstra 已提交
9916 9917 9918 9919 9920
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
9921

P
Peter Zijlstra 已提交
9922 9923 9924 9925 9926 9927
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
9928

P
Peter Zijlstra 已提交
9929 9930
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
9931

P
Peter Zijlstra 已提交
9932 9933 9934
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
9935 9936
	}

9937 9938 9939 9940 9941 9942 9943
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

9944 9945 9946 9947 9948
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
9949

9950 9951 9952
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
9953 9954
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
9955

P
Peter Zijlstra 已提交
9956
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9957

9958 9959 9960 9961 9962
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
9963

9964 9965 9966
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
9967 9968 9969
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9970

P
Peter Zijlstra 已提交
9971 9972 9973 9974
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
9975

P
Peter Zijlstra 已提交
9976
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
9977
	}
P
Peter Zijlstra 已提交
9978

P
Peter Zijlstra 已提交
9979 9980 9981 9982
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
9983 9984
}

P
Peter Zijlstra 已提交
9985
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9986
{
P
Peter Zijlstra 已提交
9987 9988 9989 9990 9991 9992 9993
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
9994 9995
}

9996 9997
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
9998
{
P
Peter Zijlstra 已提交
9999
	int i, err = 0;
P
Peter Zijlstra 已提交
10000 10001

	mutex_lock(&rt_constraints_mutex);
10002
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10003 10004
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10005
		goto unlock;
P
Peter Zijlstra 已提交
10006 10007

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10008 10009
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10010 10011 10012 10013 10014 10015 10016 10017 10018

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10019
 unlock:
10020
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10021 10022 10023
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10024 10025
}

10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10038 10039 10040 10041
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10042
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10043 10044
		return -1;

10045
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10046 10047 10048
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10049 10050 10051 10052 10053 10054 10055 10056

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10057 10058 10059
	if (rt_period == 0)
		return -EINVAL;

10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10074
	u64 runtime, period;
10075 10076
	int ret = 0;

10077 10078 10079
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10080 10081 10082 10083 10084 10085 10086 10087
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10088

10089
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10090
	read_lock(&tasklist_lock);
10091
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10092
	read_unlock(&tasklist_lock);
10093 10094 10095 10096
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10097 10098 10099 10100 10101 10102 10103 10104 10105 10106

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10107
#else /* !CONFIG_RT_GROUP_SCHED */
10108 10109
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10110 10111 10112
	unsigned long flags;
	int i;

10113 10114 10115
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10116 10117 10118 10119 10120 10121 10122
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10123 10124 10125 10126 10127 10128 10129 10130 10131 10132
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10133 10134
	return 0;
}
10135
#endif /* CONFIG_RT_GROUP_SCHED */
10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165

int sched_rt_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

	ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10166

10167
#ifdef CONFIG_CGROUP_SCHED
10168 10169

/* return corresponding task_group object of a cgroup */
10170
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10171
{
10172 10173
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10174 10175 10176
}

static struct cgroup_subsys_state *
10177
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10178
{
10179
	struct task_group *tg, *parent;
10180

10181
	if (!cgrp->parent) {
10182 10183 10184 10185
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10186 10187
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10188 10189 10190 10191 10192 10193
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10194 10195
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10196
{
10197
	struct task_group *tg = cgroup_tg(cgrp);
10198 10199 10200 10201

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10202 10203 10204
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
10205
{
10206
#ifdef CONFIG_RT_GROUP_SCHED
10207
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10208 10209
		return -EINVAL;
#else
10210 10211 10212
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10213
#endif
10214 10215 10216 10217 10218

	return 0;
}

static void
10219
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10220 10221 10222 10223 10224
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

10225
#ifdef CONFIG_FAIR_GROUP_SCHED
10226
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10227
				u64 shareval)
10228
{
10229
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10230 10231
}

10232
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10233
{
10234
	struct task_group *tg = cgroup_tg(cgrp);
10235 10236 10237

	return (u64) tg->shares;
}
10238
#endif /* CONFIG_FAIR_GROUP_SCHED */
10239

10240
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10241
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10242
				s64 val)
P
Peter Zijlstra 已提交
10243
{
10244
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10245 10246
}

10247
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10248
{
10249
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10250
}
10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10262
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10263

10264
static struct cftype cpu_files[] = {
10265
#ifdef CONFIG_FAIR_GROUP_SCHED
10266 10267
	{
		.name = "shares",
10268 10269
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10270
	},
10271 10272
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10273
	{
P
Peter Zijlstra 已提交
10274
		.name = "rt_runtime_us",
10275 10276
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10277
	},
10278 10279
	{
		.name = "rt_period_us",
10280 10281
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10282
	},
10283
#endif
10284 10285 10286 10287
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10288
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10289 10290 10291
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10292 10293 10294 10295 10296 10297 10298
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10299 10300 10301
	.early_init	= 1,
};

10302
#endif	/* CONFIG_CGROUP_SCHED */
10303 10304 10305 10306 10307 10308 10309 10310 10311 10312

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10313
/* track cpu usage of a group of tasks and its child groups */
10314 10315 10316 10317
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10318
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10319
	struct cpuacct *parent;
10320 10321 10322 10323 10324
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10325
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10326
{
10327
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10340
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10341 10342
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10343
	int i;
10344 10345

	if (!ca)
10346
		goto out;
10347 10348

	ca->cpuusage = alloc_percpu(u64);
10349 10350 10351 10352 10353 10354
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10355

10356 10357 10358
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10359
	return &ca->css;
10360 10361 10362 10363 10364 10365 10366 10367 10368

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10369 10370 10371
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10372
static void
10373
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10374
{
10375
	struct cpuacct *ca = cgroup_ca(cgrp);
10376
	int i;
10377

10378 10379
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10380 10381 10382 10383
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10384 10385
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10386
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10405
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10419
/* return total cpu usage (in nanoseconds) of a group */
10420
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10421
{
10422
	struct cpuacct *ca = cgroup_ca(cgrp);
10423 10424 10425
	u64 totalcpuusage = 0;
	int i;

10426 10427
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10428 10429 10430 10431

	return totalcpuusage;
}

10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10444 10445
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10446 10447 10448 10449 10450

out:
	return err;
}

10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10485 10486 10487
static struct cftype files[] = {
	{
		.name = "usage",
10488 10489
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10490
	},
10491 10492 10493 10494
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10495 10496 10497 10498
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10499 10500
};

10501
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10502
{
10503
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10504 10505 10506 10507 10508 10509 10510 10511 10512 10513
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10514
	int cpu;
10515

L
Li Zefan 已提交
10516
	if (unlikely(!cpuacct_subsys.active))
10517 10518
		return;

10519
	cpu = task_cpu(tsk);
10520 10521 10522

	rcu_read_lock();

10523 10524
	ca = task_ca(tsk);

10525
	for (; ca; ca = ca->parent) {
10526
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10527 10528
		*cpuusage += cputime;
	}
10529 10530

	rcu_read_unlock();
10531 10532
}

10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10554 10555 10556 10557 10558 10559 10560 10561
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */