sched.c 268.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
42
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
43 44 45
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
46
#include <linux/freezer.h>
47
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
48 49
#include <linux/blkdev.h>
#include <linux/delay.h>
50
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
59
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
60
#include <linux/seq_file.h>
61
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
62 63
#include <linux/syscalls.h>
#include <linux/times.h>
64
#include <linux/tsacct_kern.h>
65
#include <linux/kprobes.h>
66
#include <linux/delayacct.h>
67
#include <linux/unistd.h>
J
Jens Axboe 已提交
68
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
69
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
70
#include <linux/tick.h>
P
Peter Zijlstra 已提交
71 72
#include <linux/debugfs.h>
#include <linux/ctype.h>
73
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
74

75
#include <asm/tlb.h>
76
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
77

78 79
#include "sched_cpupri.h"

80
#define CREATE_TRACE_POINTS
81
#include <trace/events/sched.h>
82

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121
/*
 * single value that denotes runtime == period, ie unlimited time.
 */
#define RUNTIME_INF	((u64)~0ULL)

122 123
static inline int rt_policy(int policy)
{
124
	if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 126 127 128 129 130 131 132 133
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
134
/*
I
Ingo Molnar 已提交
135
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
136
 */
I
Ingo Molnar 已提交
137 138 139 140 141
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

142
struct rt_bandwidth {
I
Ingo Molnar 已提交
143 144 145 146 147
	/* nests inside the rq lock: */
	spinlock_t		rt_runtime_lock;
	ktime_t			rt_period;
	u64			rt_runtime;
	struct hrtimer		rt_period_timer;
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
};

static struct rt_bandwidth def_rt_bandwidth;

static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);

static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
{
	struct rt_bandwidth *rt_b =
		container_of(timer, struct rt_bandwidth, rt_period_timer);
	ktime_t now;
	int overrun;
	int idle = 0;

	for (;;) {
		now = hrtimer_cb_get_time(timer);
		overrun = hrtimer_forward(timer, now, rt_b->rt_period);

		if (!overrun)
			break;

		idle = do_sched_rt_period_timer(rt_b, overrun);
	}

	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
}

static
void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
{
	rt_b->rt_period = ns_to_ktime(period);
	rt_b->rt_runtime = runtime;

P
Peter Zijlstra 已提交
181 182
	spin_lock_init(&rt_b->rt_runtime_lock);

183 184 185 186 187
	hrtimer_init(&rt_b->rt_period_timer,
			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rt_b->rt_period_timer.function = sched_rt_period_timer;
}

188 189 190
static inline int rt_bandwidth_enabled(void)
{
	return sysctl_sched_rt_runtime >= 0;
191 192 193 194 195 196
}

static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	ktime_t now;

197
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 199 200 201 202 203 204
		return;

	if (hrtimer_active(&rt_b->rt_period_timer))
		return;

	spin_lock(&rt_b->rt_runtime_lock);
	for (;;) {
205 206 207
		unsigned long delta;
		ktime_t soft, hard;

208 209 210 211 212
		if (hrtimer_active(&rt_b->rt_period_timer))
			break;

		now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
		hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213 214 215 216 217

		soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
		hard = hrtimer_get_expires(&rt_b->rt_period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218
				HRTIMER_MODE_ABS_PINNED, 0);
219 220 221 222 223 224 225 226 227 228 229
	}
	spin_unlock(&rt_b->rt_runtime_lock);
}

#ifdef CONFIG_RT_GROUP_SCHED
static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
{
	hrtimer_cancel(&rt_b->rt_period_timer);
}
#endif

230 231 232 233 234 235
/*
 * sched_domains_mutex serializes calls to arch_init_sched_domains,
 * detach_destroy_domains and partition_sched_domains.
 */
static DEFINE_MUTEX(sched_domains_mutex);

236
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
237

238 239
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
240 241
struct cfs_rq;

P
Peter Zijlstra 已提交
242 243
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
244
/* task group related information */
245
struct task_group {
246
#ifdef CONFIG_CGROUP_SCHED
247 248
	struct cgroup_subsys_state css;
#endif
249

250 251 252 253
#ifdef CONFIG_USER_SCHED
	uid_t uid;
#endif

254
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
255 256 257 258 259
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
260 261 262 263 264 265
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

266
	struct rt_bandwidth rt_bandwidth;
267
#endif
268

269
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
270
	struct list_head list;
P
Peter Zijlstra 已提交
271 272 273 274

	struct task_group *parent;
	struct list_head siblings;
	struct list_head children;
S
Srivatsa Vaddagiri 已提交
275 276
};

D
Dhaval Giani 已提交
277
#ifdef CONFIG_USER_SCHED
278

279 280 281 282 283 284
/* Helper function to pass uid information to create_sched_user() */
void set_tg_uid(struct user_struct *user)
{
	user->tg->uid = user->uid;
}

285 286
/*
 * Root task group.
287 288
 *	Every UID task group (including init_task_group aka UID-0) will
 *	be a child to this group.
289 290 291
 */
struct task_group root_task_group;

292
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
293 294 295
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
296
static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297
#endif /* CONFIG_FAIR_GROUP_SCHED */
298 299 300

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
303
#else /* !CONFIG_USER_SCHED */
304
#define root_task_group init_task_group
P
Peter Zijlstra 已提交
305
#endif /* CONFIG_USER_SCHED */
P
Peter Zijlstra 已提交
306

307
/* task_group_lock serializes add/remove of task groups and also changes to
308 309
 * a task group's cpu shares.
 */
310
static DEFINE_SPINLOCK(task_group_lock);
311

312 313
#ifdef CONFIG_FAIR_GROUP_SCHED

314 315 316 317 318 319 320
#ifdef CONFIG_SMP
static int root_task_group_empty(void)
{
	return list_empty(&root_task_group.children);
}
#endif

321 322
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
323
#else /* !CONFIG_USER_SCHED */
324
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
325
#endif /* CONFIG_USER_SCHED */
326

327
/*
328 329 330 331
 * A weight of 0 or 1 can cause arithmetics problems.
 * A weight of a cfs_rq is the sum of weights of which entities
 * are queued on this cfs_rq, so a weight of a entity should not be
 * too large, so as the shares value of a task group.
332 333 334
 * (The default weight is 1024 - so there's no practical
 *  limitation from this.)
 */
335
#define MIN_SHARES	2
336
#define MAX_SHARES	(1UL << 18)
337

338 339 340
static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
341
/* Default task group.
I
Ingo Molnar 已提交
342
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
343
 */
344
struct task_group init_task_group;
S
Srivatsa Vaddagiri 已提交
345 346

/* return group to which a task belongs */
347
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
348
{
349
	struct task_group *tg;
350

351
#ifdef CONFIG_USER_SCHED
352 353 354
	rcu_read_lock();
	tg = __task_cred(p)->user->tg;
	rcu_read_unlock();
355
#elif defined(CONFIG_CGROUP_SCHED)
356 357
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
358
#else
I
Ingo Molnar 已提交
359
	tg = &init_task_group;
360
#endif
361
	return tg;
S
Srivatsa Vaddagiri 已提交
362 363 364
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
365
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
366
{
367
#ifdef CONFIG_FAIR_GROUP_SCHED
368 369
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
370
#endif
P
Peter Zijlstra 已提交
371

372
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
373 374
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
375
#endif
S
Srivatsa Vaddagiri 已提交
376 377 378 379
}

#else

P
Peter Zijlstra 已提交
380
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 382 383 384
static inline struct task_group *task_group(struct task_struct *p)
{
	return NULL;
}
S
Srivatsa Vaddagiri 已提交
385

386
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
387

I
Ingo Molnar 已提交
388 389 390 391 392 393
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
394
	u64 min_vruntime;
I
Ingo Molnar 已提交
395 396 397

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
398 399 400 401 402 403

	struct list_head tasks;
	struct list_head *balance_iterator;

	/*
	 * 'curr' points to currently running entity on this cfs_rq.
I
Ingo Molnar 已提交
404 405
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
P
Peter Zijlstra 已提交
406
	struct sched_entity *curr, *next, *last;
P
Peter Zijlstra 已提交
407

P
Peter Zijlstra 已提交
408
	unsigned int nr_spread_over;
P
Peter Zijlstra 已提交
409

410
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
411 412
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
413 414
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
415 416 417 418 419 420
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
421 422
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
423 424 425

#ifdef CONFIG_SMP
	/*
426
	 * the part of load.weight contributed by tasks
427
	 */
428
	unsigned long task_weight;
429

430 431 432 433 434 435 436
	/*
	 *   h_load = weight * f(tg)
	 *
	 * Where f(tg) is the recursive weight fraction assigned to
	 * this group.
	 */
	unsigned long h_load;
437

438 439 440 441
	/*
	 * this cpu's part of tg->shares
	 */
	unsigned long shares;
442 443 444 445 446

	/*
	 * load.weight at the time we set shares
	 */
	unsigned long rq_weight;
447
#endif
I
Ingo Molnar 已提交
448 449
#endif
};
L
Linus Torvalds 已提交
450

I
Ingo Molnar 已提交
451 452 453
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
454
	unsigned long rt_nr_running;
455
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 457
	struct {
		int curr; /* highest queued rt task prio */
458
#ifdef CONFIG_SMP
459
		int next; /* next highest */
460
#endif
461
	} highest_prio;
P
Peter Zijlstra 已提交
462
#endif
P
Peter Zijlstra 已提交
463
#ifdef CONFIG_SMP
464
	unsigned long rt_nr_migratory;
465
	unsigned long rt_nr_total;
G
Gregory Haskins 已提交
466
	int overloaded;
467
	struct plist_head pushable_tasks;
P
Peter Zijlstra 已提交
468
#endif
P
Peter Zijlstra 已提交
469
	int rt_throttled;
P
Peter Zijlstra 已提交
470
	u64 rt_time;
P
Peter Zijlstra 已提交
471
	u64 rt_runtime;
I
Ingo Molnar 已提交
472
	/* Nests inside the rq lock: */
P
Peter Zijlstra 已提交
473
	spinlock_t rt_runtime_lock;
P
Peter Zijlstra 已提交
474

475
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
476 477
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
478 479 480 481 482
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
483 484
};

G
Gregory Haskins 已提交
485 486 487 488
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
489 490
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
491 492 493 494 495 496
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
497 498
	cpumask_var_t span;
	cpumask_var_t online;
499

I
Ingo Molnar 已提交
500
	/*
501 502 503
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
504
	cpumask_var_t rto_mask;
I
Ingo Molnar 已提交
505
	atomic_t rto_count;
506 507 508
#ifdef CONFIG_SMP
	struct cpupri cpupri;
#endif
G
Gregory Haskins 已提交
509 510
};

511 512 513 514
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
515 516 517 518
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
519 520 521 522 523 524 525
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
526
struct rq {
527 528
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
529 530 531 532 533 534

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
535 536
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 538 539
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
540 541
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
542 543 544 545
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
546 547
	struct rt_rq rt;

I
Ingo Molnar 已提交
548
#ifdef CONFIG_FAIR_GROUP_SCHED
549 550
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
551 552
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
553
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
554 555 556 557 558 559 560 561 562 563
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

564
	struct task_struct *curr, *idle;
565
	unsigned long next_balance;
L
Linus Torvalds 已提交
566
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
567

568
	u64 clock;
I
Ingo Molnar 已提交
569

L
Linus Torvalds 已提交
570 571 572
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
573
	struct root_domain *rd;
L
Linus Torvalds 已提交
574 575
	struct sched_domain *sd;

576
	unsigned char idle_at_tick;
L
Linus Torvalds 已提交
577
	/* For active balancing */
578
	int post_schedule;
L
Linus Torvalds 已提交
579 580
	int active_balance;
	int push_cpu;
581 582
	/* cpu of this runqueue: */
	int cpu;
583
	int online;
L
Linus Torvalds 已提交
584

585
	unsigned long avg_load_per_task;
L
Linus Torvalds 已提交
586

587
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
588
	struct list_head migration_queue;
589 590 591

	u64 rt_avg;
	u64 age_stamp;
M
Mike Galbraith 已提交
592 593
	u64 idle_stamp;
	u64 avg_idle;
L
Linus Torvalds 已提交
594 595
#endif

596 597 598 599
	/* calc_load related fields */
	unsigned long calc_load_update;
	long calc_load_active;

P
Peter Zijlstra 已提交
600
#ifdef CONFIG_SCHED_HRTICK
601 602 603 604
#ifdef CONFIG_SMP
	int hrtick_csd_pending;
	struct call_single_data hrtick_csd;
#endif
P
Peter Zijlstra 已提交
605 606 607
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
608 609 610
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;
611 612
	unsigned long long rq_cpu_time;
	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
L
Linus Torvalds 已提交
613 614

	/* sys_sched_yield() stats */
615
	unsigned int yld_count;
L
Linus Torvalds 已提交
616 617

	/* schedule() stats */
618 619 620
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
621 622

	/* try_to_wake_up() stats */
623 624
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
625 626

	/* BKL stats */
627
	unsigned int bkl_count;
L
Linus Torvalds 已提交
628 629 630
#endif
};

631
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
632

P
Peter Zijlstra 已提交
633 634
static inline
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
635
{
P
Peter Zijlstra 已提交
636
	rq->curr->sched_class->check_preempt_curr(rq, p, flags);
I
Ingo Molnar 已提交
637 638
}

639 640 641 642 643 644 645 646 647
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

N
Nick Piggin 已提交
648 649
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
651 652 653 654
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
655 656
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
657 658 659 660 661

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
662
#define raw_rq()		(&__raw_get_cpu_var(runqueues))
L
Linus Torvalds 已提交
663

I
Ingo Molnar 已提交
664
inline void update_rq_clock(struct rq *rq)
665 666 667 668
{
	rq->clock = sched_clock_cpu(cpu_of(rq));
}

I
Ingo Molnar 已提交
669 670 671 672 673 674 675 676 677
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

I
Ingo Molnar 已提交
678 679
/**
 * runqueue_is_locked
680
 * @cpu: the processor in question.
I
Ingo Molnar 已提交
681 682 683 684 685
 *
 * Returns true if the current cpu runqueue is locked.
 * This interface allows printk to be called with the runqueue lock
 * held and know whether or not it is OK to wake up the klogd.
 */
686
int runqueue_is_locked(int cpu)
I
Ingo Molnar 已提交
687
{
688
	return spin_is_locked(&cpu_rq(cpu)->lock);
I
Ingo Molnar 已提交
689 690
}

I
Ingo Molnar 已提交
691 692 693
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
694 695 696 697

#define SCHED_FEAT(name, enabled)	\
	__SCHED_FEAT_##name ,

I
Ingo Molnar 已提交
698
enum {
P
Peter Zijlstra 已提交
699
#include "sched_features.h"
I
Ingo Molnar 已提交
700 701
};

P
Peter Zijlstra 已提交
702 703 704 705 706
#undef SCHED_FEAT

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
707
const_debug unsigned int sysctl_sched_features =
P
Peter Zijlstra 已提交
708 709 710 711 712 713 714 715 716
#include "sched_features.h"
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

717
static __read_mostly char *sched_feat_names[] = {
P
Peter Zijlstra 已提交
718 719 720 721 722 723
#include "sched_features.h"
	NULL
};

#undef SCHED_FEAT

L
Li Zefan 已提交
724
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
725 726 727 728
{
	int i;

	for (i = 0; sched_feat_names[i]; i++) {
L
Li Zefan 已提交
729 730 731
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
732
	}
L
Li Zefan 已提交
733
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
734

L
Li Zefan 已提交
735
	return 0;
P
Peter Zijlstra 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp = buf;
	int neg = 0;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;

I
Ingo Molnar 已提交
755
	if (strncmp(buf, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
		neg = 1;
		cmp += 3;
	}

	for (i = 0; sched_feat_names[i]; i++) {
		int len = strlen(sched_feat_names[i]);

		if (strncmp(cmp, sched_feat_names[i], len) == 0) {
			if (neg)
				sysctl_sched_features &= ~(1UL << i);
			else
				sysctl_sched_features |= (1UL << i);
			break;
		}
	}

	if (!sched_feat_names[i])
		return -EINVAL;

775
	*ppos += cnt;
P
Peter Zijlstra 已提交
776 777 778 779

	return cnt;
}

L
Li Zefan 已提交
780 781 782 783 784
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

785
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
786 787 788 789 790
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);

#endif

#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
I
Ingo Molnar 已提交
805

806 807 808 809 810 811
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
812 813
/*
 * ratelimit for updating the group shares.
814
 * default: 0.25ms
P
Peter Zijlstra 已提交
815
 */
816
unsigned int sysctl_sched_shares_ratelimit = 250000;
817
unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
P
Peter Zijlstra 已提交
818

819 820 821 822 823 824 825
/*
 * Inject some fuzzyness into changing the per-cpu group shares
 * this avoids remote rq-locks at the expense of fairness.
 * default: 4
 */
unsigned int sysctl_sched_shares_thresh = 4;

826 827 828 829 830 831 832 833
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
834
/*
P
Peter Zijlstra 已提交
835
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
836 837
 * default: 1s
 */
P
Peter Zijlstra 已提交
838
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
839

840 841
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
842 843 844 845 846
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
847

848 849 850 851 852 853 854
static inline u64 global_rt_period(void)
{
	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
}

static inline u64 global_rt_runtime(void)
{
855
	if (sysctl_sched_rt_runtime < 0)
856 857 858 859
		return RUNTIME_INF;

	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
}
P
Peter Zijlstra 已提交
860

L
Linus Torvalds 已提交
861
#ifndef prepare_arch_switch
862 863 864 865 866 867
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

868 869 870 871 872
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

873
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
874
static inline int task_running(struct rq *rq, struct task_struct *p)
875
{
876
	return task_current(rq, p);
877 878
}

879
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 881 882
{
}

883
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884
{
885 886 887 888
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
889 890 891 892 893 894 895
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

896 897 898 899
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
900
static inline int task_running(struct rq *rq, struct task_struct *p)
901 902 903 904
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
905
	return task_current(rq, p);
906 907 908
#endif
}

909
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

926
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 928 929 930 931 932 933 934 935 936 937 938
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
939
#endif
940 941
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
942

943 944 945 946
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
947
static inline struct rq *__task_rq_lock(struct task_struct *p)
948 949
	__acquires(rq->lock)
{
950 951 952 953 954
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
955 956 957 958
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
959 960
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
961
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
962 963
 * explicitly disabling preemption.
 */
964
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
965 966
	__acquires(rq->lock)
{
967
	struct rq *rq;
L
Linus Torvalds 已提交
968

969 970 971 972 973 974
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
975 976 977 978
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

979 980 981 982 983 984 985 986
void task_rq_unlock_wait(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

	smp_mb(); /* spin-unlock-wait is not a full memory barrier */
	spin_unlock_wait(&rq->lock);
}

A
Alexey Dobriyan 已提交
987
static void __task_rq_unlock(struct rq *rq)
988 989 990 991 992
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

993
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
994 995 996 997 998 999
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
1000
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
1001
 */
A
Alexey Dobriyan 已提交
1002
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
1003 1004
	__acquires(rq->lock)
{
1005
	struct rq *rq;
L
Linus Torvalds 已提交
1006 1007 1008 1009 1010 1011 1012 1013

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

P
Peter Zijlstra 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
1035
	if (!cpu_active(cpu_of(rq)))
1036
		return 0;
P
Peter Zijlstra 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
1057
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
1058 1059 1060 1061 1062 1063
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

1064
#ifdef CONFIG_SMP
1065 1066 1067 1068
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
1069
{
1070
	struct rq *rq = arg;
1071

1072 1073 1074 1075
	spin_lock(&rq->lock);
	hrtimer_restart(&rq->hrtick_timer);
	rq->hrtick_csd_pending = 0;
	spin_unlock(&rq->lock);
1076 1077
}

1078 1079 1080 1081 1082 1083
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
1084
{
1085 1086
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087

1088
	hrtimer_set_expires(timer, time);
1089 1090 1091 1092

	if (rq == this_rq()) {
		hrtimer_restart(timer);
	} else if (!rq->hrtick_csd_pending) {
1093
		__smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 1095
		rq->hrtick_csd_pending = 1;
	}
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
1110
		hrtick_clear(cpu_rq(cpu));
1111 1112 1113 1114 1115 1116
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

1117
static __init void init_hrtick(void)
1118 1119 1120
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
1121 1122 1123 1124 1125 1126 1127 1128
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay)
{
1129
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130
			HRTIMER_MODE_REL_PINNED, 0);
1131
}
1132

A
Andrew Morton 已提交
1133
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
1134 1135
{
}
1136
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
1137

1138
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
1139
{
1140 1141
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
1142

1143 1144 1145 1146
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
1147

1148 1149
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
1150
}
A
Andrew Morton 已提交
1151
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1152 1153 1154 1155 1156 1157 1158 1159
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

1160 1161 1162
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
1163
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
1164

I
Ingo Molnar 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

1178
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1179 1180 1181 1182 1183
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

1184
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
1185 1186
		return;

1187
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

#ifdef CONFIG_NO_HZ
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
void wake_up_idle_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

	/*
	 * This is safe, as this function is called with the timer
	 * wheel base lock of (cpu) held. When the CPU is on the way
	 * to idle and has not yet set rq->curr to idle then it will
	 * be serialized on the timer wheel base lock and take the new
	 * timer into account automatically.
	 */
	if (rq->curr != rq->idle)
		return;

	/*
	 * We can set TIF_RESCHED on the idle task of the other CPU
	 * lockless. The worst case is that the other CPU runs the
	 * idle task through an additional NOOP schedule()
	 */
1243
	set_tsk_need_resched(rq->idle);
1244 1245 1246 1247 1248 1249

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(rq->idle))
		smp_send_reschedule(cpu);
}
1250
#endif /* CONFIG_NO_HZ */
1251

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static u64 sched_avg_period(void)
{
	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}

static void sched_avg_update(struct rq *rq)
{
	s64 period = sched_avg_period();

	while ((s64)(rq->clock - rq->age_stamp) > period) {
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
}

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
	rq->rt_avg += rt_delta;
	sched_avg_update(rq);
}

1273
#else /* !CONFIG_SMP */
1274
static void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
1275 1276
{
	assert_spin_locked(&task_rq(p)->lock);
1277
	set_tsk_need_resched(p);
I
Ingo Molnar 已提交
1278
}
1279 1280 1281 1282

static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
{
}
1283
#endif /* CONFIG_SMP */
I
Ingo Molnar 已提交
1284

1285 1286 1287 1288 1289 1290 1291 1292
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1293 1294 1295
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1296
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1297

1298 1299 1300
/*
 * delta *= weight / lw
 */
1301
static unsigned long
1302 1303 1304 1305 1306
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

1307 1308 1309 1310 1311 1312 1313
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
			lw->inv_weight = 1;
		else
			lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
				/ (lw->weight+1);
	}
1314 1315 1316 1317 1318

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1319
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1320
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1321 1322
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1323
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324

1325
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 1327
}

1328
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 1330
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1331
	lw->inv_weight = 0;
1332 1333
}

1334
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 1336
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1337
	lw->inv_weight = 0;
1338 1339
}

1340 1341 1342 1343
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1344
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 1346 1347 1348
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

P
Peter Zijlstra 已提交
1349 1350
#define WEIGHT_IDLEPRIO                3
#define WMULT_IDLEPRIO         1431655765
I
Ingo Molnar 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 1361 1362
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1363 1364
 */
static const int prio_to_weight[40] = {
1365 1366 1367 1368 1369 1370 1371 1372
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1373 1374
};

1375 1376 1377 1378 1379 1380 1381
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1382
static const u32 prio_to_wmult[40] = {
1383 1384 1385 1386 1387 1388 1389 1390
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1391
};
1392

I
Ingo Molnar 已提交
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1418

1419 1420 1421 1422 1423 1424 1425 1426
/* Time spent by the tasks of the cpu accounting group executing in ... */
enum cpuacct_stat_index {
	CPUACCT_STAT_USER,	/* ... user mode */
	CPUACCT_STAT_SYSTEM,	/* ... kernel mode */

	CPUACCT_STAT_NSTATS,
};

1427 1428
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 1430
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val);
1431 1432
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 1434
static inline void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val) {}
1435 1436
#endif

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

I
Ingo Molnar 已提交
1447
#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
P
Peter Zijlstra 已提交
1448
typedef int (*tg_visitor)(struct task_group *, void *);
1449 1450 1451 1452 1453

/*
 * Iterate the full tree, calling @down when first entering a node and @up when
 * leaving it for the final time.
 */
P
Peter Zijlstra 已提交
1454
static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 1456
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
1457
	int ret;
1458 1459 1460 1461

	rcu_read_lock();
	parent = &root_task_group;
down:
P
Peter Zijlstra 已提交
1462 1463 1464
	ret = (*down)(parent, data);
	if (ret)
		goto out_unlock;
1465 1466 1467 1468 1469 1470 1471
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
1472 1473 1474
	ret = (*up)(parent, data);
	if (ret)
		goto out_unlock;
1475 1476 1477 1478 1479

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
P
Peter Zijlstra 已提交
1480
out_unlock:
1481
	rcu_read_unlock();
P
Peter Zijlstra 已提交
1482 1483

	return ret;
1484 1485
}

P
Peter Zijlstra 已提交
1486 1487 1488
static int tg_nop(struct task_group *tg, void *data)
{
	return 0;
1489
}
P
Peter Zijlstra 已提交
1490 1491 1492
#endif

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/* Used instead of source_load when we know the type == 0 */
static unsigned long weighted_cpuload(const int cpu)
{
	return cpu_rq(cpu)->load.weight;
}

/*
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
static unsigned long source_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return min(rq->cpu_load[type-1], total);
}

/*
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
 */
static unsigned long target_load(int cpu, int type)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long total = weighted_cpuload(cpu);

	if (type == 0 || !sched_feat(LB_BIAS))
		return total;

	return max(rq->cpu_load[type-1], total);
}

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
static struct sched_group *group_of(int cpu)
{
	struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);

	if (!sd)
		return NULL;

	return sd->groups;
}

static unsigned long power_of(int cpu)
{
	struct sched_group *group = group_of(cpu);

	if (!group)
		return SCHED_LOAD_SCALE;

	return group->cpu_power;
}

P
Peter Zijlstra 已提交
1552 1553 1554 1555 1556
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);

static unsigned long cpu_avg_load_per_task(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
1557
	unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
P
Peter Zijlstra 已提交
1558

1559 1560
	if (nr_running)
		rq->avg_load_per_task = rq->load.weight / nr_running;
1561 1562
	else
		rq->avg_load_per_task = 0;
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567

	return rq->avg_load_per_task;
}

#ifdef CONFIG_FAIR_GROUP_SCHED
1568

1569
static __read_mostly unsigned long *update_shares_data;
1570

1571 1572 1573 1574 1575
static void __set_se_shares(struct sched_entity *se, unsigned long shares);

/*
 * Calculate and set the cpu's group shares.
 */
1576 1577 1578
static void update_group_shares_cpu(struct task_group *tg, int cpu,
				    unsigned long sd_shares,
				    unsigned long sd_rq_weight,
1579
				    unsigned long *usd_rq_weight)
1580
{
1581
	unsigned long shares, rq_weight;
P
Peter Zijlstra 已提交
1582
	int boost = 0;
1583

1584
	rq_weight = usd_rq_weight[cpu];
P
Peter Zijlstra 已提交
1585 1586 1587 1588
	if (!rq_weight) {
		boost = 1;
		rq_weight = NICE_0_LOAD;
	}
1589

1590
	/*
P
Peter Zijlstra 已提交
1591 1592 1593
	 *             \Sum_j shares_j * rq_weight_i
	 * shares_i =  -----------------------------
	 *                  \Sum_j rq_weight_j
1594
	 */
1595
	shares = (sd_shares * rq_weight) / sd_rq_weight;
1596
	shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597

1598 1599 1600 1601
	if (abs(shares - tg->se[cpu]->load.weight) >
			sysctl_sched_shares_thresh) {
		struct rq *rq = cpu_rq(cpu);
		unsigned long flags;
1602

1603
		spin_lock_irqsave(&rq->lock, flags);
1604
		tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
P
Peter Zijlstra 已提交
1605
		tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 1607 1608
		__set_se_shares(tg->se[cpu], shares);
		spin_unlock_irqrestore(&rq->lock, flags);
	}
1609
}
1610 1611

/*
1612 1613 1614
 * Re-compute the task group their per cpu shares over the given domain.
 * This needs to be done in a bottom-up fashion because the rq weight of a
 * parent group depends on the shares of its child groups.
1615
 */
P
Peter Zijlstra 已提交
1616
static int tg_shares_up(struct task_group *tg, void *data)
1617
{
1618
	unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619
	unsigned long *usd_rq_weight;
P
Peter Zijlstra 已提交
1620
	struct sched_domain *sd = data;
1621
	unsigned long flags;
1622
	int i;
1623

1624 1625 1626 1627
	if (!tg->se[0])
		return 0;

	local_irq_save(flags);
1628
	usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629

1630
	for_each_cpu(i, sched_domain_span(sd)) {
1631
		weight = tg->cfs_rq[i]->load.weight;
1632
		usd_rq_weight[i] = weight;
1633

1634
		rq_weight += weight;
1635 1636 1637 1638 1639 1640 1641 1642
		/*
		 * If there are currently no tasks on the cpu pretend there
		 * is one of average load so that when a new task gets to
		 * run here it will not get delayed by group starvation.
		 */
		if (!weight)
			weight = NICE_0_LOAD;

1643
		sum_weight += weight;
1644
		shares += tg->cfs_rq[i]->shares;
1645 1646
	}

1647 1648 1649
	if (!rq_weight)
		rq_weight = sum_weight;

1650 1651 1652 1653 1654
	if ((!shares && rq_weight) || shares > tg->shares)
		shares = tg->shares;

	if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
		shares = tg->shares;
1655

1656
	for_each_cpu(i, sched_domain_span(sd))
1657
		update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658 1659

	local_irq_restore(flags);
P
Peter Zijlstra 已提交
1660 1661

	return 0;
1662 1663 1664
}

/*
1665 1666 1667
 * Compute the cpu's hierarchical load factor for each task group.
 * This needs to be done in a top-down fashion because the load of a child
 * group is a fraction of its parents load.
1668
 */
P
Peter Zijlstra 已提交
1669
static int tg_load_down(struct task_group *tg, void *data)
1670
{
1671
	unsigned long load;
P
Peter Zijlstra 已提交
1672
	long cpu = (long)data;
1673

1674 1675 1676 1677 1678 1679 1680
	if (!tg->parent) {
		load = cpu_rq(cpu)->load.weight;
	} else {
		load = tg->parent->cfs_rq[cpu]->h_load;
		load *= tg->cfs_rq[cpu]->shares;
		load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
	}
1681

1682
	tg->cfs_rq[cpu]->h_load = load;
1683

P
Peter Zijlstra 已提交
1684
	return 0;
1685 1686
}

1687
static void update_shares(struct sched_domain *sd)
1688
{
1689 1690 1691 1692 1693 1694 1695 1696
	s64 elapsed;
	u64 now;

	if (root_task_group_empty())
		return;

	now = cpu_clock(raw_smp_processor_id());
	elapsed = now - sd->last_update;
P
Peter Zijlstra 已提交
1697 1698 1699

	if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
		sd->last_update = now;
P
Peter Zijlstra 已提交
1700
		walk_tg_tree(tg_nop, tg_shares_up, sd);
P
Peter Zijlstra 已提交
1701
	}
1702 1703
}

1704 1705
static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
1706 1707 1708
	if (root_task_group_empty())
		return;

1709 1710 1711 1712 1713
	spin_unlock(&rq->lock);
	update_shares(sd);
	spin_lock(&rq->lock);
}

P
Peter Zijlstra 已提交
1714
static void update_h_load(long cpu)
1715
{
1716 1717 1718
	if (root_task_group_empty())
		return;

P
Peter Zijlstra 已提交
1719
	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 1721 1722 1723
}

#else

1724
static inline void update_shares(struct sched_domain *sd)
1725 1726 1727
{
}

1728 1729 1730 1731
static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
{
}

1732 1733
#endif

1734 1735
#ifdef CONFIG_PREEMPT

1736 1737
static void double_rq_lock(struct rq *rq1, struct rq *rq2);

1738
/*
1739 1740 1741 1742 1743 1744
 * fair double_lock_balance: Safely acquires both rq->locks in a fair
 * way at the expense of forcing extra atomic operations in all
 * invocations.  This assures that the double_lock is acquired using the
 * same underlying policy as the spinlock_t on this architecture, which
 * reduces latency compared to the unfair variant below.  However, it
 * also adds more overhead and therefore may reduce throughput.
1745
 */
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	spin_unlock(&this_rq->lock);
	double_rq_lock(this_rq, busiest);

	return 1;
}

#else
/*
 * Unfair double_lock_balance: Optimizes throughput at the expense of
 * latency by eliminating extra atomic operations when the locks are
 * already in proper order on entry.  This favors lower cpu-ids and will
 * grant the double lock to lower cpus over higher ids under contention,
 * regardless of entry order into the function.
 */
static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
	int ret = 0;

	if (unlikely(!spin_trylock(&busiest->lock))) {
		if (busiest < this_rq) {
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
			ret = 1;
		} else
			spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
	}
	return ret;
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
#endif /* CONFIG_PREEMPT */

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
{
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}

	return _double_lock_balance(this_rq, busiest);
}

1800 1801 1802 1803 1804 1805
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
	__releases(busiest->lock)
{
	spin_unlock(&busiest->lock);
	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
}
1806 1807
#endif

V
Vegard Nossum 已提交
1808
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
1809 1810
static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
{
V
Vegard Nossum 已提交
1811
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1812 1813 1814
	cfs_rq->shares = shares;
#endif
}
V
Vegard Nossum 已提交
1815
#endif
1816

1817
static void calc_load_account_active(struct rq *this_rq);
1818
static void update_sysctl(void);
1819

P
Peter Zijlstra 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
	set_task_rq(p, cpu);
#ifdef CONFIG_SMP
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
	task_thread_info(p)->cpu = cpu;
#endif
}

I
Ingo Molnar 已提交
1834 1835
#include "sched_stats.h"
#include "sched_idletask.c"
1836 1837
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1838 1839 1840 1841 1842
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)
1843 1844
#define for_each_class(class) \
   for (class = sched_class_highest; class; class = class->next)
I
Ingo Molnar 已提交
1845

1846
static void inc_nr_running(struct rq *rq)
1847 1848 1849 1850
{
	rq->nr_running++;
}

1851
static void dec_nr_running(struct rq *rq)
1852 1853 1854 1855
{
	rq->nr_running--;
}

1856 1857 1858
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1859 1860 1861 1862
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1863

I
Ingo Molnar 已提交
1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1872

I
Ingo Molnar 已提交
1873 1874
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1875 1876
}

1877 1878 1879 1880 1881 1882
static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}

1883
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1884
{
P
Peter Zijlstra 已提交
1885 1886 1887
	if (wakeup)
		p->se.start_runtime = p->se.sum_exec_runtime;

I
Ingo Molnar 已提交
1888
	sched_info_queued(p);
1889
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1890
	p->se.on_rq = 1;
1891 1892
}

1893
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1894
{
P
Peter Zijlstra 已提交
1895 1896 1897 1898 1899 1900 1901 1902 1903
	if (sleep) {
		if (p->se.last_wakeup) {
			update_avg(&p->se.avg_overlap,
				p->se.sum_exec_runtime - p->se.last_wakeup);
			p->se.last_wakeup = 0;
		} else {
			update_avg(&p->se.avg_wakeup,
				sysctl_sched_wakeup_granularity);
		}
1904 1905
	}

1906
	sched_info_dequeued(p);
1907
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1908
	p->se.on_rq = 0;
1909 1910
}

1911
/*
I
Ingo Molnar 已提交
1912
 * __normal_prio - return the priority that is based on the static prio
1913 1914 1915
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1916
	return p->static_prio;
1917 1918
}

1919 1920 1921 1922 1923 1924 1925
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1926
static inline int normal_prio(struct task_struct *p)
1927 1928 1929
{
	int prio;

1930
	if (task_has_rt_policy(p))
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1944
static int effective_prio(struct task_struct *p)
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1957
/*
I
Ingo Molnar 已提交
1958
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1959
 */
I
Ingo Molnar 已提交
1960
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1961
{
1962
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1963
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1964

1965
	enqueue_task(rq, p, wakeup);
1966
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1967 1968 1969 1970 1971
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1972
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1973
{
1974
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1975 1976
		rq->nr_uninterruptible++;

1977
	dequeue_task(rq, p, sleep);
1978
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1979 1980 1981 1982 1983 1984
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1985
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1986 1987 1988 1989
{
	return cpu_curr(task_cpu(p)) == p;
}

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

2002 2003
/**
 * kthread_bind - bind a just-created kthread to a cpu.
2004
 * @p: thread created by kthread_create().
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
 * @cpu: cpu (might not be online, must be possible) for @k to run on.
 *
 * Description: This function is equivalent to set_cpus_allowed(),
 * except that @cpu doesn't need to be online, and the thread must be
 * stopped (i.e., just returned from kthread_create()).
 *
 * Function lives here instead of kthread.c because it messes with
 * scheduler internals which require locking.
 */
void kthread_bind(struct task_struct *p, unsigned int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	/* Must have done schedule() in kthread() before we set_task_cpu */
	if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
		WARN_ON(1);
		return;
	}

	spin_lock_irqsave(&rq->lock, flags);
2026
	update_rq_clock(rq);
2027 2028 2029 2030 2031 2032 2033 2034
	set_task_cpu(p, cpu);
	p->cpus_allowed = cpumask_of_cpu(cpu);
	p->rt.nr_cpus_allowed = 1;
	p->flags |= PF_THREAD_BOUND;
	spin_unlock_irqrestore(&rq->lock, flags);
}
EXPORT_SYMBOL(kthread_bind);

L
Linus Torvalds 已提交
2035
#ifdef CONFIG_SMP
2036 2037 2038
/*
 * Is this task likely cache-hot:
 */
2039
static int
2040 2041 2042 2043
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

2044 2045 2046
	/*
	 * Buddy candidates are cache hot:
	 */
2047
	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
P
Peter Zijlstra 已提交
2048 2049
			(&p->se == cfs_rq_of(&p->se)->next ||
			 &p->se == cfs_rq_of(&p->se)->last))
2050 2051
		return 1;

2052 2053 2054
	if (p->sched_class != &fair_sched_class)
		return 0;

2055 2056 2057 2058 2059
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

2060 2061 2062 2063 2064 2065
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
2066
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
2067
{
I
Ingo Molnar 已提交
2068
	int old_cpu = task_cpu(p);
2069
	struct rq *old_rq = cpu_rq(old_cpu);
2070 2071
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
I
Ingo Molnar 已提交
2072

2073
	trace_sched_migrate_task(p, new_cpu);
2074

2075
	if (old_cpu != new_cpu) {
2076 2077
		p->se.nr_migrations++;
#ifdef CONFIG_SCHEDSTATS
2078 2079
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
I
Ingo Molnar 已提交
2080
#endif
2081
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2082
				     1, 1, NULL, 0);
2083
	}
2084 2085
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
2086 2087

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
2088 2089
}

2090
struct migration_req {
L
Linus Torvalds 已提交
2091 2092
	struct list_head list;

2093
	struct task_struct *task;
L
Linus Torvalds 已提交
2094 2095 2096
	int dest_cpu;

	struct completion done;
2097
};
L
Linus Torvalds 已提交
2098 2099 2100 2101 2102

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
2103
static int
2104
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
2105
{
2106
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
2107 2108 2109 2110 2111

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
2112
	if (!p->se.on_rq && !task_running(rq, p)) {
2113
		update_rq_clock(rq);
L
Linus Torvalds 已提交
2114 2115 2116 2117 2118 2119 2120 2121
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
2122

L
Linus Torvalds 已提交
2123 2124 2125
	return 1;
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
/*
 * wait_task_context_switch -	wait for a thread to complete at least one
 *				context switch.
 *
 * @p must not be current.
 */
void wait_task_context_switch(struct task_struct *p)
{
	unsigned long nvcsw, nivcsw, flags;
	int running;
	struct rq *rq;

	nvcsw	= p->nvcsw;
	nivcsw	= p->nivcsw;
	for (;;) {
		/*
		 * The runqueue is assigned before the actual context
		 * switch. We need to take the runqueue lock.
		 *
		 * We could check initially without the lock but it is
		 * very likely that we need to take the lock in every
		 * iteration.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		task_rq_unlock(rq, &flags);

		if (likely(!running))
			break;
		/*
		 * The switch count is incremented before the actual
		 * context switch. We thus wait for two switches to be
		 * sure at least one completed.
		 */
		if ((p->nvcsw - nvcsw) > 1)
			break;
		if ((p->nivcsw - nivcsw) > 1)
			break;

		cpu_relax();
	}
}

L
Linus Torvalds 已提交
2169 2170 2171
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
2172 2173 2174 2175 2176 2177 2178
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
2179 2180 2181 2182 2183 2184
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
2185
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
2186 2187
{
	unsigned long flags;
I
Ingo Molnar 已提交
2188
	int running, on_rq;
R
Roland McGrath 已提交
2189
	unsigned long ncsw;
2190
	struct rq *rq;
L
Linus Torvalds 已提交
2191

2192 2193 2194 2195 2196 2197 2198 2199
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
2200

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
2212 2213 2214
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
2215
			cpu_relax();
R
Roland McGrath 已提交
2216
		}
2217

2218 2219 2220 2221 2222 2223
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
2224
		trace_sched_wait_task(rq, p);
2225 2226
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
R
Roland McGrath 已提交
2227
		ncsw = 0;
2228
		if (!match_state || p->state == match_state)
2229
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2230
		task_rq_unlock(rq, &flags);
2231

R
Roland McGrath 已提交
2232 2233 2234 2235 2236 2237
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
2248

2249 2250 2251 2252 2253
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
2254
		 * So if it was still runnable (but just not actively
2255 2256 2257 2258 2259 2260 2261
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
2262

2263 2264 2265 2266 2267 2268 2269
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
2270 2271

	return ncsw;
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
2287
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
2297
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
2298
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
2299

T
Thomas Gleixner 已提交
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * task_oncpu_function_call - call a function on the cpu on which a task runs
 * @p:		the task to evaluate
 * @func:	the function to be called
 * @info:	the function call argument
 *
 * Calls the function @func when the task is currently running. This might
 * be on the current CPU, which just calls the function directly
 */
void task_oncpu_function_call(struct task_struct *p,
			      void (*func) (void *info), void *info)
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if (task_curr(p))
		smp_call_function_single(cpu, func, info, 1);
	preempt_enable();
}

2321 2322 2323 2324 2325 2326 2327 2328
#ifdef CONFIG_SMP
static inline
int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
{
	return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
}
#endif

L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
P
Peter Zijlstra 已提交
2343 2344
static int try_to_wake_up(struct task_struct *p, unsigned int state,
			  int wake_flags)
L
Linus Torvalds 已提交
2345
{
2346
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
2347
	unsigned long flags;
2348
	struct rq *rq, *orig_rq;
L
Linus Torvalds 已提交
2349

2350
	if (!sched_feat(SYNC_WAKEUPS))
P
Peter Zijlstra 已提交
2351
		wake_flags &= ~WF_SYNC;
P
Peter Zijlstra 已提交
2352

P
Peter Zijlstra 已提交
2353
	this_cpu = get_cpu();
P
Peter Zijlstra 已提交
2354

2355
	smp_wmb();
2356
	rq = orig_rq = task_rq_lock(p, &flags);
2357
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2358
	if (!(p->state & state))
L
Linus Torvalds 已提交
2359 2360
		goto out;

I
Ingo Molnar 已提交
2361
	if (p->se.on_rq)
L
Linus Torvalds 已提交
2362 2363 2364
		goto out_running;

	cpu = task_cpu(p);
2365
	orig_cpu = cpu;
L
Linus Torvalds 已提交
2366 2367 2368 2369 2370

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

P
Peter Zijlstra 已提交
2371 2372 2373
	/*
	 * In order to handle concurrent wakeups and release the rq->lock
	 * we put the task in TASK_WAKING state.
2374 2375
	 *
	 * First fix up the nr_uninterruptible count:
P
Peter Zijlstra 已提交
2376
	 */
2377 2378
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;
P
Peter Zijlstra 已提交
2379
	p->state = TASK_WAKING;
P
Peter Zijlstra 已提交
2380
	__task_rq_unlock(rq);
P
Peter Zijlstra 已提交
2381

2382
	cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
P
Peter Zijlstra 已提交
2383
	if (cpu != orig_cpu)
2384
		set_task_cpu(p, cpu);
P
Peter Zijlstra 已提交
2385 2386 2387

	rq = __task_rq_lock(p);
	update_rq_clock(rq);
2388

P
Peter Zijlstra 已提交
2389 2390
	WARN_ON(p->state != TASK_WAKING);
	cpu = task_cpu(p);
L
Linus Torvalds 已提交
2391

2392 2393 2394 2395 2396 2397 2398
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
2399
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2400 2401 2402 2403 2404
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
2405
#endif /* CONFIG_SCHEDSTATS */
2406

L
Linus Torvalds 已提交
2407 2408
out_activate:
#endif /* CONFIG_SMP */
2409
	schedstat_inc(p, se.nr_wakeups);
P
Peter Zijlstra 已提交
2410
	if (wake_flags & WF_SYNC)
2411 2412 2413 2414 2415 2416 2417
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
2418
	activate_task(rq, p, 1);
L
Linus Torvalds 已提交
2419 2420
	success = 1;

P
Peter Zijlstra 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	/*
	 * Only attribute actual wakeups done by this task.
	 */
	if (!in_interrupt()) {
		struct sched_entity *se = &current->se;
		u64 sample = se->sum_exec_runtime;

		if (se->last_wakeup)
			sample -= se->last_wakeup;
		else
			sample -= se->start_runtime;
		update_avg(&se->avg_wakeup, sample);

		se->last_wakeup = se->sum_exec_runtime;
	}

L
Linus Torvalds 已提交
2437
out_running:
2438
	trace_sched_wakeup(rq, p, success);
P
Peter Zijlstra 已提交
2439
	check_preempt_curr(rq, p, wake_flags);
I
Ingo Molnar 已提交
2440

L
Linus Torvalds 已提交
2441
	p->state = TASK_RUNNING;
2442 2443 2444
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	if (unlikely(rq->idle_stamp)) {
		u64 delta = rq->clock - rq->idle_stamp;
		u64 max = 2*sysctl_sched_migration_cost;

		if (delta > max)
			rq->avg_idle = max;
		else
			update_avg(&rq->avg_idle, delta);
		rq->idle_stamp = 0;
	}
2456
#endif
L
Linus Torvalds 已提交
2457 2458
out:
	task_rq_unlock(rq, &flags);
P
Peter Zijlstra 已提交
2459
	put_cpu();
L
Linus Torvalds 已提交
2460 2461 2462 2463

	return success;
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
 * processes.  Returns 1 if the process was woken up, 0 if it was already
 * running.
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
2475
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
2476
{
2477
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
2478 2479 2480
}
EXPORT_SYMBOL(wake_up_process);

2481
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
2489 2490 2491 2492 2493 2494 2495
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
2496
	p->se.prev_sum_exec_runtime	= 0;
2497
	p->se.nr_migrations		= 0;
I
Ingo Molnar 已提交
2498 2499
	p->se.last_wakeup		= 0;
	p->se.avg_overlap		= 0;
P
Peter Zijlstra 已提交
2500 2501
	p->se.start_runtime		= 0;
	p->se.avg_wakeup		= sysctl_sched_wakeup_granularity;
I
Ingo Molnar 已提交
2502 2503

#ifdef CONFIG_SCHEDSTATS
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
	p->se.wait_start			= 0;
	p->se.wait_max				= 0;
	p->se.wait_count			= 0;
	p->se.wait_sum				= 0;

	p->se.sleep_start			= 0;
	p->se.sleep_max				= 0;
	p->se.sum_sleep_runtime			= 0;

	p->se.block_start			= 0;
	p->se.block_max				= 0;
	p->se.exec_max				= 0;
	p->se.slice_max				= 0;

	p->se.nr_migrations_cold		= 0;
	p->se.nr_failed_migrations_affine	= 0;
	p->se.nr_failed_migrations_running	= 0;
	p->se.nr_failed_migrations_hot		= 0;
	p->se.nr_forced_migrations		= 0;
	p->se.nr_forced2_migrations		= 0;

	p->se.nr_wakeups			= 0;
	p->se.nr_wakeups_sync			= 0;
	p->se.nr_wakeups_migrate		= 0;
	p->se.nr_wakeups_local			= 0;
	p->se.nr_wakeups_remote			= 0;
	p->se.nr_wakeups_affine			= 0;
	p->se.nr_wakeups_affine_attempts	= 0;
	p->se.nr_wakeups_passive		= 0;
	p->se.nr_wakeups_idle			= 0;

I
Ingo Molnar 已提交
2535
#endif
N
Nick Piggin 已提交
2536

P
Peter Zijlstra 已提交
2537
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
2538
	p->se.on_rq = 0;
2539
	INIT_LIST_HEAD(&p->se.group_node);
N
Nick Piggin 已提交
2540

2541 2542 2543 2544
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550 2551
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

2563 2564 2565 2566
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
2567
		if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2568
			p->policy = SCHED_NORMAL;
2569 2570
			p->normal_prio = p->static_prio;
		}
2571

2572 2573
		if (PRIO_TO_NICE(p->static_prio) < 0) {
			p->static_prio = NICE_TO_PRIO(0);
2574
			p->normal_prio = p->static_prio;
2575 2576 2577
			set_load_weight(p);
		}

2578 2579 2580 2581 2582 2583
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
2584

2585 2586 2587 2588 2589
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

H
Hiroshi Shimamoto 已提交
2590 2591
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
2592

P
Peter Zijlstra 已提交
2593 2594 2595
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

2596
#ifdef CONFIG_SMP
2597
	cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2598 2599 2600
#endif
	set_task_cpu(p, cpu);

2601
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
2602
	if (likely(sched_info_on()))
2603
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
2604
#endif
2605
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2606 2607
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
2608
#ifdef CONFIG_PREEMPT
2609
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
2610
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
2611
#endif
2612 2613
	plist_node_init(&p->pushable_tasks, MAX_PRIO);

N
Nick Piggin 已提交
2614
	put_cpu();
L
Linus Torvalds 已提交
2615 2616 2617 2618 2619 2620 2621 2622 2623
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2624
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2625 2626
{
	unsigned long flags;
I
Ingo Molnar 已提交
2627
	struct rq *rq;
L
Linus Torvalds 已提交
2628 2629

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2630
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2631
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2632
	activate_task(rq, p, 0);
2633
	trace_sched_wakeup_new(rq, p, 1);
P
Peter Zijlstra 已提交
2634
	check_preempt_curr(rq, p, WF_FORK);
2635 2636 2637 2638
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2639
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2640 2641
}

2642 2643 2644
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2645
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2646
 * @notifier: notifier struct to register
2647 2648 2649 2650 2651 2652 2653 2654 2655
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2656
 * @notifier: notifier struct to unregister
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

2686
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2698
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2699

2700 2701 2702
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2703
 * @prev: the current task that is being switched out
2704 2705 2706 2707 2708 2709 2710 2711 2712
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2713 2714 2715
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2716
{
2717
	fire_sched_out_preempt_notifiers(prev, next);
2718 2719 2720 2721
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2722 2723
/**
 * finish_task_switch - clean up after a task-switch
2724
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2725 2726
 * @prev: the thread we just switched away from.
 *
2727 2728 2729 2730
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2731 2732
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2733
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2734 2735 2736
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2737
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2738 2739 2740
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2741
	long prev_state;
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2747
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2748 2749
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2750
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2751 2752 2753 2754 2755
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2756
	prev_state = prev->state;
2757
	finish_arch_switch(prev);
2758
	perf_event_task_sched_in(current, cpu_of(rq));
2759
	finish_lock_switch(rq, prev);
S
Steven Rostedt 已提交
2760

2761
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2762 2763
	if (mm)
		mmdrop(mm);
2764
	if (unlikely(prev_state == TASK_DEAD)) {
2765 2766 2767
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2768
		 */
2769
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2770
		put_task_struct(prev);
2771
	}
L
Linus Torvalds 已提交
2772 2773
}

2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
#ifdef CONFIG_SMP

/* assumes rq->lock is held */
static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
{
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
}

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

		spin_lock_irqsave(&rq->lock, flags);
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
		spin_unlock_irqrestore(&rq->lock, flags);

		rq->post_schedule = 0;
	}
}

#else
2799

2800 2801 2802 2803 2804 2805
static inline void pre_schedule(struct rq *rq, struct task_struct *p)
{
}

static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2806 2807
}

2808 2809
#endif

L
Linus Torvalds 已提交
2810 2811 2812 2813
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2814
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2815 2816
	__releases(rq->lock)
{
2817 2818
	struct rq *rq = this_rq();

2819
	finish_task_switch(rq, prev);
2820

2821 2822 2823 2824 2825
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2826

2827 2828 2829 2830
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2831
	if (current->set_child_tid)
2832
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2833 2834 2835 2836 2837 2838
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2839
static inline void
2840
context_switch(struct rq *rq, struct task_struct *prev,
2841
	       struct task_struct *next)
L
Linus Torvalds 已提交
2842
{
I
Ingo Molnar 已提交
2843
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2844

2845
	prepare_task_switch(rq, prev, next);
2846
	trace_sched_switch(rq, prev, next);
I
Ingo Molnar 已提交
2847 2848
	mm = next->mm;
	oldmm = prev->active_mm;
2849 2850 2851 2852 2853
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2854
	arch_start_context_switch(prev);
2855

2856
	if (likely(!mm)) {
L
Linus Torvalds 已提交
2857 2858 2859 2860 2861 2862
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2863
	if (likely(!prev->mm)) {
L
Linus Torvalds 已提交
2864 2865 2866
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2867 2868 2869 2870 2871 2872 2873
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2874
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2875
#endif
L
Linus Torvalds 已提交
2876 2877 2878 2879

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2880 2881 2882 2883 2884 2885 2886
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2910
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2925 2926
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2927

2928
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2929 2930 2931 2932 2933 2934 2935 2936 2937
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2938
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2939 2940 2941 2942 2943
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
unsigned long nr_iowait_cpu(void)
{
	struct rq *this = this_rq();
	return atomic_read(&this->nr_iowait);
}

unsigned long this_cpu_load(void)
{
	struct rq *this = this_rq();
	return this->cpu_load[0];
}


2957 2958 2959 2960 2961 2962
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun);

2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

2978 2979
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
2980
{
2981 2982 2983 2984
	load *= exp;
	load += active * (FIXED_1 - exp);
	return load >> FSHIFT;
}
2985

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 */
void calc_global_load(void)
{
	unsigned long upd = calc_load_update + 10;
	long active;

	if (time_before(jiffies, upd))
		return;
2997

2998 2999
	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;
3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	calc_load_update += LOAD_FREQ;
}

/*
 * Either called from update_cpu_load() or from a cpu going idle
 */
static void calc_load_account_active(struct rq *this_rq)
{
	long nr_active, delta;

	nr_active = this_rq->nr_running;
	nr_active += (long) this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
		atomic_long_add(delta, &calc_load_tasks);
	}
3023 3024
}

3025
/*
I
Ingo Molnar 已提交
3026 3027
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
3028
 */
I
Ingo Molnar 已提交
3029
static void update_cpu_load(struct rq *this_rq)
3030
{
3031
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
3044 3045 3046 3047 3048 3049 3050
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
3051 3052
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
3053 3054 3055 3056 3057

	if (time_after_eq(jiffies, this_rq->calc_load_update)) {
		this_rq->calc_load_update += LOAD_FREQ;
		calc_load_account_active(this_rq);
	}
3058 3059
}

I
Ingo Molnar 已提交
3060 3061
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
3062 3063 3064 3065 3066 3067
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
3068
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3069 3070 3071
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
3072
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
3073 3074 3075 3076
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
3077
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
3078
			spin_lock(&rq1->lock);
3079
			spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3080 3081
		} else {
			spin_lock(&rq2->lock);
3082
			spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
L
Linus Torvalds 已提交
3083 3084
		}
	}
3085 3086
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
3087 3088 3089 3090 3091 3092 3093 3094
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
3095
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
3109
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
3110 3111
 * the cpu_allowed mask is restored.
 */
3112
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
3113
{
3114
	struct migration_req req;
L
Linus Torvalds 已提交
3115
	unsigned long flags;
3116
	struct rq *rq;
L
Linus Torvalds 已提交
3117 3118

	rq = task_rq_lock(p, &flags);
3119
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3120
	    || unlikely(!cpu_active(dest_cpu)))
L
Linus Torvalds 已提交
3121 3122 3123 3124 3125 3126
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
3127

L
Linus Torvalds 已提交
3128 3129 3130 3131 3132
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
3133

L
Linus Torvalds 已提交
3134 3135 3136 3137 3138 3139 3140
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
3141 3142
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
3143 3144 3145 3146
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
3147
	new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
L
Linus Torvalds 已提交
3148
	put_cpu();
N
Nick Piggin 已提交
3149 3150
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
3151 3152 3153 3154 3155 3156
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
3157 3158
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
3159
{
3160
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
3161
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
3162
	activate_task(this_rq, p, 0);
3163
	check_preempt_curr(this_rq, p, 0);
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
3169
static
3170
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
3171
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
3172
		     int *all_pinned)
L
Linus Torvalds 已提交
3173
{
3174
	int tsk_cache_hot = 0;
L
Linus Torvalds 已提交
3175 3176 3177 3178 3179 3180
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
3181
	if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3182
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
3183
		return 0;
3184
	}
3185 3186
	*all_pinned = 0;

3187 3188
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
3189
		return 0;
3190
	}
L
Linus Torvalds 已提交
3191

3192 3193 3194 3195 3196 3197
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

3198 3199 3200
	tsk_cache_hot = task_hot(p, rq->clock, sd);
	if (!tsk_cache_hot ||
		sd->nr_balance_failed > sd->cache_nice_tries) {
3201
#ifdef CONFIG_SCHEDSTATS
3202
		if (tsk_cache_hot) {
3203
			schedstat_inc(sd, lb_hot_gained[idle]);
3204 3205
			schedstat_inc(p, se.nr_forced_migrations);
		}
3206 3207 3208 3209
#endif
		return 1;
	}

3210
	if (tsk_cache_hot) {
3211
		schedstat_inc(p, se.nr_failed_migrations_hot);
3212
		return 0;
3213
	}
L
Linus Torvalds 已提交
3214 3215 3216
	return 1;
}

3217 3218 3219 3220 3221
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
3222
{
3223
	int loops = 0, pulled = 0, pinned = 0;
I
Ingo Molnar 已提交
3224 3225
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
3226

3227
	if (max_load_move == 0)
L
Linus Torvalds 已提交
3228 3229
		goto out;

3230 3231
	pinned = 1;

L
Linus Torvalds 已提交
3232
	/*
I
Ingo Molnar 已提交
3233
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
3234
	 */
I
Ingo Molnar 已提交
3235 3236
	p = iterator->start(iterator->arg);
next:
3237
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
3238
		goto out;
3239 3240

	if ((p->se.load.weight >> 1) > rem_load_move ||
I
Ingo Molnar 已提交
3241 3242 3243
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3244 3245
	}

I
Ingo Molnar 已提交
3246
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
3247
	pulled++;
I
Ingo Molnar 已提交
3248
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
#ifdef CONFIG_PREEMPT
	/*
	 * NEWIDLE balancing is a source of latency, so preemptible kernels
	 * will stop after the first task is pulled to minimize the critical
	 * section.
	 */
	if (idle == CPU_NEWLY_IDLE)
		goto out;
#endif

3260
	/*
3261
	 * We only want to steal up to the prescribed amount of weighted load.
3262
	 */
3263
	if (rem_load_move > 0) {
3264 3265
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
3266 3267
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
3268 3269 3270
	}
out:
	/*
3271
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
3272 3273 3274 3275
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
3276 3277 3278

	if (all_pinned)
		*all_pinned = pinned;
3279 3280

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
3281 3282
}

I
Ingo Molnar 已提交
3283
/*
P
Peter Williams 已提交
3284 3285 3286
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
3287 3288 3289 3290
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
3291
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
3292 3293 3294
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
3295
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
3296
	unsigned long total_load_moved = 0;
3297
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
3298 3299

	do {
P
Peter Williams 已提交
3300 3301
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
3302
				max_load_move - total_load_moved,
3303
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
3304
		class = class->next;
3305

3306 3307 3308 3309 3310 3311
#ifdef CONFIG_PREEMPT
		/*
		 * NEWIDLE balancing is a source of latency, so preemptible
		 * kernels will stop after the first task is pulled to minimize
		 * the critical section.
		 */
3312 3313
		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
			break;
3314
#endif
P
Peter Williams 已提交
3315
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
3316

P
Peter Williams 已提交
3317 3318 3319
	return total_load_moved > 0;
}

3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
3356
	const struct sched_class *class;
P
Peter Williams 已提交
3357

3358
	for_each_class(class) {
3359
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
3360
			return 1;
3361
	}
P
Peter Williams 已提交
3362 3363

	return 0;
I
Ingo Molnar 已提交
3364
}
3365
/********** Helpers for find_busiest_group ************************/
L
Linus Torvalds 已提交
3366
/*
3367 3368
 * sd_lb_stats - Structure to store the statistics of a sched_domain
 * 		during load balancing.
L
Linus Torvalds 已提交
3369
 */
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387
struct sd_lb_stats {
	struct sched_group *busiest; /* Busiest group in this sd */
	struct sched_group *this;  /* Local group in this sd */
	unsigned long total_load;  /* Total load of all groups in sd */
	unsigned long total_pwr;   /*	Total power of all groups in sd */
	unsigned long avg_load;	   /* Average load across all groups in sd */

	/** Statistics of this group */
	unsigned long this_load;
	unsigned long this_load_per_task;
	unsigned long this_nr_running;

	/* Statistics of the busiest group */
	unsigned long max_load;
	unsigned long busiest_load_per_task;
	unsigned long busiest_nr_running;

	int group_imb; /* Is there imbalance in this sd */
3388
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3389 3390 3391 3392 3393 3394
	int power_savings_balance; /* Is powersave balance needed for this sd */
	struct sched_group *group_min; /* Least loaded group in sd */
	struct sched_group *group_leader; /* Group which relieves group_min */
	unsigned long min_load_per_task; /* load_per_task in group_min */
	unsigned long leader_nr_running; /* Nr running of group_leader */
	unsigned long min_nr_running; /* Nr running of group_min */
3395
#endif
3396
};
L
Linus Torvalds 已提交
3397

3398
/*
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
 * sg_lb_stats - stats of a sched_group required for load_balancing
 */
struct sg_lb_stats {
	unsigned long avg_load; /*Avg load across the CPUs of the group */
	unsigned long group_load; /* Total load over the CPUs of the group */
	unsigned long sum_nr_running; /* Nr tasks running in the group */
	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
	unsigned long group_capacity;
	int group_imb; /* Is there an imbalance in the group ? */
};
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
/**
 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 * @group: The group whose first cpu is to be returned.
 */
static inline unsigned int group_first_cpu(struct sched_group *group)
{
	return cpumask_first(sched_group_cpus(group));
}

/**
 * get_sd_load_idx - Obtain the load index for a given sched domain.
 * @sd: The sched_domain whose load_idx is to be obtained.
 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
 */
static inline int get_sd_load_idx(struct sched_domain *sd,
					enum cpu_idle_type idle)
{
	int load_idx;

	switch (idle) {
	case CPU_NOT_IDLE:
N
Nick Piggin 已提交
3431
		load_idx = sd->busy_idx;
3432 3433 3434
		break;

	case CPU_NEWLY_IDLE:
N
Nick Piggin 已提交
3435
		load_idx = sd->newidle_idx;
3436 3437
		break;
	default:
N
Nick Piggin 已提交
3438
		load_idx = sd->idle_idx;
3439 3440
		break;
	}
L
Linus Torvalds 已提交
3441

3442 3443
	return load_idx;
}
L
Linus Torvalds 已提交
3444 3445


3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * init_sd_power_savings_stats - Initialize power savings statistics for
 * the given sched_domain, during load balancing.
 *
 * @sd: Sched domain whose power-savings statistics are to be initialized.
 * @sds: Variable containing the statistics for sd.
 * @idle: Idle status of the CPU at which we're performing load-balancing.
 */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	/*
	 * Busy processors will not participate in power savings
	 * balance.
	 */
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
		sds->power_savings_balance = 0;
	else {
		sds->power_savings_balance = 1;
		sds->min_nr_running = ULONG_MAX;
		sds->leader_nr_running = 0;
	}
}
3470

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
/**
 * update_sd_power_savings_stats - Update the power saving stats for a
 * sched_domain while performing load balancing.
 *
 * @group: sched_group belonging to the sched_domain under consideration.
 * @sds: Variable containing the statistics of the sched_domain
 * @local_group: Does group contain the CPU for which we're performing
 * 		load balancing ?
 * @sgs: Variable containing the statistics of the group.
 */
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
3484

3485 3486
	if (!sds->power_savings_balance)
		return;
L
Linus Torvalds 已提交
3487

3488 3489 3490 3491 3492 3493 3494
	/*
	 * If the local group is idle or completely loaded
	 * no need to do power savings balance at this domain
	 */
	if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
				!sds->this_nr_running))
		sds->power_savings_balance = 0;
3495

3496 3497 3498 3499 3500 3501 3502 3503
	/*
	 * If a group is already running at full capacity or idle,
	 * don't include that group in power savings calculations
	 */
	if (!sds->power_savings_balance ||
		sgs->sum_nr_running >= sgs->group_capacity ||
		!sgs->sum_nr_running)
		return;
N
Nick Piggin 已提交
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	/*
	 * Calculate the group which has the least non-idle load.
	 * This is the group from where we need to pick up the load
	 * for saving power
	 */
	if ((sgs->sum_nr_running < sds->min_nr_running) ||
	    (sgs->sum_nr_running == sds->min_nr_running &&
	     group_first_cpu(group) > group_first_cpu(sds->group_min))) {
		sds->group_min = group;
		sds->min_nr_running = sgs->sum_nr_running;
		sds->min_load_per_task = sgs->sum_weighted_load /
						sgs->sum_nr_running;
	}
3518

3519 3520 3521 3522 3523
	/*
	 * Calculate the group which is almost near its
	 * capacity but still has some space to pick up some load
	 * from other group and save more power
	 */
3524
	if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3525
		return;
L
Linus Torvalds 已提交
3526

3527 3528 3529 3530 3531 3532 3533
	if (sgs->sum_nr_running > sds->leader_nr_running ||
	    (sgs->sum_nr_running == sds->leader_nr_running &&
	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
		sds->group_leader = group;
		sds->leader_nr_running = sgs->sum_nr_running;
	}
}
3534

3535
/**
3536
 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3537 3538 3539 3540 3541
 * @sds: Variable containing the statistics of the sched_domain
 *	under consideration.
 * @this_cpu: Cpu at which we're currently performing load-balancing.
 * @imbalance: Variable to store the imbalance.
 *
3542 3543 3544 3545 3546
 * Description:
 * Check if we have potential to perform some power-savings balance.
 * If yes, set the busiest group to be the least loaded group in the
 * sched_domain, so that it's CPUs can be put to idle.
 *
3547 3548 3549 3550 3551 3552 3553 3554
 * Returns 1 if there is potential to perform power-savings balance.
 * Else returns 0.
 */
static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	if (!sds->power_savings_balance)
		return 0;
L
Linus Torvalds 已提交
3555

3556 3557 3558
	if (sds->this != sds->group_leader ||
			sds->group_leader == sds->group_min)
		return 0;
3559

3560 3561
	*imbalance = sds->min_load_per_task;
	sds->busiest = sds->group_min;
L
Linus Torvalds 已提交
3562

3563
	return 1;
L
Linus Torvalds 已提交
3564

3565 3566 3567 3568 3569 3570 3571
}
#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
static inline void init_sd_power_savings_stats(struct sched_domain *sd,
	struct sd_lb_stats *sds, enum cpu_idle_type idle)
{
	return;
}
3572

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
static inline void update_sd_power_savings_stats(struct sched_group *group,
	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
{
	return;
}

static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
					int this_cpu, unsigned long *imbalance)
{
	return 0;
}
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597

unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return SCHED_LOAD_SCALE;
}

unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
{
	return default_scale_freq_power(sd, cpu);
}

unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3598 3599 3600 3601 3602 3603 3604 3605 3606
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long smt_gain = sd->smt_gain;

	smt_gain /= weight;

	return smt_gain;
}

3607 3608 3609 3610 3611
unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
{
	return default_scale_smt_power(sd, cpu);
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
unsigned long scale_rt_power(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 total, available;

	sched_avg_update(rq);

	total = sched_avg_period() + (rq->clock - rq->age_stamp);
	available = total - rq->rt_avg;

	if (unlikely((s64)total < SCHED_LOAD_SCALE))
		total = SCHED_LOAD_SCALE;

	total >>= SCHED_LOAD_SHIFT;

	return div_u64(available, total);
}

3630 3631 3632 3633 3634 3635
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
	unsigned long weight = cpumask_weight(sched_domain_span(sd));
	unsigned long power = SCHED_LOAD_SCALE;
	struct sched_group *sdg = sd->groups;

3636 3637 3638 3639 3640
	if (sched_feat(ARCH_POWER))
		power *= arch_scale_freq_power(sd, cpu);
	else
		power *= default_scale_freq_power(sd, cpu);

3641
	power >>= SCHED_LOAD_SHIFT;
3642 3643

	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3644 3645 3646 3647 3648
		if (sched_feat(ARCH_POWER))
			power *= arch_scale_smt_power(sd, cpu);
		else
			power *= default_scale_smt_power(sd, cpu);

3649 3650 3651
		power >>= SCHED_LOAD_SHIFT;
	}

3652 3653 3654 3655 3656
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;

	if (!power)
		power = 1;
3657

3658
	sdg->cpu_power = power;
3659 3660 3661
}

static void update_group_power(struct sched_domain *sd, int cpu)
3662 3663 3664
{
	struct sched_domain *child = sd->child;
	struct sched_group *group, *sdg = sd->groups;
3665
	unsigned long power;
3666 3667

	if (!child) {
3668
		update_cpu_power(sd, cpu);
3669 3670 3671
		return;
	}

3672
	power = 0;
3673 3674 3675

	group = child->groups;
	do {
3676
		power += group->cpu_power;
3677 3678
		group = group->next;
	} while (group != child->groups);
3679 3680

	sdg->cpu_power = power;
3681
}
3682

3683 3684
/**
 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3685
 * @sd: The sched_domain whose statistics are to be updated.
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
 * @group: sched_group whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @load_idx: Load index of sched_domain of this_cpu for load calc.
 * @sd_idle: Idle status of the sched_domain containing group.
 * @local_group: Does group contain this_cpu.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sgs: variable to hold the statistics for this group.
 */
3696 3697
static inline void update_sg_lb_stats(struct sched_domain *sd,
			struct sched_group *group, int this_cpu,
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
			enum cpu_idle_type idle, int load_idx, int *sd_idle,
			int local_group, const struct cpumask *cpus,
			int *balance, struct sg_lb_stats *sgs)
{
	unsigned long load, max_cpu_load, min_cpu_load;
	int i;
	unsigned int balance_cpu = -1, first_idle_cpu = 0;
	unsigned long sum_avg_load_per_task;
	unsigned long avg_load_per_task;

3708
	if (local_group) {
3709
		balance_cpu = group_first_cpu(group);
3710
		if (balance_cpu == this_cpu)
3711
			update_group_power(sd, this_cpu);
3712
	}
3713 3714 3715 3716 3717

	/* Tally up the load of all CPUs in the group */
	sum_avg_load_per_task = avg_load_per_task = 0;
	max_cpu_load = 0;
	min_cpu_load = ~0UL;
3718

3719 3720
	for_each_cpu_and(i, sched_group_cpus(group), cpus) {
		struct rq *rq = cpu_rq(i);
3721

3722 3723
		if (*sd_idle && rq->nr_running)
			*sd_idle = 0;
3724

3725
		/* Bias balancing toward cpus of our domain */
L
Linus Torvalds 已提交
3726
		if (local_group) {
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
			if (idle_cpu(i) && !first_idle_cpu) {
				first_idle_cpu = 1;
				balance_cpu = i;
			}

			load = target_load(i, load_idx);
		} else {
			load = source_load(i, load_idx);
			if (load > max_cpu_load)
				max_cpu_load = load;
			if (min_cpu_load > load)
				min_cpu_load = load;
L
Linus Torvalds 已提交
3739
		}
3740

3741 3742 3743
		sgs->group_load += load;
		sgs->sum_nr_running += rq->nr_running;
		sgs->sum_weighted_load += weighted_cpuload(i);
3744

3745 3746
		sum_avg_load_per_task += cpu_avg_load_per_task(i);
	}
3747

3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	/*
	 * First idle cpu or the first cpu(busiest) in this sched group
	 * is eligible for doing load balancing at this and above
	 * domains. In the newly idle case, we will allow all the cpu's
	 * to do the newly idle load balance.
	 */
	if (idle != CPU_NEWLY_IDLE && local_group &&
	    balance_cpu != this_cpu && balance) {
		*balance = 0;
		return;
	}
3759

3760
	/* Adjust by relative CPU power of the group */
3761
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3762

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772

	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * than the average weight of two tasks.
	 *
	 * APZ: with cgroup the avg task weight can vary wildly and
	 *      might not be a suitable number - should we keep a
	 *      normalized nr_running number somewhere that negates
	 *      the hierarchy?
	 */
3773 3774
	avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
		group->cpu_power;
3775 3776 3777 3778

	if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
		sgs->group_imb = 1;

3779
	sgs->group_capacity =
3780
		DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3781
}
I
Ingo Molnar 已提交
3782

3783 3784 3785 3786 3787 3788 3789 3790 3791
/**
 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
 * @sd: sched_domain whose statistics are to be updated.
 * @this_cpu: Cpu for which load balance is currently performed.
 * @idle: Idle status of this_cpu
 * @sd_idle: Idle status of the sched_domain containing group.
 * @cpus: Set of cpus considered for load balancing.
 * @balance: Should we balance.
 * @sds: variable to hold the statistics for this sched_domain.
L
Linus Torvalds 已提交
3792
 */
3793 3794 3795 3796
static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
			enum cpu_idle_type idle, int *sd_idle,
			const struct cpumask *cpus, int *balance,
			struct sd_lb_stats *sds)
L
Linus Torvalds 已提交
3797
{
P
Peter Zijlstra 已提交
3798
	struct sched_domain *child = sd->child;
3799
	struct sched_group *group = sd->groups;
3800
	struct sg_lb_stats sgs;
P
Peter Zijlstra 已提交
3801 3802 3803 3804
	int load_idx, prefer_sibling = 0;

	if (child && child->flags & SD_PREFER_SIBLING)
		prefer_sibling = 1;
3805

3806
	init_sd_power_savings_stats(sd, sds, idle);
3807
	load_idx = get_sd_load_idx(sd, idle);
L
Linus Torvalds 已提交
3808 3809 3810 3811

	do {
		int local_group;

3812 3813
		local_group = cpumask_test_cpu(this_cpu,
					       sched_group_cpus(group));
3814
		memset(&sgs, 0, sizeof(sgs));
3815
		update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3816
				local_group, cpus, balance, &sgs);
L
Linus Torvalds 已提交
3817

3818 3819
		if (local_group && balance && !(*balance))
			return;
3820

3821
		sds->total_load += sgs.group_load;
3822
		sds->total_pwr += group->cpu_power;
L
Linus Torvalds 已提交
3823

P
Peter Zijlstra 已提交
3824 3825 3826 3827 3828 3829
		/*
		 * In case the child domain prefers tasks go to siblings
		 * first, lower the group capacity to one so that we'll try
		 * and move all the excess tasks away.
		 */
		if (prefer_sibling)
3830
			sgs.group_capacity = min(sgs.group_capacity, 1UL);
L
Linus Torvalds 已提交
3831 3832

		if (local_group) {
3833 3834 3835 3836 3837
			sds->this_load = sgs.avg_load;
			sds->this = group;
			sds->this_nr_running = sgs.sum_nr_running;
			sds->this_load_per_task = sgs.sum_weighted_load;
		} else if (sgs.avg_load > sds->max_load &&
3838 3839
			   (sgs.sum_nr_running > sgs.group_capacity ||
				sgs.group_imb)) {
3840 3841 3842 3843 3844
			sds->max_load = sgs.avg_load;
			sds->busiest = group;
			sds->busiest_nr_running = sgs.sum_nr_running;
			sds->busiest_load_per_task = sgs.sum_weighted_load;
			sds->group_imb = sgs.group_imb;
3845
		}
3846

3847
		update_sd_power_savings_stats(group, sds, local_group, &sgs);
L
Linus Torvalds 已提交
3848 3849
		group = group->next;
	} while (group != sd->groups);
3850
}
L
Linus Torvalds 已提交
3851

3852 3853
/**
 * fix_small_imbalance - Calculate the minor imbalance that exists
3854 3855
 *			amongst the groups of a sched_domain, during
 *			load balancing.
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873
 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
 * @imbalance: Variable to store the imbalance.
 */
static inline void fix_small_imbalance(struct sd_lb_stats *sds,
				int this_cpu, unsigned long *imbalance)
{
	unsigned long tmp, pwr_now = 0, pwr_move = 0;
	unsigned int imbn = 2;

	if (sds->this_nr_running) {
		sds->this_load_per_task /= sds->this_nr_running;
		if (sds->busiest_load_per_task >
				sds->this_load_per_task)
			imbn = 1;
	} else
		sds->this_load_per_task =
			cpu_avg_load_per_task(this_cpu);
L
Linus Torvalds 已提交
3874

3875 3876 3877 3878 3879
	if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
			sds->busiest_load_per_task * imbn) {
		*imbalance = sds->busiest_load_per_task;
		return;
	}
3880

L
Linus Torvalds 已提交
3881
	/*
3882 3883 3884
	 * OK, we don't have enough imbalance to justify moving tasks,
	 * however we may be able to increase total CPU power used by
	 * moving them.
L
Linus Torvalds 已提交
3885
	 */
3886

3887
	pwr_now += sds->busiest->cpu_power *
3888
			min(sds->busiest_load_per_task, sds->max_load);
3889
	pwr_now += sds->this->cpu_power *
3890 3891 3892 3893
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;

	/* Amount of load we'd subtract */
3894 3895
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		sds->busiest->cpu_power;
3896
	if (sds->max_load > tmp)
3897
		pwr_move += sds->busiest->cpu_power *
3898 3899 3900
			min(sds->busiest_load_per_task, sds->max_load - tmp);

	/* Amount of load we'd add */
3901
	if (sds->max_load * sds->busiest->cpu_power <
3902
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3903 3904
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
3905
	else
3906 3907 3908
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
3909 3910 3911 3912 3913 3914 3915
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;

	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
		*imbalance = sds->busiest_load_per_task;
}
3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927

/**
 * calculate_imbalance - Calculate the amount of imbalance present within the
 *			 groups of a given sched_domain during load balance.
 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
 * @this_cpu: Cpu for which currently load balance is being performed.
 * @imbalance: The variable to store the imbalance.
 */
static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		unsigned long *imbalance)
{
	unsigned long max_pull;
3928 3929 3930 3931 3932
	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
3933
	if (sds->max_load < sds->avg_load) {
3934
		*imbalance = 0;
3935
		return fix_small_imbalance(sds, this_cpu, imbalance);
3936
	}
3937 3938

	/* Don't want to pull so many tasks that a group would go idle */
3939 3940
	max_pull = min(sds->max_load - sds->avg_load,
			sds->max_load - sds->busiest_load_per_task);
3941

L
Linus Torvalds 已提交
3942
	/* How much load to actually move to equalise the imbalance */
3943 3944
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
L
Linus Torvalds 已提交
3945 3946
			/ SCHED_LOAD_SCALE;

3947 3948 3949 3950 3951 3952
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
3953 3954
	if (*imbalance < sds->busiest_load_per_task)
		return fix_small_imbalance(sds, this_cpu, imbalance);
L
Linus Torvalds 已提交
3955

3956
}
3957
/******* find_busiest_group() helpers end here *********************/
L
Linus Torvalds 已提交
3958

3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
/**
 * find_busiest_group - Returns the busiest group within the sched_domain
 * if there is an imbalance. If there isn't an imbalance, and
 * the user has opted for power-savings, it returns a group whose
 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
 * such a group exists.
 *
 * Also calculates the amount of weighted load which should be moved
 * to restore balance.
 *
 * @sd: The sched_domain whose busiest group is to be returned.
 * @this_cpu: The cpu for which load balancing is currently being performed.
 * @imbalance: Variable which stores amount of weighted load which should
 *		be moved to restore balance/put a group to idle.
 * @idle: The idle status of this_cpu.
 * @sd_idle: The idleness of sd
 * @cpus: The set of CPUs under consideration for load-balancing.
 * @balance: Pointer to a variable indicating if this_cpu
 *	is the appropriate cpu to perform load balancing at this_level.
 *
 * Returns:	- the busiest group if imbalance exists.
 *		- If no imbalance and user has opted for power-savings balance,
 *		   return the least loaded group whose CPUs can be
 *		   put to idle by rebalancing its tasks onto our group.
3983 3984 3985 3986 3987 3988 3989
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, const struct cpumask *cpus, int *balance)
{
	struct sd_lb_stats sds;
L
Linus Torvalds 已提交
3990

3991
	memset(&sds, 0, sizeof(sds));
L
Linus Torvalds 已提交
3992

3993 3994 3995 3996 3997 3998 3999
	/*
	 * Compute the various statistics relavent for load balancing at
	 * this level.
	 */
	update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
					balance, &sds);

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
	/* Cases where imbalance does not exist from POV of this_cpu */
	/* 1) this_cpu is not the appropriate cpu to perform load balancing
	 *    at this level.
	 * 2) There is no busy sibling group to pull from.
	 * 3) This group is the busiest group.
	 * 4) This group is more busy than the avg busieness at this
	 *    sched_domain.
	 * 5) The imbalance is within the specified limit.
	 * 6) Any rebalance would lead to ping-pong
	 */
4010 4011
	if (balance && !(*balance))
		goto ret;
L
Linus Torvalds 已提交
4012

4013 4014
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
L
Linus Torvalds 已提交
4015

4016
	if (sds.this_load >= sds.max_load)
L
Linus Torvalds 已提交
4017 4018
		goto out_balanced;

4019
	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
L
Linus Torvalds 已提交
4020

4021 4022 4023 4024
	if (sds.this_load >= sds.avg_load)
		goto out_balanced;

	if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
L
Linus Torvalds 已提交
4025 4026
		goto out_balanced;

4027 4028 4029 4030
	sds.busiest_load_per_task /= sds.busiest_nr_running;
	if (sds.group_imb)
		sds.busiest_load_per_task =
			min(sds.busiest_load_per_task, sds.avg_load);
4031

L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
4040
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
4041 4042
	 * appear as very large values with unsigned longs.
	 */
4043
	if (sds.max_load <= sds.busiest_load_per_task)
4044 4045
		goto out_balanced;

4046 4047
	/* Looks like there is an imbalance. Compute it */
	calculate_imbalance(&sds, this_cpu, imbalance);
4048
	return sds.busiest;
L
Linus Torvalds 已提交
4049 4050

out_balanced:
4051 4052 4053 4054 4055 4056
	/*
	 * There is no obvious imbalance. But check if we can do some balancing
	 * to save power.
	 */
	if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
		return sds.busiest;
4057
ret:
L
Linus Torvalds 已提交
4058 4059 4060 4061 4062 4063 4064
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
4065
static struct rq *
I
Ingo Molnar 已提交
4066
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4067
		   unsigned long imbalance, const struct cpumask *cpus)
L
Linus Torvalds 已提交
4068
{
4069
	struct rq *busiest = NULL, *rq;
4070
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
4071 4072
	int i;

4073
	for_each_cpu(i, sched_group_cpus(group)) {
4074 4075
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
I
Ingo Molnar 已提交
4076
		unsigned long wl;
4077

4078
		if (!cpumask_test_cpu(i, cpus))
4079 4080
			continue;

4081
		rq = cpu_rq(i);
4082 4083
		wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
		wl /= power;
4084

4085
		if (capacity && rq->nr_running == 1 && wl > imbalance)
4086
			continue;
L
Linus Torvalds 已提交
4087

I
Ingo Molnar 已提交
4088 4089
		if (wl > max_load) {
			max_load = wl;
4090
			busiest = rq;
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096
		}
	}

	return busiest;
}

4097 4098 4099 4100 4101 4102
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

4103 4104 4105
/* Working cpumask for load_balance and load_balance_newidle. */
static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);

L
Linus Torvalds 已提交
4106 4107 4108 4109
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
4110
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
4111
			struct sched_domain *sd, enum cpu_idle_type idle,
4112
			int *balance)
L
Linus Torvalds 已提交
4113
{
P
Peter Williams 已提交
4114
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
4115 4116
	struct sched_group *group;
	unsigned long imbalance;
4117
	struct rq *busiest;
4118
	unsigned long flags;
4119
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
N
Nick Piggin 已提交
4120

4121
	cpumask_copy(cpus, cpu_active_mask);
4122

4123 4124 4125
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
4126
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
4127
	 * portraying it as CPU_NOT_IDLE.
4128
	 */
I
Ingo Molnar 已提交
4129
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4130
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4131
		sd_idle = 1;
L
Linus Torvalds 已提交
4132

4133
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
4134

4135
redo:
4136
	update_shares(sd);
4137
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4138
				   cpus, balance);
4139

4140
	if (*balance == 0)
4141 4142
		goto out_balanced;

L
Linus Torvalds 已提交
4143 4144 4145 4146 4147
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

4148
	busiest = find_busiest_queue(group, idle, imbalance, cpus);
L
Linus Torvalds 已提交
4149 4150 4151 4152 4153
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
4154
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
4155 4156 4157

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
4158
	ld_moved = 0;
L
Linus Torvalds 已提交
4159 4160 4161 4162
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
4163
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
4164 4165
		 * correctly treated as an imbalance.
		 */
4166
		local_irq_save(flags);
N
Nick Piggin 已提交
4167
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
4168
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4169
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
4170
		double_rq_unlock(this_rq, busiest);
4171
		local_irq_restore(flags);
4172

4173 4174 4175
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
4176
		if (ld_moved && this_cpu != smp_processor_id())
4177 4178
			resched_cpu(this_cpu);

4179
		/* All tasks on this runqueue were pinned by CPU affinity */
4180
		if (unlikely(all_pinned)) {
4181 4182
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4183
				goto redo;
4184
			goto out_balanced;
4185
		}
L
Linus Torvalds 已提交
4186
	}
4187

P
Peter Williams 已提交
4188
	if (!ld_moved) {
L
Linus Torvalds 已提交
4189 4190 4191 4192 4193
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

4194
			spin_lock_irqsave(&busiest->lock, flags);
4195 4196 4197 4198

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
4199 4200
			if (!cpumask_test_cpu(this_cpu,
					      &busiest->curr->cpus_allowed)) {
4201
				spin_unlock_irqrestore(&busiest->lock, flags);
4202 4203 4204 4205
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
4206 4207 4208
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
4209
				active_balance = 1;
L
Linus Torvalds 已提交
4210
			}
4211
			spin_unlock_irqrestore(&busiest->lock, flags);
4212
			if (active_balance)
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217 4218
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
4219
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
4220
		}
4221
	} else
L
Linus Torvalds 已提交
4222 4223
		sd->nr_balance_failed = 0;

4224
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
4225 4226
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
4227 4228 4229 4230 4231 4232 4233 4234 4235
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
4236 4237
	}

P
Peter Williams 已提交
4238
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4239
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4240 4241 4242
		ld_moved = -1;

	goto out;
L
Linus Torvalds 已提交
4243 4244 4245 4246

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

4247
	sd->nr_balance_failed = 0;
4248 4249

out_one_pinned:
L
Linus Torvalds 已提交
4250
	/* tune up the balancing interval */
4251 4252
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
4253 4254
		sd->balance_interval *= 2;

4255
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4256
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4257 4258 4259 4260
		ld_moved = -1;
	else
		ld_moved = 0;
out:
4261 4262
	if (ld_moved)
		update_shares(sd);
4263
	return ld_moved;
L
Linus Torvalds 已提交
4264 4265 4266 4267 4268 4269
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
4270
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
4271 4272
 * this_rq is locked.
 */
4273
static int
4274
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
4275 4276
{
	struct sched_group *group;
4277
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
4278
	unsigned long imbalance;
P
Peter Williams 已提交
4279
	int ld_moved = 0;
N
Nick Piggin 已提交
4280
	int sd_idle = 0;
4281
	int all_pinned = 0;
4282
	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4283

4284
	cpumask_copy(cpus, cpu_active_mask);
N
Nick Piggin 已提交
4285

4286 4287 4288 4289
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
4290
	 * portraying it as CPU_NOT_IDLE.
4291 4292 4293
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4294
		sd_idle = 1;
L
Linus Torvalds 已提交
4295

4296
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4297
redo:
4298
	update_shares_locked(this_rq, sd);
I
Ingo Molnar 已提交
4299
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4300
				   &sd_idle, cpus, NULL);
L
Linus Torvalds 已提交
4301
	if (!group) {
I
Ingo Molnar 已提交
4302
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4303
		goto out_balanced;
L
Linus Torvalds 已提交
4304 4305
	}

4306
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
N
Nick Piggin 已提交
4307
	if (!busiest) {
I
Ingo Molnar 已提交
4308
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4309
		goto out_balanced;
L
Linus Torvalds 已提交
4310 4311
	}

N
Nick Piggin 已提交
4312 4313
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
4314
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4315

P
Peter Williams 已提交
4316
	ld_moved = 0;
4317 4318 4319
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
4320 4321
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
4322
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
4323 4324
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
4325
		double_unlock_balance(this_rq, busiest);
4326

4327
		if (unlikely(all_pinned)) {
4328 4329
			cpumask_clear_cpu(cpu_of(busiest), cpus);
			if (!cpumask_empty(cpus))
4330 4331
				goto redo;
		}
4332 4333
	}

P
Peter Williams 已提交
4334
	if (!ld_moved) {
4335
		int active_balance = 0;
4336

I
Ingo Molnar 已提交
4337
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4338 4339
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4340
			return -1;
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376

		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
			return -1;

		if (sd->nr_balance_failed++ < 2)
			return -1;

		/*
		 * The only task running in a non-idle cpu can be moved to this
		 * cpu in an attempt to completely freeup the other CPU
		 * package. The same method used to move task in load_balance()
		 * have been extended for load_balance_newidle() to speedup
		 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
		 *
		 * The package power saving logic comes from
		 * find_busiest_group().  If there are no imbalance, then
		 * f_b_g() will return NULL.  However when sched_mc={1,2} then
		 * f_b_g() will select a group from which a running task may be
		 * pulled to this cpu in order to make the other package idle.
		 * If there is no opportunity to make a package idle and if
		 * there are no imbalance, then f_b_g() will return NULL and no
		 * action will be taken in load_balance_newidle().
		 *
		 * Under normal task pull operation due to imbalance, there
		 * will be more than one task in the source run queue and
		 * move_tasks() will succeed.  ld_moved will be true and this
		 * active balance code will not be triggered.
		 */

		/* Lock busiest in correct order while this_rq is held */
		double_lock_balance(this_rq, busiest);

		/*
		 * don't kick the migration_thread, if the curr
		 * task on busiest cpu can't be moved to this_cpu
		 */
4377
		if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
			double_unlock_balance(this_rq, busiest);
			all_pinned = 1;
			return ld_moved;
		}

		if (!busiest->active_balance) {
			busiest->active_balance = 1;
			busiest->push_cpu = this_cpu;
			active_balance = 1;
		}

		double_unlock_balance(this_rq, busiest);
4390 4391 4392 4393
		/*
		 * Should not call ttwu while holding a rq->lock
		 */
		spin_unlock(&this_rq->lock);
4394 4395
		if (active_balance)
			wake_up_process(busiest->migration_thread);
4396
		spin_lock(&this_rq->lock);
4397

N
Nick Piggin 已提交
4398
	} else
4399
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
4400

4401
	update_shares_locked(this_rq, sd);
P
Peter Williams 已提交
4402
	return ld_moved;
4403 4404

out_balanced:
I
Ingo Molnar 已提交
4405
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4406
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4407
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
4408
		return -1;
4409
	sd->nr_balance_failed = 0;
4410

4411
	return 0;
L
Linus Torvalds 已提交
4412 4413 4414 4415 4416 4417
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
4418
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
4419 4420
{
	struct sched_domain *sd;
4421
	int pulled_task = 0;
I
Ingo Molnar 已提交
4422
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
4423

M
Mike Galbraith 已提交
4424 4425 4426 4427 4428
	this_rq->idle_stamp = this_rq->clock;

	if (this_rq->avg_idle < sysctl_sched_migration_cost)
		return;

L
Linus Torvalds 已提交
4429
	for_each_domain(this_cpu, sd) {
4430 4431 4432 4433 4434 4435
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
4436
			/* If we've pulled tasks over stop searching: */
4437
			pulled_task = load_balance_newidle(this_cpu, this_rq,
4438
							   sd);
4439 4440 4441 4442

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
M
Mike Galbraith 已提交
4443 4444
		if (pulled_task) {
			this_rq->idle_stamp = 0;
4445
			break;
M
Mike Galbraith 已提交
4446
		}
L
Linus Torvalds 已提交
4447
	}
I
Ingo Molnar 已提交
4448
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4449 4450 4451 4452 4453
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
4454
	}
L
Linus Torvalds 已提交
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
4465
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
4466
{
4467
	int target_cpu = busiest_rq->push_cpu;
4468 4469
	struct sched_domain *sd;
	struct rq *target_rq;
4470

4471
	/* Is there any task to move? */
4472 4473 4474 4475
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
4476 4477

	/*
4478
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
4479
	 * we need to fix it. Originally reported by
4480
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
4481
	 */
4482
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
4483

4484 4485
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
4486 4487
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
4488 4489

	/* Search for an sd spanning us and the target CPU. */
4490
	for_each_domain(target_cpu, sd) {
4491
		if ((sd->flags & SD_LOAD_BALANCE) &&
4492
		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4493
				break;
4494
	}
4495

4496
	if (likely(sd)) {
4497
		schedstat_inc(sd, alb_count);
4498

P
Peter Williams 已提交
4499 4500
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
4501 4502 4503 4504
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
4505
	double_unlock_balance(busiest_rq, target_rq);
L
Linus Torvalds 已提交
4506 4507
}

4508 4509 4510
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
4511
	cpumask_var_t cpu_mask;
4512
	cpumask_var_t ilb_grp_nohz_mask;
4513 4514 4515 4516
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
};

4517 4518 4519 4520 4521
int get_nohz_load_balancer(void)
{
	return atomic_read(&nohz.load_balancer);
}

4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
/**
 * lowest_flag_domain - Return lowest sched_domain containing flag.
 * @cpu:	The cpu whose lowest level of sched domain is to
 *		be returned.
 * @flag:	The flag to check for the lowest sched_domain
 *		for the given cpu.
 *
 * Returns the lowest sched_domain of a cpu which contains the given flag.
 */
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
{
	struct sched_domain *sd;

	for_each_domain(cpu, sd)
		if (sd && (sd->flags & flag))
			break;

	return sd;
}

/**
 * for_each_flag_domain - Iterates over sched_domains containing the flag.
 * @cpu:	The cpu whose domains we're iterating over.
 * @sd:		variable holding the value of the power_savings_sd
 *		for cpu.
 * @flag:	The flag to filter the sched_domains to be iterated.
 *
 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
 * set, starting from the lowest sched_domain to the highest.
 */
#define for_each_flag_domain(cpu, sd, flag) \
	for (sd = lowest_flag_domain(cpu, flag); \
		(sd && (sd->flags & flag)); sd = sd->parent)

/**
 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
 * @ilb_group:	group to be checked for semi-idleness
 *
 * Returns:	1 if the group is semi-idle. 0 otherwise.
 *
 * We define a sched_group to be semi idle if it has atleast one idle-CPU
 * and atleast one non-idle CPU. This helper function checks if the given
 * sched_group is semi-idle or not.
 */
static inline int is_semi_idle_group(struct sched_group *ilb_group)
{
	cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
					sched_group_cpus(ilb_group));

	/*
	 * A sched_group is semi-idle when it has atleast one busy cpu
	 * and atleast one idle cpu.
	 */
	if (cpumask_empty(nohz.ilb_grp_nohz_mask))
		return 0;

	if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
		return 0;

	return 1;
}
/**
 * find_new_ilb - Finds the optimum idle load balancer for nomination.
 * @cpu:	The cpu which is nominating a new idle_load_balancer.
 *
 * Returns:	Returns the id of the idle load balancer if it exists,
 *		Else, returns >= nr_cpu_ids.
 *
 * This algorithm picks the idle load balancer such that it belongs to a
 * semi-idle powersavings sched_domain. The idea is to try and avoid
 * completely idle packages/cores just for the purpose of idle load balancing
 * when there are other idle cpu's which are better suited for that job.
 */
static int find_new_ilb(int cpu)
{
	struct sched_domain *sd;
	struct sched_group *ilb_group;

	/*
	 * Have idle load balancer selection from semi-idle packages only
	 * when power-aware load balancing is enabled
	 */
	if (!(sched_smt_power_savings || sched_mc_power_savings))
		goto out_done;

	/*
	 * Optimize for the case when we have no idle CPUs or only one
	 * idle CPU. Don't walk the sched_domain hierarchy in such cases
	 */
	if (cpumask_weight(nohz.cpu_mask) < 2)
		goto out_done;

	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
		ilb_group = sd->groups;

		do {
			if (is_semi_idle_group(ilb_group))
				return cpumask_first(nohz.ilb_grp_nohz_mask);

			ilb_group = ilb_group->next;

		} while (ilb_group != sd->groups);
	}

out_done:
	return cpumask_first(nohz.cpu_mask);
}
#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
static inline int find_new_ilb(int call_cpu)
{
4633
	return cpumask_first(nohz.cpu_mask);
4634 4635 4636
}
#endif

4637
/*
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
4648
 *
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_rq(cpu)->in_nohz_recently = 1;

4664 4665 4666 4667 4668 4669 4670 4671
		if (!cpu_active(cpu)) {
			if (atomic_read(&nohz.load_balancer) != cpu)
				return 0;

			/*
			 * If we are going offline and still the leader,
			 * give up!
			 */
4672 4673
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
4674

4675 4676 4677
			return 0;
		}

4678 4679
		cpumask_set_cpu(cpu, nohz.cpu_mask);

4680
		/* time for ilb owner also to sleep */
4681
		if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4682 4683 4684 4685 4686 4687 4688 4689 4690
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
		} else if (atomic_read(&nohz.load_balancer) == cpu) {
			int new_ilb;

			if (!(sched_smt_power_savings ||
						sched_mc_power_savings))
				return 1;
			/*
			 * Check to see if there is a more power-efficient
			 * ilb.
			 */
			new_ilb = find_new_ilb(cpu);
			if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
				atomic_set(&nohz.load_balancer, -1);
				resched_cpu(new_ilb);
				return 0;
			}
4707
			return 1;
4708
		}
4709
	} else {
4710
		if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4711 4712
			return 0;

4713
		cpumask_clear_cpu(cpu, nohz.cpu_mask);
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
4726 4727 4728 4729 4730
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
4731
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4732
{
4733 4734
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
4735 4736
	unsigned long interval;
	struct sched_domain *sd;
4737
	/* Earliest time when we have to do rebalance again */
4738
	unsigned long next_balance = jiffies + 60*HZ;
4739
	int update_next_balance = 0;
4740
	int need_serialize;
L
Linus Torvalds 已提交
4741

4742
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
4743 4744 4745 4746
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
4747
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
4748 4749 4750 4751 4752 4753
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
4754 4755 4756
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

4757
		need_serialize = sd->flags & SD_SERIALIZE;
L
Linus Torvalds 已提交
4758

4759
		if (need_serialize) {
4760 4761 4762 4763
			if (!spin_trylock(&balancing))
				goto out;
		}

4764
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
4765
			if (load_balance(cpu, rq, sd, idle, &balance)) {
4766 4767
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
4768 4769 4770
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
4771
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
4772
			}
4773
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
4774
		}
4775
		if (need_serialize)
4776 4777
			spin_unlock(&balancing);
out:
4778
		if (time_after(next_balance, sd->last_balance + interval)) {
4779
			next_balance = sd->last_balance + interval;
4780 4781
			update_next_balance = 1;
		}
4782 4783 4784 4785 4786 4787 4788 4789

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
4790
	}
4791 4792 4793 4794 4795 4796 4797 4798

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
4799 4800 4801 4802 4803 4804 4805 4806 4807
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
4808 4809 4810 4811
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
4812

I
Ingo Molnar 已提交
4813
	rebalance_domains(this_cpu, idle);
4814 4815 4816 4817 4818 4819 4820

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
4821 4822
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
4823 4824 4825
		struct rq *rq;
		int balance_cpu;

4826 4827 4828 4829
		for_each_cpu(balance_cpu, nohz.cpu_mask) {
			if (balance_cpu == this_cpu)
				continue;

4830 4831 4832 4833 4834 4835 4836 4837
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

4838
			rebalance_domains(balance_cpu, CPU_IDLE);
4839 4840

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
4841 4842
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
4843 4844 4845 4846 4847
		}
	}
#endif
}

4848 4849 4850 4851 4852
static inline int on_null_domain(int cpu)
{
	return !rcu_dereference(cpu_rq(cpu)->sd);
}

4853 4854 4855 4856 4857 4858 4859
/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
4860
static inline void trigger_load_balance(struct rq *rq, int cpu)
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
4872
			cpumask_clear_cpu(cpu, nohz.cpu_mask);
4873 4874 4875 4876
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
4877
			int ilb = find_new_ilb(cpu);
4878

4879
			if (ilb < nr_cpu_ids)
4880 4881 4882 4883 4884 4885 4886 4887 4888
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4889
	    cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4890 4891 4892 4893 4894 4895 4896 4897 4898
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4899
	    cpumask_test_cpu(cpu, nohz.cpu_mask))
4900 4901
		return;
#endif
4902 4903 4904
	/* Don't need to rebalance while attached to NULL domain */
	if (time_after_eq(jiffies, rq->next_balance) &&
	    likely(!on_null_domain(cpu)))
4905
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
4906
}
I
Ingo Molnar 已提交
4907 4908 4909

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
4910 4911 4912
/*
 * on UP we do not need to balance between CPUs:
 */
4913
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
4914 4915
{
}
I
Ingo Molnar 已提交
4916

L
Linus Torvalds 已提交
4917 4918 4919 4920 4921 4922 4923
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
4924
 * Return any ns on the sched_clock that have not yet been accounted in
4925
 * @p in case that task is currently running.
4926 4927
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
4928
 */
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
		ns = rq->clock - p->se.exec_start;
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

4943
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
4944 4945
{
	unsigned long flags;
4946
	struct rq *rq;
4947
	u64 ns = 0;
4948

4949
	rq = task_rq_lock(p, &flags);
4950 4951
	ns = do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);
4952

4953 4954
	return ns;
}
4955

4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
	task_rq_unlock(rq, &flags);

	return ns;
}
4973

4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
/*
 * Return sum_exec_runtime for the thread group.
 * In case the task is currently running, return the sum plus current's
 * pending runtime that have not been accounted yet.
 *
 * Note that the thread group might have other running tasks as well,
 * so the return value not includes other pending runtime that other
 * running tasks might have.
 */
unsigned long long thread_group_sched_runtime(struct task_struct *p)
{
	struct task_cputime totals;
	unsigned long flags;
	struct rq *rq;
	u64 ns;

	rq = task_rq_lock(p, &flags);
	thread_group_cputime(p, &totals);
	ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4993
	task_rq_unlock(rq, &flags);
4994

L
Linus Torvalds 已提交
4995 4996 4997 4998 4999 5000 5001
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
5002
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5003
 */
5004 5005
void account_user_time(struct task_struct *p, cputime_t cputime,
		       cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5006 5007 5008 5009
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5010
	/* Add user time to process. */
L
Linus Torvalds 已提交
5011
	p->utime = cputime_add(p->utime, cputime);
5012
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5013
	account_group_user_time(p, cputime);
L
Linus Torvalds 已提交
5014 5015 5016 5017 5018 5019 5020

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
5021 5022

	cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5023 5024
	/* Account for user time used */
	acct_update_integrals(p);
L
Linus Torvalds 已提交
5025 5026
}

5027 5028 5029 5030
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
5031
 * @cputime_scaled: cputime scaled by cpu frequency
5032
 */
5033 5034
static void account_guest_time(struct task_struct *p, cputime_t cputime,
			       cputime_t cputime_scaled)
5035 5036 5037 5038 5039 5040
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

5041
	/* Add guest time to process. */
5042
	p->utime = cputime_add(p->utime, cputime);
5043
	p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5044
	account_group_user_time(p, cputime);
5045 5046
	p->gtime = cputime_add(p->gtime, cputime);

5047
	/* Add guest time to cpustat. */
5048 5049 5050 5051 5052 5053 5054
	if (TASK_NICE(p) > 0) {
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
		cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
	} else {
		cpustat->user = cputime64_add(cpustat->user, tmp);
		cpustat->guest = cputime64_add(cpustat->guest, tmp);
	}
5055 5056
}

L
Linus Torvalds 已提交
5057 5058 5059 5060 5061
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
5062
 * @cputime_scaled: cputime scaled by cpu frequency
L
Linus Torvalds 已提交
5063 5064
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
5065
			 cputime_t cputime, cputime_t cputime_scaled)
L
Linus Torvalds 已提交
5066 5067 5068 5069
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

5070
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5071
		account_guest_time(p, cputime, cputime_scaled);
5072 5073
		return;
	}
5074

5075
	/* Add system time to process. */
L
Linus Torvalds 已提交
5076
	p->stime = cputime_add(p->stime, cputime);
5077
	p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5078
	account_group_system_time(p, cputime);
L
Linus Torvalds 已提交
5079 5080 5081 5082 5083 5084 5085 5086

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
	else
5087 5088
		cpustat->system = cputime64_add(cpustat->system, tmp);

5089 5090
	cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);

L
Linus Torvalds 已提交
5091 5092 5093 5094
	/* Account for system time used */
	acct_update_integrals(p);
}

5095
/*
L
Linus Torvalds 已提交
5096 5097
 * Account for involuntary wait time.
 * @steal: the cpu time spent in involuntary wait
5098
 */
5099
void account_steal_time(cputime_t cputime)
5100
{
5101 5102 5103 5104
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t cputime64 = cputime_to_cputime64(cputime);

	cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5105 5106
}

L
Linus Torvalds 已提交
5107
/*
5108 5109
 * Account for idle time.
 * @cputime: the cpu time spent in idle wait
L
Linus Torvalds 已提交
5110
 */
5111
void account_idle_time(cputime_t cputime)
L
Linus Torvalds 已提交
5112 5113
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5114
	cputime64_t cputime64 = cputime_to_cputime64(cputime);
5115
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
5116

5117 5118 5119 5120
	if (atomic_read(&rq->nr_iowait) > 0)
		cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
	else
		cpustat->idle = cputime64_add(cpustat->idle, cputime64);
L
Linus Torvalds 已提交
5121 5122
}

5123 5124 5125 5126 5127 5128 5129 5130 5131
#ifndef CONFIG_VIRT_CPU_ACCOUNTING

/*
 * Account a single tick of cpu time.
 * @p: the process that the cpu time gets accounted to
 * @user_tick: indicates if the tick is a user or a system tick
 */
void account_process_tick(struct task_struct *p, int user_tick)
{
5132
	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5133 5134 5135
	struct rq *rq = this_rq();

	if (user_tick)
5136
		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5137
	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5138
		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5139 5140
				    one_jiffy_scaled);
	else
5141
		account_idle_time(cputime_one_jiffy);
5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160
}

/*
 * Account multiple ticks of steal time.
 * @p: the process from which the cpu time has been stolen
 * @ticks: number of stolen ticks
 */
void account_steal_ticks(unsigned long ticks)
{
	account_steal_time(jiffies_to_cputime(ticks));
}

/*
 * Account multiple ticks of idle time.
 * @ticks: number of stolen ticks
 */
void account_idle_ticks(unsigned long ticks)
{
	account_idle_time(jiffies_to_cputime(ticks));
L
Linus Torvalds 已提交
5161 5162
}

5163 5164
#endif

5165 5166 5167 5168
/*
 * Use precise platform statistics if available:
 */
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5169
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5170
{
5171 5172
	*ut = p->utime;
	*st = p->stime;
5173 5174
}

5175
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5176
{
5177 5178 5179 5180 5181 5182
	struct task_cputime cputime;

	thread_group_cputime(p, &cputime);

	*ut = cputime.utime;
	*st = cputime.stime;
5183 5184
}
#else
5185 5186

#ifndef nsecs_to_cputime
5187
# define nsecs_to_cputime(__nsecs)	nsecs_to_jiffies(__nsecs)
5188 5189
#endif

5190
void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5191
{
5192
	cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5193 5194 5195 5196

	/*
	 * Use CFS's precise accounting:
	 */
5197
	rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5198 5199

	if (total) {
5200 5201 5202
		u64 temp;

		temp = (u64)(rtime * utime);
5203
		do_div(temp, total);
5204 5205 5206
		utime = (cputime_t)temp;
	} else
		utime = rtime;
5207

5208 5209 5210
	/*
	 * Compare with previous values, to keep monotonicity:
	 */
5211
	p->prev_utime = max(p->prev_utime, utime);
5212
	p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5213

5214 5215
	*ut = p->prev_utime;
	*st = p->prev_stime;
5216 5217
}

5218 5219 5220 5221
/*
 * Must be called with siglock held.
 */
void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5222
{
5223 5224 5225
	struct signal_struct *sig = p->signal;
	struct task_cputime cputime;
	cputime_t rtime, utime, total;
5226

5227
	thread_group_cputime(p, &cputime);
5228

5229 5230
	total = cputime_add(cputime.utime, cputime.stime);
	rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5231

5232 5233
	if (total) {
		u64 temp;
5234

5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
		temp = (u64)(rtime * cputime.utime);
		do_div(temp, total);
		utime = (cputime_t)temp;
	} else
		utime = rtime;

	sig->prev_utime = max(sig->prev_utime, utime);
	sig->prev_stime = max(sig->prev_stime,
			      cputime_sub(rtime, sig->prev_utime));

	*ut = sig->prev_utime;
	*st = sig->prev_stime;
5247 5248 5249
}
#endif

5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
5261
	struct task_struct *curr = rq->curr;
5262 5263

	sched_clock_tick();
I
Ingo Molnar 已提交
5264 5265

	spin_lock(&rq->lock);
5266
	update_rq_clock(rq);
5267
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
5268
	curr->sched_class->task_tick(rq, curr, 0);
I
Ingo Molnar 已提交
5269
	spin_unlock(&rq->lock);
5270

5271
	perf_event_task_tick(curr, cpu);
5272

5273
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
5274 5275
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
5276
#endif
L
Linus Torvalds 已提交
5277 5278
}

5279
notrace unsigned long get_parent_ip(unsigned long addr)
5280 5281 5282 5283 5284 5285 5286 5287
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
5288

5289 5290 5291
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

5292
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
5293
{
5294
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5295 5296 5297
	/*
	 * Underflow?
	 */
5298 5299
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
5300
#endif
L
Linus Torvalds 已提交
5301
	preempt_count() += val;
5302
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5303 5304 5305
	/*
	 * Spinlock count overflowing soon?
	 */
5306 5307
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
5308 5309 5310
#endif
	if (preempt_count() == val)
		trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5311 5312 5313
}
EXPORT_SYMBOL(add_preempt_count);

5314
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
5315
{
5316
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
5317 5318 5319
	/*
	 * Underflow?
	 */
5320
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5321
		return;
L
Linus Torvalds 已提交
5322 5323 5324
	/*
	 * Is the spinlock portion underflowing?
	 */
5325 5326 5327
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
5328
#endif
5329

5330 5331
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
L
Linus Torvalds 已提交
5332 5333 5334 5335 5336 5337 5338
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
5339
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
5340
 */
I
Ingo Molnar 已提交
5341
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
5342
{
5343 5344 5345 5346 5347
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
5348
	debug_show_held_locks(prev);
5349
	print_modules();
I
Ingo Molnar 已提交
5350 5351
	if (irqs_disabled())
		print_irqtrace_events(prev);
5352 5353 5354 5355 5356

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
5357
}
L
Linus Torvalds 已提交
5358

I
Ingo Molnar 已提交
5359 5360 5361 5362 5363
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
5364
	/*
I
Ingo Molnar 已提交
5365
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
5366 5367 5368
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
5369
	if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
I
Ingo Molnar 已提交
5370 5371
		__schedule_bug(prev);

L
Linus Torvalds 已提交
5372 5373
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

5374
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
5375 5376
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
5377 5378
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
5379 5380
	}
#endif
I
Ingo Molnar 已提交
5381 5382
}

P
Peter Zijlstra 已提交
5383
static void put_prev_task(struct rq *rq, struct task_struct *prev)
M
Mike Galbraith 已提交
5384
{
P
Peter Zijlstra 已提交
5385 5386
	if (prev->state == TASK_RUNNING) {
		u64 runtime = prev->se.sum_exec_runtime;
M
Mike Galbraith 已提交
5387

P
Peter Zijlstra 已提交
5388 5389
		runtime -= prev->se.prev_sum_exec_runtime;
		runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
M
Mike Galbraith 已提交
5390 5391 5392 5393 5394 5395 5396 5397 5398 5399

		/*
		 * In order to avoid avg_overlap growing stale when we are
		 * indeed overlapping and hence not getting put to sleep, grow
		 * the avg_overlap on preemption.
		 *
		 * We use the average preemption runtime because that
		 * correlates to the amount of cache footprint a task can
		 * build up.
		 */
P
Peter Zijlstra 已提交
5400
		update_avg(&prev->se.avg_overlap, runtime);
M
Mike Galbraith 已提交
5401
	}
P
Peter Zijlstra 已提交
5402
	prev->sched_class->put_prev_task(rq, prev);
M
Mike Galbraith 已提交
5403 5404
}

I
Ingo Molnar 已提交
5405 5406 5407 5408
/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
5409
pick_next_task(struct rq *rq)
I
Ingo Molnar 已提交
5410
{
5411
	const struct sched_class *class;
I
Ingo Molnar 已提交
5412
	struct task_struct *p;
L
Linus Torvalds 已提交
5413 5414

	/*
I
Ingo Molnar 已提交
5415 5416
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
5417
	 */
I
Ingo Molnar 已提交
5418
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
5419
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
5420 5421
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
5422 5423
	}

I
Ingo Molnar 已提交
5424 5425
	class = sched_class_highest;
	for ( ; ; ) {
5426
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
5436

I
Ingo Molnar 已提交
5437 5438 5439
/*
 * schedule() is the main scheduler function.
 */
5440
asmlinkage void __sched schedule(void)
I
Ingo Molnar 已提交
5441 5442
{
	struct task_struct *prev, *next;
5443
	unsigned long *switch_count;
I
Ingo Molnar 已提交
5444
	struct rq *rq;
5445
	int cpu;
I
Ingo Molnar 已提交
5446

5447 5448
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
5449 5450
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
5451
	rcu_sched_qs(cpu);
I
Ingo Molnar 已提交
5452 5453 5454 5455 5456 5457 5458
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
5459

5460
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
5461
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
5462

5463
	spin_lock_irq(&rq->lock);
5464
	update_rq_clock(rq);
5465
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
5466 5467

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5468
		if (unlikely(signal_pending_state(prev->state, prev)))
L
Linus Torvalds 已提交
5469
			prev->state = TASK_RUNNING;
5470
		else
5471
			deactivate_task(rq, prev, 1);
I
Ingo Molnar 已提交
5472
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
5473 5474
	}

5475
	pre_schedule(rq, prev);
5476

I
Ingo Molnar 已提交
5477
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
5478 5479
		idle_balance(cpu, rq);

M
Mike Galbraith 已提交
5480
	put_prev_task(rq, prev);
5481
	next = pick_next_task(rq);
L
Linus Torvalds 已提交
5482 5483

	if (likely(prev != next)) {
5484
		sched_info_switch(prev, next);
5485
		perf_event_task_sched_out(prev, next, cpu);
5486

L
Linus Torvalds 已提交
5487 5488 5489 5490
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
5491
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
5492 5493 5494 5495 5496 5497
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5498 5499 5500
	} else
		spin_unlock_irq(&rq->lock);

5501
	post_schedule(rq);
L
Linus Torvalds 已提交
5502

P
Peter Zijlstra 已提交
5503
	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
5504
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
5505

L
Linus Torvalds 已提交
5506
	preempt_enable_no_resched();
5507
	if (need_resched())
L
Linus Torvalds 已提交
5508 5509 5510 5511
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

5512
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
/*
 * Look out! "owner" is an entirely speculative pointer
 * access and not reliable.
 */
int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
{
	unsigned int cpu;
	struct rq *rq;

	if (!sched_feat(OWNER_SPIN))
		return 0;

#ifdef CONFIG_DEBUG_PAGEALLOC
	/*
	 * Need to access the cpu field knowing that
	 * DEBUG_PAGEALLOC could have unmapped it if
	 * the mutex owner just released it and exited.
	 */
	if (probe_kernel_address(&owner->cpu, cpu))
		goto out;
#else
	cpu = owner->cpu;
#endif

	/*
	 * Even if the access succeeded (likely case),
	 * the cpu field may no longer be valid.
	 */
	if (cpu >= nr_cpumask_bits)
		goto out;

	/*
	 * We need to validate that we can do a
	 * get_cpu() and that we have the percpu area.
	 */
	if (!cpu_online(cpu))
		goto out;

	rq = cpu_rq(cpu);

	for (;;) {
		/*
		 * Owner changed, break to re-assess state.
		 */
		if (lock->owner != owner)
			break;

		/*
		 * Is that owner really running on that cpu?
		 */
		if (task_thread_info(rq->curr) != owner || need_resched())
			return 0;

		cpu_relax();
	}
out:
	return 1;
}
#endif

L
Linus Torvalds 已提交
5573 5574
#ifdef CONFIG_PREEMPT
/*
5575
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
5576
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
5577 5578 5579 5580 5581
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
5582

L
Linus Torvalds 已提交
5583 5584
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
5585
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
5586
	 */
N
Nick Piggin 已提交
5587
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
5588 5589
		return;

5590 5591 5592 5593
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5594

5595 5596 5597 5598 5599
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5600
	} while (need_resched());
L
Linus Torvalds 已提交
5601 5602 5603 5604
}
EXPORT_SYMBOL(preempt_schedule);

/*
5605
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
5613

5614
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
5615 5616
	BUG_ON(ti->preempt_count || !irqs_disabled());

5617 5618 5619 5620 5621 5622
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		local_irq_enable();
		schedule();
		local_irq_disable();
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
5623

5624 5625 5626 5627 5628
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
5629
	} while (need_resched());
L
Linus Torvalds 已提交
5630 5631 5632 5633
}

#endif /* CONFIG_PREEMPT */

P
Peter Zijlstra 已提交
5634
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
5635
			  void *key)
L
Linus Torvalds 已提交
5636
{
P
Peter Zijlstra 已提交
5637
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
5638 5639 5640 5641
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
5642 5643
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
5644 5645 5646
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
5647
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
5648 5649
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
5650
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
P
Peter Zijlstra 已提交
5651
			int nr_exclusive, int wake_flags, void *key)
L
Linus Torvalds 已提交
5652
{
5653
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
5654

5655
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5656 5657
		unsigned flags = curr->flags;

P
Peter Zijlstra 已提交
5658
		if (curr->func(curr, mode, wake_flags, key) &&
5659
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5669
 * @key: is directly passed to the wakeup function
5670 5671 5672
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5673
 */
5674
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
5675
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
5688
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
5689 5690 5691 5692
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

5693 5694 5695 5696 5697
void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
{
	__wake_up_common(q, mode, 1, 0, key);
}

L
Linus Torvalds 已提交
5698
/**
5699
 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
5700 5701 5702
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5703
 * @key: opaque value to be passed to wakeup targets
L
Linus Torvalds 已提交
5704 5705 5706 5707 5708 5709 5710
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
5711 5712 5713
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
L
Linus Torvalds 已提交
5714
 */
5715 5716
void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
5717 5718
{
	unsigned long flags;
P
Peter Zijlstra 已提交
5719
	int wake_flags = WF_SYNC;
L
Linus Torvalds 已提交
5720 5721 5722 5723 5724

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
P
Peter Zijlstra 已提交
5725
		wake_flags = 0;
L
Linus Torvalds 已提交
5726 5727

	spin_lock_irqsave(&q->lock, flags);
P
Peter Zijlstra 已提交
5728
	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
L
Linus Torvalds 已提交
5729 5730
	spin_unlock_irqrestore(&q->lock, flags);
}
5731 5732 5733 5734 5735 5736 5737 5738 5739
EXPORT_SYMBOL_GPL(__wake_up_sync_key);

/*
 * __wake_up_sync - see __wake_up_sync_key()
 */
void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
{
	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
}
L
Linus Torvalds 已提交
5740 5741
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

5742 5743 5744 5745 5746 5747 5748 5749
/**
 * complete: - signals a single thread waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up a single thread waiting on this completion. Threads will be
 * awakened in the same order in which they were queued.
 *
 * See also complete_all(), wait_for_completion() and related routines.
5750 5751 5752
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5753
 */
5754
void complete(struct completion *x)
L
Linus Torvalds 已提交
5755 5756 5757 5758 5759
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
5760
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
5761 5762 5763 5764
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

5765 5766 5767 5768 5769
/**
 * complete_all: - signals all threads waiting on this completion
 * @x:  holds the state of this particular completion
 *
 * This will wake up all threads waiting on this particular completion event.
5770 5771 5772
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
5773
 */
5774
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
5775 5776 5777 5778 5779
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
5780
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
5781 5782 5783 5784
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

5785 5786
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5787 5788 5789 5790 5791 5792 5793
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
5794
			if (signal_pending_state(state, current)) {
5795 5796
				timeout = -ERESTARTSYS;
				break;
5797 5798
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
5799 5800 5801
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
5802
		} while (!x->done && timeout);
L
Linus Torvalds 已提交
5803
		__remove_wait_queue(&x->wait, &wait);
5804 5805
		if (!x->done)
			return timeout;
L
Linus Torvalds 已提交
5806 5807
	}
	x->done--;
5808
	return timeout ?: 1;
L
Linus Torvalds 已提交
5809 5810
}

5811 5812
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
5813 5814 5815 5816
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
5817
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
5818
	spin_unlock_irq(&x->wait.lock);
5819 5820
	return timeout;
}
L
Linus Torvalds 已提交
5821

5822 5823 5824 5825 5826 5827 5828 5829 5830 5831
/**
 * wait_for_completion: - waits for completion of a task
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It is NOT
 * interruptible and there is no timeout.
 *
 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
 * and interrupt capability. Also see complete().
 */
5832
void __sched wait_for_completion(struct completion *x)
5833 5834
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5835
}
5836
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
5837

5838 5839 5840 5841 5842 5843 5844 5845 5846
/**
 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. The timeout is in jiffies. It is not
 * interruptible.
 */
5847
unsigned long __sched
5848
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
5849
{
5850
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
5851
}
5852
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
5853

5854 5855 5856 5857 5858 5859 5860
/**
 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
 * @x:  holds the state of this particular completion
 *
 * This waits for completion of a specific task to be signaled. It is
 * interruptible.
 */
5861
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
5862
{
5863 5864 5865 5866
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
5867
}
5868
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
5869

5870 5871 5872 5873 5874 5875 5876 5877
/**
 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
 * @x:  holds the state of this particular completion
 * @timeout:  timeout value in jiffies
 *
 * This waits for either a completion of a specific task to be signaled or for a
 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
 */
5878
unsigned long __sched
5879 5880
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
5881
{
5882
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
5883
}
5884
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
5885

5886 5887 5888 5889 5890 5891 5892
/**
 * wait_for_completion_killable: - waits for completion of a task (killable)
 * @x:  holds the state of this particular completion
 *
 * This waits to be signaled for completion of a specific task. It can be
 * interrupted by a kill signal.
 */
M
Matthew Wilcox 已提交
5893 5894 5895 5896 5897 5898 5899 5900 5901
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947
/**
 *	try_wait_for_completion - try to decrement a completion without blocking
 *	@x:	completion structure
 *
 *	Returns: 0 if a decrement cannot be done without blocking
 *		 1 if a decrement succeeded.
 *
 *	If a completion is being used as a counting completion,
 *	attempt to decrement the counter without blocking. This
 *	enables us to avoid waiting if the resource the completion
 *	is protecting is not available.
 */
bool try_wait_for_completion(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	else
		x->done--;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(try_wait_for_completion);

/**
 *	completion_done - Test to see if a completion has any waiters
 *	@x:	completion structure
 *
 *	Returns: 0 if there are waiters (wait_for_completion() in progress)
 *		 1 if there are no waiters.
 *
 */
bool completion_done(struct completion *x)
{
	int ret = 1;

	spin_lock_irq(&x->wait.lock);
	if (!x->done)
		ret = 0;
	spin_unlock_irq(&x->wait.lock);
	return ret;
}
EXPORT_SYMBOL(completion_done);

5948 5949
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
5950
{
I
Ingo Molnar 已提交
5951 5952 5953 5954
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
5955

5956
	__set_current_state(state);
L
Linus Torvalds 已提交
5957

5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5972 5973 5974
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
5975
long __sched
I
Ingo Molnar 已提交
5976
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5977
{
5978
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5979 5980 5981
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
5982
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
5983
{
5984
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
5985 5986 5987
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
5988
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
5989
{
5990
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
5991 5992 5993
}
EXPORT_SYMBOL(sleep_on_timeout);

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
6006
void rt_mutex_setprio(struct task_struct *p, int prio)
6007 6008
{
	unsigned long flags;
6009
	int oldprio, on_rq, running;
6010
	struct rq *rq;
6011
	const struct sched_class *prev_class = p->sched_class;
6012 6013 6014 6015

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6016
	update_rq_clock(rq);
6017

6018
	oldprio = p->prio;
I
Ingo Molnar 已提交
6019
	on_rq = p->se.on_rq;
6020
	running = task_current(rq, p);
6021
	if (on_rq)
6022
		dequeue_task(rq, p, 0);
6023 6024
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
6025 6026 6027 6028 6029 6030

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

6031 6032
	p->prio = prio;

6033 6034
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6035
	if (on_rq) {
6036
		enqueue_task(rq, p, 0);
6037 6038

		check_class_changed(rq, p, prev_class, oldprio, running);
6039 6040 6041 6042 6043 6044
	}
	task_rq_unlock(rq, &flags);
}

#endif

6045
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
6046
{
I
Ingo Molnar 已提交
6047
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
6048
	unsigned long flags;
6049
	struct rq *rq;
L
Linus Torvalds 已提交
6050 6051 6052 6053 6054 6055 6056 6057

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
6058
	update_rq_clock(rq);
L
Linus Torvalds 已提交
6059 6060 6061 6062
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
6063
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
6064
	 */
6065
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
6066 6067 6068
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
6069
	on_rq = p->se.on_rq;
6070
	if (on_rq)
6071
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
6072 6073

	p->static_prio = NICE_TO_PRIO(nice);
6074
	set_load_weight(p);
6075 6076 6077
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
6078

I
Ingo Molnar 已提交
6079
	if (on_rq) {
6080
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
6081
		/*
6082 6083
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
6084
		 */
6085
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
6086 6087 6088 6089 6090 6091 6092
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
6093 6094 6095 6096 6097
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
6098
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
6099
{
6100 6101
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
6102

M
Matt Mackall 已提交
6103 6104 6105 6106
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
6107 6108 6109 6110 6111 6112 6113 6114 6115
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
6116
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
6117
{
6118
	long nice, retval;
L
Linus Torvalds 已提交
6119 6120 6121 6122 6123 6124

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
6125 6126
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
6127 6128 6129
	if (increment > 40)
		increment = 40;

6130
	nice = TASK_NICE(current) + increment;
L
Linus Torvalds 已提交
6131 6132 6133 6134 6135
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
6136 6137 6138
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
6157
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
6158 6159 6160 6161 6162 6163 6164 6165
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
6166
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
6167 6168 6169
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
6170
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
6185
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
6186 6187 6188 6189 6190 6191 6192 6193
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
6194
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
6195
{
6196
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
6197 6198 6199
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
6200 6201
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
6202
{
I
Ingo Molnar 已提交
6203
	BUG_ON(p->se.on_rq);
6204

L
Linus Torvalds 已提交
6205 6206
	p->policy = policy;
	p->rt_priority = prio;
6207 6208 6209
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
6210 6211 6212 6213
	if (rt_prio(p->prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
6214
	set_load_weight(p);
L
Linus Torvalds 已提交
6215 6216
}

6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
	match = (cred->euid == pcred->euid ||
		 cred->euid == pcred->uid);
	rcu_read_unlock();
	return match;
}

6233 6234
static int __sched_setscheduler(struct task_struct *p, int policy,
				struct sched_param *param, bool user)
L
Linus Torvalds 已提交
6235
{
6236
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
6237
	unsigned long flags;
6238
	const struct sched_class *prev_class = p->sched_class;
6239
	struct rq *rq;
6240
	int reset_on_fork;
L
Linus Torvalds 已提交
6241

6242 6243
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
6244 6245
recheck:
	/* double check policy once rq lock held */
6246 6247
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
6248
		policy = oldpolicy = p->policy;
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258
	} else {
		reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
		policy &= ~SCHED_RESET_ON_FORK;

		if (policy != SCHED_FIFO && policy != SCHED_RR &&
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

L
Linus Torvalds 已提交
6259 6260
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
6261 6262
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
6263 6264
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
6265
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6266
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
6267
		return -EINVAL;
6268
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
6269 6270
		return -EINVAL;

6271 6272 6273
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
6274
	if (user && !capable(CAP_SYS_NICE)) {
6275
		if (rt_policy(policy)) {
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
6292 6293 6294 6295 6296 6297
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
6298

6299
		/* can't change other user's priorities */
6300
		if (!check_same_owner(p))
6301
			return -EPERM;
6302 6303 6304 6305

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
6306
	}
L
Linus Torvalds 已提交
6307

6308
	if (user) {
6309
#ifdef CONFIG_RT_GROUP_SCHED
6310 6311 6312 6313
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
P
Peter Zijlstra 已提交
6314 6315
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
				task_group(p)->rt_bandwidth.rt_runtime == 0)
6316
			return -EPERM;
6317 6318
#endif

6319 6320 6321 6322 6323
		retval = security_task_setscheduler(p, policy, param);
		if (retval)
			return retval;
	}

6324 6325 6326 6327 6328
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6329 6330 6331 6332
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
6333
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
6334 6335 6336
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
6337 6338
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
6339 6340
		goto recheck;
	}
I
Ingo Molnar 已提交
6341
	update_rq_clock(rq);
I
Ingo Molnar 已提交
6342
	on_rq = p->se.on_rq;
6343
	running = task_current(rq, p);
6344
	if (on_rq)
6345
		deactivate_task(rq, p, 0);
6346 6347
	if (running)
		p->sched_class->put_prev_task(rq, p);
6348

6349 6350
	p->sched_reset_on_fork = reset_on_fork;

L
Linus Torvalds 已提交
6351
	oldprio = p->prio;
I
Ingo Molnar 已提交
6352
	__setscheduler(rq, p, policy, param->sched_priority);
6353

6354 6355
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
6356 6357
	if (on_rq) {
		activate_task(rq, p, 0);
6358 6359

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
6360
	}
6361 6362 6363
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

6364 6365
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
6366 6367
	return 0;
}
6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381

/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, true);
}
L
Linus Torvalds 已提交
6382 6383
EXPORT_SYMBOL_GPL(sched_setscheduler);

6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
			       struct sched_param *param)
{
	return __sched_setscheduler(p, policy, param, false);
}

I
Ingo Molnar 已提交
6401 6402
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
6403 6404 6405
{
	struct sched_param lparam;
	struct task_struct *p;
6406
	int retval;
L
Linus Torvalds 已提交
6407 6408 6409 6410 6411

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
6412 6413 6414

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
6415
	p = find_process_by_pid(pid);
6416 6417 6418
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
6419

L
Linus Torvalds 已提交
6420 6421 6422 6423 6424 6425 6426 6427 6428
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
6429 6430
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
6431
{
6432 6433 6434 6435
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
6436 6437 6438 6439 6440 6441 6442 6443
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
6444
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6445 6446 6447 6448 6449 6450 6451 6452
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
6453
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
6454
{
6455
	struct task_struct *p;
6456
	int retval;
L
Linus Torvalds 已提交
6457 6458

	if (pid < 0)
6459
		return -EINVAL;
L
Linus Torvalds 已提交
6460 6461 6462 6463 6464 6465 6466

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
6467 6468
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
6469 6470 6471 6472 6473 6474
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
6475
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
6476 6477 6478
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
6479
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
6480 6481
{
	struct sched_param lp;
6482
	struct task_struct *p;
6483
	int retval;
L
Linus Torvalds 已提交
6484 6485

	if (!param || pid < 0)
6486
		return -EINVAL;
L
Linus Torvalds 已提交
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6513
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
6514
{
6515
	cpumask_var_t cpus_allowed, new_mask;
6516 6517
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
6518

6519
	get_online_cpus();
L
Linus Torvalds 已提交
6520 6521 6522 6523 6524
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
6525
		put_online_cpus();
L
Linus Torvalds 已提交
6526 6527 6528 6529 6530
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
6531
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
6532 6533 6534 6535 6536
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

6537 6538 6539 6540 6541 6542 6543 6544
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
6545
	retval = -EPERM;
6546
	if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
L
Linus Torvalds 已提交
6547 6548
		goto out_unlock;

6549 6550 6551 6552
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

6553 6554
	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);
P
Paul Menage 已提交
6555
 again:
6556
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
6557

P
Paul Menage 已提交
6558
	if (!retval) {
6559 6560
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
6561 6562 6563 6564 6565
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
6566
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
6567 6568 6569
			goto again;
		}
	}
L
Linus Torvalds 已提交
6570
out_unlock:
6571 6572 6573 6574
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
6575
	put_task_struct(p);
6576
	put_online_cpus();
L
Linus Torvalds 已提交
6577 6578 6579 6580
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6581
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
6582
{
6583 6584 6585 6586 6587
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
6588 6589 6590 6591 6592 6593 6594 6595 6596
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
6597 6598
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6599
{
6600
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
6601 6602
	int retval;

6603 6604
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6605

6606 6607 6608 6609 6610
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
6611 6612
}

6613
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
6614
{
6615
	struct task_struct *p;
6616 6617
	unsigned long flags;
	struct rq *rq;
L
Linus Torvalds 已提交
6618 6619
	int retval;

6620
	get_online_cpus();
L
Linus Torvalds 已提交
6621 6622 6623 6624 6625 6626 6627
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

6628 6629 6630 6631
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6632
	rq = task_rq_lock(p, &flags);
6633
	cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6634
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
6635 6636 6637

out_unlock:
	read_unlock(&tasklist_lock);
6638
	put_online_cpus();
L
Linus Torvalds 已提交
6639

6640
	return retval;
L
Linus Torvalds 已提交
6641 6642 6643 6644 6645 6646 6647 6648
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
6649 6650
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
6651 6652
{
	int ret;
6653
	cpumask_var_t mask;
L
Linus Torvalds 已提交
6654

6655
	if (len < cpumask_size())
L
Linus Torvalds 已提交
6656 6657
		return -EINVAL;

6658 6659
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
6660

6661 6662 6663 6664 6665 6666 6667 6668
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
		if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
			ret = -EFAULT;
		else
			ret = cpumask_size();
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
6669

6670
	return ret;
L
Linus Torvalds 已提交
6671 6672 6673 6674 6675
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
6676 6677
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
6678
 */
6679
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
6680
{
6681
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
6682

6683
	schedstat_inc(rq, yld_count);
6684
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
6685 6686 6687 6688 6689 6690

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
6691
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
6692 6693 6694 6695 6696 6697 6698 6699
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

P
Peter Zijlstra 已提交
6700 6701 6702 6703 6704
static inline int should_resched(void)
{
	return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
}

A
Andrew Morton 已提交
6705
static void __cond_resched(void)
L
Linus Torvalds 已提交
6706
{
6707 6708 6709
	add_preempt_count(PREEMPT_ACTIVE);
	schedule();
	sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
6710 6711
}

6712
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
6713
{
P
Peter Zijlstra 已提交
6714
	if (should_resched()) {
L
Linus Torvalds 已提交
6715 6716 6717 6718 6719
		__cond_resched();
		return 1;
	}
	return 0;
}
6720
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
6721 6722

/*
6723
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
6724 6725
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
6726
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
6727 6728 6729
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
6730
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
6731
{
P
Peter Zijlstra 已提交
6732
	int resched = should_resched();
J
Jan Kara 已提交
6733 6734
	int ret = 0;

6735 6736
	lockdep_assert_held(lock);

N
Nick Piggin 已提交
6737
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
6738
		spin_unlock(lock);
P
Peter Zijlstra 已提交
6739
		if (resched)
N
Nick Piggin 已提交
6740 6741 6742
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
6743
		ret = 1;
L
Linus Torvalds 已提交
6744 6745
		spin_lock(lock);
	}
J
Jan Kara 已提交
6746
	return ret;
L
Linus Torvalds 已提交
6747
}
6748
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
6749

6750
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
6751 6752 6753
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
6754
	if (should_resched()) {
6755
		local_bh_enable();
L
Linus Torvalds 已提交
6756 6757 6758 6759 6760 6761
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
6762
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
6763 6764 6765 6766

/**
 * yield - yield the current processor to other threads.
 *
6767
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
6778
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
6779 6780 6781 6782
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
6783
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6784

6785
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6786
	atomic_inc(&rq->nr_iowait);
6787
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6788
	schedule();
6789
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6790
	atomic_dec(&rq->nr_iowait);
6791
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6792 6793 6794 6795 6796
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
6797
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
6798 6799
	long ret;

6800
	delayacct_blkio_start();
L
Linus Torvalds 已提交
6801
	atomic_inc(&rq->nr_iowait);
6802
	current->in_iowait = 1;
L
Linus Torvalds 已提交
6803
	ret = schedule_timeout(timeout);
6804
	current->in_iowait = 0;
L
Linus Torvalds 已提交
6805
	atomic_dec(&rq->nr_iowait);
6806
	delayacct_blkio_end();
L
Linus Torvalds 已提交
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
6817
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
6818 6819 6820 6821 6822 6823 6824 6825 6826
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
6827
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6828
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
6842
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
6843 6844 6845 6846 6847 6848 6849 6850 6851
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
6852
	case SCHED_BATCH:
I
Ingo Molnar 已提交
6853
	case SCHED_IDLE:
L
Linus Torvalds 已提交
6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
6867
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6868
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
6869
{
6870
	struct task_struct *p;
D
Dmitry Adamushko 已提交
6871
	unsigned int time_slice;
6872 6873
	unsigned long flags;
	struct rq *rq;
6874
	int retval;
L
Linus Torvalds 已提交
6875 6876 6877
	struct timespec t;

	if (pid < 0)
6878
		return -EINVAL;
L
Linus Torvalds 已提交
6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

6890 6891 6892
	rq = task_rq_lock(p, &flags);
	time_slice = p->sched_class->get_rr_interval(rq, p);
	task_rq_unlock(rq, &flags);
D
Dmitry Adamushko 已提交
6893

L
Linus Torvalds 已提交
6894
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
6895
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
6896 6897
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
6898

L
Linus Torvalds 已提交
6899 6900 6901 6902 6903
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

6904
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6905

6906
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
6907 6908
{
	unsigned long free = 0;
6909
	unsigned state;
L
Linus Torvalds 已提交
6910 6911

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
6912
	printk(KERN_INFO "%-13.13s %c", p->comm,
6913
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6914
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
6915
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6916
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
6917
	else
I
Ingo Molnar 已提交
6918
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6919 6920
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
6921
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
6922
	else
I
Ingo Molnar 已提交
6923
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
6924 6925
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
6926
	free = stack_not_used(p);
L
Linus Torvalds 已提交
6927
#endif
6928 6929 6930
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
		task_pid_nr(p), task_pid_nr(p->real_parent),
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
6931

6932
	show_stack(p, NULL);
L
Linus Torvalds 已提交
6933 6934
}

I
Ingo Molnar 已提交
6935
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
6936
{
6937
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
6938

6939 6940 6941
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
6942
#else
6943 6944
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
6945 6946 6947 6948 6949 6950 6951 6952
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
6953
		if (!state_filter || (p->state & state_filter))
6954
			sched_show_task(p);
L
Linus Torvalds 已提交
6955 6956
	} while_each_thread(g, p);

6957 6958
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
6959 6960 6961
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
6962
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
6963 6964 6965
	/*
	 * Only show locks if all tasks are dumped:
	 */
6966
	if (!state_filter)
I
Ingo Molnar 已提交
6967
		debug_show_all_locks();
L
Linus Torvalds 已提交
6968 6969
}

I
Ingo Molnar 已提交
6970 6971
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
6972
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
6973 6974
}

6975 6976 6977 6978 6979 6980 6981 6982
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
6983
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
6984
{
6985
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
6986 6987
	unsigned long flags;

6988 6989
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
6990 6991 6992
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

6993
	cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
I
Ingo Molnar 已提交
6994
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
6995 6996

	rq->curr = rq->idle = idle;
6997 6998 6999
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
7000 7001 7002
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
7003 7004 7005
#if defined(CONFIG_PREEMPT)
	task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
#else
A
Al Viro 已提交
7006
	task_thread_info(idle)->preempt_count = 0;
7007
#endif
I
Ingo Molnar 已提交
7008 7009 7010 7011
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
7012
	ftrace_graph_init_task(idle);
L
Linus Torvalds 已提交
7013 7014 7015 7016 7017 7018 7019
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
7020
 * always be CPU_BITS_NONE.
L
Linus Torvalds 已提交
7021
 */
7022
cpumask_var_t nohz_cpu_mask;
L
Linus Torvalds 已提交
7023

I
Ingo Molnar 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
7033
static void update_sysctl(void)
I
Ingo Molnar 已提交
7034
{
7035 7036
	unsigned int cpus = min(num_online_cpus(), 8U);
	unsigned int factor = 1 + ilog2(cpus);
I
Ingo Molnar 已提交
7037

7038 7039 7040 7041 7042 7043 7044 7045
#define SET_SYSCTL(name) \
	(sysctl_##name = (factor) * normalized_sysctl_##name)
	SET_SYSCTL(sched_min_granularity);
	SET_SYSCTL(sched_latency);
	SET_SYSCTL(sched_wakeup_granularity);
	SET_SYSCTL(sched_shares_ratelimit);
#undef SET_SYSCTL
}
7046

7047 7048 7049
static inline void sched_init_granularity(void)
{
	update_sysctl();
I
Ingo Molnar 已提交
7050 7051
}

L
Linus Torvalds 已提交
7052 7053 7054 7055
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
7056
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
7075
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
7076 7077
 * call is not atomic; no spinlocks may be held.
 */
7078
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
7079
{
7080
	struct migration_req req;
L
Linus Torvalds 已提交
7081
	unsigned long flags;
7082
	struct rq *rq;
7083
	int ret = 0;
L
Linus Torvalds 已提交
7084 7085

	rq = task_rq_lock(p, &flags);
7086
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
7087 7088 7089 7090
		ret = -EINVAL;
		goto out;
	}

7091
	if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7092
		     !cpumask_equal(&p->cpus_allowed, new_mask))) {
7093 7094 7095 7096
		ret = -EINVAL;
		goto out;
	}

7097
	if (p->sched_class->set_cpus_allowed)
7098
		p->sched_class->set_cpus_allowed(p, new_mask);
7099
	else {
7100 7101
		cpumask_copy(&p->cpus_allowed, new_mask);
		p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7102 7103
	}

L
Linus Torvalds 已提交
7104
	/* Can the task run on the task's current CPU? If so, we're done */
7105
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
7106 7107
		goto out;

7108
	if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
L
Linus Torvalds 已提交
7109
		/* Need help from migration thread: drop lock and wait. */
7110 7111 7112
		struct task_struct *mt = rq->migration_thread;

		get_task_struct(mt);
L
Linus Torvalds 已提交
7113 7114
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
7115
		put_task_struct(mt);
L
Linus Torvalds 已提交
7116 7117 7118 7119 7120 7121
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
7122

L
Linus Torvalds 已提交
7123 7124
	return ret;
}
7125
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
7126 7127

/*
I
Ingo Molnar 已提交
7128
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
7129 7130 7131 7132 7133 7134
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
7135 7136
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
7137
 */
7138
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
7139
{
7140
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
7141
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
7142

7143
	if (unlikely(!cpu_active(dest_cpu)))
7144
		return ret;
L
Linus Torvalds 已提交
7145 7146 7147 7148 7149 7150 7151

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
7152
		goto done;
L
Linus Torvalds 已提交
7153
	/* Affinity changed (again). */
7154
	if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
L
Linus Torvalds 已提交
7155
		goto fail;
L
Linus Torvalds 已提交
7156

I
Ingo Molnar 已提交
7157
	on_rq = p->se.on_rq;
7158
	if (on_rq)
7159
		deactivate_task(rq_src, p, 0);
7160

L
Linus Torvalds 已提交
7161
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
7162 7163
	if (on_rq) {
		activate_task(rq_dest, p, 0);
7164
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
7165
	}
L
Linus Torvalds 已提交
7166
done:
7167
	ret = 1;
L
Linus Torvalds 已提交
7168
fail:
L
Linus Torvalds 已提交
7169
	double_rq_unlock(rq_src, rq_dest);
7170
	return ret;
L
Linus Torvalds 已提交
7171 7172
}

7173 7174 7175 7176 7177
#define RCU_MIGRATION_IDLE	0
#define RCU_MIGRATION_NEED_QS	1
#define RCU_MIGRATION_GOT_QS	2
#define RCU_MIGRATION_MUST_SYNC	3

L
Linus Torvalds 已提交
7178 7179 7180 7181 7182
/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
7183
static int migration_thread(void *data)
L
Linus Torvalds 已提交
7184
{
7185
	int badcpu;
L
Linus Torvalds 已提交
7186
	int cpu = (long)data;
7187
	struct rq *rq;
L
Linus Torvalds 已提交
7188 7189 7190 7191 7192 7193

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
7194
		struct migration_req *req;
L
Linus Torvalds 已提交
7195 7196 7197 7198 7199 7200
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
7201
			break;
L
Linus Torvalds 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
7217
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
7218 7219
		list_del_init(head->next);

7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
		if (req->task != NULL) {
			spin_unlock(&rq->lock);
			__migrate_task(req->task, cpu, req->dest_cpu);
		} else if (likely(cpu == (badcpu = smp_processor_id()))) {
			req->dest_cpu = RCU_MIGRATION_GOT_QS;
			spin_unlock(&rq->lock);
		} else {
			req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
			spin_unlock(&rq->lock);
			WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
		}
N
Nick Piggin 已提交
7231
		local_irq_enable();
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);

	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

7252
/*
7253
 * Figure out where task on dead CPU should go, use force if necessary.
7254
 */
7255
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7256
{
7257
	int dest_cpu;
7258
	const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7259 7260 7261

again:
	/* Look for allowed, online CPU in same node. */
7262
	for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7263 7264 7265 7266
		if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
			goto move;

	/* Any allowed, online CPU? */
7267
	dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7268 7269 7270 7271 7272 7273
	if (dest_cpu < nr_cpu_ids)
		goto move;

	/* No more Mr. Nice Guy. */
	if (dest_cpu >= nr_cpu_ids) {
		cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7274
		dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
L
Linus Torvalds 已提交
7275

7276 7277 7278 7279 7280 7281 7282 7283 7284
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
			printk(KERN_INFO "process %d (%s) no "
			       "longer affine to cpu%d\n",
			       task_pid_nr(p), p->comm, dead_cpu);
7285
		}
7286 7287 7288 7289 7290 7291
	}

move:
	/* It can have affinity changed while we were choosing. */
	if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
		goto again;
L
Linus Torvalds 已提交
7292 7293 7294 7295 7296 7297 7298 7299 7300
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
7301
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
7302
{
7303
	struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
L
Linus Torvalds 已提交
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
7317
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
7318

7319
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
7320

7321 7322
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
7323 7324
			continue;

7325 7326 7327
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
7328

7329
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
7330 7331
}

I
Ingo Molnar 已提交
7332 7333
/*
 * Schedules idle task to be the next runnable task on current CPU.
7334 7335
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
7336 7337 7338
 */
void sched_idle_next(void)
{
7339
	int this_cpu = smp_processor_id();
7340
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
7341 7342 7343 7344
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
7345
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
7346

7347 7348 7349
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
7350 7351 7352
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
7353
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7354

7355 7356
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
7357 7358 7359 7360

	spin_unlock_irqrestore(&rq->lock, flags);
}

7361 7362
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

7376
/* called under rq->lock with disabled interrupts */
7377
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
7378
{
7379
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
7380 7381

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
7382
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
7383 7384

	/* Cannot have done final schedule yet: would have vanished. */
7385
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
7386

7387
	get_task_struct(p);
L
Linus Torvalds 已提交
7388 7389 7390

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
7391
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
7392 7393
	 * fine.
	 */
7394
	spin_unlock_irq(&rq->lock);
7395
	move_task_off_dead_cpu(dead_cpu, p);
7396
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7397

7398
	put_task_struct(p);
L
Linus Torvalds 已提交
7399 7400 7401 7402 7403
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
7404
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
7405
	struct task_struct *next;
7406

I
Ingo Molnar 已提交
7407 7408 7409
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
7410
		update_rq_clock(rq);
7411
		next = pick_next_task(rq);
I
Ingo Molnar 已提交
7412 7413
		if (!next)
			break;
D
Dmitry Adamushko 已提交
7414
		next->sched_class->put_prev_task(rq, next);
I
Ingo Molnar 已提交
7415
		migrate_dead(dead_cpu, next);
7416

L
Linus Torvalds 已提交
7417 7418
	}
}
7419 7420 7421 7422 7423 7424 7425

/*
 * remove the tasks which were accounted by rq from calc_load_tasks.
 */
static void calc_global_load_remove(struct rq *rq)
{
	atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7426
	rq->calc_load_active = 0;
7427
}
L
Linus Torvalds 已提交
7428 7429
#endif /* CONFIG_HOTPLUG_CPU */

7430 7431 7432
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
7433 7434
	{
		.procname	= "sched_domain",
7435
		.mode		= 0555,
7436
	},
I
Ingo Molnar 已提交
7437
	{0, },
7438 7439 7440
};

static struct ctl_table sd_ctl_root[] = {
7441
	{
7442
		.ctl_name	= CTL_KERN,
7443
		.procname	= "kernel",
7444
		.mode		= 0555,
7445 7446
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
7447
	{0, },
7448 7449 7450 7451 7452
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
7453
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7454 7455 7456 7457

	return entry;
}

7458 7459
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
7460
	struct ctl_table *entry;
7461

7462 7463 7464
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
7465
	 * will always be set. In the lowest directory the names are
7466 7467 7468
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
7469 7470
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
7471 7472 7473
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
7474 7475 7476 7477 7478

	kfree(*tablep);
	*tablep = NULL;
}

7479
static void
7480
set_table_entry(struct ctl_table *entry,
7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
7494
	struct ctl_table *table = sd_alloc_ctl_entry(13);
7495

7496 7497 7498
	if (table == NULL)
		return NULL;

7499
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
7500
		sizeof(long), 0644, proc_doulongvec_minmax);
7501
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
7502
		sizeof(long), 0644, proc_doulongvec_minmax);
7503
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7504
		sizeof(int), 0644, proc_dointvec_minmax);
7505
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7506
		sizeof(int), 0644, proc_dointvec_minmax);
7507
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7508
		sizeof(int), 0644, proc_dointvec_minmax);
7509
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7510
		sizeof(int), 0644, proc_dointvec_minmax);
7511
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7512
		sizeof(int), 0644, proc_dointvec_minmax);
7513
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7514
		sizeof(int), 0644, proc_dointvec_minmax);
7515
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7516
		sizeof(int), 0644, proc_dointvec_minmax);
7517
	set_table_entry(&table[9], "cache_nice_tries",
7518 7519
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
7520
	set_table_entry(&table[10], "flags", &sd->flags,
7521
		sizeof(int), 0644, proc_dointvec_minmax);
7522 7523 7524
	set_table_entry(&table[11], "name", sd->name,
		CORENAME_MAX_SIZE, 0444, proc_dostring);
	/* &table[12] is terminator */
7525 7526 7527 7528

	return table;
}

7529
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7530 7531 7532 7533 7534 7535 7536 7537 7538
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
7539 7540
	if (table == NULL)
		return NULL;
7541 7542 7543 7544 7545

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7546
		entry->mode = 0555;
7547 7548 7549 7550 7551 7552 7553 7554
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
7555
static void register_sched_domain_sysctl(void)
7556
{
7557
	int i, cpu_num = num_possible_cpus();
7558 7559 7560
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

7561 7562 7563
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

7564 7565 7566
	if (entry == NULL)
		return;

7567
	for_each_possible_cpu(i) {
7568 7569
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
7570
		entry->mode = 0555;
7571
		entry->child = sd_alloc_ctl_cpu_table(i);
7572
		entry++;
7573
	}
7574 7575

	WARN_ON(sd_sysctl_header);
7576 7577
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
7578

7579
/* may be called multiple times per register */
7580 7581
static void unregister_sched_domain_sysctl(void)
{
7582 7583
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
7584
	sd_sysctl_header = NULL;
7585 7586
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
7587
}
7588
#else
7589 7590 7591 7592
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
7593 7594 7595 7596
{
}
#endif

7597 7598 7599 7600 7601
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

7602
		cpumask_set_cpu(rq->cpu, rq->rd->online);
7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

7622
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
7623 7624 7625 7626
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
7627 7628 7629 7630
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
7631 7632
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
7633 7634
{
	struct task_struct *p;
7635
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
7636
	unsigned long flags;
7637
	struct rq *rq;
L
Linus Torvalds 已提交
7638 7639

	switch (action) {
7640

L
Linus Torvalds 已提交
7641
	case CPU_UP_PREPARE:
7642
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
7643
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
7644 7645 7646 7647 7648
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
7649
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
7650
		task_rq_unlock(rq, &flags);
7651
		get_task_struct(p);
L
Linus Torvalds 已提交
7652
		cpu_rq(cpu)->migration_thread = p;
7653
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
7654
		break;
7655

L
Linus Torvalds 已提交
7656
	case CPU_ONLINE:
7657
	case CPU_ONLINE_FROZEN:
7658
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
7659
		wake_up_process(cpu_rq(cpu)->migration_thread);
7660 7661 7662 7663 7664

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7665
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7666 7667

			set_rq_online(rq);
7668 7669
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
7670
		break;
7671

L
Linus Torvalds 已提交
7672 7673
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
7674
	case CPU_UP_CANCELED_FROZEN:
7675 7676
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
7677
		/* Unbind it from offline cpu so it can run. Fall thru. */
7678
		kthread_bind(cpu_rq(cpu)->migration_thread,
R
Rusty Russell 已提交
7679
			     cpumask_any(cpu_online_mask));
L
Linus Torvalds 已提交
7680
		kthread_stop(cpu_rq(cpu)->migration_thread);
7681
		put_task_struct(cpu_rq(cpu)->migration_thread);
L
Linus Torvalds 已提交
7682 7683
		cpu_rq(cpu)->migration_thread = NULL;
		break;
7684

L
Linus Torvalds 已提交
7685
	case CPU_DEAD:
7686
	case CPU_DEAD_FROZEN:
7687
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
7688 7689 7690
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
7691
		put_task_struct(rq->migration_thread);
L
Linus Torvalds 已提交
7692 7693
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
7694
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
7695
		update_rq_clock(rq);
7696
		deactivate_task(rq, rq->idle, 0);
I
Ingo Molnar 已提交
7697 7698
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
7699
		migrate_dead_tasks(cpu);
7700
		spin_unlock_irq(&rq->lock);
7701
		cpuset_unlock();
L
Linus Torvalds 已提交
7702 7703
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);
7704
		calc_global_load_remove(rq);
I
Ingo Molnar 已提交
7705 7706 7707 7708 7709
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
7710 7711
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
7712 7713
			struct migration_req *req;

L
Linus Torvalds 已提交
7714
			req = list_entry(rq->migration_queue.next,
7715
					 struct migration_req, list);
L
Linus Torvalds 已提交
7716
			list_del_init(&req->list);
B
Brian King 已提交
7717
			spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
7718
			complete(&req->done);
B
Brian King 已提交
7719
			spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
7720 7721 7722
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
7723

7724 7725
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
7726 7727 7728 7729
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
7730
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7731
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7732 7733 7734
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
7735 7736 7737 7738 7739
#endif
	}
	return NOTIFY_OK;
}

7740 7741 7742
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
7743
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
7744
 */
7745
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
7746 7747 7748 7749
	.notifier_call = migration_call,
	.priority = 10
};

7750
static int __init migration_init(void)
L
Linus Torvalds 已提交
7751 7752
{
	void *cpu = (void *)(long)smp_processor_id();
7753
	int err;
7754 7755

	/* Start one for the boot CPU: */
7756 7757
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
7758 7759
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
7760

7761
	return 0;
L
Linus Torvalds 已提交
7762
}
7763
early_initcall(migration_init);
L
Linus Torvalds 已提交
7764 7765 7766
#endif

#ifdef CONFIG_SMP
7767

7768
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
7769

7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
static __read_mostly int sched_domain_debug_enabled;

static int __init sched_domain_debug_setup(char *str)
{
	sched_domain_debug_enabled = 1;

	return 0;
}
early_param("sched_debug", sched_domain_debug_setup);

7780
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7781
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
7782
{
I
Ingo Molnar 已提交
7783
	struct sched_group *group = sd->groups;
7784
	char str[256];
L
Linus Torvalds 已提交
7785

R
Rusty Russell 已提交
7786
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7787
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
7788 7789 7790 7791 7792 7793 7794 7795 7796

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
7797 7798
	}

7799
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
7800

7801
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
I
Ingo Molnar 已提交
7802 7803 7804
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
7805
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7806 7807 7808
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
7809

I
Ingo Molnar 已提交
7810
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
7811
	do {
I
Ingo Molnar 已提交
7812 7813 7814
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
7815 7816 7817
			break;
		}

7818
		if (!group->cpu_power) {
I
Ingo Molnar 已提交
7819 7820 7821 7822 7823
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
7824

7825
		if (!cpumask_weight(sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7826 7827 7828 7829
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
7830

7831
		if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
I
Ingo Molnar 已提交
7832 7833 7834 7835
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
7836

7837
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
7838

R
Rusty Russell 已提交
7839
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7840 7841

		printk(KERN_CONT " %s", str);
7842 7843 7844
		if (group->cpu_power != SCHED_LOAD_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
7845
		}
L
Linus Torvalds 已提交
7846

I
Ingo Molnar 已提交
7847 7848 7849
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
7850

7851
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
I
Ingo Molnar 已提交
7852
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
7853

7854 7855
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
I
Ingo Molnar 已提交
7856 7857 7858 7859
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
7860

I
Ingo Molnar 已提交
7861 7862
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
7863
	cpumask_var_t groupmask;
I
Ingo Molnar 已提交
7864
	int level = 0;
L
Linus Torvalds 已提交
7865

7866 7867 7868
	if (!sched_domain_debug_enabled)
		return;

I
Ingo Molnar 已提交
7869 7870 7871 7872
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
7873

I
Ingo Molnar 已提交
7874 7875
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

7876
	if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7877 7878 7879 7880
		printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
		return;
	}

I
Ingo Molnar 已提交
7881
	for (;;) {
7882
		if (sched_domain_debug_one(sd, cpu, level, groupmask))
I
Ingo Molnar 已提交
7883
			break;
L
Linus Torvalds 已提交
7884 7885
		level++;
		sd = sd->parent;
7886
		if (!sd)
I
Ingo Molnar 已提交
7887 7888
			break;
	}
7889
	free_cpumask_var(groupmask);
L
Linus Torvalds 已提交
7890
}
7891
#else /* !CONFIG_SCHED_DEBUG */
7892
# define sched_domain_debug(sd, cpu) do { } while (0)
7893
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
7894

7895
static int sd_degenerate(struct sched_domain *sd)
7896
{
7897
	if (cpumask_weight(sched_domain_span(sd)) == 1)
7898 7899 7900 7901 7902 7903
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
7904 7905 7906
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
7907 7908 7909 7910 7911
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
7912
	if (sd->flags & (SD_WAKE_AFFINE))
7913 7914 7915 7916 7917
		return 0;

	return 1;
}

7918 7919
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7920 7921 7922 7923 7924 7925
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

7926
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7927 7928 7929 7930 7931 7932 7933
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
7934 7935 7936
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
7937 7938
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
7939 7940 7941 7942 7943 7944 7945
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

7946 7947
static void free_rootdomain(struct root_domain *rd)
{
7948 7949
	synchronize_sched();

7950 7951
	cpupri_cleanup(&rd->cpupri);

7952 7953 7954 7955 7956 7957
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
7958 7959
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
7960
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
7961 7962 7963 7964 7965
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
I
Ingo Molnar 已提交
7966
		old_rd = rq->rd;
G
Gregory Haskins 已提交
7967

7968
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
7969
			set_rq_offline(rq);
G
Gregory Haskins 已提交
7970

7971
		cpumask_clear_cpu(rq->cpu, old_rd->span);
7972

I
Ingo Molnar 已提交
7973 7974 7975 7976 7977 7978 7979
		/*
		 * If we dont want to free the old_rt yet then
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
7980 7981 7982 7983 7984
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

7985
	cpumask_set_cpu(rq->cpu, rd->span);
7986
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7987
		set_rq_online(rq);
G
Gregory Haskins 已提交
7988 7989

	spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
7990 7991 7992

	if (old_rd)
		free_rootdomain(old_rd);
G
Gregory Haskins 已提交
7993 7994
}

L
Li Zefan 已提交
7995
static int init_rootdomain(struct root_domain *rd, bool bootmem)
G
Gregory Haskins 已提交
7996
{
7997 7998
	gfp_t gfp = GFP_KERNEL;

G
Gregory Haskins 已提交
7999 8000
	memset(rd, 0, sizeof(*rd));

8001 8002
	if (bootmem)
		gfp = GFP_NOWAIT;
8003

8004
	if (!alloc_cpumask_var(&rd->span, gfp))
8005
		goto out;
8006
	if (!alloc_cpumask_var(&rd->online, gfp))
8007
		goto free_span;
8008
	if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8009
		goto free_online;
8010

P
Pekka Enberg 已提交
8011
	if (cpupri_init(&rd->cpupri, bootmem) != 0)
8012
		goto free_rto_mask;
8013
	return 0;
8014

8015 8016
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
8017 8018 8019 8020
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
8021
out:
8022
	return -ENOMEM;
G
Gregory Haskins 已提交
8023 8024 8025 8026
}

static void init_defrootdomain(void)
{
8027 8028
	init_rootdomain(&def_root_domain, true);

G
Gregory Haskins 已提交
8029 8030 8031
	atomic_set(&def_root_domain.refcount, 1);
}

8032
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
8033 8034 8035 8036 8037 8038 8039
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

8040 8041 8042 8043
	if (init_rootdomain(rd, false) != 0) {
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
8044 8045 8046 8047

	return rd;
}

L
Linus Torvalds 已提交
8048
/*
I
Ingo Molnar 已提交
8049
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
8050 8051
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
8052 8053
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
8054
{
8055
	struct rq *rq = cpu_rq(cpu);
8056 8057 8058
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
8059
	for (tmp = sd; tmp; ) {
8060 8061 8062
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
8063

8064
		if (sd_parent_degenerate(tmp, parent)) {
8065
			tmp->parent = parent->parent;
8066 8067
			if (parent->parent)
				parent->parent->child = tmp;
8068 8069
		} else
			tmp = tmp->parent;
8070 8071
	}

8072
	if (sd && sd_degenerate(sd)) {
8073
		sd = sd->parent;
8074 8075 8076
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
8077 8078 8079

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
8080
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
8081
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
8082 8083 8084
}

/* cpus with isolated domains */
8085
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
8086 8087 8088 8089

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
8090
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
8091
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
8092 8093 8094
	return 1;
}

I
Ingo Molnar 已提交
8095
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
8096 8097

/*
8098 8099
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
8100 8101
 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
 * (due to the fact that we keep track of groups covered with a struct cpumask).
L
Linus Torvalds 已提交
8102 8103 8104 8105 8106
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
8107
static void
8108 8109 8110
init_sched_build_groups(const struct cpumask *span,
			const struct cpumask *cpu_map,
			int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8111
					struct sched_group **sg,
8112 8113
					struct cpumask *tmpmask),
			struct cpumask *covered, struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8114 8115 8116 8117
{
	struct sched_group *first = NULL, *last = NULL;
	int i;

8118
	cpumask_clear(covered);
8119

8120
	for_each_cpu(i, span) {
8121
		struct sched_group *sg;
8122
		int group = group_fn(i, cpu_map, &sg, tmpmask);
L
Linus Torvalds 已提交
8123 8124
		int j;

8125
		if (cpumask_test_cpu(i, covered))
L
Linus Torvalds 已提交
8126 8127
			continue;

8128
		cpumask_clear(sched_group_cpus(sg));
8129
		sg->cpu_power = 0;
L
Linus Torvalds 已提交
8130

8131
		for_each_cpu(j, span) {
8132
			if (group_fn(j, cpu_map, NULL, tmpmask) != group)
L
Linus Torvalds 已提交
8133 8134
				continue;

8135
			cpumask_set_cpu(j, covered);
8136
			cpumask_set_cpu(j, sched_group_cpus(sg));
L
Linus Torvalds 已提交
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

8147
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
8148

8149
#ifdef CONFIG_NUMA
8150

8151 8152 8153 8154 8155
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
8156
 * Find the next node to include in a given scheduling domain. Simply
8157 8158 8159 8160
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
8161
static int find_next_best_node(int node, nodemask_t *used_nodes)
8162 8163 8164 8165 8166
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

8167
	for (i = 0; i < nr_node_ids; i++) {
8168
		/* Start at @node */
8169
		n = (node + i) % nr_node_ids;
8170 8171 8172 8173 8174

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
8175
		if (node_isset(n, *used_nodes))
8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

8187
	node_set(best_node, *used_nodes);
8188 8189 8190 8191 8192 8193
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
8194
 * @span: resulting cpumask
8195
 *
I
Ingo Molnar 已提交
8196
 * Given a node, construct a good cpumask for its sched_domain to span. It
8197 8198 8199
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
8200
static void sched_domain_node_span(int node, struct cpumask *span)
8201
{
8202
	nodemask_t used_nodes;
8203
	int i;
8204

8205
	cpumask_clear(span);
8206
	nodes_clear(used_nodes);
8207

8208
	cpumask_or(span, span, cpumask_of_node(node));
8209
	node_set(node, used_nodes);
8210 8211

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8212
		int next_node = find_next_best_node(node, &used_nodes);
8213

8214
		cpumask_or(span, span, cpumask_of_node(next_node));
8215 8216
	}
}
8217
#endif /* CONFIG_NUMA */
8218

8219
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8220

8221 8222
/*
 * The cpus mask in sched_group and sched_domain hangs off the end.
8223 8224 8225
 *
 * ( See the the comments in include/linux/sched.h:struct sched_group
 *   and struct sched_domain. )
8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236
 */
struct static_sched_group {
	struct sched_group sg;
	DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
};

struct static_sched_domain {
	struct sched_domain sd;
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};

8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252
struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269
enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

8270
/*
8271
 * SMT sched-domains:
8272
 */
L
Linus Torvalds 已提交
8273
#ifdef CONFIG_SCHED_SMT
8274 8275
static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8276

I
Ingo Molnar 已提交
8277
static int
8278 8279
cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
		 struct sched_group **sg, struct cpumask *unused)
L
Linus Torvalds 已提交
8280
{
8281
	if (sg)
8282
		*sg = &per_cpu(sched_group_cpus, cpu).sg;
L
Linus Torvalds 已提交
8283 8284
	return cpu;
}
8285
#endif /* CONFIG_SCHED_SMT */
L
Linus Torvalds 已提交
8286

8287 8288 8289
/*
 * multi-core sched-domains:
 */
8290
#ifdef CONFIG_SCHED_MC
8291 8292
static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8293
#endif /* CONFIG_SCHED_MC */
8294 8295

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
8296
static int
8297 8298
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
8299
{
8300
	int group;
8301

8302
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8303
	group = cpumask_first(mask);
8304
	if (sg)
8305
		*sg = &per_cpu(sched_group_core, group).sg;
8306
	return group;
8307 8308
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
8309
static int
8310 8311
cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *unused)
8312
{
8313
	if (sg)
8314
		*sg = &per_cpu(sched_group_core, cpu).sg;
8315 8316 8317 8318
	return cpu;
}
#endif

8319 8320
static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8321

I
Ingo Molnar 已提交
8322
static int
8323 8324
cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
		  struct sched_group **sg, struct cpumask *mask)
L
Linus Torvalds 已提交
8325
{
8326
	int group;
8327
#ifdef CONFIG_SCHED_MC
8328
	cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8329
	group = cpumask_first(mask);
8330
#elif defined(CONFIG_SCHED_SMT)
8331
	cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8332
	group = cpumask_first(mask);
L
Linus Torvalds 已提交
8333
#else
8334
	group = cpu;
L
Linus Torvalds 已提交
8335
#endif
8336
	if (sg)
8337
		*sg = &per_cpu(sched_group_phys, group).sg;
8338
	return group;
L
Linus Torvalds 已提交
8339 8340 8341 8342
}

#ifdef CONFIG_NUMA
/*
8343 8344 8345
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
8346
 */
8347
static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8348
static struct sched_group ***sched_group_nodes_bycpu;
L
Linus Torvalds 已提交
8349

8350
static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8351
static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8352

8353 8354 8355
static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
				 struct sched_group **sg,
				 struct cpumask *nodemask)
8356
{
8357 8358
	int group;

8359
	cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8360
	group = cpumask_first(nodemask);
8361 8362

	if (sg)
8363
		*sg = &per_cpu(sched_group_allnodes, group).sg;
8364
	return group;
L
Linus Torvalds 已提交
8365
}
8366

8367 8368 8369 8370 8371 8372 8373
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
8374
	do {
8375
		for_each_cpu(j, sched_group_cpus(sg)) {
8376
			struct sched_domain *sd;
8377

8378
			sd = &per_cpu(phys_domains, j).sd;
8379
			if (j != group_first_cpu(sd->groups)) {
8380 8381 8382 8383 8384 8385
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
8386

8387
			sg->cpu_power += sd->groups->cpu_power;
8388 8389 8390
		}
		sg = sg->next;
	} while (sg != group_head);
8391
}
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

8424
	sg->cpu_power = 0;
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
8447
		sg->cpu_power = 0;
8448 8449 8450 8451 8452 8453 8454 8455 8456
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
8457
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
8458

8459
#ifdef CONFIG_NUMA
8460
/* Free memory allocated for various sched_group structures */
8461 8462
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8463
{
8464
	int cpu, i;
8465

8466
	for_each_cpu(cpu, cpu_map) {
8467 8468 8469 8470 8471 8472
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

8473
		for (i = 0; i < nr_node_ids; i++) {
8474 8475
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

8476
			cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8477
			if (cpumask_empty(nodemask))
8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
8494
#else /* !CONFIG_NUMA */
8495 8496
static void free_sched_groups(const struct cpumask *cpu_map,
			      struct cpumask *nodemask)
8497 8498
{
}
8499
#endif /* CONFIG_NUMA */
8500

8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;
8515 8516
	long power;
	int weight;
8517 8518 8519

	WARN_ON(!sd || !sd->groups);

8520
	if (cpu != group_first_cpu(sd->groups))
8521 8522 8523 8524
		return;

	child = sd->child;

8525
	sd->groups->cpu_power = 0;
8526

8527 8528 8529 8530 8531
	if (!child) {
		power = SCHED_LOAD_SCALE;
		weight = cpumask_weight(sched_domain_span(sd));
		/*
		 * SMT siblings share the power of a single core.
P
Peter Zijlstra 已提交
8532 8533 8534
		 * Usually multiple threads get a better yield out of
		 * that one core than a single thread would have,
		 * reflect that in sd->smt_gain.
8535
		 */
P
Peter Zijlstra 已提交
8536 8537
		if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
			power *= sd->smt_gain;
8538
			power /= weight;
P
Peter Zijlstra 已提交
8539 8540
			power >>= SCHED_LOAD_SHIFT;
		}
8541
		sd->groups->cpu_power += power;
8542 8543 8544 8545
		return;
	}

	/*
8546
	 * Add cpu_power of each child group to this groups cpu_power.
8547 8548 8549
	 */
	group = child->groups;
	do {
8550
		sd->groups->cpu_power += group->cpu_power;
8551 8552 8553 8554
		group = group->next;
	} while (group != child->groups);
}

8555 8556 8557 8558 8559
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

8560 8561 8562 8563 8564 8565
#ifdef CONFIG_SCHED_DEBUG
# define SD_INIT_NAME(sd, type)		sd->name = #type
#else
# define SD_INIT_NAME(sd, type)		do { } while (0)
#endif

8566
#define	SD_INIT(sd, type)	sd_init_##type(sd)
8567

8568 8569 8570 8571 8572
#define SD_INIT_FUNC(type)	\
static noinline void sd_init_##type(struct sched_domain *sd)	\
{								\
	memset(sd, 0, sizeof(*sd));				\
	*sd = SD_##type##_INIT;					\
8573
	sd->level = SD_LV_##type;				\
8574
	SD_INIT_NAME(sd, type);					\
8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588
}

SD_INIT_FUNC(CPU)
#ifdef CONFIG_NUMA
 SD_INIT_FUNC(ALLNODES)
 SD_INIT_FUNC(NODE)
#endif
#ifdef CONFIG_SCHED_SMT
 SD_INIT_FUNC(SIBLING)
#endif
#ifdef CONFIG_SCHED_MC
 SD_INIT_FUNC(MC)
#endif

8589 8590 8591 8592
static int default_relax_domain_level = -1;

static int __init setup_relax_domain_level(char *str)
{
8593 8594 8595 8596 8597 8598
	unsigned long val;

	val = simple_strtoul(str, NULL, 0);
	if (val < SD_LV_MAX)
		default_relax_domain_level = val;

8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
8617
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8618 8619
	} else {
		/* turn on idle balance on this domain */
8620
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8621 8622 8623
	}
}

8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_sched_groups:
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
		d->sched_group_nodes = NULL;
	case sa_rootdomain:
		free_rootdomain(d->rd); /* fall through */
	case sa_tmpmask:
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
8644
#ifdef CONFIG_NUMA
8645 8646 8647 8648 8649 8650 8651
		kfree(d->sched_group_nodes); /* fall through */
	case sa_notcovered:
		free_cpumask_var(d->notcovered); /* fall through */
	case sa_covered:
		free_cpumask_var(d->covered); /* fall through */
	case sa_domainspan:
		free_cpumask_var(d->domainspan); /* fall through */
8652
#endif
8653 8654 8655 8656
	case sa_none:
		break;
	}
}
8657

8658 8659 8660
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
8661
#ifdef CONFIG_NUMA
8662 8663 8664 8665 8666 8667 8668 8669 8670 8671
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
		return sa_none;
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
		return sa_domainspan;
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
8672
		printk(KERN_WARNING "Can not alloc sched group node list\n");
8673
		return sa_notcovered;
8674
	}
8675
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8676
#endif
8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
G
Gregory Haskins 已提交
8689
		printk(KERN_WARNING "Cannot alloc root domain\n");
8690
		return sa_tmpmask;
G
Gregory Haskins 已提交
8691
	}
8692 8693
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
8694

8695 8696 8697 8698
static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
8699
#ifdef CONFIG_NUMA
8700
	struct sched_domain *parent;
L
Linus Torvalds 已提交
8701

8702 8703 8704 8705 8706
	d->sd_allnodes = 0;
	if (cpumask_weight(cpu_map) >
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
8707
		set_domain_attribute(sd, attr);
8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
		d->sd_allnodes = 1;
	}
	parent = sd;

	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
L
Linus Torvalds 已提交
8722
#endif
8723 8724
	return sd;
}
L
Linus Torvalds 已提交
8725

8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
	sd->parent = parent;
	if (parent)
		parent->child = sd;
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}
L
Linus Torvalds 已提交
8741

8742 8743 8744 8745 8746
static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
8747
#ifdef CONFIG_SCHED_MC
8748 8749 8750 8751 8752 8753 8754
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8755
#endif
8756 8757
	return sd;
}
8758

8759 8760 8761 8762 8763
static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
L
Linus Torvalds 已提交
8764
#ifdef CONFIG_SCHED_SMT
8765 8766 8767 8768 8769 8770 8771
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
	sd->parent = parent;
	parent->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
L
Linus Torvalds 已提交
8772
#endif
8773 8774
	return sd;
}
L
Linus Torvalds 已提交
8775

8776 8777 8778 8779
static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
L
Linus Torvalds 已提交
8780
#ifdef CONFIG_SCHED_SMT
8781 8782 8783 8784 8785 8786 8787 8788
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
		cpumask_and(d->this_sibling_map, cpu_map,
			    topology_thread_cpumask(cpu));
		if (cpu == cpumask_first(d->this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8789
#endif
8790
#ifdef CONFIG_SCHED_MC
8791 8792 8793 8794 8795 8796 8797
	case SD_LV_MC: /* set up multi-core groups */
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		if (cpu == cpumask_first(d->this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
						&cpu_to_core_group,
						d->send_covered, d->tmpmask);
		break;
8798
#endif
8799 8800 8801 8802 8803 8804 8805
	case SD_LV_CPU: /* set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
		if (!cpumask_empty(d->nodemask))
			init_sched_build_groups(d->nodemask, cpu_map,
						&cpu_to_phys_group,
						d->send_covered, d->tmpmask);
		break;
L
Linus Torvalds 已提交
8806
#ifdef CONFIG_NUMA
8807 8808 8809 8810 8811
	case SD_LV_ALLNODES:
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
					d->send_covered, d->tmpmask);
		break;
#endif
8812 8813
	default:
		break;
8814
	}
8815
}
8816

8817 8818 8819 8820 8821 8822 8823 8824 8825
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
8826
	struct sched_domain *sd;
8827
	int i;
8828
#ifdef CONFIG_NUMA
8829
	d.sd_allnodes = 0;
8830
#endif
8831

8832 8833 8834 8835
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
	alloc_state = sa_sched_groups;
8836

L
Linus Torvalds 已提交
8837
	/*
8838
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
8839
	 */
8840
	for_each_cpu(i, cpu_map) {
8841 8842
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);
I
Ingo Molnar 已提交
8843

8844
		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8845
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8846
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8847
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
L
Linus Torvalds 已提交
8848
	}
8849

8850
	for_each_cpu(i, cpu_map) {
8851
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8852
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
L
Linus Torvalds 已提交
8853
	}
8854

L
Linus Torvalds 已提交
8855
	/* Set up physical groups */
8856 8857
	for (i = 0; i < nr_node_ids; i++)
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8858

L
Linus Torvalds 已提交
8859 8860
#ifdef CONFIG_NUMA
	/* Set up node groups */
8861 8862
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8863

8864 8865
	for (i = 0; i < nr_node_ids; i++)
		if (build_numa_sched_groups(&d, cpu_map, i))
8866
			goto error;
L
Linus Torvalds 已提交
8867 8868 8869
#endif

	/* Calculate CPU power for physical packages and nodes */
8870
#ifdef CONFIG_SCHED_SMT
8871
	for_each_cpu(i, cpu_map) {
8872
		sd = &per_cpu(cpu_domains, i).sd;
8873
		init_sched_groups_power(i, sd);
8874
	}
L
Linus Torvalds 已提交
8875
#endif
8876
#ifdef CONFIG_SCHED_MC
8877
	for_each_cpu(i, cpu_map) {
8878
		sd = &per_cpu(core_domains, i).sd;
8879
		init_sched_groups_power(i, sd);
8880 8881
	}
#endif
8882

8883
	for_each_cpu(i, cpu_map) {
8884
		sd = &per_cpu(phys_domains, i).sd;
8885
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
8886 8887
	}

8888
#ifdef CONFIG_NUMA
8889
	for (i = 0; i < nr_node_ids; i++)
8890
		init_numa_sched_groups_power(d.sched_group_nodes[i]);
8891

8892
	if (d.sd_allnodes) {
8893
		struct sched_group *sg;
8894

8895
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8896
								d.tmpmask);
8897 8898
		init_numa_sched_groups_power(sg);
	}
8899 8900
#endif

L
Linus Torvalds 已提交
8901
	/* Attach the domains */
8902
	for_each_cpu(i, cpu_map) {
L
Linus Torvalds 已提交
8903
#ifdef CONFIG_SCHED_SMT
8904
		sd = &per_cpu(cpu_domains, i).sd;
8905
#elif defined(CONFIG_SCHED_MC)
8906
		sd = &per_cpu(core_domains, i).sd;
L
Linus Torvalds 已提交
8907
#else
8908
		sd = &per_cpu(phys_domains, i).sd;
L
Linus Torvalds 已提交
8909
#endif
8910
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
8911
	}
8912

8913 8914 8915
	d.sched_group_nodes = NULL; /* don't free this we still need it */
	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
	return 0;
8916 8917

error:
8918 8919
	__free_domain_allocs(&d, alloc_state, cpu_map);
	return -ENOMEM;
L
Linus Torvalds 已提交
8920
}
P
Paul Jackson 已提交
8921

8922
static int build_sched_domains(const struct cpumask *cpu_map)
8923 8924 8925 8926
{
	return __build_sched_domains(cpu_map, NULL);
}

8927
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
8928
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
8929 8930
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
8931 8932 8933

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
8934 8935
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
8936
 */
8937
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
8938

8939 8940 8941 8942 8943 8944
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
int __attribute__((weak)) arch_update_cpu_topology(void)
8945
{
8946
	return 0;
8947 8948
}

8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

8974
/*
I
Ingo Molnar 已提交
8975
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
8976 8977
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
8978
 */
8979
static int arch_init_sched_domains(const struct cpumask *cpu_map)
8980
{
8981 8982
	int err;

8983
	arch_update_cpu_topology();
P
Paul Jackson 已提交
8984
	ndoms_cur = 1;
8985
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
8986
	if (!doms_cur)
8987 8988
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8989
	dattr_cur = NULL;
8990
	err = build_sched_domains(doms_cur[0]);
8991
	register_sched_domain_sysctl();
8992 8993

	return err;
8994 8995
}

8996 8997
static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
				       struct cpumask *tmpmask)
L
Linus Torvalds 已提交
8998
{
8999
	free_sched_groups(cpu_map, tmpmask);
9000
}
L
Linus Torvalds 已提交
9001

9002 9003 9004 9005
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
9006
static void detach_destroy_domains(const struct cpumask *cpu_map)
9007
{
9008 9009
	/* Save because hotplug lock held. */
	static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9010 9011
	int i;

9012
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
9013
		cpu_attach_domain(NULL, &def_root_domain, i);
9014
	synchronize_sched();
9015
	arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9016 9017
}

9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
9034 9035
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
9036
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
9037 9038 9039
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
9040
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
9041 9042 9043
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
9044 9045 9046
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
9047 9048 9049 9050 9051 9052
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
9053
 *
9054
 * If doms_new == NULL it will be replaced with cpu_online_mask.
9055 9056
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
9057
 *
P
Paul Jackson 已提交
9058 9059
 * Call with hotplug lock held
 */
9060
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9061
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
9062
{
9063
	int i, j, n;
9064
	int new_topology;
P
Paul Jackson 已提交
9065

9066
	mutex_lock(&sched_domains_mutex);
9067

9068 9069 9070
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

9071 9072 9073
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

9074
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
9075 9076 9077

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
9078
		for (j = 0; j < n && !new_topology; j++) {
9079
			if (cpumask_equal(doms_cur[i], doms_new[j])
9080
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
9081 9082 9083
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
9084
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
9085 9086 9087 9088
match1:
		;
	}

9089 9090
	if (doms_new == NULL) {
		ndoms_cur = 0;
9091
		doms_new = &fallback_doms;
9092
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9093
		WARN_ON_ONCE(dattr_new);
9094 9095
	}

P
Paul Jackson 已提交
9096 9097
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
9098
		for (j = 0; j < ndoms_cur && !new_topology; j++) {
9099
			if (cpumask_equal(doms_new[i], doms_cur[j])
9100
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
9101 9102 9103
				goto match2;
		}
		/* no match - add a new doms_new */
9104
		__build_sched_domains(doms_new[i],
9105
					dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
9106 9107 9108 9109 9110
match2:
		;
	}

	/* Remember the new sched domains */
9111 9112
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
9113
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
9114
	doms_cur = doms_new;
9115
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
9116
	ndoms_cur = ndoms_new;
9117 9118

	register_sched_domain_sysctl();
9119

9120
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
9121 9122
}

9123
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9124
static void arch_reinit_sched_domains(void)
9125
{
9126
	get_online_cpus();
9127 9128 9129 9130

	/* Destroy domains first to force the rebuild */
	partition_sched_domains(0, NULL, NULL);

9131
	rebuild_sched_domains();
9132
	put_online_cpus();
9133 9134 9135 9136
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
9137
	unsigned int level = 0;
9138

9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149
	if (sscanf(buf, "%u", &level) != 1)
		return -EINVAL;

	/*
	 * level is always be positive so don't check for
	 * level < POWERSAVINGS_BALANCE_NONE which is 0
	 * What happens on 0 or 1 byte write,
	 * need to check for count as well?
	 */

	if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9150 9151 9152
		return -EINVAL;

	if (smt)
9153
		sched_smt_power_savings = level;
9154
	else
9155
		sched_mc_power_savings = level;
9156

9157
	arch_reinit_sched_domains();
9158

9159
	return count;
9160 9161 9162
}

#ifdef CONFIG_SCHED_MC
9163 9164
static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
					   char *page)
9165 9166 9167
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
9168
static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9169
					    const char *buf, size_t count)
9170 9171 9172
{
	return sched_power_savings_store(buf, count, 0);
}
9173 9174 9175
static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
			 sched_mc_power_savings_show,
			 sched_mc_power_savings_store);
9176 9177 9178
#endif

#ifdef CONFIG_SCHED_SMT
9179 9180
static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
					    char *page)
9181 9182 9183
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
9184
static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9185
					     const char *buf, size_t count)
9186 9187 9188
{
	return sched_power_savings_store(buf, count, 1);
}
9189 9190
static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
		   sched_smt_power_savings_show,
A
Adrian Bunk 已提交
9191 9192 9193
		   sched_smt_power_savings_store);
#endif

9194
int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
A
Adrian Bunk 已提交
9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
9210
#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9211

9212
#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9213
/*
9214 9215
 * Add online and remove offline CPUs from the scheduler domains.
 * When cpusets are enabled they take over this function.
L
Linus Torvalds 已提交
9216 9217 9218
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
9219 9220 9221 9222
{
	switch (action) {
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
9223 9224 9225 9226
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DOWN_FAILED:
	case CPU_DOWN_FAILED_FROZEN:
9227
		partition_sched_domains(1, NULL, NULL);
9228 9229 9230 9231 9232 9233 9234 9235 9236 9237
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
}
#endif

static int update_runtime(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
9238
{
P
Peter Zijlstra 已提交
9239 9240
	int cpu = (int)(long)hcpu;

L
Linus Torvalds 已提交
9241 9242
	switch (action) {
	case CPU_DOWN_PREPARE:
9243
	case CPU_DOWN_PREPARE_FROZEN:
P
Peter Zijlstra 已提交
9244
		disable_runtime(cpu_rq(cpu));
L
Linus Torvalds 已提交
9245 9246 9247
		return NOTIFY_OK;

	case CPU_DOWN_FAILED:
9248
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
9249
	case CPU_ONLINE:
9250
	case CPU_ONLINE_FROZEN:
P
Peter Zijlstra 已提交
9251
		enable_runtime(cpu_rq(cpu));
9252 9253
		return NOTIFY_OK;

L
Linus Torvalds 已提交
9254 9255 9256 9257 9258 9259 9260
	default:
		return NOTIFY_DONE;
	}
}

void __init sched_init_smp(void)
{
9261 9262 9263
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9264
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9265

9266 9267 9268 9269 9270
#if defined(CONFIG_NUMA)
	sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
								GFP_KERNEL);
	BUG_ON(sched_group_nodes_bycpu == NULL);
#endif
9271
	get_online_cpus();
9272
	mutex_lock(&sched_domains_mutex);
9273
	arch_init_sched_domains(cpu_active_mask);
9274 9275 9276
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9277
	mutex_unlock(&sched_domains_mutex);
9278
	put_online_cpus();
9279 9280

#ifndef CONFIG_CPUSETS
L
Linus Torvalds 已提交
9281 9282
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
9283 9284 9285 9286 9287
#endif

	/* RT runtime code needs to handle some hotplug events */
	hotcpu_notifier(update_runtime, 0);

9288
	init_hrtick();
9289 9290

	/* Move init over to a non-isolated CPU */
9291
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9292
		BUG();
I
Ingo Molnar 已提交
9293
	sched_init_granularity();
9294
	free_cpumask_var(non_isolated_cpus);
9295

9296
	init_sched_rt_class();
L
Linus Torvalds 已提交
9297 9298 9299 9300
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
9301
	sched_init_granularity();
L
Linus Torvalds 已提交
9302 9303 9304
}
#endif /* CONFIG_SMP */

9305 9306
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
9307 9308 9309 9310 9311 9312 9313
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
9314
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
9315 9316
{
	cfs_rq->tasks_timeline = RB_ROOT;
9317
	INIT_LIST_HEAD(&cfs_rq->tasks);
I
Ingo Molnar 已提交
9318 9319 9320
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9321
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
9322 9323
}

P
Peter Zijlstra 已提交
9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

9337
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9338
	rt_rq->highest_prio.curr = MAX_RT_PRIO;
9339
#ifdef CONFIG_SMP
9340
	rt_rq->highest_prio.next = MAX_RT_PRIO;
P
Peter Zijlstra 已提交
9341 9342
#endif
#endif
P
Peter Zijlstra 已提交
9343 9344 9345
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
9346
	plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
P
Peter Zijlstra 已提交
9347 9348 9349 9350
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
9351 9352
	rt_rq->rt_runtime = 0;
	spin_lock_init(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
9353

9354
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9355
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
9356 9357
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
9358 9359
}

P
Peter Zijlstra 已提交
9360
#ifdef CONFIG_FAIR_GROUP_SCHED
9361 9362 9363
static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
				struct sched_entity *se, int cpu, int add,
				struct sched_entity *parent)
P
Peter Zijlstra 已提交
9364
{
9365
	struct rq *rq = cpu_rq(cpu);
P
Peter Zijlstra 已提交
9366 9367 9368 9369 9370 9371 9372
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
D
Dhaval Giani 已提交
9373 9374 9375 9376
	/* se could be NULL for init_task_group */
	if (!se)
		return;

9377 9378 9379 9380 9381
	if (!parent)
		se->cfs_rq = &rq->cfs;
	else
		se->cfs_rq = parent->my_q;

P
Peter Zijlstra 已提交
9382 9383
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
9384
	se->load.inv_weight = 0;
9385
	se->parent = parent;
P
Peter Zijlstra 已提交
9386
}
9387
#endif
P
Peter Zijlstra 已提交
9388

9389
#ifdef CONFIG_RT_GROUP_SCHED
9390 9391 9392
static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
		struct sched_rt_entity *rt_se, int cpu, int add,
		struct sched_rt_entity *parent)
P
Peter Zijlstra 已提交
9393
{
9394 9395
	struct rq *rq = cpu_rq(cpu);

P
Peter Zijlstra 已提交
9396 9397 9398 9399
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
P
Peter Zijlstra 已提交
9400
	rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
9401 9402 9403 9404
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
D
Dhaval Giani 已提交
9405 9406 9407
	if (!rt_se)
		return;

9408 9409 9410 9411 9412
	if (!parent)
		rt_se->rt_rq = &rq->rt;
	else
		rt_se->rt_rq = parent->my_q;

P
Peter Zijlstra 已提交
9413
	rt_se->my_q = rt_rq;
9414
	rt_se->parent = parent;
P
Peter Zijlstra 已提交
9415 9416 9417 9418
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
9419 9420
void __init sched_init(void)
{
I
Ingo Molnar 已提交
9421
	int i, j;
9422 9423 9424 9425 9426 9427 9428
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9429 9430 9431
#endif
#ifdef CONFIG_USER_SCHED
	alloc_size *= 2;
9432 9433
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
9434
	alloc_size += num_possible_cpus() * cpumask_size();
9435 9436
#endif
	if (alloc_size) {
9437
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9438 9439 9440 9441 9442 9443 9444

#ifdef CONFIG_FAIR_GROUP_SCHED
		init_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9445 9446 9447 9448 9449 9450 9451

#ifdef CONFIG_USER_SCHED
		root_task_group.se = (struct sched_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9452 9453
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */
9454 9455 9456 9457 9458
#ifdef CONFIG_RT_GROUP_SCHED
		init_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		init_task_group.rt_rq = (struct rt_rq **)ptr;
9459 9460 9461 9462 9463 9464 9465 9466
		ptr += nr_cpu_ids * sizeof(void **);

#ifdef CONFIG_USER_SCHED
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);

		root_task_group.rt_rq = (struct rt_rq **)ptr;
		ptr += nr_cpu_ids * sizeof(void **);
9467 9468
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9469 9470 9471 9472 9473 9474
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
			per_cpu(load_balance_tmpmask, i) = (void *)ptr;
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
9475
	}
I
Ingo Molnar 已提交
9476

G
Gregory Haskins 已提交
9477 9478 9479 9480
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

9481 9482 9483 9484 9485 9486
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());

#ifdef CONFIG_RT_GROUP_SCHED
	init_rt_bandwidth(&init_task_group.rt_bandwidth,
			global_rt_period(), global_rt_runtime());
9487 9488 9489
#ifdef CONFIG_USER_SCHED
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
			global_rt_period(), RUNTIME_INF);
9490 9491
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_RT_GROUP_SCHED */
9492

9493
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
9494
	list_add(&init_task_group.list, &task_groups);
P
Peter Zijlstra 已提交
9495 9496 9497 9498 9499 9500
	INIT_LIST_HEAD(&init_task_group.children);

#ifdef CONFIG_USER_SCHED
	INIT_LIST_HEAD(&root_task_group.children);
	init_task_group.parent = &root_task_group;
	list_add(&init_task_group.siblings, &root_task_group.children);
9501 9502
#endif /* CONFIG_USER_SCHED */
#endif /* CONFIG_GROUP_SCHED */
P
Peter Zijlstra 已提交
9503

9504 9505 9506 9507
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
	update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
					    __alignof__(unsigned long));
#endif
9508
	for_each_possible_cpu(i) {
9509
		struct rq *rq;
L
Linus Torvalds 已提交
9510 9511 9512

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
9513
		rq->nr_running = 0;
9514 9515
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
I
Ingo Molnar 已提交
9516
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
9517
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
9518
#ifdef CONFIG_FAIR_GROUP_SCHED
9519
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
9520
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535
#ifdef CONFIG_CGROUP_SCHED
		/*
		 * How much cpu bandwidth does init_task_group get?
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
		 * init_task_group and its child task-groups in a fair manner,
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
		 * In other words, if init_task_group has 10 tasks of weight
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
9536
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
9537 9538 9539 9540
		 *
		 * We achieve this by letting init_task_group's tasks sit
		 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
		 */
9541
		init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9542
#elif defined CONFIG_USER_SCHED
9543 9544
		root_task_group.shares = NICE_0_LOAD;
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
D
Dhaval Giani 已提交
9545 9546 9547 9548 9549 9550 9551 9552
		/*
		 * In case of task-groups formed thr' the user id of tasks,
		 * init_task_group represents tasks belonging to root user.
		 * Hence it forms a sibling of all subsequent groups formed.
		 * In this case, init_task_group gets only a fraction of overall
		 * system cpu resource, based on the weight assigned to root
		 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
		 * by letting tasks of init_task_group sit in a separate cfs_rq
9553
		 * (init_tg_cfs_rq) and having one entity represent this group of
D
Dhaval Giani 已提交
9554 9555
		 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
		 */
9556
		init_tg_cfs_entry(&init_task_group,
9557
				&per_cpu(init_tg_cfs_rq, i),
9558 9559
				&per_cpu(init_sched_entity, i), i, 1,
				root_task_group.se[i]);
P
Peter Zijlstra 已提交
9560

9561
#endif
D
Dhaval Giani 已提交
9562 9563 9564
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9565
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
9566
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
D
Dhaval Giani 已提交
9567
#ifdef CONFIG_CGROUP_SCHED
9568
		init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
D
Dhaval Giani 已提交
9569
#elif defined CONFIG_USER_SCHED
9570
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9571
		init_tg_rt_entry(&init_task_group,
P
Peter Zijlstra 已提交
9572
				&per_cpu(init_rt_rq, i),
9573 9574
				&per_cpu(init_sched_rt_entity, i), i, 1,
				root_task_group.rt_se[i]);
D
Dhaval Giani 已提交
9575
#endif
I
Ingo Molnar 已提交
9576
#endif
L
Linus Torvalds 已提交
9577

I
Ingo Molnar 已提交
9578 9579
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
9580
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
9581
		rq->sd = NULL;
G
Gregory Haskins 已提交
9582
		rq->rd = NULL;
9583
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
9584
		rq->active_balance = 0;
I
Ingo Molnar 已提交
9585
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
9586
		rq->push_cpu = 0;
9587
		rq->cpu = i;
9588
		rq->online = 0;
L
Linus Torvalds 已提交
9589
		rq->migration_thread = NULL;
9590 9591
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
L
Linus Torvalds 已提交
9592
		INIT_LIST_HEAD(&rq->migration_queue);
9593
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
9594
#endif
P
Peter Zijlstra 已提交
9595
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
9596 9597 9598
		atomic_set(&rq->nr_iowait, 0);
	}

9599
	set_load_weight(&init_task);
9600

9601 9602 9603 9604
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

9605
#ifdef CONFIG_SMP
9606
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9607 9608
#endif

9609 9610 9611 9612
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
9626 9627 9628

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
9629 9630 9631 9632
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
9633

9634
	/* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9635
	zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9636
#ifdef CONFIG_SMP
9637
#ifdef CONFIG_NO_HZ
9638
	zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9639
	alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9640
#endif
R
Rusty Russell 已提交
9641 9642 9643
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9644
#endif /* SMP */
9645

9646
	perf_event_init();
9647

9648
	scheduler_running = 1;
L
Linus Torvalds 已提交
9649 9650 9651
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9652 9653 9654 9655 9656 9657 9658 9659
static inline int preempt_count_equals(int preempt_offset)
{
	int nested = preempt_count() & ~PREEMPT_ACTIVE;

	return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
}

void __might_sleep(char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
9660
{
9661
#ifdef in_atomic
L
Linus Torvalds 已提交
9662 9663
	static unsigned long prev_jiffy;	/* ratelimiting */

9664 9665
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
	dump_stack();
L
Linus Torvalds 已提交
9683 9684 9685 9686 9687 9688
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
9689 9690 9691
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
9692

9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
9704 9705
void normalize_rt_tasks(void)
{
9706
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
9707
	unsigned long flags;
9708
	struct rq *rq;
L
Linus Torvalds 已提交
9709

9710
	read_lock_irqsave(&tasklist_lock, flags);
9711
	do_each_thread(g, p) {
9712 9713 9714 9715 9716 9717
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
9718 9719
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
9720 9721 9722
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
9723
#endif
I
Ingo Molnar 已提交
9724 9725 9726 9727 9728 9729 9730 9731

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
9732
			continue;
I
Ingo Molnar 已提交
9733
		}
L
Linus Torvalds 已提交
9734

9735
		spin_lock(&p->pi_lock);
9736
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
9737

9738
		normalize_task(rq, p);
9739

9740
		__task_rq_unlock(rq);
9741
		spin_unlock(&p->pi_lock);
9742 9743
	} while_each_thread(g, p);

9744
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
9745 9746 9747
}

#endif /* CONFIG_MAGIC_SYSRQ */
9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9766
struct task_struct *curr_task(int cpu)
9767 9768 9769 9770 9771 9772 9773 9774 9775 9776
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
9777 9778
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
9779 9780 9781 9782 9783 9784 9785
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
9786
void set_curr_task(int cpu, struct task_struct *p)
9787 9788 9789 9790 9791
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
9792

9793 9794
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

9809 9810
static
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
S
Srivatsa Vaddagiri 已提交
9811 9812
{
	struct cfs_rq *cfs_rq;
9813
	struct sched_entity *se;
9814
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
9815 9816
	int i;

9817
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9818 9819
	if (!tg->cfs_rq)
		goto err;
9820
	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
9821 9822
	if (!tg->se)
		goto err;
9823 9824

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
9825 9826

	for_each_possible_cpu(i) {
9827
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
9828

9829 9830
		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
				      GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9831 9832 9833
		if (!cfs_rq)
			goto err;

9834 9835
		se = kzalloc_node(sizeof(struct sched_entity),
				  GFP_KERNEL, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
9836 9837 9838
		if (!se)
			goto err;

9839
		init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
9858
#else /* !CONFG_FAIR_GROUP_SCHED */
9859 9860 9861 9862
static inline void free_fair_sched_group(struct task_group *tg)
{
}

9863 9864
static inline
int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
9876
#endif /* CONFIG_FAIR_GROUP_SCHED */
9877 9878

#ifdef CONFIG_RT_GROUP_SCHED
9879 9880 9881 9882
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

9883 9884
	destroy_rt_bandwidth(&tg->rt_bandwidth);

9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895
	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

9896 9897
static
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9898 9899
{
	struct rt_rq *rt_rq;
9900
	struct sched_rt_entity *rt_se;
9901 9902 9903
	struct rq *rq;
	int i;

9904
	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9905 9906
	if (!tg->rt_rq)
		goto err;
9907
	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9908 9909 9910
	if (!tg->rt_se)
		goto err;

9911 9912
	init_rt_bandwidth(&tg->rt_bandwidth,
			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9913 9914 9915 9916

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

9917 9918
		rt_rq = kzalloc_node(sizeof(struct rt_rq),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9919 9920
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
9921

9922 9923
		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
				     GFP_KERNEL, cpu_to_node(i));
P
Peter Zijlstra 已提交
9924 9925
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
9926

9927
		init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
S
Srivatsa Vaddagiri 已提交
9928 9929
	}

9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
9946
#else /* !CONFIG_RT_GROUP_SCHED */
9947 9948 9949 9950
static inline void free_rt_sched_group(struct task_group *tg)
{
}

9951 9952
static inline
int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
9964
#endif /* CONFIG_RT_GROUP_SCHED */
9965

9966
#ifdef CONFIG_GROUP_SCHED
9967 9968 9969 9970 9971 9972 9973 9974
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
9975
struct task_group *sched_create_group(struct task_group *parent)
9976 9977 9978 9979 9980 9981 9982 9983 9984
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

9985
	if (!alloc_fair_sched_group(tg, parent))
9986 9987
		goto err;

9988
	if (!alloc_rt_sched_group(tg, parent))
9989 9990
		goto err;

9991
	spin_lock_irqsave(&task_group_lock, flags);
9992
	for_each_possible_cpu(i) {
9993 9994
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
9995
	}
P
Peter Zijlstra 已提交
9996
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
9997 9998 9999 10000 10001

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
10002
	list_add_rcu(&tg->siblings, &parent->children);
10003
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
10004

10005
	return tg;
S
Srivatsa Vaddagiri 已提交
10006 10007

err:
P
Peter Zijlstra 已提交
10008
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
10009 10010 10011
	return ERR_PTR(-ENOMEM);
}

10012
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
10013
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
10014 10015
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
10016
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
10017 10018
}

10019
/* Destroy runqueue etc associated with a task group */
10020
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
10021
{
10022
	unsigned long flags;
10023
	int i;
S
Srivatsa Vaddagiri 已提交
10024

10025
	spin_lock_irqsave(&task_group_lock, flags);
10026
	for_each_possible_cpu(i) {
10027 10028
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
10029
	}
P
Peter Zijlstra 已提交
10030
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
10031
	list_del_rcu(&tg->siblings);
10032
	spin_unlock_irqrestore(&task_group_lock, flags);
10033 10034

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
10035
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
10036 10037
}

10038
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
10039 10040 10041
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
10042 10043
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
10044 10045 10046 10047 10048 10049 10050 10051 10052
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

10053
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10054 10055
	on_rq = tsk->se.on_rq;

10056
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10057
		dequeue_task(rq, tsk, 0);
10058 10059
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
10060

P
Peter Zijlstra 已提交
10061
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
10062

P
Peter Zijlstra 已提交
10063 10064 10065 10066 10067
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

10068 10069 10070
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
10071
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
10072 10073 10074

	task_rq_unlock(rq, &flags);
}
10075
#endif /* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
10076

10077
#ifdef CONFIG_FAIR_GROUP_SCHED
10078
static void __set_se_shares(struct sched_entity *se, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10079 10080 10081 10082 10083
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	int on_rq;

	on_rq = se->on_rq;
10084
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10085 10086 10087
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
10088
	se->load.inv_weight = 0;
S
Srivatsa Vaddagiri 已提交
10089

10090
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
10091
		enqueue_entity(cfs_rq, se, 0);
10092
}
10093

10094 10095 10096 10097 10098 10099 10100 10101 10102
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	__set_se_shares(se, shares);
	spin_unlock_irqrestore(&rq->lock, flags);
S
Srivatsa Vaddagiri 已提交
10103 10104
}

10105 10106
static DEFINE_MUTEX(shares_mutex);

10107
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
10108 10109
{
	int i;
10110
	unsigned long flags;
10111

10112 10113 10114 10115 10116 10117
	/*
	 * We can't change the weight of the root cgroup.
	 */
	if (!tg->se[0])
		return -EINVAL;

10118 10119
	if (shares < MIN_SHARES)
		shares = MIN_SHARES;
10120 10121
	else if (shares > MAX_SHARES)
		shares = MAX_SHARES;
10122

10123
	mutex_lock(&shares_mutex);
10124
	if (tg->shares == shares)
10125
		goto done;
S
Srivatsa Vaddagiri 已提交
10126

10127
	spin_lock_irqsave(&task_group_lock, flags);
10128 10129
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10130
	list_del_rcu(&tg->siblings);
10131
	spin_unlock_irqrestore(&task_group_lock, flags);
10132 10133 10134 10135 10136 10137 10138 10139

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
10140
	tg->shares = shares;
10141 10142 10143 10144 10145
	for_each_possible_cpu(i) {
		/*
		 * force a rebalance
		 */
		cfs_rq_set_shares(tg->cfs_rq[i], 0);
10146
		set_se_shares(tg->se[i], shares);
10147
	}
S
Srivatsa Vaddagiri 已提交
10148

10149 10150 10151 10152
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
10153
	spin_lock_irqsave(&task_group_lock, flags);
10154 10155
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
P
Peter Zijlstra 已提交
10156
	list_add_rcu(&tg->siblings, &tg->parent->children);
10157
	spin_unlock_irqrestore(&task_group_lock, flags);
10158
done:
10159
	mutex_unlock(&shares_mutex);
10160
	return 0;
S
Srivatsa Vaddagiri 已提交
10161 10162
}

10163 10164 10165 10166
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
10167
#endif
10168

10169
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10170
/*
P
Peter Zijlstra 已提交
10171
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
10172
 */
P
Peter Zijlstra 已提交
10173 10174 10175 10176 10177
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10178
		return 1ULL << 20;
P
Peter Zijlstra 已提交
10179

P
Peter Zijlstra 已提交
10180
	return div64_u64(runtime << 20, period);
P
Peter Zijlstra 已提交
10181 10182
}

P
Peter Zijlstra 已提交
10183 10184
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
10185
{
P
Peter Zijlstra 已提交
10186
	struct task_struct *g, *p;
10187

P
Peter Zijlstra 已提交
10188 10189 10190 10191
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
10192

P
Peter Zijlstra 已提交
10193 10194
	return 0;
}
10195

P
Peter Zijlstra 已提交
10196 10197 10198 10199 10200
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
10201

P
Peter Zijlstra 已提交
10202 10203 10204 10205 10206 10207
static int tg_schedulable(struct task_group *tg, void *data)
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
10208

P
Peter Zijlstra 已提交
10209 10210
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
10211

P
Peter Zijlstra 已提交
10212 10213 10214
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
10215 10216
	}

10217 10218 10219 10220 10221 10222 10223
#ifdef CONFIG_USER_SCHED
	if (tg == &root_task_group) {
		period = global_rt_period();
		runtime = global_rt_runtime();
	}
#endif

10224 10225 10226 10227 10228
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
10229

10230 10231 10232
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
10233 10234
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
10235

P
Peter Zijlstra 已提交
10236
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10237

10238 10239 10240 10241 10242
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
10243

10244 10245 10246
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
10247 10248 10249
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10250

P
Peter Zijlstra 已提交
10251 10252 10253 10254
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
10255

P
Peter Zijlstra 已提交
10256
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
10257
	}
P
Peter Zijlstra 已提交
10258

P
Peter Zijlstra 已提交
10259 10260 10261 10262
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
10263 10264
}

P
Peter Zijlstra 已提交
10265
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10266
{
P
Peter Zijlstra 已提交
10267 10268 10269 10270 10271 10272 10273
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

	return walk_tg_tree(tg_schedulable, tg_nop, &data);
10274 10275
}

10276 10277
static int tg_set_bandwidth(struct task_group *tg,
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
10278
{
P
Peter Zijlstra 已提交
10279
	int i, err = 0;
P
Peter Zijlstra 已提交
10280 10281

	mutex_lock(&rt_constraints_mutex);
10282
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
10283 10284
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
10285
		goto unlock;
P
Peter Zijlstra 已提交
10286 10287

	spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10288 10289
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
10290 10291 10292 10293 10294 10295 10296 10297 10298

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = rt_runtime;
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
10299
 unlock:
10300
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
10301 10302 10303
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
10304 10305
}

10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

P
Peter Zijlstra 已提交
10318 10319 10320 10321
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

10322
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
10323 10324
		return -1;

10325
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
10326 10327 10328
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
10329 10330 10331 10332 10333 10334 10335 10336

int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

10337 10338 10339
	if (rt_period == 0)
		return -EINVAL;

10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353
	return tg_set_bandwidth(tg, rt_period, rt_runtime);
}

long sched_group_rt_period(struct task_group *tg)
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}

static int sched_rt_global_constraints(void)
{
10354
	u64 runtime, period;
10355 10356
	int ret = 0;

10357 10358 10359
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10360 10361 10362 10363 10364 10365 10366 10367
	runtime = global_rt_runtime();
	period = global_rt_period();

	/*
	 * Sanity check on the sysctl variables.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
10368

10369
	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
10370
	read_lock(&tasklist_lock);
10371
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
10372
	read_unlock(&tasklist_lock);
10373 10374 10375 10376
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
10377 10378 10379 10380 10381 10382 10383 10384 10385 10386

int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

10387
#else /* !CONFIG_RT_GROUP_SCHED */
10388 10389
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
10390 10391 10392
	unsigned long flags;
	int i;

10393 10394 10395
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

10396 10397 10398 10399 10400 10401 10402
	/*
	 * There's always some RT tasks in the root group
	 * -- migration, kstopmachine etc..
	 */
	if (sysctl_sched_rt_runtime == 0)
		return -EBUSY;

P
Peter Zijlstra 已提交
10403 10404 10405 10406 10407 10408 10409 10410 10411 10412
	spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

		spin_lock(&rt_rq->rt_runtime_lock);
		rt_rq->rt_runtime = global_rt_runtime();
		spin_unlock(&rt_rq->rt_runtime_lock);
	}
	spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);

10413 10414
	return 0;
}
10415
#endif /* CONFIG_RT_GROUP_SCHED */
10416 10417

int sched_rt_handler(struct ctl_table *table, int write,
10418
		void __user *buffer, size_t *lenp,
10419 10420 10421 10422 10423 10424 10425 10426 10427 10428
		loff_t *ppos)
{
	int ret;
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

10429
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445

	if (!ret && write) {
		ret = sched_rt_global_constraints();
		if (ret) {
			sysctl_sched_rt_period = old_period;
			sysctl_sched_rt_runtime = old_runtime;
		} else {
			def_rt_bandwidth.rt_runtime = global_rt_runtime();
			def_rt_bandwidth.rt_period =
				ns_to_ktime(global_rt_period());
		}
	}
	mutex_unlock(&mutex);

	return ret;
}
10446

10447
#ifdef CONFIG_CGROUP_SCHED
10448 10449

/* return corresponding task_group object of a cgroup */
10450
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10451
{
10452 10453
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
10454 10455 10456
}

static struct cgroup_subsys_state *
10457
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10458
{
10459
	struct task_group *tg, *parent;
10460

10461
	if (!cgrp->parent) {
10462 10463 10464 10465
		/* This is early initialization for the top cgroup */
		return &init_task_group.css;
	}

10466 10467
	parent = cgroup_tg(cgrp->parent);
	tg = sched_create_group(parent);
10468 10469 10470 10471 10472 10473
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

I
Ingo Molnar 已提交
10474 10475
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10476
{
10477
	struct task_group *tg = cgroup_tg(cgrp);
10478 10479 10480 10481

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
10482
static int
10483
cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10484
{
10485
#ifdef CONFIG_RT_GROUP_SCHED
10486
	if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10487 10488
		return -EINVAL;
#else
10489 10490 10491
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
10492
#endif
10493 10494
	return 0;
}
10495

10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk, bool threadgroup)
{
	int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
	if (retval)
		return retval;
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			retval = cpu_cgroup_can_attach_task(cgrp, c);
			if (retval) {
				rcu_read_unlock();
				return retval;
			}
		}
		rcu_read_unlock();
	}
10515 10516 10517 10518
	return 0;
}

static void
10519
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10520 10521
		  struct cgroup *old_cont, struct task_struct *tsk,
		  bool threadgroup)
10522 10523
{
	sched_move_task(tsk);
10524 10525 10526 10527 10528 10529 10530 10531
	if (threadgroup) {
		struct task_struct *c;
		rcu_read_lock();
		list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
			sched_move_task(c);
		}
		rcu_read_unlock();
	}
10532 10533
}

10534
#ifdef CONFIG_FAIR_GROUP_SCHED
10535
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10536
				u64 shareval)
10537
{
10538
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10539 10540
}

10541
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10542
{
10543
	struct task_group *tg = cgroup_tg(cgrp);
10544 10545 10546

	return (u64) tg->shares;
}
10547
#endif /* CONFIG_FAIR_GROUP_SCHED */
10548

10549
#ifdef CONFIG_RT_GROUP_SCHED
M
Mirco Tischler 已提交
10550
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10551
				s64 val)
P
Peter Zijlstra 已提交
10552
{
10553
	return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
P
Peter Zijlstra 已提交
10554 10555
}

10556
static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
P
Peter Zijlstra 已提交
10557
{
10558
	return sched_group_rt_runtime(cgroup_tg(cgrp));
P
Peter Zijlstra 已提交
10559
}
10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570

static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
		u64 rt_period_us)
{
	return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
}

static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
{
	return sched_group_rt_period(cgroup_tg(cgrp));
}
10571
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
10572

10573
static struct cftype cpu_files[] = {
10574
#ifdef CONFIG_FAIR_GROUP_SCHED
10575 10576
	{
		.name = "shares",
10577 10578
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
10579
	},
10580 10581
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
10582
	{
P
Peter Zijlstra 已提交
10583
		.name = "rt_runtime_us",
10584 10585
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
10586
	},
10587 10588
	{
		.name = "rt_period_us",
10589 10590
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
10591
	},
10592
#endif
10593 10594 10595 10596
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
10597
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10598 10599 10600
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
10601 10602 10603 10604 10605 10606 10607
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
10608 10609 10610
	.early_init	= 1,
};

10611
#endif	/* CONFIG_CGROUP_SCHED */
10612 10613 10614 10615 10616 10617 10618 10619 10620 10621

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

10622
/* track cpu usage of a group of tasks and its child groups */
10623 10624 10625 10626
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
10627
	struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10628
	struct cpuacct *parent;
10629 10630 10631 10632 10633
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
10634
static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10635
{
10636
	return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
10649
	struct cgroup_subsys *ss, struct cgroup *cgrp)
10650 10651
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10652
	int i;
10653 10654

	if (!ca)
10655
		goto out;
10656 10657

	ca->cpuusage = alloc_percpu(u64);
10658 10659 10660 10661 10662 10663
	if (!ca->cpuusage)
		goto out_free_ca;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		if (percpu_counter_init(&ca->cpustat[i], 0))
			goto out_free_counters;
10664

10665 10666 10667
	if (cgrp->parent)
		ca->parent = cgroup_ca(cgrp->parent);

10668
	return &ca->css;
10669 10670 10671 10672 10673 10674 10675 10676 10677

out_free_counters:
	while (--i >= 0)
		percpu_counter_destroy(&ca->cpustat[i]);
	free_percpu(ca->cpuusage);
out_free_ca:
	kfree(ca);
out:
	return ERR_PTR(-ENOMEM);
10678 10679 10680
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
10681
static void
10682
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10683
{
10684
	struct cpuacct *ca = cgroup_ca(cgrp);
10685
	int i;
10686

10687 10688
	for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
		percpu_counter_destroy(&ca->cpustat[i]);
10689 10690 10691 10692
	free_percpu(ca->cpuusage);
	kfree(ca);
}

10693 10694
static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
{
10695
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
	u64 data;

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	data = *cpuusage;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	data = *cpuusage;
#endif

	return data;
}

static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
{
10714
	u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727

#ifndef CONFIG_64BIT
	/*
	 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
	 */
	spin_lock_irq(&cpu_rq(cpu)->lock);
	*cpuusage = val;
	spin_unlock_irq(&cpu_rq(cpu)->lock);
#else
	*cpuusage = val;
#endif
}

10728
/* return total cpu usage (in nanoseconds) of a group */
10729
static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10730
{
10731
	struct cpuacct *ca = cgroup_ca(cgrp);
10732 10733 10734
	u64 totalcpuusage = 0;
	int i;

10735 10736
	for_each_present_cpu(i)
		totalcpuusage += cpuacct_cpuusage_read(ca, i);
10737 10738 10739 10740

	return totalcpuusage;
}

10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752
static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
								u64 reset)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int err = 0;
	int i;

	if (reset) {
		err = -EINVAL;
		goto out;
	}

10753 10754
	for_each_present_cpu(i)
		cpuacct_cpuusage_write(ca, i, 0);
10755 10756 10757 10758 10759

out:
	return err;
}

10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774
static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
				   struct seq_file *m)
{
	struct cpuacct *ca = cgroup_ca(cgroup);
	u64 percpu;
	int i;

	for_each_present_cpu(i) {
		percpu = cpuacct_cpuusage_read(ca, i);
		seq_printf(m, "%llu ", (unsigned long long) percpu);
	}
	seq_printf(m, "\n");
	return 0;
}

10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793
static const char *cpuacct_stat_desc[] = {
	[CPUACCT_STAT_USER] = "user",
	[CPUACCT_STAT_SYSTEM] = "system",
};

static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
		struct cgroup_map_cb *cb)
{
	struct cpuacct *ca = cgroup_ca(cgrp);
	int i;

	for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
		s64 val = percpu_counter_read(&ca->cpustat[i]);
		val = cputime64_to_clock_t(val);
		cb->fill(cb, cpuacct_stat_desc[i], val);
	}
	return 0;
}

10794 10795 10796
static struct cftype files[] = {
	{
		.name = "usage",
10797 10798
		.read_u64 = cpuusage_read,
		.write_u64 = cpuusage_write,
10799
	},
10800 10801 10802 10803
	{
		.name = "usage_percpu",
		.read_seq_string = cpuacct_percpu_seq_read,
	},
10804 10805 10806 10807
	{
		.name = "stat",
		.read_map = cpuacct_stats_show,
	},
10808 10809
};

10810
static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10811
{
10812
	return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10813 10814 10815 10816 10817 10818 10819 10820 10821 10822
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;
10823
	int cpu;
10824

L
Li Zefan 已提交
10825
	if (unlikely(!cpuacct_subsys.active))
10826 10827
		return;

10828
	cpu = task_cpu(tsk);
10829 10830 10831

	rcu_read_lock();

10832 10833
	ca = task_ca(tsk);

10834
	for (; ca; ca = ca->parent) {
10835
		u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10836 10837
		*cpuusage += cputime;
	}
10838 10839

	rcu_read_unlock();
10840 10841
}

10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862
/*
 * Charge the system/user time to the task's accounting group.
 */
static void cpuacct_update_stats(struct task_struct *tsk,
		enum cpuacct_stat_index idx, cputime_t val)
{
	struct cpuacct *ca;

	if (unlikely(!cpuacct_subsys.active))
		return;

	rcu_read_lock();
	ca = task_ca(tsk);

	do {
		percpu_counter_add(&ca->cpustat[idx], val);
		ca = ca->parent;
	} while (ca);
	rcu_read_unlock();
}

10863 10864 10865 10866 10867 10868 10869 10870
struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */
10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972

#ifndef CONFIG_SMP

int rcu_expedited_torture_stats(char *page)
{
	return 0;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

void synchronize_sched_expedited(void)
{
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#else /* #ifndef CONFIG_SMP */

static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
static DEFINE_MUTEX(rcu_sched_expedited_mutex);

#define RCU_EXPEDITED_STATE_POST -2
#define RCU_EXPEDITED_STATE_IDLE -1

static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;

int rcu_expedited_torture_stats(char *page)
{
	int cnt = 0;
	int cpu;

	cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
	for_each_online_cpu(cpu) {
		 cnt += sprintf(&page[cnt], " %d:%d",
				cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
	}
	cnt += sprintf(&page[cnt], "\n");
	return cnt;
}
EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);

static long synchronize_sched_expedited_count;

/*
 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
 * approach to force grace period to end quickly.  This consumes
 * significant time on all CPUs, and is thus not recommended for
 * any sort of common-case code.
 *
 * Note that it is illegal to call this function while holding any
 * lock that is acquired by a CPU-hotplug notifier.  Failing to
 * observe this restriction will result in deadlock.
 */
void synchronize_sched_expedited(void)
{
	int cpu;
	unsigned long flags;
	bool need_full_sync = 0;
	struct rq *rq;
	struct migration_req *req;
	long snap;
	int trycount = 0;

	smp_mb();  /* ensure prior mod happens before capturing snap. */
	snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
	get_online_cpus();
	while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
		put_online_cpus();
		if (trycount++ < 10)
			udelay(trycount * num_online_cpus());
		else {
			synchronize_sched();
			return;
		}
		if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
			smp_mb(); /* ensure test happens before caller kfree */
			return;
		}
		get_online_cpus();
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
	for_each_online_cpu(cpu) {
		rq = cpu_rq(cpu);
		req = &per_cpu(rcu_migration_req, cpu);
		init_completion(&req->done);
		req->task = NULL;
		req->dest_cpu = RCU_MIGRATION_NEED_QS;
		spin_lock_irqsave(&rq->lock, flags);
		list_add(&req->list, &rq->migration_queue);
		spin_unlock_irqrestore(&rq->lock, flags);
		wake_up_process(rq->migration_thread);
	}
	for_each_online_cpu(cpu) {
		rcu_expedited_state = cpu;
		req = &per_cpu(rcu_migration_req, cpu);
		rq = cpu_rq(cpu);
		wait_for_completion(&req->done);
		spin_lock_irqsave(&rq->lock, flags);
		if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
			need_full_sync = 1;
		req->dest_cpu = RCU_MIGRATION_IDLE;
		spin_unlock_irqrestore(&rq->lock, flags);
	}
	rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10973
	synchronize_sched_expedited_count++;
10974 10975 10976 10977 10978 10979 10980 10981
	mutex_unlock(&rcu_sched_expedited_mutex);
	put_online_cpus();
	if (need_full_sync)
		synchronize_sched();
}
EXPORT_SYMBOL_GPL(synchronize_sched_expedited);

#endif /* #else #ifndef CONFIG_SMP */