sched.c 268.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28
 */

J
Joe Perches 已提交
29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
31 32 33 34
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
35
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
36 37 38 39
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
40
#include <linux/capability.h>
L
Linus Torvalds 已提交
41 42
#include <linux/completion.h>
#include <linux/kernel_stat.h>
43
#include <linux/debug_locks.h>
44
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
45 46 47
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
48
#include <linux/freezer.h>
49
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
50 51
#include <linux/blkdev.h>
#include <linux/delay.h>
52
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
53 54 55 56 57 58 59 60
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
61
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
62
#include <linux/seq_file.h>
63
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
64 65
#include <linux/syscalls.h>
#include <linux/times.h>
66
#include <linux/tsacct_kern.h>
67
#include <linux/kprobes.h>
68
#include <linux/delayacct.h>
69
#include <linux/unistd.h>
J
Jens Axboe 已提交
70
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
71
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
72
#include <linux/tick.h>
P
Peter Zijlstra 已提交
73 74
#include <linux/debugfs.h>
#include <linux/ctype.h>
75
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
76

77
#include <asm/tlb.h>
78
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
79

80 81
#include "sched_cpupri.h"

82
#define CREATE_TRACE_POINTS
83
#include <trace/events/sched.h>
84

L
Linus Torvalds 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
104
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
105
 */
106
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
107

I
Ingo Molnar 已提交
108 109 110
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
111 112 113
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
114
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
115 116 117
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
118

119 120 121 122 123
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

124 125
static inline int rt_policy(int policy)
{
126
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 128 129 130 131 132 133 134 135
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
136
/*
I
Ingo Molnar 已提交
137
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
138
 */
I
Ingo Molnar 已提交
139 140 141 142 143
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

144
struct rt_bandwidth {
I
Ingo Molnar 已提交
145 146 147 148 149
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
183 184
	spin_lock_init(&rt_b->rt_runtime_lock);

185 186 187 188 189
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

190 191 192
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
193 194 195 196 197 198
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

199
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 201 202 203 204 205 206
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
207 208 209
		unsigned long delta;
		ktime_t soft, hard;

210 211 212 213 214
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 216 217 218 219

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220
				HRTIMER_MODE_ABS_PINNED, 0);
221 222 223 224 225 226 227 228 229 230 231
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

232 233 234 235 236 237
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

238
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
239

240 241
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
242 243
struct cfs_rq;

P
Peter Zijlstra 已提交
244 245
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
246
/* task group related information */
247
struct task_group {
248
#ifdef CONFIG_CGROUP_SCHED
249 250
	struct cgroup_subsys_state css;
#endif
251

252 253 254 255
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

256
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
257 258 259 260 261
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
262 263 264 265 266 267
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

268
	struct rt_bandwidth rt_bandwidth;
269
#endif
270

271
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
272
	struct list_head list;
P
Peter Zijlstra 已提交
273 274 275 276

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
277 278
};

D
Dhaval Giani 已提交
279
#ifdef CONFIG_USER_SCHED
280

281 282 283 284 285 286
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

287 288
/*
 * Root task group.
289 290
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
291 292 293
 */
struct task_group root_task_group;

294
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
295 296 297
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
298
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299
#endif /* CONFIG_FAIR_GROUP_SCHED */
300 301 302

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
304
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
305
#else /* !CONFIG_USER_SCHED */
306
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
307
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
308

309
/* task_group_lock serializes add/remove of task groups and also changes to
310 311
 * a task group's cpu shares.
 */
312
static DEFINE_SPINLOCK(task_group_lock);
313

314 315
#ifdef CONFIG_FAIR_GROUP_SCHED

316 317 318 319 320 321 322
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

323 324
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
325
#else /* !CONFIG_USER_SCHED */
326
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
327
#endif /* CONFIG_USER_SCHED */
328

329
/*
330 331 332 333
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
334 335 336
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
337
#define MIN_SHARES	2
338
#define MAX_SHARES	(1UL << 18)
339

340 341 342
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
343
/* Default task group.
I
Ingo Molnar 已提交
344
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
345
 */
346
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
347 348

/* return group to which a task belongs */
349
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
350
{
351
	struct task_group *tg;
352

353
#ifdef CONFIG_USER_SCHED
354 355 356
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
357
#elif defined(CONFIG_CGROUP_SCHED)
358 359
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
360
#else
I
Ingo Molnar 已提交
361
	tg = &init_task_group;
362
#endif
363
	return tg;
S
Srivatsa Vaddagiri 已提交
364 365 366
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
367
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
368
{
369
#ifdef CONFIG_FAIR_GROUP_SCHED
370 371
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
372
#endif
P
Peter Zijlstra 已提交
373

374
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
375 376
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
377
#endif
S
Srivatsa Vaddagiri 已提交
378 379 380 381
}

#else

P
Peter Zijlstra 已提交
382
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 384 385 386
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
387

388
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
389

I
Ingo Molnar 已提交
390 391 392 393 394 395
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
396
	u64 min_vruntime;
I
Ingo Molnar 已提交
397 398 399

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
400 401 402 403 404 405

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
406 407
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
408
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
409

P
Peter Zijlstra 已提交
410
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
411

412
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
413 414
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
415 416
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
417 418 419 420 421 422
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
423 424
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
425 426 427

#ifdef CONFIG_SMP
	/*
428
	 * the part of load.weight contributed by tasks
429
	 */
430
	unsigned long task_weight;
431

432 433 434 435 436 437 438
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
439

440 441 442 443
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
444 445 446 447 448

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
449
#endif
I
Ingo Molnar 已提交
450 451
#endif
};
L
Linus Torvalds 已提交
452

I
Ingo Molnar 已提交
453 454 455
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
456
	unsigned long rt_nr_running;
457
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 459
	struct {
		int curr; /* highest queued rt task prio */
460
#ifdef CONFIG_SMP
461
		int next; /* next highest */
462
#endif
463
	} highest_prio;
P
Peter Zijlstra 已提交
464
#endif
P
Peter Zijlstra 已提交
465
#ifdef CONFIG_SMP
466
	unsigned long rt_nr_migratory;
467
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
468
	int overloaded;
469
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
470
#endif
P
Peter Zijlstra 已提交
471
	int rt_throttled;
P
Peter Zijlstra 已提交
472
	u64 rt_time;
P
Peter Zijlstra 已提交
473
	u64 rt_runtime;
I
Ingo Molnar 已提交
474
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
475
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
476

477
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
478 479
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
480 481 482 483 484
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
485 486
};

G
Gregory Haskins 已提交
487 488 489 490
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
491 492
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
493 494 495 496 497 498
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
499 500
	cpumask_var_t span;
	cpumask_var_t online;
501

I
Ingo Molnar 已提交
502
	/*
503 504 505
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
506
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
507
	atomic_t rto_count;
508 509 510
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
511 512
};

513 514 515 516
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
517 518 519 520
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
521 522 523 524 525 526 527
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
528
struct rq {
529 530
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
531 532 533 534 535 536

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
537 538
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 540 541
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
542 543
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
544 545 546 547
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
548 549
	struct rt_rq rt;

I
Ingo Molnar 已提交
550
#ifdef CONFIG_FAIR_GROUP_SCHED
551 552
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
553 554
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
555
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
556 557 558 559 560 561 562 563 564 565
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

566
	struct task_struct *curr, *idle;
567
	unsigned long next_balance;
L
Linus Torvalds 已提交
568
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
569

570
	u64 clock;
I
Ingo Molnar 已提交
571

L
Linus Torvalds 已提交
572 573 574
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
575
	struct root_domain *rd;
L
Linus Torvalds 已提交
576 577
	struct sched_domain *sd;

578
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
579
	/* For active balancing */
580
	int post_schedule;
L
Linus Torvalds 已提交
581 582
	int active_balance;
	int push_cpu;
583 584
	/* cpu of this runqueue: */
	int cpu;
585
	int online;
L
Linus Torvalds 已提交
586

587
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
588

589
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
590
	struct list_head migration_queue;
591 592 593

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
594 595
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
596 597
#endif

598 599 600 601
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
602
#ifdef CONFIG_SCHED_HRTICK
603 604 605 606
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
607 608 609
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
610 611 612
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
613 614
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
615 616

	/* sys_sched_yield() stats */
617
	unsigned int yld_count;
L
Linus Torvalds 已提交
618 619

	/* schedule() stats */
620 621 622
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
623 624

	/* try_to_wake_up() stats */
625 626
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
627 628

	/* BKL stats */
629
	unsigned int bkl_count;
L
Linus Torvalds 已提交
630 631 632
#endif
};

633
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
634

P
Peter Zijlstra 已提交
635 636
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
637
{
P
Peter Zijlstra 已提交
638
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
639 640
}

641 642 643 644 645 646 647 648 649
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
650 651
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
653 654 655 656
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
657 658
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
659 660 661 662 663

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
664
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
665

I
Ingo Molnar 已提交
666
inline void update_rq_clock(struct rq *rq)
667 668 669 670
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
671 672 673 674 675 676 677 678 679
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
680 681
/**
 * runqueue_is_locked
682
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
683 684 685 686 687
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
688
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
689
{
690
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
691 692
}

I
Ingo Molnar 已提交
693 694 695
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
696 697 698 699

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
700
enum {
P
Peter Zijlstra 已提交
701
#include "sched_features.h"
I
Ingo Molnar 已提交
702 703
};

P
Peter Zijlstra 已提交
704 705 706 707 708
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
709
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
710 711 712 713 714 715 716 717 718
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

719
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
720 721 722 723 724 725
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
726
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
727 728 729 730
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
731 732 733
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
734
	}
L
Li Zefan 已提交
735
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
736

L
Li Zefan 已提交
737
	return 0;
P
Peter Zijlstra 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
757
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

777
	*ppos += cnt;
P
Peter Zijlstra 已提交
778 779 780 781

	return cnt;
}

L
Li Zefan 已提交
782 783 784 785 786
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

787
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
788 789 790 791 792
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
807

808 809 810 811 812 813
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
814 815
/*
 * ratelimit for updating the group shares.
816
 * default: 0.25ms
P
Peter Zijlstra 已提交
817
 */
818
unsigned int sysctl_sched_shares_ratelimit = 250000;
819
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
820

821 822 823 824 825 826 827
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

828 829 830 831 832 833 834 835
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
836
/*
P
Peter Zijlstra 已提交
837
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
838 839
 * default: 1s
 */
P
Peter Zijlstra 已提交
840
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
841

842 843
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
844 845 846 847 848
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
849

850 851 852 853 854 855 856
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
857
	if (sysctl_sched_rt_runtime < 0)
858 859 860 861
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
862

L
Linus Torvalds 已提交
863
#ifndef prepare_arch_switch
864 865 866 867 868 869
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

870 871 872 873 874
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

875
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
876
static inline int task_running(struct rq *rq, struct task_struct *p)
877
{
878
	return task_current(rq, p);
879 880
}

881
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 883 884
{
}

885
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886
{
887 888 889 890
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
891 892 893 894 895 896 897
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

898 899 900 901
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
902
static inline int task_running(struct rq *rq, struct task_struct *p)
903 904 905 906
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
907
	return task_current(rq, p);
908 909 910
#endif
}

911
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

928
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 930 931 932 933 934 935 936 937 938 939 940
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
941
#endif
942 943
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
944

945 946 947 948
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
949
static inline struct rq *__task_rq_lock(struct task_struct *p)
950 951
	__acquires(rq->lock)
{
952 953 954 955 956
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
957 958 959 960
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
961 962
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
963
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
964 965
 * explicitly disabling preemption.
 */
966
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
967 968
	__acquires(rq->lock)
{
969
	struct rq *rq;
L
Linus Torvalds 已提交
970

971 972 973 974 975 976
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
977 978 979 980
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

981 982 983 984 985 986 987 988
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
989
static void __task_rq_unlock(struct rq *rq)
990 991 992 993 994
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

995
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
996 997 998 999 1000 1001
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1002
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1003
 */
A
Alexey Dobriyan 已提交
1004
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1005 1006
	__acquires(rq->lock)
{
1007
	struct rq *rq;
L
Linus Torvalds 已提交
1008 1009 1010 1011 1012 1013 1014 1015

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1037
	if (!cpu_active(cpu_of(rq)))
1038
		return 0;
P
Peter Zijlstra 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1059
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1060 1061 1062 1063 1064 1065
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1066
#ifdef CONFIG_SMP
1067 1068 1069 1070
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1071
{
1072
	struct rq *rq = arg;
1073

1074 1075 1076 1077
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1078 1079
}

1080 1081 1082 1083 1084 1085
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1086
{
1087 1088
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089

1090
	hrtimer_set_expires(timer, time);
1091 1092 1093 1094

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1095
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 1097
		rq->hrtick_csd_pending = 1;
	}
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1112
		hrtick_clear(cpu_rq(cpu));
1113 1114 1115 1116 1117 1118
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1119
static __init void init_hrtick(void)
1120 1121 1122
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1123 1124 1125 1126 1127 1128 1129 1130
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1131
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132
			HRTIMER_MODE_REL_PINNED, 0);
1133
}
1134

A
Andrew Morton 已提交
1135
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1136 1137
{
}
1138
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1139

1140
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1141
{
1142 1143
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1144

1145 1146 1147 1148
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1149

1150 1151
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1152
}
A
Andrew Morton 已提交
1153
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1154 1155 1156 1157 1158 1159 1160 1161
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1162 1163 1164
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1165
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1166

I
Ingo Molnar 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1180
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1181 1182 1183 1184 1185
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1186
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1187 1188
		return;

1189
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1245
	set_tsk_need_resched(rq->idle);
1246 1247 1248 1249 1250 1251

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1252
#endif /* CONFIG_NO_HZ */
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1275
#else /* !CONFIG_SMP */
1276
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1277 1278
{
	assert_spin_locked(&task_rq(p)->lock);
1279
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1280
}
1281 1282 1283 1284

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1285
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1286

1287 1288 1289 1290 1291 1292 1293 1294
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1295 1296 1297
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1298
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1299

1300 1301 1302
/*
 * delta *= weight / lw
 */
1303
static unsigned long
1304 1305 1306 1307 1308
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1309 1310 1311 1312 1313 1314 1315
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1316 1317 1318 1319 1320

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1321
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1322
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1323 1324
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1325
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326

1327
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 1329
}

1330
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 1332
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1333
	lw->inv_weight = 0;
1334 1335
}

1336
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 1338
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1339
	lw->inv_weight = 0;
1340 1341
}

1342 1343 1344 1345
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1346
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 1348 1349 1350
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1351 1352
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 1363 1364
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1365 1366
 */
static const int prio_to_weight[40] = {
1367 1368 1369 1370 1371 1372 1373 1374
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1375 1376
};

1377 1378 1379 1380 1381 1382 1383
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1384
static const u32 prio_to_wmult[40] = {
1385 1386 1387 1388 1389 1390 1391 1392
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1393
};
1394

I
Ingo Molnar 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1420

1421 1422 1423 1424 1425 1426 1427 1428
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1429 1430
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 1432
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1433 1434
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 1436
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1437 1438
#endif

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1449
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1450
typedef int (*tg_visitor)(struct task_group *, void *);
1451 1452 1453 1454 1455

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1456
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 1458
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1459
	int ret;
1460 1461 1462 1463

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1464 1465 1466
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1467 1468 1469 1470 1471 1472 1473
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1474 1475 1476
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1477 1478 1479 1480 1481

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1482
out_unlock:
1483
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1484 1485

	return ret;
1486 1487
}

P
Peter Zijlstra 已提交
1488 1489 1490
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1491
}
P
Peter Zijlstra 已提交
1492 1493 1494
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1554 1555 1556 1557 1558
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1559
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1560

1561 1562
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1563 1564
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1565 1566 1567 1568 1569

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1570

1571
static __read_mostly unsigned long *update_shares_data;
1572

1573 1574 1575 1576 1577
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1578 1579 1580
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1581
				    unsigned long *usd_rq_weight)
1582
{
1583
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1584
	int boost = 0;
1585

1586
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1587 1588 1589 1590
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1591

1592
	/*
P
Peter Zijlstra 已提交
1593 1594 1595
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1596
	 */
1597
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1598
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599

1600 1601 1602 1603
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1604

1605
		spin_lock_irqsave(&rq->lock, flags);
1606
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1607
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 1609 1610
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1611
}
1612 1613

/*
1614 1615 1616
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1617
 */
P
Peter Zijlstra 已提交
1618
static int tg_shares_up(struct task_group *tg, void *data)
1619
{
1620
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1622
	struct sched_domain *sd = data;
1623
	unsigned long flags;
1624
	int i;
1625

1626 1627 1628 1629
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1630
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631

1632
	for_each_cpu(i, sched_domain_span(sd)) {
1633
		weight = tg->cfs_rq[i]->load.weight;
1634
		usd_rq_weight[i] = weight;
1635

1636
		rq_weight += weight;
1637 1638 1639 1640 1641 1642 1643 1644
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1645
		sum_weight += weight;
1646
		shares += tg->cfs_rq[i]->shares;
1647 1648
	}

1649 1650 1651
	if (!rq_weight)
		rq_weight = sum_weight;

1652 1653 1654 1655 1656
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1657

1658
	for_each_cpu(i, sched_domain_span(sd))
1659
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660 1661

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1662 1663

	return 0;
1664 1665 1666
}

/*
1667 1668 1669
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1670
 */
P
Peter Zijlstra 已提交
1671
static int tg_load_down(struct task_group *tg, void *data)
1672
{
1673
	unsigned long load;
P
Peter Zijlstra 已提交
1674
	long cpu = (long)data;
1675

1676 1677 1678 1679 1680 1681 1682
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1683

1684
	tg->cfs_rq[cpu]->h_load = load;
1685

P
Peter Zijlstra 已提交
1686
	return 0;
1687 1688
}

1689
static void update_shares(struct sched_domain *sd)
1690
{
1691 1692 1693 1694 1695 1696 1697 1698
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1699 1700 1701

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1702
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1703
	}
1704 1705
}

1706 1707
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1708 1709 1710
	if (root_task_group_empty())
		return;

1711 1712 1713 1714 1715
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1716
static void update_h_load(long cpu)
1717
{
1718 1719 1720
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1721
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 1723 1724 1725
}

#else

1726
static inline void update_shares(struct sched_domain *sd)
1727 1728 1729
{
}

1730 1731 1732 1733
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1734 1735
#endif

1736 1737
#ifdef CONFIG_PREEMPT

1738 1739
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1740
/*
1741 1742 1743 1744 1745 1746
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1747
 */
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1802 1803 1804 1805 1806 1807
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1808 1809
#endif

V
Vegard Nossum 已提交
1810
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1811 1812
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1813
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1814 1815 1816
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1817
#endif
1818

1819
static void calc_load_account_active(struct rq *this_rq);
1820
static void update_sysctl(void);
1821
static int get_update_sysctl_factor(void);
1822

P
Peter Zijlstra 已提交
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}
1836

I
Ingo Molnar 已提交
1837 1838
#include "sched_stats.h"
#include "sched_idletask.c"
1839 1840
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1841 1842 1843 1844 1845
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1846 1847
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1848

1849
static void inc_nr_running(struct rq *rq)
1850 1851 1852 1853
{
	rq->nr_running++;
}

1854
static void dec_nr_running(struct rq *rq)
1855 1856 1857 1858
{
	rq->nr_running--;
}

1859 1860 1861
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1862 1863 1864 1865
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1866

I
Ingo Molnar 已提交
1867 1868 1869 1870 1871 1872 1873 1874
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1875

I
Ingo Molnar 已提交
1876 1877
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 1879
}

1880 1881 1882 1883 1884 1885
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1886
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887
{
P
Peter Zijlstra 已提交
1888 1889 1890
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1891
	sched_info_queued(p);
1892
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1893
	p->se.on_rq = 1;
1894 1895
}

1896
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897
{
P
Peter Zijlstra 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1907 1908
	}

1909
	sched_info_dequeued(p);
1910
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1911
	p->se.on_rq = 0;
1912 1913
}

1914
/*
I
Ingo Molnar 已提交
1915
 * __normal_prio - return the priority that is based on the static prio
1916 1917 1918
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1919
	return p->static_prio;
1920 1921
}

1922 1923 1924 1925 1926 1927 1928
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1929
static inline int normal_prio(struct task_struct *p)
1930 1931 1932
{
	int prio;

1933
	if (task_has_rt_policy(p))
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1947
static int effective_prio(struct task_struct *p)
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1960
/*
I
Ingo Molnar 已提交
1961
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1962
 */
I
Ingo Molnar 已提交
1963
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1964
{
1965
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1966
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1967

1968
	enqueue_task(rq, p, wakeup);
1969
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1975
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1976
{
1977
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1978 1979
		rq->nr_uninterruptible++;

1980
	dequeue_task(rq, p, sleep);
1981
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1982 1983 1984 1985 1986 1987
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1988
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1989 1990 1991 1992
{
	return cpu_curr(task_cpu(p)) == p;
}

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2005 2006
/**
 * kthread_bind - bind a just-created kthread to a cpu.
2007
 * @p: thread created by kthread_create().
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

	spin_lock_irqsave(&rq->lock, flags);
2029
	update_rq_clock(rq);
2030 2031 2032 2033 2034 2035 2036 2037
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
	spin_unlock_irqrestore(&rq->lock, flags);
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2038
#ifdef CONFIG_SMP
2039 2040 2041
/*
 * Is this task likely cache-hot:
 */
2042
static int
2043 2044 2045 2046
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2047 2048 2049
	/*
	 * Buddy candidates are cache hot:
	 */
2050
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2051 2052
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2053 2054
		return 1;

2055 2056 2057
	if (p->sched_class != &fair_sched_class)
		return 0;

2058 2059 2060 2061 2062
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2063 2064 2065 2066 2067 2068
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2069
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2070
{
I
Ingo Molnar 已提交
2071
	int old_cpu = task_cpu(p);
2072 2073
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
I
Ingo Molnar 已提交
2074

2075
	trace_sched_migrate_task(p, new_cpu);
2076

2077
	if (old_cpu != new_cpu) {
2078
		p->se.nr_migrations++;
2079
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2080
				     1, 1, NULL, 0);
2081
	}
2082 2083
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2084 2085

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2086 2087
}

2088
struct migration_req {
L
Linus Torvalds 已提交
2089 2090
	struct list_head list;

2091
	struct task_struct *task;
L
Linus Torvalds 已提交
2092 2093 2094
	int dest_cpu;

	struct completion done;
2095
};
L
Linus Torvalds 已提交
2096 2097 2098 2099 2100

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2101
static int
2102
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2103
{
2104
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2105 2106 2107 2108 2109

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2110
	if (!p->se.on_rq && !task_running(rq, p)) {
2111
		update_rq_clock(rq);
L
Linus Torvalds 已提交
2112 2113 2114 2115 2116 2117 2118 2119
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2120

L
Linus Torvalds 已提交
2121 2122 2123
	return 1;
}

2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2167 2168 2169
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2170 2171 2172 2173 2174 2175 2176
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2183
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2184 2185
{
	unsigned long flags;
I
Ingo Molnar 已提交
2186
	int running, on_rq;
R
Roland McGrath 已提交
2187
	unsigned long ncsw;
2188
	struct rq *rq;
L
Linus Torvalds 已提交
2189

2190 2191 2192 2193 2194 2195 2196 2197
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2210 2211 2212
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2213
			cpu_relax();
R
Roland McGrath 已提交
2214
		}
2215

2216 2217 2218 2219 2220 2221
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2222
		trace_sched_wait_task(rq, p);
2223 2224
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2225
		ncsw = 0;
2226
		if (!match_state || p->state == match_state)
2227
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2228
		task_rq_unlock(rq, &flags);
2229

R
Roland McGrath 已提交
2230 2231 2232 2233 2234 2235
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2246

2247 2248 2249 2250 2251
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2252
		 * So if it was still runnable (but just not actively
2253 2254 2255 2256 2257 2258 2259
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2260

2261 2262 2263 2264 2265 2266 2267
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2268 2269

	return ncsw;
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2285
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291 2292 2293 2294
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2295
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2296
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2297

T
Thomas Gleixner 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2319 2320 2321 2322 2323 2324 2325 2326
#ifdef CONFIG_SMP
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
	return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
}
#endif

L
Linus Torvalds 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2341 2342
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2343
{
2344
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2345
	unsigned long flags;
2346
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2347

2348
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2349
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2350

P
Peter Zijlstra 已提交
2351
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2352

2353
	smp_wmb();
2354
	rq = orig_rq = task_rq_lock(p, &flags);
2355
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2356
	if (!(p->state & state))
L
Linus Torvalds 已提交
2357 2358
		goto out;

I
Ingo Molnar 已提交
2359
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2360 2361 2362
		goto out_running;

	cpu = task_cpu(p);
2363
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2369 2370 2371
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2372 2373
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2374
	 */
2375 2376
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2377
	p->state = TASK_WAKING;
P
Peter Zijlstra 已提交
2378
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2379

2380
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2381
	if (cpu != orig_cpu)
2382
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2383 2384 2385

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2386

P
Peter Zijlstra 已提交
2387 2388
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2389

2390 2391 2392 2393 2394 2395 2396
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2397
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398 2399 2400 2401 2402
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2403
#endif /* CONFIG_SCHEDSTATS */
2404

L
Linus Torvalds 已提交
2405 2406
out_activate:
#endif /* CONFIG_SMP */
2407
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2408
	if (wake_flags & WF_SYNC)
2409 2410 2411 2412 2413 2414 2415
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2416
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2417 2418
	success = 1;

P
Peter Zijlstra 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2435
out_running:
2436
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2437
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2438

L
Linus Torvalds 已提交
2439
	p->state = TASK_RUNNING;
2440 2441 2442
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2454
#endif
L
Linus Torvalds 已提交
2455 2456
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2457
	put_cpu();
L
Linus Torvalds 已提交
2458 2459 2460 2461

	return success;
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2473
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2474
{
2475
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2476 2477 2478
}
EXPORT_SYMBOL(wake_up_process);

2479
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2480 2481 2482 2483 2484 2485 2486
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2487 2488 2489 2490 2491 2492 2493
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2494
	p->se.prev_sum_exec_runtime	= 0;
2495
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2496 2497
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2498 2499
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2500 2501

#ifdef CONFIG_SCHEDSTATS
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2532
#endif
N
Nick Piggin 已提交
2533

P
Peter Zijlstra 已提交
2534
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2535
	p->se.on_rq = 0;
2536
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2537

2538 2539 2540 2541
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2542 2543 2544 2545 2546 2547 2548
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2560 2561 2562 2563
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2564
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2565
			p->policy = SCHED_NORMAL;
2566 2567
			p->normal_prio = p->static_prio;
		}
2568

2569 2570
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2571
			p->normal_prio = p->static_prio;
2572 2573 2574
			set_load_weight(p);
		}

2575 2576 2577 2578 2579 2580
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2581

2582 2583 2584 2585 2586
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2587 2588
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2589

P
Peter Zijlstra 已提交
2590 2591 2592
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2593
#ifdef CONFIG_SMP
2594
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2595 2596 2597
#endif
	set_task_cpu(p, cpu);

2598
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2599
	if (likely(sched_info_on()))
2600
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2601
#endif
2602
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2603 2604
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2605
#ifdef CONFIG_PREEMPT
2606
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2607
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2608
#endif
2609 2610
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2611
	put_cpu();
L
Linus Torvalds 已提交
2612 2613 2614 2615 2616 2617 2618 2619 2620
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2621
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2622 2623
{
	unsigned long flags;
I
Ingo Molnar 已提交
2624
	struct rq *rq;
L
Linus Torvalds 已提交
2625 2626

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2627
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2628
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2629
	activate_task(rq, p, 0);
2630
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2631
	check_preempt_curr(rq, p, WF_FORK);
2632 2633 2634 2635
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2636
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2637 2638
}

2639 2640 2641
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2642
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2643
 * @notifier: notifier struct to register
2644 2645 2646 2647 2648 2649 2650 2651 2652
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2653
 * @notifier: notifier struct to unregister
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2683
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2695
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2696

2697 2698 2699
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2700
 * @prev: the current task that is being switched out
2701 2702 2703 2704 2705 2706 2707 2708 2709
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2710 2711 2712
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2713
{
2714
	fire_sched_out_preempt_notifiers(prev, next);
2715 2716 2717 2718
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2719 2720
/**
 * finish_task_switch - clean up after a task-switch
2721
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2722 2723
 * @prev: the thread we just switched away from.
 *
2724 2725 2726 2727
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2728 2729
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2730
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2731 2732 2733
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2734
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2735 2736 2737
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2738
	long prev_state;
L
Linus Torvalds 已提交
2739 2740 2741 2742 2743

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2744
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2745 2746
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2747
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2753
	prev_state = prev->state;
2754
	finish_arch_switch(prev);
2755
	perf_event_task_sched_in(current, cpu_of(rq));
2756
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2757

2758
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2759 2760
	if (mm)
		mmdrop(mm);
2761
	if (unlikely(prev_state == TASK_DEAD)) {
2762 2763 2764
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2765
		 */
2766
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2767
		put_task_struct(prev);
2768
	}
L
Linus Torvalds 已提交
2769 2770
}

2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2796

2797 2798 2799 2800 2801 2802
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2803 2804
}

2805 2806
#endif

L
Linus Torvalds 已提交
2807 2808 2809 2810
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2811
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2812 2813
	__releases(rq->lock)
{
2814 2815
	struct rq *rq = this_rq();

2816
	finish_task_switch(rq, prev);
2817

2818 2819 2820 2821 2822
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2823

2824 2825 2826 2827
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2828
	if (current->set_child_tid)
2829
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2830 2831 2832 2833 2834 2835
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2836
static inline void
2837
context_switch(struct rq *rq, struct task_struct *prev,
2838
	       struct task_struct *next)
L
Linus Torvalds 已提交
2839
{
I
Ingo Molnar 已提交
2840
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2841

2842
	prepare_task_switch(rq, prev, next);
2843
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2844 2845
	mm = next->mm;
	oldmm = prev->active_mm;
2846 2847 2848 2849 2850
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2851
	arch_start_context_switch(prev);
2852

2853
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2854 2855 2856 2857 2858 2859
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2860
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2861 2862 2863
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2864 2865 2866 2867 2868 2869 2870
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2871
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2872
#endif
L
Linus Torvalds 已提交
2873 2874 2875 2876

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2877 2878 2879 2880 2881 2882 2883
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2907
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2922 2923
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2924

2925
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2935
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2936 2937 2938 2939 2940
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2954 2955 2956 2957 2958 2959
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2975 2976
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2977
{
2978 2979 2980 2981
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2994

2995 2996
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3020 3021
}

3022
/*
I
Ingo Molnar 已提交
3023 3024
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3025
 */
I
Ingo Molnar 已提交
3026
static void update_cpu_load(struct rq *this_rq)
3027
{
3028
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3041 3042 3043 3044 3045 3046 3047
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3048 3049
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3050 3051 3052 3053 3054

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3055 3056
}

I
Ingo Molnar 已提交
3057 3058
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3059 3060 3061 3062 3063 3064
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3065
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3066 3067 3068
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3069
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3070 3071 3072 3073
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3074
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3075
			spin_lock(&rq1->lock);
3076
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3077 3078
		} else {
			spin_lock(&rq2->lock);
3079
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3080 3081
		}
	}
3082 3083
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3084 3085 3086 3087 3088 3089 3090 3091
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3092
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3106
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3107 3108
 * the cpu_allowed mask is restored.
 */
3109
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3110
{
3111
	struct migration_req req;
L
Linus Torvalds 已提交
3112
	unsigned long flags;
3113
	struct rq *rq;
L
Linus Torvalds 已提交
3114 3115

	rq = task_rq_lock(p, &flags);
3116
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3117
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3118 3119 3120 3121 3122 3123
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3124

L
Linus Torvalds 已提交
3125 3126 3127 3128 3129
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3130

L
Linus Torvalds 已提交
3131 3132 3133 3134 3135 3136 3137
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3138 3139
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3140 3141 3142 3143
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3144
	new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3145
	put_cpu();
N
Nick Piggin 已提交
3146 3147
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3148 3149 3150 3151 3152 3153
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3154 3155
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3156
{
3157
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3158
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3159
	activate_task(this_rq, p, 0);
3160
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3166
static
3167
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3168
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3169
		     int *all_pinned)
L
Linus Torvalds 已提交
3170
{
3171
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3178
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3179
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3180
		return 0;
3181
	}
3182 3183
	*all_pinned = 0;

3184 3185
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3186
		return 0;
3187
	}
L
Linus Torvalds 已提交
3188

3189 3190 3191 3192 3193 3194
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3195 3196 3197
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3198
#ifdef CONFIG_SCHEDSTATS
3199
		if (tsk_cache_hot) {
3200
			schedstat_inc(sd, lb_hot_gained[idle]);
3201 3202
			schedstat_inc(p, se.nr_forced_migrations);
		}
3203 3204 3205 3206
#endif
		return 1;
	}

3207
	if (tsk_cache_hot) {
3208
		schedstat_inc(p, se.nr_failed_migrations_hot);
3209
		return 0;
3210
	}
L
Linus Torvalds 已提交
3211 3212 3213
	return 1;
}

3214 3215 3216 3217 3218
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3219
{
3220
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3221 3222
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3223

3224
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3225 3226
		goto out;

3227 3228
	pinned = 1;

L
Linus Torvalds 已提交
3229
	/*
I
Ingo Molnar 已提交
3230
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3231
	 */
I
Ingo Molnar 已提交
3232 3233
	p = iterator->start(iterator->arg);
next:
3234
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3235
		goto out;
3236 3237

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3238 3239 3240
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3241 3242
	}

I
Ingo Molnar 已提交
3243
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3244
	pulled++;
I
Ingo Molnar 已提交
3245
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3257
	/*
3258
	 * We only want to steal up to the prescribed amount of weighted load.
3259
	 */
3260
	if (rem_load_move > 0) {
3261 3262
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3263 3264
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3265 3266 3267
	}
out:
	/*
3268
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3269 3270 3271 3272
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3273 3274 3275

	if (all_pinned)
		*all_pinned = pinned;
3276 3277

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3278 3279
}

I
Ingo Molnar 已提交
3280
/*
P
Peter Williams 已提交
3281 3282 3283
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3284 3285 3286 3287
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3288
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3289 3290 3291
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3292
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3293
	unsigned long total_load_moved = 0;
3294
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3295 3296

	do {
P
Peter Williams 已提交
3297 3298
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3299
				max_load_move - total_load_moved,
3300
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3301
		class = class->next;
3302

3303 3304 3305 3306 3307 3308
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3309 3310
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3311
#endif
P
Peter Williams 已提交
3312
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3313

P
Peter Williams 已提交
3314 3315 3316
	return total_load_moved > 0;
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3353
	const struct sched_class *class;
P
Peter Williams 已提交
3354

3355
	for_each_class(class) {
3356
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3357
			return 1;
3358
	}
P
Peter Williams 已提交
3359 3360

	return 0;
I
Ingo Molnar 已提交
3361
}
3362
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3363
/*
3364 3365
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3366
 */
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3385
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3386 3387 3388 3389 3390 3391
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3392
#endif
3393
};
L
Linus Torvalds 已提交
3394

3395
/*
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3406

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3428
		load_idx = sd->busy_idx;
3429 3430 3431
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3432
		load_idx = sd->newidle_idx;
3433 3434
		break;
	default:
N
Nick Piggin 已提交
3435
		load_idx = sd->idle_idx;
3436 3437
		break;
	}
L
Linus Torvalds 已提交
3438

3439 3440
	return load_idx;
}
L
Linus Torvalds 已提交
3441 3442


3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3467

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3481

3482 3483
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3484

3485 3486 3487 3488 3489 3490 3491
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3492

3493 3494 3495 3496 3497 3498 3499 3500
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3501

3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3515

3516 3517 3518 3519 3520
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3521
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3522
		return;
L
Linus Torvalds 已提交
3523

3524 3525 3526 3527 3528 3529 3530
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3531

3532
/**
3533
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3534 3535 3536 3537 3538
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3539 3540 3541 3542 3543
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3544 3545 3546 3547 3548 3549 3550 3551
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3552

3553 3554 3555
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3556

3557 3558
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3559

3560
	return 1;
L
Linus Torvalds 已提交
3561

3562 3563 3564 3565 3566 3567 3568
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3569

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3595 3596 3597 3598 3599 3600 3601 3602 3603
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3604 3605 3606 3607 3608
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3627 3628 3629 3630 3631 3632
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3633 3634 3635 3636 3637
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3638
	power >>= SCHED_LOAD_SHIFT;
3639 3640

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3641 3642 3643 3644 3645
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3646 3647 3648
		power >>= SCHED_LOAD_SHIFT;
	}

3649 3650 3651 3652 3653
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3654

3655
	sdg->cpu_power = power;
3656 3657 3658
}

static void update_group_power(struct sched_domain *sd, int cpu)
3659 3660 3661
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3662
	unsigned long power;
3663 3664

	if (!child) {
3665
		update_cpu_power(sd, cpu);
3666 3667 3668
		return;
	}

3669
	power = 0;
3670 3671 3672

	group = child->groups;
	do {
3673
		power += group->cpu_power;
3674 3675
		group = group->next;
	} while (group != child->groups);
3676 3677

	sdg->cpu_power = power;
3678
}
3679

3680 3681
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3682
 * @sd: The sched_domain whose statistics are to be updated.
3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3693 3694
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3705
	if (local_group) {
3706
		balance_cpu = group_first_cpu(group);
3707
		if (balance_cpu == this_cpu)
3708
			update_group_power(sd, this_cpu);
3709
	}
3710 3711 3712 3713 3714

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3715

3716 3717
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3718

3719 3720
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3721

3722
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3723
		if (local_group) {
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3736
		}
3737

3738 3739 3740
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3741

3742 3743
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3744

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3756

3757
	/* Adjust by relative CPU power of the group */
3758
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3759

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3770 3771
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3772 3773 3774 3775

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3776
	sgs->group_capacity =
3777
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3778
}
I
Ingo Molnar 已提交
3779

3780 3781 3782 3783 3784 3785 3786 3787 3788
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3789
 */
3790 3791 3792 3793
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3794
{
P
Peter Zijlstra 已提交
3795
	struct sched_domain *child = sd->child;
3796
	struct sched_group *group = sd->groups;
3797
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3798 3799 3800 3801
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3802

3803
	init_sd_power_savings_stats(sd, sds, idle);
3804
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3805 3806 3807 3808

	do {
		int local_group;

3809 3810
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3811
		memset(&sgs, 0, sizeof(sgs));
3812
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3813
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3814

3815 3816
		if (local_group && balance && !(*balance))
			return;
3817

3818
		sds->total_load += sgs.group_load;
3819
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3820

P
Peter Zijlstra 已提交
3821 3822 3823 3824 3825 3826
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3827
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3828 3829

		if (local_group) {
3830 3831 3832 3833 3834
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3835 3836
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3837 3838 3839 3840 3841
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3842
		}
3843

3844
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3845 3846
		group = group->next;
	} while (group != sd->groups);
3847
}
L
Linus Torvalds 已提交
3848

3849 3850
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3851 3852
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3871

3872 3873 3874 3875 3876
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3877

L
Linus Torvalds 已提交
3878
	/*
3879 3880 3881
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3882
	 */
3883

3884
	pwr_now += sds->busiest->cpu_power *
3885
			min(sds->busiest_load_per_task, sds->max_load);
3886
	pwr_now += sds->this->cpu_power *
3887 3888 3889 3890
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3891 3892
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3893
	if (sds->max_load > tmp)
3894
		pwr_move += sds->busiest->cpu_power *
3895 3896 3897
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3898
	if (sds->max_load * sds->busiest->cpu_power <
3899
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3900 3901
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3902
	else
3903 3904 3905
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3906 3907 3908 3909 3910 3911 3912
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3925 3926 3927 3928 3929
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3930
	if (sds->max_load < sds->avg_load) {
3931
		*imbalance = 0;
3932
		return fix_small_imbalance(sds, this_cpu, imbalance);
3933
	}
3934 3935

	/* Don't want to pull so many tasks that a group would go idle */
3936 3937
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3938

L
Linus Torvalds 已提交
3939
	/* How much load to actually move to equalise the imbalance */
3940 3941
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3942 3943
			/ SCHED_LOAD_SCALE;

3944 3945 3946 3947 3948 3949
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3950 3951
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3952

3953
}
3954
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3955

3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3980 3981 3982 3983 3984 3985 3986
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3987

3988
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3989

3990 3991 3992 3993 3994 3995 3996
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4007 4008
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4009

4010 4011
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4012

4013
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4014 4015
		goto out_balanced;

4016
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4017

4018 4019 4020 4021
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4022 4023
		goto out_balanced;

4024 4025 4026 4027
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4028

L
Linus Torvalds 已提交
4029 4030 4031 4032 4033 4034 4035 4036
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4037
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4038 4039
	 * appear as very large values with unsigned longs.
	 */
4040
	if (sds.max_load <= sds.busiest_load_per_task)
4041 4042
		goto out_balanced;

4043 4044
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4045
	return sds.busiest;
L
Linus Torvalds 已提交
4046 4047

out_balanced:
4048 4049 4050 4051 4052 4053
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4054
ret:
L
Linus Torvalds 已提交
4055 4056 4057 4058 4059 4060 4061
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4062
static struct rq *
I
Ingo Molnar 已提交
4063
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4064
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4065
{
4066
	struct rq *busiest = NULL, *rq;
4067
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4068 4069
	int i;

4070
	for_each_cpu(i, sched_group_cpus(group)) {
4071 4072
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4073
		unsigned long wl;
4074

4075
		if (!cpumask_test_cpu(i, cpus))
4076 4077
			continue;

4078
		rq = cpu_rq(i);
4079 4080
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4081

4082
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4083
			continue;
L
Linus Torvalds 已提交
4084

I
Ingo Molnar 已提交
4085 4086
		if (wl > max_load) {
			max_load = wl;
4087
			busiest = rq;
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093
		}
	}

	return busiest;
}

4094 4095 4096 4097 4098 4099
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4100 4101 4102
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4103 4104 4105 4106
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4107
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4108
			struct sched_domain *sd, enum cpu_idle_type idle,
4109
			int *balance)
L
Linus Torvalds 已提交
4110
{
P
Peter Williams 已提交
4111
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4112 4113
	struct sched_group *group;
	unsigned long imbalance;
4114
	struct rq *busiest;
4115
	unsigned long flags;
4116
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4117

4118
	cpumask_copy(cpus, cpu_active_mask);
4119

4120 4121 4122
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4123
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4124
	 * portraying it as CPU_NOT_IDLE.
4125
	 */
I
Ingo Molnar 已提交
4126
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4127
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4128
		sd_idle = 1;
L
Linus Torvalds 已提交
4129

4130
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4131

4132
redo:
4133
	update_shares(sd);
4134
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4135
				   cpus, balance);
4136

4137
	if (*balance == 0)
4138 4139
		goto out_balanced;

L
Linus Torvalds 已提交
4140 4141 4142 4143 4144
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4145
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4146 4147 4148 4149 4150
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4151
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4152 4153 4154

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4155
	ld_moved = 0;
L
Linus Torvalds 已提交
4156 4157 4158 4159
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4160
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4161 4162
		 * correctly treated as an imbalance.
		 */
4163
		local_irq_save(flags);
N
Nick Piggin 已提交
4164
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4165
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4166
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4167
		double_rq_unlock(this_rq, busiest);
4168
		local_irq_restore(flags);
4169

4170 4171 4172
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4173
		if (ld_moved && this_cpu != smp_processor_id())
4174 4175
			resched_cpu(this_cpu);

4176
		/* All tasks on this runqueue were pinned by CPU affinity */
4177
		if (unlikely(all_pinned)) {
4178 4179
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4180
				goto redo;
4181
			goto out_balanced;
4182
		}
L
Linus Torvalds 已提交
4183
	}
4184

P
Peter Williams 已提交
4185
	if (!ld_moved) {
L
Linus Torvalds 已提交
4186 4187 4188 4189 4190
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4191
			spin_lock_irqsave(&busiest->lock, flags);
4192 4193 4194 4195

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4196 4197
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4198
				spin_unlock_irqrestore(&busiest->lock, flags);
4199 4200 4201 4202
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4203 4204 4205
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4206
				active_balance = 1;
L
Linus Torvalds 已提交
4207
			}
4208
			spin_unlock_irqrestore(&busiest->lock, flags);
4209
			if (active_balance)
L
Linus Torvalds 已提交
4210 4211 4212 4213 4214 4215
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4216
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4217
		}
4218
	} else
L
Linus Torvalds 已提交
4219 4220
		sd->nr_balance_failed = 0;

4221
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4222 4223
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4224 4225 4226 4227 4228 4229 4230 4231 4232
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4233 4234
	}

P
Peter Williams 已提交
4235
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4236
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 4238 4239
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4240 4241 4242 4243

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4244
	sd->nr_balance_failed = 0;
4245 4246

out_one_pinned:
L
Linus Torvalds 已提交
4247
	/* tune up the balancing interval */
4248 4249
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4250 4251
		sd->balance_interval *= 2;

4252
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4253
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4254 4255 4256 4257
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4258 4259
	if (ld_moved)
		update_shares(sd);
4260
	return ld_moved;
L
Linus Torvalds 已提交
4261 4262 4263 4264 4265 4266
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4267
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4268 4269
 * this_rq is locked.
 */
4270
static int
4271
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4272 4273
{
	struct sched_group *group;
4274
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4275
	unsigned long imbalance;
P
Peter Williams 已提交
4276
	int ld_moved = 0;
N
Nick Piggin 已提交
4277
	int sd_idle = 0;
4278
	int all_pinned = 0;
4279
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4280

4281
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4282

4283 4284 4285 4286
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4287
	 * portraying it as CPU_NOT_IDLE.
4288 4289 4290
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4291
		sd_idle = 1;
L
Linus Torvalds 已提交
4292

4293
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4294
redo:
4295
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4296
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4297
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4298
	if (!group) {
I
Ingo Molnar 已提交
4299
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4300
		goto out_balanced;
L
Linus Torvalds 已提交
4301 4302
	}

4303
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4304
	if (!busiest) {
I
Ingo Molnar 已提交
4305
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4306
		goto out_balanced;
L
Linus Torvalds 已提交
4307 4308
	}

N
Nick Piggin 已提交
4309 4310
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4311
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4312

P
Peter Williams 已提交
4313
	ld_moved = 0;
4314 4315 4316
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4317 4318
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4319
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4320 4321
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4322
		double_unlock_balance(this_rq, busiest);
4323

4324
		if (unlikely(all_pinned)) {
4325 4326
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4327 4328
				goto redo;
		}
4329 4330
	}

P
Peter Williams 已提交
4331
	if (!ld_moved) {
4332
		int active_balance = 0;
4333

I
Ingo Molnar 已提交
4334
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4335 4336
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4337
			return -1;
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4374
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4387 4388 4389 4390
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4391 4392
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4393
		spin_lock(&this_rq->lock);
4394

N
Nick Piggin 已提交
4395
	} else
4396
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4397

4398
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4399
	return ld_moved;
4400 4401

out_balanced:
I
Ingo Molnar 已提交
4402
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4403
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4404
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4405
		return -1;
4406
	sd->nr_balance_failed = 0;
4407

4408
	return 0;
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413 4414
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4415
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4416 4417
{
	struct sched_domain *sd;
4418
	int pulled_task = 0;
I
Ingo Molnar 已提交
4419
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4420

M
Mike Galbraith 已提交
4421 4422 4423 4424 4425
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4426
	for_each_domain(this_cpu, sd) {
4427 4428 4429 4430 4431 4432
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4433
			/* If we've pulled tasks over stop searching: */
4434
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4435
							   sd);
4436 4437 4438 4439

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4440 4441
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4442
			break;
M
Mike Galbraith 已提交
4443
		}
L
Linus Torvalds 已提交
4444
	}
I
Ingo Molnar 已提交
4445
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4446 4447 4448 4449 4450
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4451
	}
L
Linus Torvalds 已提交
4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4462
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4463
{
4464
	int target_cpu = busiest_rq->push_cpu;
4465 4466
	struct sched_domain *sd;
	struct rq *target_rq;
4467

4468
	/* Is there any task to move? */
4469 4470 4471 4472
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4473 4474

	/*
4475
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4476
	 * we need to fix it. Originally reported by
4477
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4478
	 */
4479
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4480

4481 4482
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4483 4484
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4485 4486

	/* Search for an sd spanning us and the target CPU. */
4487
	for_each_domain(target_cpu, sd) {
4488
		if ((sd->flags & SD_LOAD_BALANCE) &&
4489
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4490
				break;
4491
	}
4492

4493
	if (likely(sd)) {
4494
		schedstat_inc(sd, alb_count);
4495

P
Peter Williams 已提交
4496 4497
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4498 4499 4500 4501
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4502
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4503 4504
}

4505 4506 4507
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4508
	cpumask_var_t cpu_mask;
4509
	cpumask_var_t ilb_grp_nohz_mask;
4510 4511 4512 4513
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4514 4515 4516 4517 4518
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4630
	return cpumask_first(nohz.cpu_mask);
4631 4632 4633
}
#endif

4634
/*
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4645
 *
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4661 4662 4663 4664 4665 4666 4667 4668
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4669 4670
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4671

4672 4673 4674
			return 0;
		}

4675 4676
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4677
		/* time for ilb owner also to sleep */
4678
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4679 4680 4681 4682 4683 4684 4685 4686 4687
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4704
			return 1;
4705
		}
4706
	} else {
4707
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4708 4709
			return 0;

4710
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4723 4724 4725 4726 4727
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4728
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4729
{
4730 4731
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4732 4733
	unsigned long interval;
	struct sched_domain *sd;
4734
	/* Earliest time when we have to do rebalance again */
4735
	unsigned long next_balance = jiffies + 60*HZ;
4736
	int update_next_balance = 0;
4737
	int need_serialize;
L
Linus Torvalds 已提交
4738

4739
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4740 4741 4742 4743
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4744
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4745 4746 4747 4748 4749 4750
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4751 4752 4753
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4754
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4755

4756
		if (need_serialize) {
4757 4758 4759 4760
			if (!spin_trylock(&balancing))
				goto out;
		}

4761
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4762
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4763 4764
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4765 4766 4767
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4768
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4769
			}
4770
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4771
		}
4772
		if (need_serialize)
4773 4774
			spin_unlock(&balancing);
out:
4775
		if (time_after(next_balance, sd->last_balance + interval)) {
4776
			next_balance = sd->last_balance + interval;
4777 4778
			update_next_balance = 1;
		}
4779 4780 4781 4782 4783 4784 4785 4786

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4787
	}
4788 4789 4790 4791 4792 4793 4794 4795

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4796 4797 4798 4799 4800 4801 4802 4803 4804
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4805 4806 4807 4808
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4809

I
Ingo Molnar 已提交
4810
	rebalance_domains(this_cpu, idle);
4811 4812 4813 4814 4815 4816 4817

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4818 4819
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4820 4821 4822
		struct rq *rq;
		int balance_cpu;

4823 4824 4825 4826
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4827 4828 4829 4830 4831 4832 4833 4834
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4835
			rebalance_domains(balance_cpu, CPU_IDLE);
4836 4837

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4838 4839
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4840 4841 4842 4843 4844
		}
	}
#endif
}

4845 4846 4847 4848 4849
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4850 4851 4852 4853 4854 4855 4856
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4857
static inline void trigger_load_balance(struct rq *rq, int cpu)
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4869
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4870 4871 4872 4873
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4874
			int ilb = find_new_ilb(cpu);
4875

4876
			if (ilb < nr_cpu_ids)
4877 4878 4879 4880 4881 4882 4883 4884 4885
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4886
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4887 4888 4889 4890 4891 4892 4893 4894 4895
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4896
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4897 4898
		return;
#endif
4899 4900 4901
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4902
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4903
}
I
Ingo Molnar 已提交
4904 4905 4906

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4907 4908 4909
/*
 * on UP we do not need to balance between CPUs:
 */
4910
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4911 4912
{
}
I
Ingo Molnar 已提交
4913

L
Linus Torvalds 已提交
4914 4915 4916 4917 4918 4919 4920
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4921
 * Return any ns on the sched_clock that have not yet been accounted in
4922
 * @p in case that task is currently running.
4923 4924
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4925
 */
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4940
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4941 4942
{
	unsigned long flags;
4943
	struct rq *rq;
4944
	u64 ns = 0;
4945

4946
	rq = task_rq_lock(p, &flags);
4947 4948
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4949

4950 4951
	return ns;
}
4952

4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4970

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4990
	task_rq_unlock(rq, &flags);
4991

L
Linus Torvalds 已提交
4992 4993 4994 4995 4996 4997 4998
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
4999
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5000
 */
5001 5002
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5003 5004 5005 5006
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5007
	/* Add user time to process. */
L
Linus Torvalds 已提交
5008
	p->utime = cputime_add(p->utime, cputime);
5009
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5010
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5011 5012 5013 5014 5015 5016 5017

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5018 5019

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5020 5021
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5022 5023
}

5024 5025 5026 5027
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5028
 * @cputime_scaled: cputime scaled by cpu frequency
5029
 */
5030 5031
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5032 5033 5034 5035 5036 5037
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5038
	/* Add guest time to process. */
5039
	p->utime = cputime_add(p->utime, cputime);
5040
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5041
	account_group_user_time(p, cputime);
5042 5043
	p->gtime = cputime_add(p->gtime, cputime);

5044
	/* Add guest time to cpustat. */
5045 5046 5047 5048 5049 5050 5051
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5052 5053
}

L
Linus Torvalds 已提交
5054 5055 5056 5057 5058
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5059
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5060 5061
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5062
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5063 5064 5065 5066
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5067
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5068
		account_guest_time(p, cputime, cputime_scaled);
5069 5070
		return;
	}
5071

5072
	/* Add system time to process. */
L
Linus Torvalds 已提交
5073
	p->stime = cputime_add(p->stime, cputime);
5074
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5075
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5076 5077 5078 5079 5080 5081 5082 5083

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5084 5085
		cpustat->system = cputime64_add(cpustat->system, tmp);

5086 5087
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5088 5089 5090 5091
	/* Account for system time used */
	acct_update_integrals(p);
}

5092
/*
L
Linus Torvalds 已提交
5093 5094
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5095
 */
5096
void account_steal_time(cputime_t cputime)
5097
{
5098 5099 5100 5101
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5102 5103
}

L
Linus Torvalds 已提交
5104
/*
5105 5106
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5107
 */
5108
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5109 5110
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5111
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5112
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5113

5114 5115 5116 5117
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5118 5119
}

5120 5121 5122 5123 5124 5125 5126 5127 5128
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5129
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5130 5131 5132
	struct rq *rq = this_rq();

	if (user_tick)
5133
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5134
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5135
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5136 5137
				    one_jiffy_scaled);
	else
5138
		account_idle_time(cputime_one_jiffy);
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5158 5159
}

5160 5161
#endif

5162 5163 5164 5165
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5166
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5167
{
5168 5169
	*ut = p->utime;
	*st = p->stime;
5170 5171
}

5172
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5173
{
5174 5175 5176 5177 5178 5179
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5180 5181
}
#else
5182 5183

#ifndef nsecs_to_cputime
5184
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5185 5186
#endif

5187
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5188
{
5189
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5190 5191 5192 5193

	/*
	 * Use CFS's precise accounting:
	 */
5194
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5195 5196

	if (total) {
5197 5198 5199
		u64 temp;

		temp = (u64)(rtime * utime);
5200
		do_div(temp, total);
5201 5202 5203
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5204

5205 5206 5207
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5208
	p->prev_utime = max(p->prev_utime, utime);
5209
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5210

5211 5212
	*ut = p->prev_utime;
	*st = p->prev_stime;
5213 5214
}

5215 5216 5217 5218
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5219
{
5220 5221 5222
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5223

5224
	thread_group_cputime(p, &cputime);
5225

5226 5227
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5228

5229 5230
	if (total) {
		u64 temp;
5231

5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5244 5245 5246
}
#endif

5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5258
	struct task_struct *curr = rq->curr;
5259 5260

	sched_clock_tick();
I
Ingo Molnar 已提交
5261 5262

	spin_lock(&rq->lock);
5263
	update_rq_clock(rq);
5264
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5265
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5266
	spin_unlock(&rq->lock);
5267

5268
	perf_event_task_tick(curr, cpu);
5269

5270
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5271 5272
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5273
#endif
L
Linus Torvalds 已提交
5274 5275
}

5276
notrace unsigned long get_parent_ip(unsigned long addr)
5277 5278 5279 5280 5281 5282 5283 5284
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5285

5286 5287 5288
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5289
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5290
{
5291
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5292 5293 5294
	/*
	 * Underflow?
	 */
5295 5296
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5297
#endif
L
Linus Torvalds 已提交
5298
	preempt_count() += val;
5299
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5300 5301 5302
	/*
	 * Spinlock count overflowing soon?
	 */
5303 5304
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5305 5306 5307
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5308 5309 5310
}
EXPORT_SYMBOL(add_preempt_count);

5311
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5312
{
5313
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5314 5315 5316
	/*
	 * Underflow?
	 */
5317
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5318
		return;
L
Linus Torvalds 已提交
5319 5320 5321
	/*
	 * Is the spinlock portion underflowing?
	 */
5322 5323 5324
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5325
#endif
5326

5327 5328
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5329 5330 5331 5332 5333 5334 5335
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5336
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5337
 */
I
Ingo Molnar 已提交
5338
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5339
{
5340 5341
	struct pt_regs *regs = get_irq_regs();

J
Joe Perches 已提交
5342 5343
	pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
	       prev->comm, prev->pid, preempt_count());
5344

I
Ingo Molnar 已提交
5345
	debug_show_held_locks(prev);
5346
	print_modules();
I
Ingo Molnar 已提交
5347 5348
	if (irqs_disabled())
		print_irqtrace_events(prev);
5349 5350 5351 5352 5353

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5354
}
L
Linus Torvalds 已提交
5355

I
Ingo Molnar 已提交
5356 5357 5358 5359 5360
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5361
	/*
I
Ingo Molnar 已提交
5362
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5363 5364 5365
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5366
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5367 5368
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5369 5370
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5371
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5372 5373
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5374 5375
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5376 5377
	}
#endif
I
Ingo Molnar 已提交
5378 5379
}

P
Peter Zijlstra 已提交
5380
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5381
{
P
Peter Zijlstra 已提交
5382 5383
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5384

P
Peter Zijlstra 已提交
5385 5386
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5397
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5398
	}
P
Peter Zijlstra 已提交
5399
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5400 5401
}

I
Ingo Molnar 已提交
5402 5403 5404 5405
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5406
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5407
{
5408
	const struct sched_class *class;
I
Ingo Molnar 已提交
5409
	struct task_struct *p;
L
Linus Torvalds 已提交
5410 5411

	/*
I
Ingo Molnar 已提交
5412 5413
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5414
	 */
I
Ingo Molnar 已提交
5415
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5416
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5417 5418
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5419 5420
	}

I
Ingo Molnar 已提交
5421 5422
	class = sched_class_highest;
	for ( ; ; ) {
5423
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5424 5425 5426 5427 5428 5429 5430 5431 5432
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5433

I
Ingo Molnar 已提交
5434 5435 5436
/*
 * schedule() is the main scheduler function.
 */
5437
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5438 5439
{
	struct task_struct *prev, *next;
5440
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5441
	struct rq *rq;
5442
	int cpu;
I
Ingo Molnar 已提交
5443

5444 5445
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5446 5447
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5448
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5449 5450 5451 5452 5453 5454 5455
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5456

5457
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5458
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5459

5460
	spin_lock_irq(&rq->lock);
5461
	update_rq_clock(rq);
5462
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5463 5464

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5465
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5466
			prev->state = TASK_RUNNING;
5467
		else
5468
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5469
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5470 5471
	}

5472
	pre_schedule(rq, prev);
5473

I
Ingo Molnar 已提交
5474
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5475 5476
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5477
	put_prev_task(rq, prev);
5478
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5479 5480

	if (likely(prev != next)) {
5481
		sched_info_switch(prev, next);
5482
		perf_event_task_sched_out(prev, next, cpu);
5483

L
Linus Torvalds 已提交
5484 5485 5486 5487
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5488
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5489 5490 5491 5492 5493 5494
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5495 5496 5497
	} else
		spin_unlock_irq(&rq->lock);

5498
	post_schedule(rq);
L
Linus Torvalds 已提交
5499

P
Peter Zijlstra 已提交
5500
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5501
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5502

L
Linus Torvalds 已提交
5503
	preempt_enable_no_resched();
5504
	if (need_resched())
L
Linus Torvalds 已提交
5505 5506 5507 5508
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5509
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5570 5571
#ifdef CONFIG_PREEMPT
/*
5572
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5573
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5574 5575 5576 5577 5578
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5579

L
Linus Torvalds 已提交
5580 5581
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5582
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5583
	 */
N
Nick Piggin 已提交
5584
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5585 5586
		return;

5587 5588 5589 5590
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5591

5592 5593 5594 5595 5596
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5597
	} while (need_resched());
L
Linus Torvalds 已提交
5598 5599 5600 5601
}
EXPORT_SYMBOL(preempt_schedule);

/*
5602
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5603 5604 5605 5606 5607 5608 5609
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5610

5611
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5612 5613
	BUG_ON(ti->preempt_count || !irqs_disabled());

5614 5615 5616 5617 5618 5619
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5620

5621 5622 5623 5624 5625
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5626
	} while (need_resched());
L
Linus Torvalds 已提交
5627 5628 5629 5630
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5631
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5632
			  void *key)
L
Linus Torvalds 已提交
5633
{
P
Peter Zijlstra 已提交
5634
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5635 5636 5637 5638
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5639 5640
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5641 5642 5643
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5644
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5645 5646
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5647
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5648
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5649
{
5650
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5651

5652
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5653 5654
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5655
		if (curr->func(curr, mode, wake_flags, key) &&
5656
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5657 5658 5659 5660 5661 5662 5663 5664 5665
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5666
 * @key: is directly passed to the wakeup function
5667 5668 5669
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5670
 */
5671
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5672
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5685
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5686 5687 5688 5689
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5690 5691 5692 5693 5694
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5695
/**
5696
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5697 5698 5699
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5700
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5701 5702 5703 5704 5705 5706 5707
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5708 5709 5710
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5711
 */
5712 5713
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5714 5715
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5716
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5717 5718 5719 5720 5721

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5722
		wake_flags = 0;
L
Linus Torvalds 已提交
5723 5724

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5725
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5726 5727
	spin_unlock_irqrestore(&q->lock, flags);
}
5728 5729 5730 5731 5732 5733 5734 5735 5736
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5737 5738
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5739 5740 5741 5742 5743 5744 5745 5746
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5747 5748 5749
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5750
 */
5751
void complete(struct completion *x)
L
Linus Torvalds 已提交
5752 5753 5754 5755 5756
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5757
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5758 5759 5760 5761
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5762 5763 5764 5765 5766
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5767 5768 5769
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5770
 */
5771
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5772 5773 5774 5775 5776
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5777
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5778 5779 5780 5781
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5782 5783
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5784 5785 5786 5787 5788 5789 5790
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5791
			if (signal_pending_state(state, current)) {
5792 5793
				timeout = -ERESTARTSYS;
				break;
5794 5795
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5796 5797 5798
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5799
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5800
		__remove_wait_queue(&x->wait, &wait);
5801 5802
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5803 5804
	}
	x->done--;
5805
	return timeout ?: 1;
L
Linus Torvalds 已提交
5806 5807
}

5808 5809
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5810 5811 5812 5813
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5814
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5815
	spin_unlock_irq(&x->wait.lock);
5816 5817
	return timeout;
}
L
Linus Torvalds 已提交
5818

5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5829
void __sched wait_for_completion(struct completion *x)
5830 5831
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5832
}
5833
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5834

5835 5836 5837 5838 5839 5840 5841 5842 5843
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5844
unsigned long __sched
5845
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5846
{
5847
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5848
}
5849
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5850

5851 5852 5853 5854 5855 5856 5857
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5858
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5859
{
5860 5861 5862 5863
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5864
}
5865
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5866

5867 5868 5869 5870 5871 5872 5873 5874
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5875
unsigned long __sched
5876 5877
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5878
{
5879
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5880
}
5881
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5882

5883 5884 5885 5886 5887 5888 5889
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5890 5891 5892 5893 5894 5895 5896 5897 5898
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
5913
	unsigned long flags;
5914 5915
	int ret = 1;

5916
	spin_lock_irqsave(&x->wait.lock, flags);
5917 5918 5919 5920
	if (!x->done)
		ret = 0;
	else
		x->done--;
5921
	spin_unlock_irqrestore(&x->wait.lock, flags);
5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
5936
	unsigned long flags;
5937 5938
	int ret = 1;

5939
	spin_lock_irqsave(&x->wait.lock, flags);
5940 5941
	if (!x->done)
		ret = 0;
5942
	spin_unlock_irqrestore(&x->wait.lock, flags);
5943 5944 5945 5946
	return ret;
}
EXPORT_SYMBOL(completion_done);

5947 5948
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5949
{
I
Ingo Molnar 已提交
5950 5951 5952 5953
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5954

5955
	__set_current_state(state);
L
Linus Torvalds 已提交
5956

5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5971 5972 5973
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5974
long __sched
I
Ingo Molnar 已提交
5975
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5976
{
5977
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5978 5979 5980
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5981
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5982
{
5983
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5984 5985 5986
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5987
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5988
{
5989
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5990 5991 5992
}
EXPORT_SYMBOL(sleep_on_timeout);

5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6005
void rt_mutex_setprio(struct task_struct *p, int prio)
6006 6007
{
	unsigned long flags;
6008
	int oldprio, on_rq, running;
6009
	struct rq *rq;
6010
	const struct sched_class *prev_class = p->sched_class;
6011 6012 6013 6014

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6015
	update_rq_clock(rq);
6016

6017
	oldprio = p->prio;
I
Ingo Molnar 已提交
6018
	on_rq = p->se.on_rq;
6019
	running = task_current(rq, p);
6020
	if (on_rq)
6021
		dequeue_task(rq, p, 0);
6022 6023
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6024 6025 6026 6027 6028 6029

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6030 6031
	p->prio = prio;

6032 6033
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6034
	if (on_rq) {
6035
		enqueue_task(rq, p, 0);
6036 6037

		check_class_changed(rq, p, prev_class, oldprio, running);
6038 6039 6040 6041 6042 6043
	}
	task_rq_unlock(rq, &flags);
}

#endif

6044
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6045
{
I
Ingo Molnar 已提交
6046
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6047
	unsigned long flags;
6048
	struct rq *rq;
L
Linus Torvalds 已提交
6049 6050 6051 6052 6053 6054 6055 6056

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6057
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6058 6059 6060 6061
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6062
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6063
	 */
6064
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6065 6066 6067
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6068
	on_rq = p->se.on_rq;
6069
	if (on_rq)
6070
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6071 6072

	p->static_prio = NICE_TO_PRIO(nice);
6073
	set_load_weight(p);
6074 6075 6076
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6077

I
Ingo Molnar 已提交
6078
	if (on_rq) {
6079
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6080
		/*
6081 6082
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6083
		 */
6084
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6085 6086 6087 6088 6089 6090 6091
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6092 6093 6094 6095 6096
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6097
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6098
{
6099 6100
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6101

M
Matt Mackall 已提交
6102 6103 6104 6105
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6106 6107 6108 6109 6110 6111 6112 6113 6114
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6115
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6116
{
6117
	long nice, retval;
L
Linus Torvalds 已提交
6118 6119 6120 6121 6122 6123

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6124 6125
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6126 6127 6128
	if (increment > 40)
		increment = 40;

6129
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6130 6131 6132 6133 6134
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6135 6136 6137
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6156
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6157 6158 6159 6160 6161 6162 6163 6164
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6165
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6166 6167 6168
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6169
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6184
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6185 6186 6187 6188 6189 6190 6191 6192
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6193
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6194
{
6195
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6196 6197 6198
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6199 6200
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6201
{
I
Ingo Molnar 已提交
6202
	BUG_ON(p->se.on_rq);
6203

L
Linus Torvalds 已提交
6204 6205
	p->policy = policy;
	p->rt_priority = prio;
6206 6207 6208
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6209 6210 6211 6212
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6213
	set_load_weight(p);
L
Linus Torvalds 已提交
6214 6215
}

6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6232 6233
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6234
{
6235
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6236
	unsigned long flags;
6237
	const struct sched_class *prev_class = p->sched_class;
6238
	struct rq *rq;
6239
	int reset_on_fork;
L
Linus Torvalds 已提交
6240

6241 6242
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6243 6244
recheck:
	/* double check policy once rq lock held */
6245 6246
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6247
		policy = oldpolicy = p->policy;
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6258 6259
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6260 6261
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6262 6263
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6264
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6265
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6266
		return -EINVAL;
6267
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6268 6269
		return -EINVAL;

6270 6271 6272
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6273
	if (user && !capable(CAP_SYS_NICE)) {
6274
		if (rt_policy(policy)) {
6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6291 6292 6293 6294 6295 6296
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6297

6298
		/* can't change other user's priorities */
6299
		if (!check_same_owner(p))
6300
			return -EPERM;
6301 6302 6303 6304

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6305
	}
L
Linus Torvalds 已提交
6306

6307
	if (user) {
6308
#ifdef CONFIG_RT_GROUP_SCHED
6309 6310 6311 6312
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6313 6314
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6315
			return -EPERM;
6316 6317
#endif

6318 6319 6320 6321 6322
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6323 6324 6325 6326 6327
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6328 6329 6330 6331
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6332
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6333 6334 6335
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6336 6337
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6338 6339
		goto recheck;
	}
I
Ingo Molnar 已提交
6340
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6341
	on_rq = p->se.on_rq;
6342
	running = task_current(rq, p);
6343
	if (on_rq)
6344
		deactivate_task(rq, p, 0);
6345 6346
	if (running)
		p->sched_class->put_prev_task(rq, p);
6347

6348 6349
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6350
	oldprio = p->prio;
I
Ingo Molnar 已提交
6351
	__setscheduler(rq, p, policy, param->sched_priority);
6352

6353 6354
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6355 6356
	if (on_rq) {
		activate_task(rq, p, 0);
6357 6358

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6359
	}
6360 6361 6362
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6363 6364
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6365 6366
	return 0;
}
6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6381 6382
EXPORT_SYMBOL_GPL(sched_setscheduler);

6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6400 6401
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6402 6403 6404
{
	struct sched_param lparam;
	struct task_struct *p;
6405
	int retval;
L
Linus Torvalds 已提交
6406 6407 6408 6409 6410

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6411 6412 6413

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6414
	p = find_process_by_pid(pid);
6415 6416 6417
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6418

L
Linus Torvalds 已提交
6419 6420 6421 6422 6423 6424 6425 6426 6427
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6428 6429
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6430
{
6431 6432 6433 6434
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6435 6436 6437 6438 6439 6440 6441 6442
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6443
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6444 6445 6446 6447 6448 6449 6450 6451
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6452
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6453
{
6454
	struct task_struct *p;
6455
	int retval;
L
Linus Torvalds 已提交
6456 6457

	if (pid < 0)
6458
		return -EINVAL;
L
Linus Torvalds 已提交
6459 6460

	retval = -ESRCH;
6461
	rcu_read_lock();
L
Linus Torvalds 已提交
6462 6463 6464 6465
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6466 6467
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6468
	}
6469
	rcu_read_unlock();
L
Linus Torvalds 已提交
6470 6471 6472 6473
	return retval;
}

/**
6474
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6475 6476 6477
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6478
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6479 6480
{
	struct sched_param lp;
6481
	struct task_struct *p;
6482
	int retval;
L
Linus Torvalds 已提交
6483 6484

	if (!param || pid < 0)
6485
		return -EINVAL;
L
Linus Torvalds 已提交
6486

6487
	rcu_read_lock();
L
Linus Torvalds 已提交
6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
6498
	rcu_read_unlock();
L
Linus Torvalds 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
6508
	rcu_read_unlock();
L
Linus Torvalds 已提交
6509 6510 6511
	return retval;
}

6512
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6513
{
6514
	cpumask_var_t cpus_allowed, new_mask;
6515 6516
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6517

6518
	get_online_cpus();
6519
	rcu_read_lock();
L
Linus Torvalds 已提交
6520 6521 6522

	p = find_process_by_pid(pid);
	if (!p) {
6523
		rcu_read_unlock();
6524
		put_online_cpus();
L
Linus Torvalds 已提交
6525 6526 6527
		return -ESRCH;
	}

6528
	/* Prevent p going away */
L
Linus Torvalds 已提交
6529
	get_task_struct(p);
6530
	rcu_read_unlock();
L
Linus Torvalds 已提交
6531

6532 6533 6534 6535 6536 6537 6538 6539
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6540
	retval = -EPERM;
6541
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6542 6543
		goto out_unlock;

6544 6545 6546 6547
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6548 6549
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6550
 again:
6551
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6552

P
Paul Menage 已提交
6553
	if (!retval) {
6554 6555
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6556 6557 6558 6559 6560
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6561
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6562 6563 6564
			goto again;
		}
	}
L
Linus Torvalds 已提交
6565
out_unlock:
6566 6567 6568 6569
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6570
	put_task_struct(p);
6571
	put_online_cpus();
L
Linus Torvalds 已提交
6572 6573 6574 6575
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6576
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6577
{
6578 6579 6580 6581 6582
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6583 6584 6585 6586 6587 6588 6589 6590 6591
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6592 6593
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6594
{
6595
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6596 6597
	int retval;

6598 6599
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6600

6601 6602 6603 6604 6605
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6606 6607
}

6608
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6609
{
6610
	struct task_struct *p;
6611 6612
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6613 6614
	int retval;

6615
	get_online_cpus();
6616
	rcu_read_lock();
L
Linus Torvalds 已提交
6617 6618 6619 6620 6621 6622

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6623 6624 6625 6626
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6627
	rq = task_rq_lock(p, &flags);
6628
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6629
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6630 6631

out_unlock:
6632
	rcu_read_unlock();
6633
	put_online_cpus();
L
Linus Torvalds 已提交
6634

6635
	return retval;
L
Linus Torvalds 已提交
6636 6637 6638 6639 6640 6641 6642 6643
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6644 6645
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6646 6647
{
	int ret;
6648
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6649

6650
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6651 6652
		return -EINVAL;

6653 6654
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6655

6656 6657 6658 6659 6660 6661 6662 6663
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6664

6665
	return ret;
L
Linus Torvalds 已提交
6666 6667 6668 6669 6670
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6671 6672
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6673
 */
6674
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6675
{
6676
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6677

6678
	schedstat_inc(rq, yld_count);
6679
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6680 6681 6682 6683 6684 6685

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6686
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6687 6688 6689 6690 6691 6692 6693 6694
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6695 6696 6697 6698 6699
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6700
static void __cond_resched(void)
L
Linus Torvalds 已提交
6701
{
6702 6703 6704
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6705 6706
}

6707
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6708
{
P
Peter Zijlstra 已提交
6709
	if (should_resched()) {
L
Linus Torvalds 已提交
6710 6711 6712 6713 6714
		__cond_resched();
		return 1;
	}
	return 0;
}
6715
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6716 6717

/*
6718
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6719 6720
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6721
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6722 6723 6724
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6725
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6726
{
P
Peter Zijlstra 已提交
6727
	int resched = should_resched();
J
Jan Kara 已提交
6728 6729
	int ret = 0;

6730 6731
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6732
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6733
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6734
		if (resched)
N
Nick Piggin 已提交
6735 6736 6737
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6738
		ret = 1;
L
Linus Torvalds 已提交
6739 6740
		spin_lock(lock);
	}
J
Jan Kara 已提交
6741
	return ret;
L
Linus Torvalds 已提交
6742
}
6743
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6744

6745
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6746 6747 6748
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6749
	if (should_resched()) {
6750
		local_bh_enable();
L
Linus Torvalds 已提交
6751 6752 6753 6754 6755 6756
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6757
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6758 6759 6760 6761

/**
 * yield - yield the current processor to other threads.
 *
6762
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6773
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6774 6775 6776 6777
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6778
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6779

6780
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6781
	atomic_inc(&rq->nr_iowait);
6782
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6783
	schedule();
6784
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6785
	atomic_dec(&rq->nr_iowait);
6786
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6787 6788 6789 6790 6791
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6792
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6793 6794
	long ret;

6795
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6796
	atomic_inc(&rq->nr_iowait);
6797
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6798
	ret = schedule_timeout(timeout);
6799
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6800
	atomic_dec(&rq->nr_iowait);
6801
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6802 6803 6804 6805 6806 6807 6808 6809 6810 6811
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6812
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6813 6814 6815 6816 6817 6818 6819 6820 6821
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6822
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6823
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6837
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6847
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6848
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6862
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6863
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6864
{
6865
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6866
	unsigned int time_slice;
6867 6868
	unsigned long flags;
	struct rq *rq;
6869
	int retval;
L
Linus Torvalds 已提交
6870 6871 6872
	struct timespec t;

	if (pid < 0)
6873
		return -EINVAL;
L
Linus Torvalds 已提交
6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6885 6886 6887
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6888

L
Linus Torvalds 已提交
6889
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6890
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6891 6892
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6893

L
Linus Torvalds 已提交
6894 6895 6896 6897 6898
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6899
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6900

6901
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6902 6903
{
	unsigned long free = 0;
6904
	unsigned state;
L
Linus Torvalds 已提交
6905 6906

	state = p->state ? __ffs(p->state) + 1 : 0;
J
Joe Perches 已提交
6907
	pr_info("%-13.13s %c", p->comm,
6908
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6909
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6910
	if (state == TASK_RUNNING)
J
Joe Perches 已提交
6911
		pr_cont(" running  ");
L
Linus Torvalds 已提交
6912
	else
J
Joe Perches 已提交
6913
		pr_cont(" %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6914 6915
#else
	if (state == TASK_RUNNING)
J
Joe Perches 已提交
6916
		pr_cont("  running task    ");
L
Linus Torvalds 已提交
6917
	else
J
Joe Perches 已提交
6918
		pr_cont(" %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6919 6920
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6921
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6922
#endif
J
Joe Perches 已提交
6923
	pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6924 6925
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6926

6927
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6928 6929
}

I
Ingo Molnar 已提交
6930
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6931
{
6932
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6933

6934
#if BITS_PER_LONG == 32
J
Joe Perches 已提交
6935
	pr_info("  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6936
#else
J
Joe Perches 已提交
6937
	pr_info("  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6938 6939 6940 6941 6942 6943 6944 6945
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6946
		if (!state_filter || (p->state & state_filter))
6947
			sched_show_task(p);
L
Linus Torvalds 已提交
6948 6949
	} while_each_thread(g, p);

6950 6951
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6952 6953 6954
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6955
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6956 6957 6958
	/*
	 * Only show locks if all tasks are dumped:
	 */
6959
	if (!state_filter)
I
Ingo Molnar 已提交
6960
		debug_show_all_locks();
L
Linus Torvalds 已提交
6961 6962
}

I
Ingo Molnar 已提交
6963 6964
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6965
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6966 6967
}

6968 6969 6970 6971 6972 6973 6974 6975
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6976
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6977
{
6978
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6979 6980
	unsigned long flags;

6981 6982
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6983 6984 6985
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6986
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6987
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6988 6989

	rq->curr = rq->idle = idle;
6990 6991 6992
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
6993 6994 6995
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
6996 6997 6998
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
6999
	task_thread_info(idle)->preempt_count = 0;
7000
#endif
I
Ingo Molnar 已提交
7001 7002 7003 7004
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7005
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7006 7007 7008 7009 7010 7011 7012
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7013
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7014
 */
7015
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7016

I
Ingo Molnar 已提交
7017 7018 7019 7020 7021 7022 7023 7024 7025
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7026
static int get_update_sysctl_factor(void)
I
Ingo Molnar 已提交
7027
{
7028
	unsigned int cpus = min_t(int, num_online_cpus(), 8);
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042
	unsigned int factor;

	switch (sysctl_sched_tunable_scaling) {
	case SCHED_TUNABLESCALING_NONE:
		factor = 1;
		break;
	case SCHED_TUNABLESCALING_LINEAR:
		factor = cpus;
		break;
	case SCHED_TUNABLESCALING_LOG:
	default:
		factor = 1 + ilog2(cpus);
		break;
	}
I
Ingo Molnar 已提交
7043

7044 7045
	return factor;
}
I
Ingo Molnar 已提交
7046

7047 7048 7049
static void update_sysctl(void)
{
	unsigned int factor = get_update_sysctl_factor();
I
Ingo Molnar 已提交
7050

7051 7052 7053 7054 7055 7056 7057 7058
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7059

7060 7061 7062
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7063 7064
}

L
Linus Torvalds 已提交
7065 7066 7067 7068
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7069
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7088
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7089 7090
 * call is not atomic; no spinlocks may be held.
 */
7091
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7092
{
7093
	struct migration_req req;
L
Linus Torvalds 已提交
7094
	unsigned long flags;
7095
	struct rq *rq;
7096
	int ret = 0;
L
Linus Torvalds 已提交
7097 7098

	rq = task_rq_lock(p, &flags);
7099
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7100 7101 7102 7103
		ret = -EINVAL;
		goto out;
	}

7104
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7105
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7106 7107 7108 7109
		ret = -EINVAL;
		goto out;
	}

7110
	if (p->sched_class->set_cpus_allowed)
7111
		p->sched_class->set_cpus_allowed(p, new_mask);
7112
	else {
7113 7114
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7115 7116
	}

L
Linus Torvalds 已提交
7117
	/* Can the task run on the task's current CPU? If so, we're done */
7118
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7119 7120
		goto out;

7121
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7122
		/* Need help from migration thread: drop lock and wait. */
7123 7124 7125
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7126 7127
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7128
		put_task_struct(mt);
L
Linus Torvalds 已提交
7129 7130 7131 7132 7133 7134
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7135

L
Linus Torvalds 已提交
7136 7137
	return ret;
}
7138
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7139 7140

/*
I
Ingo Molnar 已提交
7141
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7142 7143 7144 7145 7146 7147
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7148 7149
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7150
 */
7151
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7152
{
7153
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7154
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7155

7156
	if (unlikely(!cpu_active(dest_cpu)))
7157
		return ret;
L
Linus Torvalds 已提交
7158 7159 7160 7161 7162 7163 7164

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7165
		goto done;
L
Linus Torvalds 已提交
7166
	/* Affinity changed (again). */
7167
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7168
		goto fail;
L
Linus Torvalds 已提交
7169

I
Ingo Molnar 已提交
7170
	on_rq = p->se.on_rq;
7171
	if (on_rq)
7172
		deactivate_task(rq_src, p, 0);
7173

L
Linus Torvalds 已提交
7174
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7175 7176
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7177
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7178
	}
L
Linus Torvalds 已提交
7179
done:
7180
	ret = 1;
L
Linus Torvalds 已提交
7181
fail:
L
Linus Torvalds 已提交
7182
	double_rq_unlock(rq_src, rq_dest);
7183
	return ret;
L
Linus Torvalds 已提交
7184 7185
}

7186 7187 7188 7189 7190
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7191 7192 7193 7194 7195
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7196
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7197
{
7198
	int badcpu;
L
Linus Torvalds 已提交
7199
	int cpu = (long)data;
7200
	struct rq *rq;
L
Linus Torvalds 已提交
7201 7202 7203 7204 7205 7206

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7207
		struct migration_req *req;
L
Linus Torvalds 已提交
7208 7209 7210 7211 7212 7213
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7214
			break;
L
Linus Torvalds 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7230
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7231 7232
		list_del_init(head->next);

7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7244
		local_irq_enable();
L
Linus Torvalds 已提交
7245 7246 7247 7248 7249 7250 7251 7252 7253

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7265
/*
7266
 * Figure out where task on dead CPU should go, use force if necessary.
7267
 */
7268
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7269
{
7270
	int dest_cpu;
7271
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7272 7273 7274

again:
	/* Look for allowed, online CPU in same node. */
7275
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7276 7277 7278 7279
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
7280
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7281 7282 7283 7284 7285 7286
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7287
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7288

7289 7290 7291 7292 7293 7294
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
J
Joe Perches 已提交
7295 7296
			pr_info("process %d (%s) no longer affine to cpu%d\n",
				task_pid_nr(p), p->comm, dead_cpu);
7297
		}
7298 7299 7300 7301 7302 7303
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7304 7305 7306 7307 7308 7309 7310 7311 7312
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7313
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7314
{
7315
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7329
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7330

7331
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7332

7333 7334
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7335 7336
			continue;

7337 7338 7339
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7340

7341
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7342 7343
}

I
Ingo Molnar 已提交
7344 7345
/*
 * Schedules idle task to be the next runnable task on current CPU.
7346 7347
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7348 7349 7350
 */
void sched_idle_next(void)
{
7351
	int this_cpu = smp_processor_id();
7352
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7353 7354 7355 7356
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7357
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7358

7359 7360 7361
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7362 7363 7364
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7365
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7366

7367 7368
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7369 7370 7371 7372

	spin_unlock_irqrestore(&rq->lock, flags);
}

7373 7374
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7388
/* called under rq->lock with disabled interrupts */
7389
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7390
{
7391
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7392 7393

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7394
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7395 7396

	/* Cannot have done final schedule yet: would have vanished. */
7397
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7398

7399
	get_task_struct(p);
L
Linus Torvalds 已提交
7400 7401 7402

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7403
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7404 7405
	 * fine.
	 */
7406
	spin_unlock_irq(&rq->lock);
7407
	move_task_off_dead_cpu(dead_cpu, p);
7408
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7409

7410
	put_task_struct(p);
L
Linus Torvalds 已提交
7411 7412 7413 7414 7415
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7416
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7417
	struct task_struct *next;
7418

I
Ingo Molnar 已提交
7419 7420 7421
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7422
		update_rq_clock(rq);
7423
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7424 7425
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7426
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7427
		migrate_dead(dead_cpu, next);
7428

L
Linus Torvalds 已提交
7429 7430
	}
}
7431 7432 7433 7434 7435 7436 7437

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7438
	rq->calc_load_active = 0;
7439
}
L
Linus Torvalds 已提交
7440 7441
#endif /* CONFIG_HOTPLUG_CPU */

7442 7443 7444
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7445 7446
	{
		.procname	= "sched_domain",
7447
		.mode		= 0555,
7448
	},
7449
	{}
7450 7451 7452
};

static struct ctl_table sd_ctl_root[] = {
7453 7454
	{
		.procname	= "kernel",
7455
		.mode		= 0555,
7456 7457
		.child		= sd_ctl_dir,
	},
7458
	{}
7459 7460 7461 7462 7463
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7464
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7465 7466 7467 7468

	return entry;
}

7469 7470
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7471
	struct ctl_table *entry;
7472

7473 7474 7475
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7476
	 * will always be set. In the lowest directory the names are
7477 7478 7479
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7480 7481
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7482 7483 7484
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7485 7486 7487 7488 7489

	kfree(*tablep);
	*tablep = NULL;
}

7490
static void
7491
set_table_entry(struct ctl_table *entry,
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7505
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7506

7507 7508 7509
	if (table == NULL)
		return NULL;

7510
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7511
		sizeof(long), 0644, proc_doulongvec_minmax);
7512
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7513
		sizeof(long), 0644, proc_doulongvec_minmax);
7514
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7515
		sizeof(int), 0644, proc_dointvec_minmax);
7516
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7517
		sizeof(int), 0644, proc_dointvec_minmax);
7518
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7519
		sizeof(int), 0644, proc_dointvec_minmax);
7520
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7521
		sizeof(int), 0644, proc_dointvec_minmax);
7522
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7523
		sizeof(int), 0644, proc_dointvec_minmax);
7524
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7525
		sizeof(int), 0644, proc_dointvec_minmax);
7526
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7527
		sizeof(int), 0644, proc_dointvec_minmax);
7528
	set_table_entry(&table[9], "cache_nice_tries",
7529 7530
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7531
	set_table_entry(&table[10], "flags", &sd->flags,
7532
		sizeof(int), 0644, proc_dointvec_minmax);
7533 7534 7535
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7536 7537 7538 7539

	return table;
}

7540
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7541 7542 7543 7544 7545 7546 7547 7548 7549
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7550 7551
	if (table == NULL)
		return NULL;
7552 7553 7554 7555 7556

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7557
		entry->mode = 0555;
7558 7559 7560 7561 7562 7563 7564 7565
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7566
static void register_sched_domain_sysctl(void)
7567
{
7568
	int i, cpu_num = num_possible_cpus();
7569 7570 7571
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7572 7573 7574
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7575 7576 7577
	if (entry == NULL)
		return;

7578
	for_each_possible_cpu(i) {
7579 7580
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7581
		entry->mode = 0555;
7582
		entry->child = sd_alloc_ctl_cpu_table(i);
7583
		entry++;
7584
	}
7585 7586

	WARN_ON(sd_sysctl_header);
7587 7588
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7589

7590
/* may be called multiple times per register */
7591 7592
static void unregister_sched_domain_sysctl(void)
{
7593 7594
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7595
	sd_sysctl_header = NULL;
7596 7597
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7598
}
7599
#else
7600 7601 7602 7603
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7604 7605 7606 7607
{
}
#endif

7608 7609 7610 7611 7612
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7613
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7633
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7634 7635 7636 7637
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7638 7639 7640 7641
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7642 7643
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7644 7645
{
	struct task_struct *p;
7646
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7647
	unsigned long flags;
7648
	struct rq *rq;
L
Linus Torvalds 已提交
7649 7650

	switch (action) {
7651

L
Linus Torvalds 已提交
7652
	case CPU_UP_PREPARE:
7653
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7654
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7655 7656 7657 7658 7659
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7660
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7661
		task_rq_unlock(rq, &flags);
7662
		get_task_struct(p);
L
Linus Torvalds 已提交
7663
		cpu_rq(cpu)->migration_thread = p;
7664
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7665
		break;
7666

L
Linus Torvalds 已提交
7667
	case CPU_ONLINE:
7668
	case CPU_ONLINE_FROZEN:
7669
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7670
		wake_up_process(cpu_rq(cpu)->migration_thread);
7671 7672 7673 7674 7675

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7676
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7677 7678

			set_rq_online(rq);
7679 7680
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7681
		break;
7682

L
Linus Torvalds 已提交
7683 7684
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7685
	case CPU_UP_CANCELED_FROZEN:
7686 7687
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7688
		/* Unbind it from offline cpu so it can run. Fall thru. */
7689
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7690
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7691
		kthread_stop(cpu_rq(cpu)->migration_thread);
7692
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7693 7694
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7695

L
Linus Torvalds 已提交
7696
	case CPU_DEAD:
7697
	case CPU_DEAD_FROZEN:
7698
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7699 7700 7701
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7702
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7703 7704
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7705
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7706
		update_rq_clock(rq);
7707
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7708 7709
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7710
		migrate_dead_tasks(cpu);
7711
		spin_unlock_irq(&rq->lock);
7712
		cpuset_unlock();
L
Linus Torvalds 已提交
7713 7714
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7715
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7716 7717 7718 7719 7720
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7721 7722
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7723 7724
			struct migration_req *req;

L
Linus Torvalds 已提交
7725
			req = list_entry(rq->migration_queue.next,
7726
					 struct migration_req, list);
L
Linus Torvalds 已提交
7727
			list_del_init(&req->list);
B
Brian King 已提交
7728
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7729
			complete(&req->done);
B
Brian King 已提交
7730
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7731 7732 7733
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7734

7735 7736
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7737 7738 7739 7740
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7741
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7742
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7743 7744 7745
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7746 7747 7748 7749 7750
#endif
	}
	return NOTIFY_OK;
}

7751 7752 7753
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7754
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7755
 */
7756
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7757 7758 7759 7760
	.notifier_call = migration_call,
	.priority = 10
};

7761
static int __init migration_init(void)
L
Linus Torvalds 已提交
7762 7763
{
	void *cpu = (void *)(long)smp_processor_id();
7764
	int err;
7765 7766

	/* Start one for the boot CPU: */
7767 7768
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7769 7770
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7771

7772
	return 0;
L
Linus Torvalds 已提交
7773
}
7774
early_initcall(migration_init);
L
Linus Torvalds 已提交
7775 7776 7777
#endif

#ifdef CONFIG_SMP
7778

7779
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7780

7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7791
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7792
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7793
{
I
Ingo Molnar 已提交
7794
	struct sched_group *group = sd->groups;
7795
	char str[256];
L
Linus Torvalds 已提交
7796

R
Rusty Russell 已提交
7797
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7798
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7799 7800 7801 7802

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
J
Joe Perches 已提交
7803
		pr_cont("does not load-balance\n");
I
Ingo Molnar 已提交
7804
		if (sd->parent)
J
Joe Perches 已提交
7805
			pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
I
Ingo Molnar 已提交
7806
		return -1;
N
Nick Piggin 已提交
7807 7808
	}

J
Joe Perches 已提交
7809
	pr_cont("span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7810

7811
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
J
Joe Perches 已提交
7812
		pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
I
Ingo Molnar 已提交
7813
	}
7814
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
J
Joe Perches 已提交
7815
		pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
I
Ingo Molnar 已提交
7816
	}
L
Linus Torvalds 已提交
7817

I
Ingo Molnar 已提交
7818
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7819
	do {
I
Ingo Molnar 已提交
7820
		if (!group) {
J
Joe Perches 已提交
7821 7822
			pr_cont("\n");
			pr_err("ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7823 7824 7825
			break;
		}

7826
		if (!group->cpu_power) {
J
Joe Perches 已提交
7827 7828
			pr_cont("\n");
			pr_err("ERROR: domain->cpu_power not set\n");
I
Ingo Molnar 已提交
7829 7830
			break;
		}
L
Linus Torvalds 已提交
7831

7832
		if (!cpumask_weight(sched_group_cpus(group))) {
J
Joe Perches 已提交
7833 7834
			pr_cont("\n");
			pr_err("ERROR: empty group\n");
I
Ingo Molnar 已提交
7835 7836
			break;
		}
L
Linus Torvalds 已提交
7837

7838
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
J
Joe Perches 已提交
7839 7840
			pr_cont("\n");
			pr_err("ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
7841 7842
			break;
		}
L
Linus Torvalds 已提交
7843

7844
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7845

R
Rusty Russell 已提交
7846
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7847

J
Joe Perches 已提交
7848
		pr_cont(" %s", str);
7849
		if (group->cpu_power != SCHED_LOAD_SCALE) {
J
Joe Perches 已提交
7850
			pr_cont(" (cpu_power = %d)", group->cpu_power);
7851
		}
L
Linus Torvalds 已提交
7852

I
Ingo Molnar 已提交
7853 7854
		group = group->next;
	} while (group != sd->groups);
J
Joe Perches 已提交
7855
	pr_cont("\n");
L
Linus Torvalds 已提交
7856

7857
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
J
Joe Perches 已提交
7858
		pr_err("ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7859

7860 7861
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
J
Joe Perches 已提交
7862
		pr_err("ERROR: parent span is not a superset of domain->span\n");
I
Ingo Molnar 已提交
7863 7864
	return 0;
}
L
Linus Torvalds 已提交
7865

I
Ingo Molnar 已提交
7866 7867
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7868
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7869
	int level = 0;
L
Linus Torvalds 已提交
7870

7871 7872 7873
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7874 7875 7876 7877
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7878

I
Ingo Molnar 已提交
7879 7880
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7881
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7882 7883 7884 7885
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7886
	for (;;) {
7887
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7888
			break;
L
Linus Torvalds 已提交
7889 7890
		level++;
		sd = sd->parent;
7891
		if (!sd)
I
Ingo Molnar 已提交
7892 7893
			break;
	}
7894
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7895
}
7896
#else /* !CONFIG_SCHED_DEBUG */
7897
# define sched_domain_debug(sd, cpu) do { } while (0)
7898
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7899

7900
static int sd_degenerate(struct sched_domain *sd)
7901
{
7902
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7903 7904 7905 7906 7907 7908
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7909 7910 7911
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7912 7913 7914 7915 7916
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7917
	if (sd->flags & (SD_WAKE_AFFINE))
7918 7919 7920 7921 7922
		return 0;

	return 1;
}

7923 7924
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7925 7926 7927 7928 7929 7930
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7931
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7932 7933 7934 7935 7936 7937 7938
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7939 7940 7941
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7942 7943
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7944 7945 7946 7947 7948 7949 7950
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7951 7952
static void free_rootdomain(struct root_domain *rd)
{
7953 7954
	synchronize_sched();

7955 7956
	cpupri_cleanup(&rd->cpupri);

7957 7958 7959 7960 7961 7962
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7963 7964
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7965
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7966 7967 7968 7969 7970
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7971
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7972

7973
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7974
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7975

7976
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7977

I
Ingo Molnar 已提交
7978 7979 7980 7981 7982 7983 7984
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7985 7986 7987 7988 7989
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7990
	cpumask_set_cpu(rq->cpu, rd->span);
7991
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7992
		set_rq_online(rq);
G
Gregory Haskins 已提交
7993 7994

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7995 7996 7997

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7998 7999
}

L
Li Zefan 已提交
8000
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
8001
{
8002 8003
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
8004 8005
	memset(rd, 0, sizeof(*rd));

8006 8007
	if (bootmem)
		gfp = GFP_NOWAIT;
8008

8009
	if (!alloc_cpumask_var(&rd->span, gfp))
8010
		goto out;
8011
	if (!alloc_cpumask_var(&rd->online, gfp))
8012
		goto free_span;
8013
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8014
		goto free_online;
8015

P
Pekka Enberg 已提交
8016
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8017
		goto free_rto_mask;
8018
	return 0;
8019

8020 8021
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8022 8023 8024 8025
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8026
out:
8027
	return -ENOMEM;
G
Gregory Haskins 已提交
8028 8029 8030 8031
}

static void init_defrootdomain(void)
{
8032 8033
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8034 8035 8036
	atomic_set(&def_root_domain.refcount, 1);
}

8037
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8038 8039 8040 8041 8042 8043 8044
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8045 8046 8047 8048
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8049 8050 8051 8052

	return rd;
}

L
Linus Torvalds 已提交
8053
/*
I
Ingo Molnar 已提交
8054
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8055 8056
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8057 8058
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8059
{
8060
	struct rq *rq = cpu_rq(cpu);
8061 8062 8063
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8064
	for (tmp = sd; tmp; ) {
8065 8066 8067
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8068

8069
		if (sd_parent_degenerate(tmp, parent)) {
8070
			tmp->parent = parent->parent;
8071 8072
			if (parent->parent)
				parent->parent->child = tmp;
8073 8074
		} else
			tmp = tmp->parent;
8075 8076
	}

8077
	if (sd && sd_degenerate(sd)) {
8078
		sd = sd->parent;
8079 8080 8081
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8082 8083 8084

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8085
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8086
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8087 8088 8089
}

/* cpus with isolated domains */
8090
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8091 8092 8093 8094

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8095
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8096
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8097 8098 8099
	return 1;
}

I
Ingo Molnar 已提交
8100
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8101 8102

/*
8103 8104
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8105 8106
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8107 8108 8109 8110 8111
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8112
static void
8113 8114 8115
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8116
					struct sched_group **sg,
8117 8118
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8119 8120 8121 8122
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8123
	cpumask_clear(covered);
8124

8125
	for_each_cpu(i, span) {
8126
		struct sched_group *sg;
8127
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8128 8129
		int j;

8130
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8131 8132
			continue;

8133
		cpumask_clear(sched_group_cpus(sg));
8134
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8135

8136
		for_each_cpu(j, span) {
8137
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8138 8139
				continue;

8140
			cpumask_set_cpu(j, covered);
8141
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8142 8143 8144 8145 8146 8147 8148 8149 8150 8151
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8152
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8153

8154
#ifdef CONFIG_NUMA
8155

8156 8157 8158 8159 8160
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8161
 * Find the next node to include in a given scheduling domain. Simply
8162 8163 8164 8165
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8166
static int find_next_best_node(int node, nodemask_t *used_nodes)
8167 8168 8169 8170 8171
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8172
	for (i = 0; i < nr_node_ids; i++) {
8173
		/* Start at @node */
8174
		n = (node + i) % nr_node_ids;
8175 8176 8177 8178 8179

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8180
		if (node_isset(n, *used_nodes))
8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8192
	node_set(best_node, *used_nodes);
8193 8194 8195 8196 8197 8198
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8199
 * @span: resulting cpumask
8200
 *
I
Ingo Molnar 已提交
8201
 * Given a node, construct a good cpumask for its sched_domain to span. It
8202 8203 8204
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8205
static void sched_domain_node_span(int node, struct cpumask *span)
8206
{
8207
	nodemask_t used_nodes;
8208
	int i;
8209

8210
	cpumask_clear(span);
8211
	nodes_clear(used_nodes);
8212

8213
	cpumask_or(span, span, cpumask_of_node(node));
8214
	node_set(node, used_nodes);
8215 8216

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8217
		int next_node = find_next_best_node(node, &used_nodes);
8218

8219
		cpumask_or(span, span, cpumask_of_node(next_node));
8220 8221
	}
}
8222
#endif /* CONFIG_NUMA */
8223

8224
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8225

8226 8227
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8228 8229 8230
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8275
/*
8276
 * SMT sched-domains:
8277
 */
L
Linus Torvalds 已提交
8278
#ifdef CONFIG_SCHED_SMT
8279 8280
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8281

I
Ingo Molnar 已提交
8282
static int
8283 8284
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8285
{
8286
	if (sg)
8287
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8288 8289
	return cpu;
}
8290
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8291

8292 8293 8294
/*
 * multi-core sched-domains:
 */
8295
#ifdef CONFIG_SCHED_MC
8296 8297
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8298
#endif /* CONFIG_SCHED_MC */
8299 8300

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8301
static int
8302 8303
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8304
{
8305
	int group;
8306

8307
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8308
	group = cpumask_first(mask);
8309
	if (sg)
8310
		*sg = &per_cpu(sched_group_core, group).sg;
8311
	return group;
8312 8313
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8314
static int
8315 8316
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8317
{
8318
	if (sg)
8319
		*sg = &per_cpu(sched_group_core, cpu).sg;
8320 8321 8322 8323
	return cpu;
}
#endif

8324 8325
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8326

I
Ingo Molnar 已提交
8327
static int
8328 8329
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8330
{
8331
	int group;
8332
#ifdef CONFIG_SCHED_MC
8333
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8334
	group = cpumask_first(mask);
8335
#elif defined(CONFIG_SCHED_SMT)
8336
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8337
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8338
#else
8339
	group = cpu;
L
Linus Torvalds 已提交
8340
#endif
8341
	if (sg)
8342
		*sg = &per_cpu(sched_group_phys, group).sg;
8343
	return group;
L
Linus Torvalds 已提交
8344 8345 8346 8347
}

#ifdef CONFIG_NUMA
/*
8348 8349 8350
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8351
 */
8352
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8353
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8354

8355
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8356
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8357

8358 8359 8360
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8361
{
8362 8363
	int group;

8364
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8365
	group = cpumask_first(nodemask);
8366 8367

	if (sg)
8368
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8369
	return group;
L
Linus Torvalds 已提交
8370
}
8371

8372 8373 8374 8375 8376 8377 8378
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8379
	do {
8380
		for_each_cpu(j, sched_group_cpus(sg)) {
8381
			struct sched_domain *sd;
8382

8383
			sd = &per_cpu(phys_domains, j).sd;
8384
			if (j != group_first_cpu(sd->groups)) {
8385 8386 8387 8388 8389 8390
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8391

8392
			sg->cpu_power += sd->groups->cpu_power;
8393 8394 8395
		}
		sg = sg->next;
	} while (sg != group_head);
8396
}
8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
J
Joe Perches 已提交
8418
		pr_warning("Can not alloc domain group for node %d\n", num);
8419 8420 8421 8422 8423 8424 8425 8426 8427
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8428
	sg->cpu_power = 0;
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
J
Joe Perches 已提交
8447 8448
			pr_warning("Can not alloc domain group for node %d\n",
				   j);
8449 8450
			return -ENOMEM;
		}
8451
		sg->cpu_power = 0;
8452 8453 8454 8455 8456 8457 8458 8459 8460
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8461
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8462

8463
#ifdef CONFIG_NUMA
8464
/* Free memory allocated for various sched_group structures */
8465 8466
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8467
{
8468
	int cpu, i;
8469

8470
	for_each_cpu(cpu, cpu_map) {
8471 8472 8473 8474 8475 8476
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8477
		for (i = 0; i < nr_node_ids; i++) {
8478 8479
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8480
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8481
			if (cpumask_empty(nodemask))
8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8498
#else /* !CONFIG_NUMA */
8499 8500
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8501 8502
{
}
8503
#endif /* CONFIG_NUMA */
8504

8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8519 8520
	long power;
	int weight;
8521 8522 8523

	WARN_ON(!sd || !sd->groups);

8524
	if (cpu != group_first_cpu(sd->groups))
8525 8526 8527 8528
		return;

	child = sd->child;

8529
	sd->groups->cpu_power = 0;
8530

8531 8532 8533 8534 8535
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8536 8537 8538
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8539
		 */
P
Peter Zijlstra 已提交
8540 8541
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8542
			power /= weight;
P
Peter Zijlstra 已提交
8543 8544
			power >>= SCHED_LOAD_SHIFT;
		}
8545
		sd->groups->cpu_power += power;
8546 8547 8548 8549
		return;
	}

	/*
8550
	 * Add cpu_power of each child group to this groups cpu_power.
8551 8552 8553
	 */
	group = child->groups;
	do {
8554
		sd->groups->cpu_power += group->cpu_power;
8555 8556 8557 8558
		group = group->next;
	} while (group != child->groups);
}

8559 8560 8561 8562 8563
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8564 8565 8566 8567 8568 8569
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8570
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8571

8572 8573 8574 8575 8576
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8577
	sd->level = SD_LV_##type;				\
8578
	SD_INIT_NAME(sd, type);					\
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8593 8594 8595 8596
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8597 8598 8599 8600 8601 8602
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8621
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8622 8623
	} else {
		/* turn on idle balance on this domain */
8624
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8625 8626 8627
	}
}

8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8648
#ifdef CONFIG_NUMA
8649 8650 8651 8652 8653 8654 8655
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8656
#endif
8657 8658 8659 8660
	case sa_none:
		break;
	}
}
8661

8662 8663 8664
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8665
#ifdef CONFIG_NUMA
8666 8667 8668 8669 8670 8671 8672 8673 8674 8675
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
J
Joe Perches 已提交
8676
		pr_warning("Can not alloc sched group node list\n");
8677
		return sa_notcovered;
8678
	}
8679
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8680
#endif
8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
J
Joe Perches 已提交
8693
		pr_warning("Cannot alloc root domain\n");
8694
		return sa_tmpmask;
G
Gregory Haskins 已提交
8695
	}
8696 8697
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8698

8699 8700 8701 8702
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8703
#ifdef CONFIG_NUMA
8704
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8705

8706 8707 8708 8709 8710
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8711
		set_domain_attribute(sd, attr);
8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8726
#endif
8727 8728
	return sd;
}
L
Linus Torvalds 已提交
8729

8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8745

8746 8747 8748 8749 8750
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8751
#ifdef CONFIG_SCHED_MC
8752 8753 8754 8755 8756 8757 8758
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8759
#endif
8760 8761
	return sd;
}
8762

8763 8764 8765 8766 8767
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8768
#ifdef CONFIG_SCHED_SMT
8769 8770 8771 8772 8773 8774 8775
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8776
#endif
8777 8778
	return sd;
}
L
Linus Torvalds 已提交
8779

8780 8781 8782 8783
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8784
#ifdef CONFIG_SCHED_SMT
8785 8786 8787 8788 8789 8790 8791 8792
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8793
#endif
8794
#ifdef CONFIG_SCHED_MC
8795 8796 8797 8798 8799 8800 8801
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8802
#endif
8803 8804 8805 8806 8807 8808 8809
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8810
#ifdef CONFIG_NUMA
8811 8812 8813 8814 8815
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8816 8817
	default:
		break;
8818
	}
8819
}
8820

8821 8822 8823 8824 8825 8826 8827 8828 8829
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8830
	struct sched_domain *sd;
8831
	int i;
8832
#ifdef CONFIG_NUMA
8833
	d.sd_allnodes = 0;
8834
#endif
8835

8836 8837 8838 8839
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8840

L
Linus Torvalds 已提交
8841
	/*
8842
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8843
	 */
8844
	for_each_cpu(i, cpu_map) {
8845 8846
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8847

8848
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8849
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8850
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8851
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8852
	}
8853

8854
	for_each_cpu(i, cpu_map) {
8855
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8856
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8857
	}
8858

L
Linus Torvalds 已提交
8859
	/* Set up physical groups */
8860 8861
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8862

L
Linus Torvalds 已提交
8863 8864
#ifdef CONFIG_NUMA
	/* Set up node groups */
8865 8866
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8867

8868 8869
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8870
			goto error;
L
Linus Torvalds 已提交
8871 8872 8873
#endif

	/* Calculate CPU power for physical packages and nodes */
8874
#ifdef CONFIG_SCHED_SMT
8875
	for_each_cpu(i, cpu_map) {
8876
		sd = &per_cpu(cpu_domains, i).sd;
8877
		init_sched_groups_power(i, sd);
8878
	}
L
Linus Torvalds 已提交
8879
#endif
8880
#ifdef CONFIG_SCHED_MC
8881
	for_each_cpu(i, cpu_map) {
8882
		sd = &per_cpu(core_domains, i).sd;
8883
		init_sched_groups_power(i, sd);
8884 8885
	}
#endif
8886

8887
	for_each_cpu(i, cpu_map) {
8888
		sd = &per_cpu(phys_domains, i).sd;
8889
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8890 8891
	}

8892
#ifdef CONFIG_NUMA
8893
	for (i = 0; i < nr_node_ids; i++)
8894
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8895

8896
	if (d.sd_allnodes) {
8897
		struct sched_group *sg;
8898

8899
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8900
								d.tmpmask);
8901 8902
		init_numa_sched_groups_power(sg);
	}
8903 8904
#endif

L
Linus Torvalds 已提交
8905
	/* Attach the domains */
8906
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8907
#ifdef CONFIG_SCHED_SMT
8908
		sd = &per_cpu(cpu_domains, i).sd;
8909
#elif defined(CONFIG_SCHED_MC)
8910
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8911
#else
8912
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8913
#endif
8914
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8915
	}
8916

8917 8918 8919
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8920 8921

error:
8922 8923
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8924
}
P
Paul Jackson 已提交
8925

8926
static int build_sched_domains(const struct cpumask *cpu_map)
8927 8928 8929 8930
{
	return __build_sched_domains(cpu_map, NULL);
}

8931
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8932
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8933 8934
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8935 8936 8937

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8938 8939
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8940
 */
8941
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8942

8943 8944 8945 8946 8947 8948
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8949
{
8950
	return 0;
8951 8952
}

8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8978
/*
I
Ingo Molnar 已提交
8979
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8980 8981
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8982
 */
8983
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8984
{
8985 8986
	int err;

8987
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8988
	ndoms_cur = 1;
8989
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
8990
	if (!doms_cur)
8991 8992
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8993
	dattr_cur = NULL;
8994
	err = build_sched_domains(doms_cur[0]);
8995
	register_sched_domain_sysctl();
8996 8997

	return err;
8998 8999
}

9000 9001
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
9002
{
9003
	free_sched_groups(cpu_map, tmpmask);
9004
}
L
Linus Torvalds 已提交
9005

9006 9007 9008 9009
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9010
static void detach_destroy_domains(const struct cpumask *cpu_map)
9011
{
9012 9013
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9014 9015
	int i;

9016
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9017
		cpu_attach_domain(NULL, &def_root_domain, i);
9018
	synchronize_sched();
9019
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9020 9021
}

9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9038 9039
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9040
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9041 9042 9043
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9044
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9045 9046 9047
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9048 9049 9050
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9051 9052 9053 9054 9055 9056
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9057
 *
9058
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9059 9060
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9061
 *
P
Paul Jackson 已提交
9062 9063
 * Call with hotplug lock held
 */
9064
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9065
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9066
{
9067
	int i, j, n;
9068
	int new_topology;
P
Paul Jackson 已提交
9069

9070
	mutex_lock(&sched_domains_mutex);
9071

9072 9073 9074
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9075 9076 9077
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9078
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9079 9080 9081

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9082
		for (j = 0; j < n && !new_topology; j++) {
9083
			if (cpumask_equal(doms_cur[i], doms_new[j])
9084
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9085 9086 9087
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9088
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9089 9090 9091 9092
match1:
		;
	}

9093 9094
	if (doms_new == NULL) {
		ndoms_cur = 0;
9095
		doms_new = &fallback_doms;
9096
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9097
		WARN_ON_ONCE(dattr_new);
9098 9099
	}

P
Paul Jackson 已提交
9100 9101
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9102
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9103
			if (cpumask_equal(doms_new[i], doms_cur[j])
9104
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9105 9106 9107
				goto match2;
		}
		/* no match - add a new doms_new */
9108
		__build_sched_domains(doms_new[i],
9109
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9110 9111 9112 9113 9114
match2:
		;
	}

	/* Remember the new sched domains */
9115 9116
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9117
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9118
	doms_cur = doms_new;
9119
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9120
	ndoms_cur = ndoms_new;
9121 9122

	register_sched_domain_sysctl();
9123

9124
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9125 9126
}

9127
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9128
static void arch_reinit_sched_domains(void)
9129
{
9130
	get_online_cpus();
9131 9132 9133 9134

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9135
	rebuild_sched_domains();
9136
	put_online_cpus();
9137 9138 9139 9140
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9141
	unsigned int level = 0;
9142

9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9154 9155 9156
		return -EINVAL;

	if (smt)
9157
		sched_smt_power_savings = level;
9158
	else
9159
		sched_mc_power_savings = level;
9160

9161
	arch_reinit_sched_domains();
9162

9163
	return count;
9164 9165 9166
}

#ifdef CONFIG_SCHED_MC
9167 9168
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9169 9170 9171
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9172
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9173
					    const char *buf, size_t count)
9174 9175 9176
{
	return sched_power_savings_store(buf, count, 0);
}
9177 9178 9179
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9180 9181 9182
#endif

#ifdef CONFIG_SCHED_SMT
9183 9184
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9185 9186 9187
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9188
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9189
					     const char *buf, size_t count)
9190 9191 9192
{
	return sched_power_savings_store(buf, count, 1);
}
9193 9194
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9195 9196 9197
		   sched_smt_power_savings_store);
#endif

9198
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9214
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9215

9216
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9217
/*
9218 9219
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9220 9221 9222
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9223 9224 9225 9226
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9227 9228 9229 9230
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9231
		partition_sched_domains(1, NULL, NULL);
9232 9233 9234 9235 9236 9237 9238 9239 9240 9241
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9242
{
P
Peter Zijlstra 已提交
9243 9244
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9245 9246
	switch (action) {
	case CPU_DOWN_PREPARE:
9247
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9248
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9249 9250 9251
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9252
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9253
	case CPU_ONLINE:
9254
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9255
		enable_runtime(cpu_rq(cpu));
9256 9257
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9258 9259 9260 9261 9262 9263 9264
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9265 9266 9267
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9268
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9269

9270 9271 9272 9273 9274
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9275
	get_online_cpus();
9276
	mutex_lock(&sched_domains_mutex);
9277
	arch_init_sched_domains(cpu_active_mask);
9278 9279 9280
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9281
	mutex_unlock(&sched_domains_mutex);
9282
	put_online_cpus();
9283 9284

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9285 9286
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9287 9288 9289 9290 9291
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9292
	init_hrtick();
9293 9294

	/* Move init over to a non-isolated CPU */
9295
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9296
		BUG();
I
Ingo Molnar 已提交
9297
	sched_init_granularity();
9298
	free_cpumask_var(non_isolated_cpus);
9299

9300
	init_sched_rt_class();
L
Linus Torvalds 已提交
9301 9302 9303 9304
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9305
	sched_init_granularity();
L
Linus Torvalds 已提交
9306 9307 9308
}
#endif /* CONFIG_SMP */

9309 9310
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9311 9312 9313 9314 9315 9316 9317
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9318
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9319 9320
{
	cfs_rq->tasks_timeline = RB_ROOT;
9321
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9322 9323 9324
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9325
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9326 9327
}

P
Peter Zijlstra 已提交
9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9341
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9342
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9343
#ifdef CONFIG_SMP
9344
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9345 9346
#endif
#endif
P
Peter Zijlstra 已提交
9347 9348 9349
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9350
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9351 9352 9353 9354
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9355 9356
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9357

9358
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9359
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9360 9361
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9362 9363
}

P
Peter Zijlstra 已提交
9364
#ifdef CONFIG_FAIR_GROUP_SCHED
9365 9366 9367
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9368
{
9369
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9370 9371 9372 9373 9374 9375 9376
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9377 9378 9379 9380
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9381 9382 9383 9384 9385
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9386 9387
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9388
	se->load.inv_weight = 0;
9389
	se->parent = parent;
P
Peter Zijlstra 已提交
9390
}
9391
#endif
P
Peter Zijlstra 已提交
9392

9393
#ifdef CONFIG_RT_GROUP_SCHED
9394 9395 9396
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9397
{
9398 9399
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9400 9401 9402 9403
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9404
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9405 9406 9407 9408
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9409 9410 9411
	if (!rt_se)
		return;

9412 9413 9414 9415 9416
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9417
	rt_se->my_q = rt_rq;
9418
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9419 9420 9421 9422
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9423 9424
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9425
	int i, j;
9426 9427 9428 9429 9430 9431 9432
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9433 9434 9435
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9436 9437
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9438
	alloc_size += num_possible_cpus() * cpumask_size();
9439 9440
#endif
	if (alloc_size) {
9441
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9442 9443 9444 9445 9446 9447 9448

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9449 9450 9451 9452 9453 9454 9455

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9456 9457
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9458 9459 9460 9461 9462
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9463 9464 9465 9466 9467 9468 9469 9470
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9471 9472
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9473 9474 9475 9476 9477 9478
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9479
	}
I
Ingo Molnar 已提交
9480

G
Gregory Haskins 已提交
9481 9482 9483 9484
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9485 9486 9487 9488 9489 9490
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9491 9492 9493
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9494 9495
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9496

9497
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9498
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9499 9500 9501 9502 9503 9504
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9505 9506
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9507

9508 9509 9510 9511
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9512
	for_each_possible_cpu(i) {
9513
		struct rq *rq;
L
Linus Torvalds 已提交
9514 9515 9516

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9517
		rq->nr_running = 0;
9518 9519
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9520
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9521
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9522
#ifdef CONFIG_FAIR_GROUP_SCHED
9523
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9524
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9540
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9541 9542 9543 9544
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9545
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9546
#elif defined CONFIG_USER_SCHED
9547 9548
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9549 9550 9551 9552 9553 9554 9555 9556
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9557
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9558 9559
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9560
		init_tg_cfs_entry(&init_task_group,
9561
				&per_cpu(init_tg_cfs_rq, i),
9562 9563
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9564

9565
#endif
D
Dhaval Giani 已提交
9566 9567 9568
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9569
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9570
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9571
#ifdef CONFIG_CGROUP_SCHED
9572
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9573
#elif defined CONFIG_USER_SCHED
9574
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9575
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9576
				&per_cpu(init_rt_rq, i),
9577 9578
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9579
#endif
I
Ingo Molnar 已提交
9580
#endif
L
Linus Torvalds 已提交
9581

I
Ingo Molnar 已提交
9582 9583
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9584
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9585
		rq->sd = NULL;
G
Gregory Haskins 已提交
9586
		rq->rd = NULL;
9587
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9588
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9589
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9590
		rq->push_cpu = 0;
9591
		rq->cpu = i;
9592
		rq->online = 0;
L
Linus Torvalds 已提交
9593
		rq->migration_thread = NULL;
9594 9595
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9596
		INIT_LIST_HEAD(&rq->migration_queue);
9597
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9598
#endif
P
Peter Zijlstra 已提交
9599
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9600 9601 9602
		atomic_set(&rq->nr_iowait, 0);
	}

9603
	set_load_weight(&init_task);
9604

9605 9606 9607 9608
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9609
#ifdef CONFIG_SMP
9610
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9611 9612
#endif

9613 9614 9615 9616
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9630 9631 9632

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9633 9634 9635 9636
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9637

9638
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9639
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9640
#ifdef CONFIG_SMP
9641
#ifdef CONFIG_NO_HZ
9642
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9643
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9644
#endif
R
Rusty Russell 已提交
9645 9646 9647
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9648
#endif /* SMP */
9649

9650
	perf_event_init();
9651

9652
	scheduler_running = 1;
L
Linus Torvalds 已提交
9653 9654 9655
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9656 9657 9658 9659 9660 9661 9662 9663
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9664
{
9665
#ifdef in_atomic
L
Linus Torvalds 已提交
9666 9667
	static unsigned long prev_jiffy;	/* ratelimiting */

9668 9669
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9670 9671 9672 9673 9674
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

J
Joe Perches 已提交
9675 9676 9677 9678 9679
	pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
	       file, line);
	pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
	       in_atomic(), irqs_disabled(),
	       current->pid, current->comm);
I
Ingo Molnar 已提交
9680 9681 9682 9683 9684

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9685 9686 9687 9688 9689 9690
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9691 9692 9693
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9694

9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9706 9707
void normalize_rt_tasks(void)
{
9708
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9709
	unsigned long flags;
9710
	struct rq *rq;
L
Linus Torvalds 已提交
9711

9712
	read_lock_irqsave(&tasklist_lock, flags);
9713
	do_each_thread(g, p) {
9714 9715 9716 9717 9718 9719
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9720 9721
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9722 9723 9724
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9725
#endif
I
Ingo Molnar 已提交
9726 9727 9728 9729 9730 9731 9732 9733

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9734
			continue;
I
Ingo Molnar 已提交
9735
		}
L
Linus Torvalds 已提交
9736

9737
		spin_lock(&p->pi_lock);
9738
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9739

9740
		normalize_task(rq, p);
9741

9742
		__task_rq_unlock(rq);
9743
		spin_unlock(&p->pi_lock);
9744 9745
	} while_each_thread(g, p);

9746
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9747 9748 9749
}

#endif /* CONFIG_MAGIC_SYSRQ */
9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9768
struct task_struct *curr_task(int cpu)
9769 9770 9771 9772 9773 9774 9775 9776 9777 9778
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9779 9780
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9781 9782 9783 9784 9785 9786 9787
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9788
void set_curr_task(int cpu, struct task_struct *p)
9789 9790 9791 9792 9793
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9794

9795 9796
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9811 9812
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9813 9814
{
	struct cfs_rq *cfs_rq;
9815
	struct sched_entity *se;
9816
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9817 9818
	int i;

9819
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9820 9821
	if (!tg->cfs_rq)
		goto err;
9822
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9823 9824
	if (!tg->se)
		goto err;
9825 9826

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9827 9828

	for_each_possible_cpu(i) {
9829
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9830

9831 9832
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9833 9834 9835
		if (!cfs_rq)
			goto err;

9836 9837
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9838
		if (!se)
9839
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9840

9841
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9842 9843 9844 9845
	}

	return 1;

9846 9847
 err_free_rq:
	kfree(cfs_rq);
9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861
 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9862
#else /* !CONFG_FAIR_GROUP_SCHED */
9863 9864 9865 9866
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9867 9868
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9880
#endif /* CONFIG_FAIR_GROUP_SCHED */
9881 9882

#ifdef CONFIG_RT_GROUP_SCHED
9883 9884 9885 9886
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9887 9888
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9900 9901
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9902 9903
{
	struct rt_rq *rt_rq;
9904
	struct sched_rt_entity *rt_se;
9905 9906 9907
	struct rq *rq;
	int i;

9908
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9909 9910
	if (!tg->rt_rq)
		goto err;
9911
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9912 9913 9914
	if (!tg->rt_se)
		goto err;

9915 9916
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9917 9918 9919 9920

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9921 9922
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9923 9924
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9925

9926 9927
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9928
		if (!rt_se)
9929
			goto err_free_rq;
S
Srivatsa Vaddagiri 已提交
9930

9931
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9932 9933
	}

9934 9935
	return 1;

9936 9937
 err_free_rq:
	kfree(rt_rq);
9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951
 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9952
#else /* !CONFIG_RT_GROUP_SCHED */
9953 9954 9955 9956
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9957 9958
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9970
#endif /* CONFIG_RT_GROUP_SCHED */
9971

9972
#ifdef CONFIG_GROUP_SCHED
9973 9974 9975 9976 9977 9978 9979 9980
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9981
struct task_group *sched_create_group(struct task_group *parent)
9982 9983 9984 9985 9986 9987 9988 9989 9990
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9991
	if (!alloc_fair_sched_group(tg, parent))
9992 9993
		goto err;

9994
	if (!alloc_rt_sched_group(tg, parent))
9995 9996
		goto err;

9997
	spin_lock_irqsave(&task_group_lock, flags);
9998
	for_each_possible_cpu(i) {
9999 10000
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
10001
	}
P
Peter Zijlstra 已提交
10002
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
10003 10004 10005 10006 10007

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10008
	list_add_rcu(&tg->siblings, &parent->children);
10009
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10010

10011
	return tg;
S
Srivatsa Vaddagiri 已提交
10012 10013

err:
P
Peter Zijlstra 已提交
10014
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10015 10016 10017
	return ERR_PTR(-ENOMEM);
}

10018
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10019
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10020 10021
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10022
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10023 10024
}

10025
/* Destroy runqueue etc associated with a task group */
10026
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10027
{
10028
	unsigned long flags;
10029
	int i;
S
Srivatsa Vaddagiri 已提交
10030

10031
	spin_lock_irqsave(&task_group_lock, flags);
10032
	for_each_possible_cpu(i) {
10033 10034
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10035
	}
P
Peter Zijlstra 已提交
10036
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10037
	list_del_rcu(&tg->siblings);
10038
	spin_unlock_irqrestore(&task_group_lock, flags);
10039 10040

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10041
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10042 10043
}

10044
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10045 10046 10047
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10048 10049
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10050 10051 10052 10053 10054 10055 10056 10057 10058
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10059
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10060 10061
	on_rq = tsk->se.on_rq;

10062
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10063
		dequeue_task(rq, tsk, 0);
10064 10065
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10066

P
Peter Zijlstra 已提交
10067
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10068

P
Peter Zijlstra 已提交
10069 10070 10071 10072 10073
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10074 10075 10076
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10077
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10078 10079 10080

	task_rq_unlock(rq, &flags);
}
10081
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10082

10083
#ifdef CONFIG_FAIR_GROUP_SCHED
10084
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10085 10086 10087 10088 10089
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10090
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10091 10092 10093
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10094
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10095

10096
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10097
		enqueue_entity(cfs_rq, se, 0);
10098
}
10099

10100 10101 10102 10103 10104 10105 10106 10107 10108
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10109 10110
}

10111 10112
static DEFINE_MUTEX(shares_mutex);

10113
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10114 10115
{
	int i;
10116
	unsigned long flags;
10117

10118 10119 10120 10121 10122 10123
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10124 10125
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10126 10127
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10128

10129
	mutex_lock(&shares_mutex);
10130
	if (tg->shares == shares)
10131
		goto done;
S
Srivatsa Vaddagiri 已提交
10132

10133
	spin_lock_irqsave(&task_group_lock, flags);
10134 10135
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10136
	list_del_rcu(&tg->siblings);
10137
	spin_unlock_irqrestore(&task_group_lock, flags);
10138 10139 10140 10141 10142 10143 10144 10145

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10146
	tg->shares = shares;
10147 10148 10149 10150 10151
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10152
		set_se_shares(tg->se[i], shares);
10153
	}
S
Srivatsa Vaddagiri 已提交
10154

10155 10156 10157 10158
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10159
	spin_lock_irqsave(&task_group_lock, flags);
10160 10161
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10162
	list_add_rcu(&tg->siblings, &tg->parent->children);
10163
	spin_unlock_irqrestore(&task_group_lock, flags);
10164
done:
10165
	mutex_unlock(&shares_mutex);
10166
	return 0;
S
Srivatsa Vaddagiri 已提交
10167 10168
}

10169 10170 10171 10172
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10173
#endif
10174

10175
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10176
/*
P
Peter Zijlstra 已提交
10177
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10178
 */
P
Peter Zijlstra 已提交
10179 10180 10181 10182 10183
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10184
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10185

P
Peter Zijlstra 已提交
10186
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10187 10188
}

P
Peter Zijlstra 已提交
10189 10190
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10191
{
P
Peter Zijlstra 已提交
10192
	struct task_struct *g, *p;
10193

P
Peter Zijlstra 已提交
10194 10195 10196 10197
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10198

P
Peter Zijlstra 已提交
10199 10200
	return 0;
}
10201

P
Peter Zijlstra 已提交
10202 10203 10204 10205 10206
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10207

P
Peter Zijlstra 已提交
10208 10209 10210 10211 10212 10213
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10214

P
Peter Zijlstra 已提交
10215 10216
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10217

P
Peter Zijlstra 已提交
10218 10219 10220
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10221 10222
	}

10223 10224 10225 10226 10227 10228 10229
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10230 10231 10232 10233 10234
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10235

10236 10237 10238
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10239 10240
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10241

P
Peter Zijlstra 已提交
10242
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10243

10244 10245 10246 10247 10248
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10249

10250 10251 10252
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10253 10254 10255
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10256

P
Peter Zijlstra 已提交
10257 10258 10259 10260
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10261

P
Peter Zijlstra 已提交
10262
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10263
	}
P
Peter Zijlstra 已提交
10264

P
Peter Zijlstra 已提交
10265 10266 10267 10268
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10269 10270
}

P
Peter Zijlstra 已提交
10271
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10272
{
P
Peter Zijlstra 已提交
10273 10274 10275 10276 10277 10278 10279
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10280 10281
}

10282 10283
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10284
{
P
Peter Zijlstra 已提交
10285
	int i, err = 0;
P
Peter Zijlstra 已提交
10286 10287

	mutex_lock(&rt_constraints_mutex);
10288
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10289 10290
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10291
		goto unlock;
P
Peter Zijlstra 已提交
10292 10293

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10294 10295
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10296 10297 10298 10299 10300 10301 10302 10303 10304

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10305
 unlock:
10306
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10307 10308 10309
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10310 10311
}

10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10324 10325 10326 10327
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10328
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10329 10330
		return -1;

10331
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10332 10333 10334
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10335 10336 10337 10338 10339 10340 10341 10342

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10343 10344 10345
	if (rt_period == 0)
		return -EINVAL;

10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10360
	u64 runtime, period;
10361 10362
	int ret = 0;

10363 10364 10365
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10366 10367 10368 10369 10370 10371 10372 10373
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10374

10375
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10376
	read_lock(&tasklist_lock);
10377
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10378
	read_unlock(&tasklist_lock);
10379 10380 10381 10382
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10383 10384 10385 10386 10387 10388 10389 10390 10391 10392

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10393
#else /* !CONFIG_RT_GROUP_SCHED */
10394 10395
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10396 10397 10398
	unsigned long flags;
	int i;

10399 10400 10401
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10402 10403 10404 10405 10406 10407 10408
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10409 10410 10411 10412 10413 10414 10415 10416 10417 10418
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10419 10420
	return 0;
}
10421
#endif /* CONFIG_RT_GROUP_SCHED */
10422 10423

int sched_rt_handler(struct ctl_table *table, int write,
10424
		void __user *buffer, size_t *lenp,
10425 10426 10427 10428 10429 10430 10431 10432 10433 10434
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10435
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10452

10453
#ifdef CONFIG_CGROUP_SCHED
10454 10455

/* return corresponding task_group object of a cgroup */
10456
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10457
{
10458 10459
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10460 10461 10462
}

static struct cgroup_subsys_state *
10463
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10464
{
10465
	struct task_group *tg, *parent;
10466

10467
	if (!cgrp->parent) {
10468 10469 10470 10471
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10472 10473
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10474 10475 10476 10477 10478 10479
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10480 10481
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10482
{
10483
	struct task_group *tg = cgroup_tg(cgrp);
10484 10485 10486 10487

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10488
static int
10489
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10490
{
10491
#ifdef CONFIG_RT_GROUP_SCHED
10492
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10493 10494
		return -EINVAL;
#else
10495 10496 10497
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10498
#endif
10499 10500
	return 0;
}
10501

10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10521 10522 10523 10524
	return 0;
}

static void
10525
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10526 10527
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10528 10529
{
	sched_move_task(tsk);
10530 10531 10532 10533 10534 10535 10536 10537
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10538 10539
}

10540
#ifdef CONFIG_FAIR_GROUP_SCHED
10541
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10542
				u64 shareval)
10543
{
10544
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10545 10546
}

10547
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10548
{
10549
	struct task_group *tg = cgroup_tg(cgrp);
10550 10551 10552

	return (u64) tg->shares;
}
10553
#endif /* CONFIG_FAIR_GROUP_SCHED */
10554

10555
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10556
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10557
				s64 val)
P
Peter Zijlstra 已提交
10558
{
10559
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10560 10561
}

10562
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10563
{
10564
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10565
}
10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10577
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10578

10579
static struct cftype cpu_files[] = {
10580
#ifdef CONFIG_FAIR_GROUP_SCHED
10581 10582
	{
		.name = "shares",
10583 10584
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10585
	},
10586 10587
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10588
	{
P
Peter Zijlstra 已提交
10589
		.name = "rt_runtime_us",
10590 10591
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10592
	},
10593 10594
	{
		.name = "rt_period_us",
10595 10596
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10597
	},
10598
#endif
10599 10600 10601 10602
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10603
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10604 10605 10606
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10607 10608 10609 10610 10611 10612 10613
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10614 10615 10616
	.early_init	= 1,
};

10617
#endif	/* CONFIG_CGROUP_SCHED */
10618 10619 10620 10621 10622 10623 10624 10625 10626 10627

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10628
/* track cpu usage of a group of tasks and its child groups */
10629 10630 10631 10632
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10633
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10634
	struct cpuacct *parent;
10635 10636 10637 10638 10639
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10640
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10641
{
10642
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10655
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10656 10657
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10658
	int i;
10659 10660

	if (!ca)
10661
		goto out;
10662 10663

	ca->cpuusage = alloc_percpu(u64);
10664 10665 10666 10667 10668 10669
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10670

10671 10672 10673
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10674
	return &ca->css;
10675 10676 10677 10678 10679 10680 10681 10682 10683

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10684 10685 10686
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10687
static void
10688
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10689
{
10690
	struct cpuacct *ca = cgroup_ca(cgrp);
10691
	int i;
10692

10693 10694
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10695 10696 10697 10698
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10699 10700
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10701
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10720
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10734
/* return total cpu usage (in nanoseconds) of a group */
10735
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10736
{
10737
	struct cpuacct *ca = cgroup_ca(cgrp);
10738 10739 10740
	u64 totalcpuusage = 0;
	int i;

10741 10742
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10743 10744 10745 10746

	return totalcpuusage;
}

10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10759 10760
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10761 10762 10763 10764 10765

out:
	return err;
}

10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10800 10801 10802
static struct cftype files[] = {
	{
		.name = "usage",
10803 10804
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10805
	},
10806 10807 10808 10809
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10810 10811 10812 10813
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10814 10815
};

10816
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10817
{
10818
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10819 10820 10821 10822 10823 10824 10825 10826 10827 10828
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10829
	int cpu;
10830

L
Li Zefan 已提交
10831
	if (unlikely(!cpuacct_subsys.active))
10832 10833
		return;

10834
	cpu = task_cpu(tsk);
10835 10836 10837

	rcu_read_lock();

10838 10839
	ca = task_ca(tsk);

10840
	for (; ca; ca = ca->parent) {
10841
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10842 10843
		*cpuusage += cputime;
	}
10844 10845

	rcu_read_unlock();
10846 10847
}

10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10869 10870 10871 10872 10873 10874 10875 10876
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10979
	synchronize_sched_expedited_count++;
10980 10981 10982 10983 10984 10985 10986 10987
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */